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ABSTRACT 

The problem of growth of small perturbations in fluid flow and the related problem of maintenance of 
perturbation variance has traditionally been studied by appeal to exponential modal instability of the flow. In 
the event that a flow supports an exponentially growing modal solution, the initially unbounded growth of the 
mode is taken as more or less compelling evidence for eventual flow breakdown. However, atmospheric flows 
are characterized by large thermally forced background rates of strain and are subject to perturbations that are 
not infinitesimal in amplitude. Under these circumstances there is an alternative mechanism for growth and 
maintenance of perturbation variance: amplification in a straining flow of stochastically forced perturbations 
in the absence of exponential instabilities. From this viewpoint the flow is regarded as a driven amplifier rather 
than as an unstable oscillator. We explore this mechanism using as examples unbounded constant shear and 
pure deformation flow for which closed-form solutions are available and neither of which supports a nonsingular 
mode. With diffusive dissipation we find that amplification of isotropic band-limited stochastic driving is un
bounded for the case of pure deformation and bounded by a threefold increase at large shear for the case of a 
linear velocity profile. A phenomenological model of the contribution oflinear and nonlinear damped modes 
to the maintenance of variance results in variance levels increasing linearly with shear. We conclude that am
plification of stochastic forcing in a straining field can maintain a variance field substantially more energetic 
than that resulting from the same forcing in the absence of a background straining flow. Our results further 
indicate that existence oflinear and nonlinear damped modes is important in maintaining high levels of variance 
by the mechanism of stochastic excitation. 

l. Introduction 

Production and maintenance of variance at small 
amplitude in both barotropic and baroclinic flows is 
commonly explained by appeal to exponential tem
poral modal instability of the undisturbed background 
flow. Initially infinitesimal disturbances are supposed 
by this explanation to grow exponentially, eventually 
reaching finite amplitude. This explanation assumes 
that the perturbation field is of such small amplitude 
that asymptotic dominance by the unstable mode is 
achieved. This, often implicit, assumption justifies ig
noring the generally greater instantaneous growth rates 
of a large subset of .. optimal perturbations" (Farrell 
1988, 1989, 1990; Lacarra and Talagrand 1988). This 
assumption is questionable for many physical systems 
of interest and must fail for flows such as unbounded 
constant shear and pure deformation that do not sup
port exponentially growing solutions. An alternative 
viewpoint is that the background flow is not signifi-
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cantly unstable in the sense of supporting exponentially 
growing temporal modes with rapid growth rates but 
rather a large strain rate allows the flow to serve as an 
amplifier of the inevitable field of perturbations 
ubiquitous in geophysical flows. 

Consider a barotropic and/ or baroclinic jet main
tained by thermal or other strong internal forcing. In 
such a flow the forcing is assumed to maintain a back
ground rate of strain field that is only modified by the 
perturbations. Certainly the initial growth of distur
bances in such a flow can be studied using linear theory 
and, if amplitudes remain sufficiently small, the 
maintenance of the perturbation field can also be stud
ied using linear theory. In this work we examine the 
circumstances under which a forced/dissipative system 
with strong rates of strain but without exponential in
stability behaves as an amplifier of perturbations. We 
use as model problems linearized stochastically forced 
barotropic constant shear and pure deformation flows 
with Ekman, diffusive, and high-order diffusive dissi
pation. To further elucidate the physics, we investigate 
the effect of nonisotropic forcing and of occlusion, 
making use of phenomenological models of these pro
cesses. An important advantage of these model prob-
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lems is the existence of complete, closed-form solutions 
(Kelvin 1887; Yamagata 1976; Farrell 1982; Tung 
1983; Boyd 1983; Shepherd 1985; Craik and Criminale 
1986). Making use of these solutions, the two dimen
sional stochastic excitation problem can be reduced to 
a quadrature from which the basic physics can be more 
easily explored. 

While we have chosen the barotropic model because 
of its relatively simple interpretation, we note with 
Charney ( 1971) that the baroclinic quasigeostrophic 
equations are essentially isomorphic to the barotropic 
equations except for boundary terms and the identi
fication of variables. 

2. The plane wave solution 

Consider the linearized barotropic vorticity equation 
governing the evolution of disturbances to a flow U 
= - 'IJF Y• V = '1JF x, where U is the background velocity 
in the x direction and V the background velocity in 
the y direction: 

where \72 =a; +a~' J( </>1, </>2) = ax</>18y</>2 - 8y</>18x</>2, 
and the x, y velocity is related to the perturbation 
streamfunction, i/;, by (u, v) = (-1/;y, i/lx). 

When the coefficient of viscosity, v, assumes values 
appropriate to molecular diffusion, (2. l) is the two
dimensional linearized Navier-Stokes equation. In at
mospheric applications a v\72\721/; viscous force can be 
assumed to model the effects of eddy mixing, and v is 
then an eddy viscosity. While we will in the sequel 
concentrate on this form of dissipation, it is of interest 
to consider also the effects of more general dissipations 
of the form ( -1 )n\72ny;, which we will refer as dissi
pations of order n. (The \72

n operator is to be inter
preted as the rotationally invariant operator \72 com
pounded n times so that, in Fourier space, waves with 
the same total wavenumber will be subjected to equal 
dissipation.) The case n = 1 models Ekman dissipation, 
while values of n > 2 are often employed in numerical 
simulations. We will explicitly treat then = 2 case be
low, and show that the analysis carries over to any 
dissipation order n so that we need only quote and 
selectively derive results for n > 2. 

Consider a wave perturbation to an unbounded 
constant shear or deformation flow governed by ( 2.1 ) . 
The constant background shear flow has streamfunc
tion 'IJF = - ay2 I 2, and kinematics require that per
turbation wavenumbers vary with time as k(t) = ko, 
l(t) = lo - akot, where (ko, /0 ) is the initial wavenum
ber. The pure deformation flow corresponds to 'IJF 
= axy; k(t) = koea1

, l(t) = l0 e-a1
• For these cases it 

can be verified that ( 2.1 ) has the plane wave solution 

i/;(x, y, t) = cko,lo(t) cos(k(t)x + l(t)y + <f>koJo), 
(2.2) 

where 

k6 + n 
CkoJo(t) =Ako.to k(t) 2 + /(t) 2 

Xexp{-v L(k(T) 2 +l(T) 2 )dT}. (2.3) 

Here all quantities are real, <f>koJo is the initial phase, 
and AkoJo is the initial wave amplitude. The exponential 
term describes the effect of dissipation, which is pro
portional to the time-mean-square wavenumber, which 
in turn depends on the shear. 

Each of these nonseparable waves, which together 
constitute an orthogonal basis, is, in isolation, a non
linear solution of the barotropic vorticity equation 
(Kelvin 1887). This happy circumstance unfortunately 
does not carry over to a superposition of these solutions, 
and as a consequence, our analysis will be restricted 
to the linear problem for which the solution with any 
initial condition can be produced by Fourier synthesis 
of these plane waves, taking for definiteness ko > 0 and 
lo of either sign. 

The energy density of a plane wave is defined as the 
mean energy per unit mass per unit area. For a single 
plane wave it is given by 

E (t) = utoJo + VtoJo = BtoJo(t) lim __!__ 
koJo 2 2 L-oo L 2 

X LL LL cos 2 (k(t)x + l(t)y)dxdy 

where 

= BtoJo(t) 
4 

(2.4) 

It is useful at this point to introduce the vector wave
numbers k = (k(t), l(t)), ko = (ko, /0 ). The total 
streamfunction can then be written as 

y; = L ck0(1) cos(k· x + <1>k0). (2.6) 
ko 

Taking account of contributions from all plane waves 
of the form ( 2.2), the total energy density is 

X cos(k' · x + <f>kc,)dxdy. (2.7) 

The only contribution to this integral arises when k 0 
= ko, and thus, 
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X exp{-2v L (k(r) 2 + l(r) 2)dr}. (2.8) 

3. Stochastic dynamics 

The stochastic forcing is assumed uniform and un
correlated in space. Each Fourier component is equally 
excited in the chosen measure by this forcing. If the 
Fourier components are forced at time zero, the en
semble average of the energy density at a later time, t, 
is the sum of the space averages of the Fourier com
ponents at t: 

<E(t)) = L Eko,lo(t) = E(t), (3.1) 
ko.lo 

where the bracket indicates the ensemble average, and 
( 2. 8 ) has been used. 

We also assume that the forcing is stationary and 
uncorrelated in time. Up to now we have calculated 
the average energy density at time t after the excitation 
of the Fourier components. The ensemble average of 
the energy density when the components are excited 
discretely in time is the sum over the excitations of the 
average energy density: 

(3.2) 
I; 

Hence, the ensemble average over all components of 
the energy density is 

(E) = L E(t;) = L L Eko.lo(t;). (3.3) 
I; t; ko.lo 

It should be noted that we can force the flow in a 
variety of ways. We can, for instance, impart to each 
component of the system on average either unit energy 
or unit enstrophy per unit time and unit area. In the 
sequel we will be mainly concerned with forcing that 
imparts unit energy per unit time and unit area. 

4. Stochastic dynamics of unbounded constant shear 
flows 

a. The case of diffusive dissipation 

Consider now the unbounded constant shear flow 
for which 

k(t) = ko, l(t) = 10 - ak0t. (4.1) 

The component (ko, 10 ) when excited with energy den
sity (; Ot has amplitude: 

( 
i:ot )112 

Ako.lo = 2 kij + /6 (4.2) 

The energy density at a later time is given by ( 2.8): 

- . k6+16 
Eko.lo(t) = EOt kij + Uo - akot)2 

X exp{-2v L (kij + Uo - akor) 2)dr}. (4.3) 

Note that waves excited with 10 > 0 grow for t ~ 10 / 

ako, as the crosswind wavenumber l(t) is diminished 
to zero. After this time the wave decays. The sector 10 
> 0 will be referred to as the favorable sector. The en
ergy of waves excited with 10 < 0 decays for all time, 
and this sector will be referred to as the unfavorable 
sector. If it were not for the dependence of dissipation 
on the mean-square wavenumber, the ensemble av
erage of the energy density would be constant and in
dependent of the shear. (We will see an explicit example 
of such a case for Ekman damping in the next section.) 
In the presence of shear, the mean-square wavenumber, 
and with it the dissipation, is reduced during the period 
of the energy growth, creating the possibility for an 
ensemble-mean energy density higher than in the case 
of a flow with no shear. 

Let the initial total wavenumber be denoted by r0 

= (kij + /6) 1
'

2
, where ko = r0 cos{} and 10 = ro sin8. 

The average energy density due to the excitation of a 
spectrum of waves with total wavenumber r0 in the 
annular region between Ru and R1 is 

_ 2i:ot 
E(t) = 7r(R~ - Rr) 

2 

l
Ru Joo e-2vrog 

X rodro du 2 , 
R1 -oo 1 + ( <Y - at) 

( 4.4) 

where u = tan8, and 

a 2t 3 I 3 - at2u 
g= t + (4.5) 

()2 + 1 

is the cumulative dissipation factor. 
In the case of no shear, a = 0, the energy density 

can be found immediately: 

_ i:Ot(e-2vtRT _ e-2vtR~) 
Ea=o(t) = 2vt(R~ -Rr) (4.6) 

Note that at time zero the energy density is equal, as 
expected, to the energy input: 

Ea=o(O) = i:ot. (4.7) 

To calculate the ensemble average energy density 
for stochastic excitation uncorrelated in time we pro
ceed to the limit Ot - 0, i: = 0( 1) and replace the 
summation in ( 3.3) with an integral. The integral ( 4.6) 
is tabulated so that the ensemble average of the energy 
density in the case of no shear can be written: 

l oo _ i: (R~) 
(E)a=O = 0 E(t)dt = 2v(R~ - Rr) ln Rr . 

(4.8) 
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The ensemble-average wave energy density is propor
tional to the strength of the driving and inversely pro
portional to the coefficient of dissipation. The energy 
density vanishes in the limit Ru - oo because the rapid 
increase of dissipation with wavenumber strongly 
damps short waves; it diverges as R 1 - 0 because the 
long waves are so weakly dissipated that energy accu
mulates and renders stationary statistics impossible. 
Because of divergences of this kind it is preferable to 
retain band-limited excitation R 1 < r0 <Ru. 

To isolate the functional dependence of the dissi
pation in the general case with a =I= 0, we nondimen
sionalize distance by L and time by the viscous time 
scale i = (v/ L 2 )t, so that r0 = Lr0 , R1 = LR1, Ru= LRu, 
and the nondimensional shear becomes a = ( L 2 Iv) a. 
In the terrestrial atmosphere L ~ 10 6 m, and typical 
dimensional shears are a = 10-5 s- 1

• For an eddy vis
cosity of v = 10 7 m2 s- 1

, the nondimensional shear is 
a = 1, while if we take a smaller eddy viscosity v = 105 

m2 s- 1
, we have a nondimensional shear a= 100. 

The ensemble-average energy density becomes, in 
nondimensional variables, after dropping the tildes and 
performing the r0 integration: 

2 2 

J
oo e-2gR1 _ e-2gRu 

X du, -oo 2g(l + (u - at) 2
) 

( 4.9) 

where g, the cumulative dissipation factor, is given in 
(4.5). [We note that the presence of dissipation assures 
validity of the interchange of the order of integration 
in(4.9).] 

The energy density maintained by stochastic forcing 
is proportional to the product of the strength of the 
driving, f:, and the viscous time scale L 2 

/ v. Finding 
the dependence on shear and spatial frequency band
pass of the forcing requires evaluation of the integral 
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FIG. I. The ratio of the ensemble-average perturbation energy 
density at shear a to the ensemble average perturbation density at 
zero shear as a function of shear for a constant shear flow: (a) bandpass 
0.01 < r0 < 10; (b) bandpass 1 < r0 < 10. The asymptotic limit of 
large shear is indicated. 

FIG. 2. Contribution of dynamics to the stochastic energy integral 
( 4.9). Plotted are contours of the difference between the integrand 
and the integrand with the dynamics factor suppressed, that is, with 
the factor I + (u - at) 2 replaced by 1 + u 2

• The bandpass is 0.01 
< r0 < 10, and a = 2. 

in ( 4.9). Results of a numerical evaluation are shown 
in Fig. 1 for two cases of band limiting. 

We can isolate the role of dynamics in ( 4.9) by sup
pressing the dynamic amplitude factor in the integrand 
while retaining the viscous dissipation. This is done by 
replacing 1 + ( u - at) 2 in the denominator of the 
integrand with 1 + u 2

• The difference between these 
two integrands highlights the contribution of dynamics 
to the stochastic energy integral. A plot of this difference 
as a function of u and t for nondimensional shear, a 
= 2, is shown in Fig. 2. Note that for negative u, cor
responding to waves adversely oriented with respect to 
the shear, dynamics results in a decreased contribution 
to the integral. However, this effect is more than com
pensated by the relatively larger region of positive val
ues resulting from waves favorably oriented with re
spect to the shear. It is clear from this figure that the 
major contribution to the integral in ( 4.9) arises from 
the locus of favorably oriented waves along the line u 
=at. 

It turns out that the energy density can be calculated 
simply in the case of infinite shear. To evaluate ( 4.9) 
as a - oo we make the transformation~ 

~ = <J - at, t = t. ( 4.10) 

In the transformed variables ( 4. 9) becomes 

· Lz loo 
(E),, = (RE2 Rz) dt 

V7r u- I 0 

J
oo e-2g'RT _ e-2g'R~ 

x -oo 2g'( i + e) d~, ( 4.11) 
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with 

2a 2t 3 /3 + at 2~ 
g' = / - (~ + at) 2 + 1 · ( 4.12) 

The transformed integrand !(a,~, t) of(4.11) con
verges uniformly as a - oo: 

3 2 
e-(2/3)R1t _ e-(2/3)Rut 

!~°!!(a,~' t) = 3 2t(l + e) (4.13) 

The existence of the integrals and the additional cir
cumstance of their uniform convergence enable us to 
write 

3tL2 Loo 
lim (E)a = (R 2 2 ) dt a-+oo V1r u-Rt 0 

3 2 

J
oo e-(2/3)R1t _ e-(2/3)Rul 

x -oo 2!(1 + y2) dy. ( 4.14) 

This integral is of the same form as in the case of no 
shear. It can also be integrated in closed form, yielding, 
in dimensional variables: 

3· (R 2
) (E)a-.oo = 2v(R~ ~Ry) In R; . ( 4.15) 

Remarkably, the average energy density in infinite 
shear is three times the average energy density with 
zero shear ( 4.8). As can be seen from Fig. 1, the average 
energy density monotonically increases with shear as 
this asymptote is approached. The increase of the mean 
energy with increasing shear is due to the reduced dis
sipation of the waves that grow initially, that is, those 
with !0 > 0. Such waves belong to what we have termed 
the favorable sector. If uncorrelated forcing were lim
ited to exciting only waves in the unfavorable sector 
then the ensemble-average energy density would ap
proach zero as the shear increased. If, instead, it were 
limited to exciting waves in the favorable sector then 
asymptotically as a - oo the energy density would be 
six times the ensemble average density with zero shear. 
This can be seen in Fig. 4. 

Variation of energy density with shear and viscosity 
arises from two causes. The first is growth due to the 
extraction of background flow energy by downgradient 
Reynolds stresses. The second is the accumulation of 
excitation energy. In the case of no shear the second 
mechanism can be responsible for maintaining high 
levels of energy density in the presence of sufficiently 
small dissipation, as can be seen from ( 4.8). In the 
presence of shear both mechanisms operate. The ac
cumulation mechanism arises from the effective dis
sipation over the evolution of the wave, which from 
( 4.4) is 

2 
_ 2t0t iRu Joo e-2vrog 

Ediss = 2 2 rodro ---2 du. (4.16) 
7r(Ru - R1) R1 -oo 1 + <I 

The difference E - Ediss is the contribution of dy
namics to the maintenance of perturbation energy 

density. The relative importance of these mechanisms 
varies with shear, as can be seen in Fig. 3. It should be 
noted that as a - oo, Ediss - 0, and the maintenance 
of the energy density can be attributed solely to dy
namical growth (necessarily favorably coincident with 
reduced diffusive dissipation, both occurring where the 
total wavenumber is near its minimum). 

The divergence of ( E), for all a as v - 0, as seen 
in ( 4.11 ), is consistent with the fact that the energy of 
the waves does not decay in this limit but instead ac
cumulates at ever smaller wavenumbers (Shepherd 
1985; Farrell 1987). This lack of decay causes the v-
0 limit to be nonstationary for energy density. Perhaps 
more interesting than the nonstationarity of the limit 
is the implication that arbitrary energy density can be 
maintained by stochastic excitation in the presence of 
sufficiently small dissipation. 

Now consider the case of enstrophy driving. When 
excited with enstrophy fbt, the component (ko, 10 ) has 
amplitude: 

(fo1)112 
Ako,/o = 2 k2 [2 · 

0 + 0 
( 4.17) 

The energy density at a later time, given by ( 2.8), is 

- f ot 
Eko,Io(t) = (k'ij + Uo - akot)2) 

X exp{-2v L (k'fi + Uo - akor) 2 )dr}. (4.18) 

Following the same steps that reduced ( 4.4) we obtain 
in the case of no shear (a = 0) and enstrophy forcing, 
in dimensional variables: 

f 
(E)a~O = 2vR~Rr. ( 4.19) 

The ensemble-average wave energy is proportional to 
the strength of the driving and inversely proportional 
to the dissipation. The energy density vanishes as 
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FIG. 3. Relative contribution to (a) the total average energy from 
(b) dynamics and ( c) perturbation energy accumulation, as a function 
of shear for a constant shear flow. The bandpass is I < r0 < JO. The 
asymptotic limit of large shear is indicated. 
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Ru - oo , and the infrared divergence as R1 - 0 is 
stronger than in the case of energy driving. This can 
be understood by noticing that the low-wavenumber 
waves are more strongly excited under enstrophy than 
under energy driving; in fact the ratio of the amplitudes 
is l/r0 , as can be seen by a comparison of(4.17) 
and(4.2). 

The same procedure used to obtain asymptotic re
sults for energy driving can be applied to enstrophy 
driving. Again we find that in the limit a - oo the 
energy density is three times that found in the zero 
shear case, in dimensional variables: 

3f 
(E)a-+oo = 2vR~RT. ( 4.20) 

Apart from differences in detail, enstrophy driving 
produces results qualitatively similar to those obtained 
with energy driving. 

b. General dissipation 

For a general dissipation of order n, the viscous force 
in the rhs of ( 2.1 ) becomes ( -1 ) Vi72nl/;' and the fore
going procedure can be followed to yield the counter
part of ( 4.3) for the energy density: 

- . kij + /6 { 
Ek0,10(t) = d>t kij + Uo _ akot) 2 exp -211 

XL (kij + Uo - akoT)2)n-ldT}. (4.21) 

We note that the dissipation will now depend on the 
time average of then - 1 moment of the instantaneous 
total wavenumber. The dissipation is independent of 
the wavenumber when n = 1, which corresponds to 
Ekman damping. 

We nondimensionalize time by L 2 n-2 ;v, and shear 
by the reciprocal of the time scale. Transforming co
ordinates from (ko, 10 ) to (r0 , u ), we get for the ensem
ble-average energy density for energy driving: 

2~L 2n-2 J,Ru 

(E)a = (R 2 _ R2 ) rodro 
117r u I Rt 

x f"' dt f"' e-2r6"-2gn du, ( 4.22) 
Jo -ool+(u-at)2 

where the variables are nondimensional and 

gn = {1 dT[l + (u - ~T)2]n-I 
Jo 1 + IT 

( 4.23) 

After some algebra, we obtain the asymptotic energy 
density: 

( 4.24) 

where ( E)a=o is the ensemble average density in the 
absence of shear. It is interesting to note that the en
semble average energy density increases with the order 
of the dissipation. This linear result suggests that nu-

merical simulations using high-order dissipation may 
lead to inherently different statistics characterized by 
stronger variance fields for higher-dissipation orders 
even though v is adjusted so that waves with charac
teristic length scale Lare equally damped. Also, note 
that in the case of Ekman damping, n = 1, the asymp
totic value of the ensemble-average energy is the same 
as that in a flow with no shear and is in fact constant 
for all a. 

c. Influence of forcing distribution 

In order to explore the influence of forcing distri
bution it is instructive to treat explicitly the case of 
Ekman damping. The contribution from waves in the 
favored sector, u > 0, ( Ef (a ))n= 1 in nondimensional 
variables [refer to ( 4.22)] is 

(Ef(a))n=t = :v l"' e-21dt l"' 1 + (:~ at)2 

= H~ + f(a) J, ( 4.25) 

where 

1 L"' f(a) = - dte-21 tan- 1(at) 
7r 0 

( 4.26) 

is a monotonically increasing function (for a > 0), 
f(O) = 0, and lima__.00f(a) = 1/4. We note that if we 
were to force only the waves belonging to the favored 
sector the ensemble-average energy for large shears 
would asymptote to a value that is twice the energy 
density for a flow with no shear. 

The contribution from the unfavorable sector u < 0, 
(Eu(a))n=t in nondimensional variables is 

( 4.27) 

The energy contribution from the unfavorable sector 
monotonically decreases to zero with increasing shear. 
The ensemble-average energy density is plotted in Fig. 
4 for Ekman damping and diffusive dissipation. The 
total ensemble average is the sum of the energy of the 
contributions from the two sectors and due to the can
cellation of the f( a) term in ( 4.25) and ( 4.27) is 
~/211. This example shows succinctly that the increase 
of ensemble-average energy density with shear for dis
sipations of order n > 1 results from the coincidence 
of the reduction of the dissipation of the waves excited 
in the favored sector with the growth phase of their life 
cycle. 

d. Statistical equilibrium with occluding waves 

The cases we have treated up to this point lead to, 
at most, only a modest increase in the ensemble-average 
energy density with shear and to saturation of the en-
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FIG. 4. The ratio of the ensemble-average perturbation energy 
density at shear a to the ensemble-average perturbation density at 
zero shear as a function of shear a for forcing of the waves in the 
favorable sector. Curve 1 is for Ekman damping and occlusion of 
the gro~ing waves. Curve 2 is for diffusive dissipation (n = 2) and 
anisotropic forcing of waves with a > 0. Curve 3 is the same as 2 
but for Ekman damping ( n = 1 ) . Curve 4 shows the constant average 
energy density maintained by stochastic isotropic forcing in the case 
of Ekman damping. The bandpass is I < ro < 10. 

semble energy density for large shears. The saturation 
is due to the symmetry between growth and decay of 
each excited wave in the favored sector (CJ > 0), while 
the asymmetry between the growth and decay phases 
of the waves introduced by dissipation leads to a modest 
increase of the energy with shear. If we suppress the 
kinematically induced decay of each growing wave, that 
is, suppress dynamic cyclolysis, the symmetry between 
the growing and decaying phases of the favored waves 
is broken with the result that the ensemble average 
energy density increases without bound as shear in
creases. This asymmetry between the growing and de
caying phase of the waves models a crucial aspect of 
the physics of developing disturbances in the atmo
sphere. Growing disturbances that excite a linear mode 
acquire a repository for the energy obtained from their 
interaction with the mean flow although the mode itself 
may be damped (Farrell 1989). Alternatively, growth 
may continue until the waves reach an amplitude that 
leads them to form a long-lived nonlinear mode, often 
referred to as an occluded state. These processes can 
be included in the frame of this model by demanding 
that some of the growing waves after reaching their 
maximum amplitude subsequently dissipate without 
further kinematic deformation. These waves we will 
refer to as occluded. We model this process by allowing 
decaying disturbances (CJ .,,;;:;; 0) to continue their decay 
through both dynamic and diffusive mechanisms while 
growing disturbances ( u > 0), when they reach their 
maximum amplitude where I = 0 at t = CJ/ a, transit 
with probability p to a second state in which these oc
cluded waves continue to diffusively damp but without 
further kinematic deformation. 

The ensemble-average energy density of the first state 
for the waves excited with total wavenumber ro is 

E1 = f0 

dCJ i 00 

dtEr0,u(t) + ( l - p) j'oo dCJ i 00 

dt -oo 0 0 0 

X E,
0
,,,{t) + P Loo dCJ Lu/a dtE,

0
,,,(t), (4.28) 

where Er0,,,(t), the average energy density at time t of 
a wave excited with total initial wavenumber r0 and 
orientation u is given by ( 4.3) for a dissipation of order 
n = 2. 

The average energy of a disturbance in the second 
state, for dissipation of order n = 2, is 

E2(t) = Er0,,,(~) exp{-2vr6 \-+a~n, (4.29) 

and the ensemble-average energy density of the system 
in the second state is 

E2 = p f 00 du f 00 dtE2 (t). 
Jo Ju/a ( 4.30) 

The ensemble average of the total system comprising 
both states is ( E0 c )a = E1 + E2. 

The details of a calculation for the case in which the 
growing waves occlude with probability p = l is rele
gated to appendix A. We find that for dissipation of 
order n the ensemble average density grows with the 
shear and approaches, for large shears, an ensemble
average energy density proportional to a 2n- 1• We plot 
the growth of the average energy for the case of oc
cluded waves with Ekman damping, n = l, in Fig. 4. 

5. Stochastic dynamics of deformation flows 

In the case of the unbounded defonnation flow '1r 
= axy, for which 

k(t) = koe"'1, l(t) = l0e-'.i, (5.1) 

and energy driving we get at time, t, as in (4.5): 

- 2~0t f,Ru d 
E(t) = 7r(R~ - Rf) R1 ro ro 

foo { vr6 e2at - l + u2( 1 - e-20:1)}/ 
X exp - - 2 + 

1 -oo £l' <T 

(e2at + u2e-2"'1)du' ( 5.2) 

where we have used the same nondimensional variables 
as in section 4. To investigate the integrability in time 

" · -2at of(5.2) we make the trans1ormat10n, ri = ue , con-
sistent with the observation that the dominant contri
bution to this integral comes from u - oo. Performing 
the r0 integration we obtain, in nondimensional vari
ables: 

2 2 _ ~otL2 Joo e-AR1 _ e->-Ru 
E(t) = V1r(R~ - R[) -oo A( 1 + 172) d71, (5.3) 

where 
1 e2at - 1 + 172e4"'1( 1 - e-20:1) 

)\ = -;; 
71

2e4at + l ( 5.4) 
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We note that lim1 ... 00 A. = 1 /a. At large t ( 5. 3) behaves 
as 

2 2 _ eotL2a e-R1/a _ e-R1/a 

E(t) = -- R 2 R 2 (5.5) 
V u - I 

a constant. Therefore, the time integral of E(t) diverges. 
Note that ( 5 .3) does not have a time integral for any 
nonzero domain of integration in 17. However, ( 5.2) 
has a time integral as long as the 11 integration is re
stricted to finite limits. 

The case of no background flow (a = 0) is imme
diate. Integration of ( 5 .2) can be done explicitly, and 
the result is the same as in the case of no shear ( 4.8). 

Divergence of the time integral of (5.2), for any 
nonzero a, indicates failure of energy driving to main
tain a statistically stationary state. A similar failure to 
attain a statistically stationary state is characteristic of 
inviscid flows where accumulation of perturbation en
ergy is not limited by dissipation. In deformation flows 
the effect of dissipation is opposed by rapid growth of 
those disturbances with wave-front normals in the di
rection of diffiuence. If these waves are suppressed, 
( 5.3) leads to a statistically steady state. The resulting 
energy density as a function of shear is shown in Fig. 
5 for the cases with components having initial wave
front-normal directions within 0.5 degrees, and 0.02 
degrees from the direction of diffiuence suppressed ( I 11 I 
< 100, and I er I < 4000, respectively). The energy den
sity increases as the domain of integration expands to 
include more of these rapidly growing waves, yielding, 
in the limit, a nonstationary energy density. 

To investigate· further the dynamics of deformation 
flows we suppress the singular direction and attain a 
steady state. We can then, as in the previous section, 
calculate the contribution to the energy density due to 
the accumulation of excitation energy. We define, as 
in ( 4 .16), E dissip, and calculate the difference E - E dissip. 

2.0 

~ 1.5 

l 
lfJ 1.0 

0.5 

a:la1<4000 
b:lal< 100 

o.o L~--'--~-...J.......~--'---~_,_-~--"--~--' 
0 50 100 150 200 250 300 

a 

FIG. 5. The ensemble-average perturbation energy density at a 
normalized by the ensemble-average perturbation density at zero a 
as a function of a for deformation flows. The wave-front-normal 
directions are limited by (a) I al < 4000; (b) I al < 100. The bandpass 
is I< ro <IO. 
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FIG. 6. Relative contribution to (a) the total average energy from 
(b) dynamics and ( c) perturbation energy accumulation, as a function 
of a for a deformation flow with wave-front-normal directions limited 
by I a I < 4000. The bandpass is I < r0 < I 0. 

The relative importance of dynamics and accumulation 
of energy to the energy density is shown in Fig. 6. In 
this band-limited deformation flow the energy density 
decays as a - oo . 

6. Energetics 

We can form an energy equation by multiplying 
( 2.1) by I/; and taking ensemble averages. If stationary 
statistics have been attained, as in the case of a constant 
shear flow, there will be a balance between the average 
energy input by the driving €, the average dissipation, 
which for n = 2 is D = ( v J 'il21/; 1

2 ), and the average 
energy lost to the mean flow F= (a(uv)). We thus 
have 

When F > 0 the average perturbation energy input 
is greater than the average dissipation, and the resulting 
upgradient Reynolds stress tends to augment the mean 
shear. When F < 0 the wave field tends instead to re
duce the mean shear. In the case of no shear, for which 
F = O there is balance between driving and dissipation. 
It sh;uld be remarked that the unbounded constant 
shear and deformation problems have on average no 
Reynolds stress divergence that would be associated 
with local wave-mean flow interaction. The mean-flow 
interaction occurs, in these model problems, at their 
infinitely removed boundaries. However, this pecu
liarity is not crucial to the linear problem in which 
alteration of the mean flow by the perturbation fields 
is ignored. 

For the case of energy driving of a constant shear 
flow we find, in nondimensional variables, for n = 2 
diffusion, that the ensemble-average dissipation is pro
portional to the ensemble average of the enstrophy and 
is given by 
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(6.2) 

where g, the cumulative dissipation factor, is given by 
( 4.5 ). A similar expression can be derived for the de
formation flow. It is easy to check that the dissipation 
for a = 0 is equal to (; as expected from the energy 
equation ( 6.1). 

The interaction with the mean flow, F, for a constant 
shear takes the form in nondimensional variables: 

2(;£2 1Ru Joo a(uv)=- 2 2 rodro du 
1T'(Ru - Rt) Rt -oo 

x dt e-2rog. L
oo u - at 2 

o (1 + (u - at) 2
)

2 (6.3) 

A similar expression can be derived from the defor
mation flow. We note that for growing waves ( u > 0 
and 0 < t < u /a) the fluxes are downgradient, consis
tent with the growth of the wave during this phase. 
During the decaying phase the flux is upgradient. 

Dissipation, D, and the average energy lost to the 
mean flow, F, as a function of shear, are shown in Fig. 
7 for the constant shear flow and in Fig. 8 for the band
limited deformation flow. In the limit a - 0 pertur
bation energy input is balanced by dissipation in both 
cases. In the case of constant shear flow there is a slight 
overall downgradient flux for small shear, while for 
deformation flow the downgradient fluxes are substan
tial and extend to high shears. In both cases, the limit 
a - oo is characterized by upgradient Reynolds stress, 
indicating driving of the mean flow by the perturba
tions. This can be understood by observing that for 
large shears the dynamics associated with wave per
turbations giving appreciable fluxes are nearly inviscid 

12.---..,....-r--.......,...-.,.--.......,...-.,--,..-.,--,..--,---,.--,----., 
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FIG. 7. Contributions to the energy balance in a constant shear 
flow. (a) Average perturbation energy input E; ( b) ensemble-average 
perturbation energy dissipation D; (c) average energy lost, through 
Reynolds stress, to the mean flow F; as a function of shear. The 
bandpass is 1 < r0 < I 0. 
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FIG. 8. Contribution to the energy balance in a deformation flow. 
(a) Average perturbation energy input E; ( b) ensemble-average per
turbation energy dissipation D; ( c) average ene.rgy lost, through 
Reynolds stress, to the mean flow F; as a function of a for a defor
mation flow with wave-front-normal directions limited by I u I 
< 4000. The bandpass is I < ro < 10. 

and nearly preserve enstrophy. This is due to the fact 
that the time scale for shearing is of the order of 1 I a 
while the dissipation rate E / E proceeds for n = 2 at a 
constant rate. As a result for very large shears the energy 
input is not dissipated rapidly enough by diffusion to 
prevent its transfer by upgradient Reynolds stress to 
the mean flow as the wave is sheared over. Appreciable 
downgradient Reynolds stress, indicative of net energy 
transfer from the background flow to the perturbation 
field, are seen in Fig. 8 for moderate values of defor
mation. 

There is no necessary connection between the mag
nitude of the average downgradient Reynolds stress and 
the average level of perturbation energy density. To 
see this, consider a small inviscid perturbation that 
grows for a long time, extracting energy by downgra
dient Reynolds stress, and then slowly decays, in .so 
doing eventually producing an equal average upgra
dient stress. The total stress over the wave life cycle is 
zero, but the mean energy over the life cycle can be 
very large. 

If we were to force only waves in the favored sector 
in a constant shear flow then the fluxes of the growing 
waves could lead to an average downgradient flux. Such 
a case is shown in Fig. 9, where the flux is downgradient 
for small and moderate shears. However, as the shear 
a becomes large, and the model dynamics essentially 
inviscid, the fluxes become upgradient and the waves 
tend to drive the mean flow. 

General dissipation, n > 2, can be easily formulated, 
and the results are qualitatively similar to the n = 2 
case. The case of Ekman friction, n = 1, leads to zero 
fluxes for all shears. In this case the dissipation is pro
portional to the energy, a quantity that, unlike the en
strophy is not conserved in the nearly inviscid dynam-. ' . . 
ics at large shear. However, if we force only waves m 
the favored sector, the symmetry is broken, and we 
obtain upgradient fluxes. These cases are shown in 
Fig. 9. 



15 JANUARY 1993 FARRELL AND IOANNOU 209 

0.9 

0.6 

0.3 

/\ 
> 

0.0 " v 
Cl 

-0.3 

-0.6 

-0.9 

ex 

FIG. 9. Ensemble-average energy lost to the mean flow Fas a 
function of shear a. Curve I is for Ekman damping and anisotropic 
forcing of the favorable sector ( u > 0). Curve is for diffusive dissipation 
(n = 2) and forcing only in the favorable sector. The bandpass is I 
< ro < 10. 

Finally, we consider the case of occlusion in a con
stant shear flow for general dissipation of order n. In 
such a case it is not obvious that the two states of the 
system considered together will yield an energy budget 
of the form ( 2.1 ) . Detailed calculation shows that an 
energy budget of this form is valid also for the case of 
occlusion with the appropriate form of the dissipation 
substituted in ( 2.1). Calculation of the flux is relegated 
in appendix A, where it is shown that the flux eventually 
becomes constant as the shear increases. This behavior 
of the flux is consistent with the rapid growth of average 
perturbation energy as a function of shear found for 
occluded waves. 

7. Discussion 

The source of perturbation variance can be either 
exponential temporal modal instability or stochastic 
excitation of perturbations that maintain variance as 
an amplifier of perturbations rather than as an unstable 
oscillator. This second mechanism has been examined 
in this work, making use of closed-form solutions for 
viscous free shear and deformation flows, of which nei
ther supports exponential temporal modal instability. 

We find that mean perturbation energy in pure de
formation flow increases without bound under sto
chastic excitation for any viscosity. In constant shear 
and diffusive dissipation the mean energy is limited to 
an increase of a factor of 3 over that arising from the 
same forcing of the unsheared fluid. These examples 
demonstrate the possibility of maintaining wave vari
ance by amplification of perturbations. We expect that 
this mechanism is greatly enhanced in geophysical 
flows by the presence of moderately damped modes 
that serve to intercept the dynamic and essentially ki
nematic decay of shear waves so that variance accu
mulates. We explored this possibility using a phenom
enological model of the occlusion process and found 
rapid increase in variance with shear in the presence 
of modeled occlusion. Unfortunately, it is difficult to 

rigorously extend the methods used here to jet flows 
where near-neutral modes exist because the simplicity 
of the Kelvin solutions is then lost ( Craik and Crimi
nale 1986). For this reason, an alternative numerical 
method of solution must be used (Farrell and Ioannou 
1992). 

At some high level of variance nonlinear interactions 
will become important, perhaps providing the feedback 
perturbations required to transform the amplifier into 
a self-excited oscillator. While the importance of non
linearity in fully developed turbulence is undeniable, 
results obtained by exploiting linear theory are at least 
suggestive of directions for further study of mechanisms 
operating at higher variance levels. 

Stochastic excitation both maintains the perturba
tion wave field and helps maintain the background 
flow. All perturbations that grow in free shear flow must 
eventually decay because there are no neutral modes. 
As this eventual decay takes place the associated up
gradient Reynolds stress enhances the background flow. 
However, ifthe growth is large before this decay ensues, 
a variance field may be maintained at high average 
energy. 

Observations of variance in the maximum shear re
gion of the storm tracks typically reveal a factor of 
approximately 3 increase in average perturbation en
ergy over that found in regions of minimum shear 
(Blackmon et al. 1977; James and Anderson 1984). 
In addition, observations of variance in the highest
shear regions reveal evidence of saturation of variance 
with increasing shear (Nakamura 1992). Comparison 
with the idealized results of this work suggests that 
maintenance of variance by stochastic forcing may 
provide an explanation for these behaviors, but con
firmation must await development of more realistic 
models of the stochastically driven atmosphere. 
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APPENDIX A 

Variance and Energetics of Occluded Waves 

The excited waves with u > 0 (equivalently /0 > 0) 
will reach maximum amplitude at lv = u /a, at which 
time their crosswind wavenumber is instantaneously 
zero; that is, u - atv = 0, after which they will decay. 
We can model the process of occlusion by requiring 
that a portion of the growing waves ceases shearing 
when they reach maximum amplitude, and that they 
retain a zero crosswind wavenumber thereafter. 

For ( -1 )nv\72n dissipation the steady-state energy 
density, (E0 c)a, for which all the growing waves oc
clude, is given by 
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(A.1) 

where £ 1 , the energy due to all unoccluded waves, is 

f;L 2n-2 rodro (Jo Loo Joo Lu/a ). 
E1 = ---- du dt + du dt 

7rl/ -oo 0 0 0 

exp(-2gn,5n-2) 
X l+(u-at)2, (A.2) 

and E2, the contribution to the mean energy by those 
waves that have occluded, is 

i;L 2n-2rodro Loo Joo 
E2 = ----- du dt exp(-2g~cdn-2 ). 

7rV 0 u/a 
(A.3) 

The variables are nondimensional (we have dropped 
the tildes). The cumulative dissipation factor gn is given 
in ( 4.23), and the cumulative dissipation factor for the 
occluded waves, for which t > u /a, is 

n_ n[u] t-u/a 
goc - g ~ +(I + u2)n-I' (A.4) 

L
u/a 

dT[l + (u - aT) 2 ]n-I 

gn[~]= o (l+u2)n-1 (A.5) 

In (A.2) E 1 is certainly bounded by (2n - 1 )(E)a=o, 
while £ 2, which gives the contribution to the mean 
energy by the waves that have occluded, can be reduced 
to 

X exp[-2rijn-2gn[~]]. (A.6) 

We now estimate the cumulative dissipation factor of 
the waves before they occlude. We have 

gn !!._ = !!._ 2; ez-1 _u__ L:: ez-1 u2k 
[ ] 

k=n-1 2k ;k=n-1 

a a k=O 2k + 1 k=O 

[ 
k=n-1 2k I 

. = ~ 1 - L 2k + 1 q-1 u2k 
k=O 

k=i'I ez-1 u2k], (A.7) 
k=O 

where er is the binomial coefficient. We note that the 
sequence { 2k/(2k + 1)} is increasing, and as u ~ 0 
we can bound (A.7): 

- --- < gn - :s;; - • u 1 [u] u 
a 2n - 1 a a 

(A.8) 

The contribution to the steady energy from the oc
cluded waves is thus bounded 

X exp[-2dn-2 __ u ___ ]. (A.9) 
· (2n - 1 )a 

The integrals in (A.9) can be reduced to obtain 

f;L2n-2dr, n-1 (2k + l)la2k+I 
0 " en-I · -2--2n---2 L... k (2 2n-2)2k+I 

'IT'VY 0 k=O ro 

f;L2n-2dro n~ I 

< E2 < 
2 

2n-2 L... ez-
'IT'vr o k=O 

( 2k + 1 ) ' ( 2n + 1 ) 2k+ I a 2k+ I 
X (~r5n-2)2k+1 (A.10) 

We have thus proved that when all the growing waves 
occlude the steady-state energy for a \72

n dissipation 
increases with the shear as a 2n-i, for large shears. For 
Ekman damping, n = 1, in the case of occlusion the 
steady-state energy increases asymptotically linearly 
with a. For eddy diffusion, n = 2, the energy increases 
as a 3

• 

The energy equation ( 6.1) remains valid for cases 
in which the waves occlude (it can be proved by explicit 
calculation of the contributing terms) and we estimate 
the dependence on the shear of the interaction term F 
= a( uv). For the case of occlusion the dominant con
tribution to F is proportional to 

The fluxes are downgradient, and for large shears, using 
the bounds given by (A.8 ), we find that a( uv) grows 
linearly with the shear, implying that the momentum 
flux, ( uv), asymptotes to a constant for large shears. 

As an example we give the results for the case of 
Ekman damping; that is, n = 1. The steady-state energy, 
in nondimensional variables, for the case in which all 
growing waves occlude is 

f; (7r a Loo ) (Eoc)a = 7rV 2 + 4 -
0 

dte-21 tan- 1
(at) . 

(A.12) 

The mean energy grows linearly with the shear in this 
case. Note that f 000 dte-21 tan -I (at) monotonically in
creases with the shear from 0 to an asymptotic value 
of 7r / 4 as a - oo . The associated fluxes are downgra
dient, and the interaction term grows asymptotically 
linearly with the shear: 

2£ roo a 
a( UV )oc = -; Jo e-21 tan -I ( at)dt - 4. (A.13) 
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