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In studies of perturbation dynamics in physical systems, certain specification of the gov-
erning perturbation dynamical system is generally lacking, either because the perturba-
tion system is imperfectly known or because its specification is intrinsically uncertain,
while a statistical characterization of the perturbation dynamical system is often avail-
able. In this report exact and asymptotically valid equations are derived for the ensemble
mean and moment dynamics of uncertain systems. These results are used to extend the
concept of optimal deterministic perturbation of certain systems to uncertain systems.
Remarkably, the optimal perturbation problem has a simple solution: In uncertain sys-
tems there is a sure initial condition producing the greatest expected second moment
perturbation growth.
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1. Introduction

Linear stability theory has been extensively studied because of its role in advancing

understanding of a wide range of physical phenomena related to the structure and

growth of perturbations to dynamical systems. Historically, linear stability theory

was developed using the method of modes (Rayleigh [13]). However, the method of

modes is incomplete for understanding perturbation growth even for autonomous

systems because the non-normality of the linear operator in physical problems often

produces transient development of a subset of perturbations that dominates the

physically relevant growth processes (Farrell [4]). Recognition of the role of non-

normality in linear stability led to the development of generalized stability theory

(Farrell and Ioannou [6]). Compared to the methods of modes, the methods of

generalized stability theory, which are based on the non-normality of the linear
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operator, allow a far wider class of stability problems to be addressed including

perturbation growth associated with aperiodic time-dependent certain operators to

which the method of modes does not apply (Farrell and Ioannou [7]).

The problems to which generalized stability theory has been applied heretofore

involve growth of perturbations in a system with no time dependence or a sys-

tem with known time dependence; perturbations to these systems may be sure or

stochastically distributed and may be imposed at the initial time, or distributed

continuously in time, but the operator to which the perturbation is applied is con-

sidered to be certain and the problem is that of the stability of a certain operator.

However, it may happen that we either do not have complete knowledge of the

system that is being perturbed or that exact specification may be inappropriate

to the physical system in which case the problem is to determine the stability

of an uncertain operator. In generalized stability theory the perturbation produc-

ing greatest growth plays a central role in quantifying the stability of the system.

In this paper we obtain exact dynamical equations for the perturbation ensemble

mean and covariance and use these results to obtain the optimal perturbation to

uncertain systems.

2. Exact Equations for the Ensemble Mean

Consider the uncertain linear system for the vector state ψ:

dψ

dt
= Aψ + εη(t)Bψ , (2.1)

where A is the ensemble mean matrix, η(t) is a stochastic process with zero mean, B

is the matrix of the fluctuation structure and ε is an amplitude parameter. Equa-

tions for the evolution of the ensemble mean field, 〈ψ(t)〉, and for the ensemble

mean covariance, 〈ψi(t)ψ∗j (t)〉, can be readily obtained if η is a white noise process

(Arnold [1]). Although it is a great advantage for analysis to assume that η is a

white noise process, this assumption is often hard to justify in physical contexts

because the uncertainties in physical operators are often red and because white

noise processes producing nonvanishing variance in (2.1) have unbounded fluctua-

tions that in a physical context would imply, for example, infinite wind speeds or

unbounded negative damping rates.

Approximate dynamical equations for the ensemble mean field evolving under

uncertain dynamics and not restricted to white noise stochastic processes have

been obtained by Bourret [2], Keller [8], Papanicolaou and Keller [11] and Van

Kampen [14]. These approximations are accurate for small Kubo number K = εtc,

where tc is the autocorrelation time of the stochastic process η(t). In addition, exact

evolution equations for the ensemble mean can be obtained when η(t) is a telegraph

process; results which are discussed in Brissaud & Frisch [3]. Finally, making use of

the properties of cumulant expansions it is possible to obtain an exact expression

for the evolution of the ensemble mean covariance for the case in which η(t) is a

Gaussian process as follows:
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Theorem 2.1. If η(t) is a Gaussian stochastic process with zero mean, unit vari-

ance, and autocorrelation time tc = 1/ν so that 〈η(t1)η(t2)〉 = exp(−ν|t1− t2|) then

the ensemble mean of the stochastic equation (2.1) obeys the deterministic equation:

d〈ψ〉
dt

= (A + ε2BD(t))〈ψ〉 , (2.2)

where

D(t) =

∫ t

0

eAsBe−Ase−νsds . (2.3)

Proof. Consider the interaction perturbation φ(t) defined by

ψ(t) ≡ eAtφ(t) , (2.4)

in which Eq. (2.1) becomes:

dφ

dt
= εη(t)e−AtBeAtφ = εη(t)H(t)φ , (2.5)

where

H(t) ≡ e−AtBeAt . (2.6)

For a sure initial perturbation we have φ(0) = ψ(0) and the interaction perturbation

at time t is:

φ(t) = G(t)ψ(0) , (2.7)

with the fundamental matrix G(t) given by

G(t) = I + ε

∫ t

0

η(t1)H(t1)dt1 + ε2

∫ t

0

dt1

∫ t1

0

dt2η(t1)H(t1)η(t2)H(t2) + · · · .
(2.8)

This expression for the fundamental matrix defines the time-ordered exponential:

G(t) = expo

(
ε

∫ t

0

η(s)H(s)ds

)
. (2.9)

The subscript “o” denotes time ordering and the term exponential is used because

Eq. (2.8) is obtained if the argument of Eq. (2.9) is expanded as an exponential

with the convention that the terms are grouped in ascending time order. Note that

time ordered exponentials of matrices satisfy the familiar properties of exponen-

tials of scalars even for matrices that do not commute; for example, we can write

expo(H(t1) + H(t2)) = expo(H(t1)) expo(H(t2)) even if the matrices H(t1) and

H(t2) do not commute if time ordering is enforced meaning that in all products

H(t1) is placed to the left of H(t2).

Kubo [9] has shown that the average of the time ordered exponential in Eq. (2.9)

can be expanded in the cumulants of η(t) in the same way that the exponents of

ordinary stochastic processes are expanded in cumulants of their arguments:

〈G(t)〉 = expo(F(t)) , (2.10)
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where

F(t) =
ε2

2!

∫ t

0

∫ t

0

dt1dt2 � η(t1)η(t2)� H(t1)H(t2) + · · ·

+
ε2n

n!

∫ t

0

· · ·
∫ t

0

dt1 · · · dtn � η(t1) · · · η(tn)� H(t1) · · ·H(tn) + · · · ,

(2.11)

and in which � · � denote the cumulants of η. Note that expo(F(t)) in Eq. (2.10)

is an abbreviation in the sense that in order to evaluate this expression we must first

expand it in powers of its argument observing the time ordering. For a Gaussian

process all cumulants of order higher than 2 vanish and because � η(t1)η(t2)�=

〈η(t1)η(t2)〉 we obtain for this case:

〈G(t)〉 = expo

(
ε2

2!

∫ t

0

∫ t

0

dt1dt2H(t1)H(t2)〈η(t1)η(t2)〉
)

= expo

(
ε2

2!

∫ t

0

∫ t

0

dt1dt2H(t1)H(t2)e
−ν(t1−t2)

)
. (2.12)

Consequently, the ensemble average of the interaction perturbation obeys the equa-

tion:

d〈φ〉
dt

=

(
ε2H(t)

∫ t

0

dsH(s)eν(t−s)
)
〈φ〉 , (2.13)

from which we obtain,

d〈ψ〉
dt

= A〈ψ〉+ eAt
d〈φ〉
dt

= A〈ψ〉+ ε2eAtH(t)d

∫ t

0

dsH(s)eν(t−s)e−At〈ψ〉 , (2.14)

giving the exact evolution equation for the ensemble average perturbation:

d〈ψ〉
dt

=

(
A + ε2B

∫ t

0

eAsBe−Ase−νsds

)
〈ψ〉 . (2.15)

3. Approximate Equations for the Ensemble Mean

We seek approximations to the ensemble mean equation (2.2) that are valid for

short autocorrelation time, tc = 1/ν � 1. The integrand defining the matrix D(t)

given by Eq. (2.3) can be expanded as

eAsBe−Ase−νs = e−νs
(
B + s[A,B] +

s2

2!
[A, [A,B]] + · · ·

)
, (3.16)

where [A,B] ≡ AB − BA is the commutator. The ensemble mean Eq. (2.2) then

takes the exact form:

d〈ψ〉
dt

=

[
A + ε2B

(
I0B + I1[A,B] +

I2

2!
[A, [A,B]] + · · ·

)]
〈ψ〉 , (3.17)
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where In =
∫ t

0
sne−νsds. Because In+1 = O(1/νn+1), for 1/ν � 0 the ensemble

mean accurately evolves by retaining only the first power of 1/ν in Eq. (3.17). In

that limit the ensemble mean equation becomes:

d〈ψ〉
dt

=

(
A +

ε2

ν
B2

)
〈ψ〉 . (3.18)

This equation is identical to the ensemble mean equation obtained for η(t) a white

noise process, in which case as the limit ν →∞ is taken the fluctuation amplitude

also increases so that the ratio ε2/ν approaches a constant; and Eq. (3.18) becomes

the equation appropriate for a white noise process η(t) with variance 2ε2/ν in the

physically relevant Stratonovich limit ([1]).

4. Obtaining the Optimal Perturbations of Uncertain Systems

Definition 4.1. The optimal perturbation of an uncertain linear dynamical sys-

tem for time t is the unit magnitude initial (t = 0) perturbation that maximizes

the expected perturbation magnitude in the chosen norm at time t. The expected

growth in magnitude of the optimal perturbation is called the optimal growth.

For deterministic dynamical systems governed by non-normal operators the op-

timal growth in the L2 norm is the 2-norm of the fundamental matrix evolved to

time t and the optimal perturbations can be readily found by a Schmidt decom-

position (singular value decomposition) of the fundamental matrix at time t. We

extend this result for obtaining the optimal perturbations to take account of the

uncertainty in the dynamics as follows:

Theorem 4.1. The optimal perturbation at time t of the uncertain dynamical sys-

tem (2.1) is the eigenfunction associated with the largest eigenvalue of the Hermitian

matrix 〈S(t)〉 that is obtained by integrating to time t the differential equation:

d〈S〉
dt

= (A + ε2E(t)B)†〈S〉+ 〈S〉(A + ε2E(t)B)

+ ε2(E(t)†〈S〉B + B†〈S〉E(t)) , (4.19)

where

E(t) =

∫ t

0

e−At′BeAt
′
e−νt

′
dt′ , (4.20)

with initial condition 〈S(0)〉 = I.

Proof. Let Φ(t, 0) be the fundamental matrix associated with each realization

of the operator A + εη(t)B. We seek the initial perturbation leading to greatest

expected perturbation magnitude at future time, t. At time t the perturbation

square amplitude for each realization of the fluctuations is:

ψ†(t)ψ(t) = ψ†(0)Φ†(t, 0)Φ(t, 0)ψ(0) , (4.21)
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where ψ(0) the initial state. It is apparent from this expression that the eigenvector

of the hermitian matrix:

S(t) = Φ†(t, 0)Φ(t, 0) (4.22)

with largest eigenvalue is the initial condition leading to greatest perturbation mag-

nitude at time t for that realization of the fluctuations. The other eigenvectors of

S(t) complete the set of mutually orthogonal initial conditions ordered according

to their growth at time t.

The hermitian matrix S(t) can be determined by integrating forward the equa-

tion:

dS

dt
= (A + εη(t)B)†S + S(A + εη(t)B) . (4.23)

The initial perturbation resulting in maximum mean square perturbation mag-

nitude at time t is the eigenfunction corresponding to the largest eigenvalue of the

mean of S(t). We need therefore to obtain the mean evolution equation correspond-

ing to the matrix Eq. (4.23). This can be readily achieved using the results of the

previous section by first expressing Eq. (4.23) as a vector equation using tensor

products. This is done by associating with the n × n matrix S(t) the n2 column

vector s(t) formed by consecutively stacking the columns of S(t). In tensor form

Eq. (4.23) becomes:

ds

dt
= As+ εη(t)Bs , (4.24)

in which:

A = I⊗A† + AT ⊗ I , B = I⊗B† + BT ⊗ I , (4.25)

where T denotes the transposed matrix and “†” the Hermitian conjugate matrix.

The ensemble average evolution equation for s over Gaussian realizations of η(t),

indicated by 〈s〉, is obtained by applying Theorem 2.1 to (4.24) with result:

d〈s〉
dt

= (A+ ε2BD(t))〈s〉 , (4.26)

where

D(t) =

∫ t

0

eAt′Be−At′e−νt′dt′ . (4.27)

Because eAt = eA
Tt ⊗ eA†t, repeated application of the tensor product properties

gives

D(t) = I⊗E(t)† + E(t)T ⊗ I , (4.28)

where

E(t) =

∫ t

0

e−At′BeAt
′
e−νt

′
dt′ . (4.29)
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The ensemble average evolution equation can then be written as:

d〈s〉
dt

= L〈s〉 (4.30)

in which L is given by:

L = I⊗A† + AT ⊗ I + ε2(I⊗B† + BT ⊗ I)(I⊗E(t)† + E(t)T ⊗ I) . (4.31)

Reverting to matrix notation we obtain that the ensemble mean, 〈S〉, obeys the

deterministic equation:

d〈S〉
dt

= (A + ε2E(t)B)†〈S〉+ 〈S〉(A + ε2E(t)B)

+ ε2(E(t)†〈S〉B + B†〈S〉E(t)) . (4.32)

For short autocorrelation times for the operator fluctuations corresponding to

1/ν � 1 the ensemble mean matrix 〈S〉 satisfies the white noise equation:

d〈S〉
dt

=

(
A +

ε2

ν
B2

)†
〈S〉+ 〈S〉

(
A +

ε2

ν
B2

)
+

2ε2

ν
B†〈S〉B . (4.33)

In their appropriate limits these equations can be used to obtain 〈S(t)〉 and eigen-

analysis of 〈S(t)〉 in turn determines the optimal initial condition that leads to the

largest expected growth in square magnitude at time t. Determining the optimal in

this manner also offers constructive proof of the remarkable fact that the optimal

initial covariance matrix has rank 1 implying that a sure initial condition maximizes

expected growth in an uncertain system.

5. Conclusions

Uncertainty in perturbation dynamical systems can arise from many sources includ-

ing statistical specification of parameters (Sardeshmukh et al. [12]; Palmer [10]) and

incomplete knowledge of the mean state. We have obtained dynamical equations for

ensemble mean and second moment quantities in such systems that are generally

valid and others that are valid in the limit of short autocorrelation times. Optimal

perturbation plays a central role in generalized stability analysis and we have used

ensemble mean second moment equations to solve for the perturbation producing

the greatest expected second moment growth in an uncertain system; remarkably,

this optimal perturbation is sure.
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