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In this work, we examine the turbulence maintained in a Restricted Nonlinear (RNL)
model of plane Couette flow. This model is a computationally efficient approximation
of the second order statistical state dynamics obtained by partitioning the flow into
a streamwise averaged mean flow and perturbations about that mean, a closure
referred to herein as the RNL,, model. The RNL model investigated here employs
a single member of the infinite ensemble that comprises the covariance of the RNL,
dynamics. The RNL system has previously been shown to support self-sustaining
turbulence with a mean flow and structural features that are consistent with direct
numerical simulations (DNS). Regardless of the number of streamwise Fourier
components used in the simulation, the RNL system’s self-sustaining turbulent state
is supported by a small number of streamwise varying modes. Remarkably, further
truncation of the RNL system’s support to as few as one streamwise varying mode
can suffice to sustain the turbulent state. The close correspondence between RNL
simulations and DNS that has been previously demonstrated along with the results
presented here suggest that the fundamental mechanisms underlying wall-turbulence
can be analyzed using these highly simplified RNL systems. © 2015 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4931776]

. INTRODUCTION

The analytical intractability of the Navier Stokes (NS) equations has impeded attempts to
develop a comprehensive understanding of the dynamics of turbulence in wall-bounded shear flows.
This impediment to understanding resulting from the complexity of NS dynamics has led to exten-
sive efforts to obtain simplifications of the NS system that still retain fundamental aspects of the
dynamics of wall-turbulence. One useful approach for simplifying the NS system is to study models
of reduced order. Model order reduction can be accomplished by Galerkin projections of the in-
finite dimensional NS system onto a finite low dimensional space. The basis functions used are
generally chosen for their particular properties, such as Fourier modes for use in Cartesian channels
with diffusive dissipation, Proper Orthogonal Decomposition (POD) projections'? for economy in
representing the structures occurring in turbulence, and balanced truncation for economical repre-
sentations of turbulence dynamics.*™

A second area of research aimed at understanding the dynamics underlying the NS equations is
the study of systems in which the complexity of the dynamics has been reduced. One such method
is confining the turbulence to a minimal channel that reduces the complexity of supported pertur-
bations and results in a simplification of the flow structures. This method was used to demonstrate
the importance of large-scale roll and streak structures in maintaining turbulence. In particular, a
minimal channel was used to show that wall-turbulence does not self-sustain unless the confin-
ing channel is large enough to accommodate roll and streak structures of sufficient spanwise and
streamwise extents.%’
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Reduction of the support of turbulence has also been attempted by seeking a skeleton of exact
coherent structures in the phase space of the transient turbulent attractor, see, e.g., Refs. 8 and 9.
For plane Couette flow, the first such unstable solution was the fixed point computed by Nagata.!?
Subsequent research using numerical methods has uncovered additional fixed points and periodic
orbits for plane Couette flow.”!" While promising conceptually, the project of extending these
solutions to the global turbulent dynamics has yet to be completed. A related approach is to isolate
and model specific flow features and interactions in a schematic fashion, examples of this approach
include the roll/streak instability self-sustaining process (SSP) model,” the nine-mode truncation
model of Moehlis et al.,'> and the model describing laminar-turbulent spots and structures by
Tuckerman and Barkley.'?

Another method of reducing the complexity of turbulence dynamics is to simplify the equa-
tions themselves. One example of this approach is to study turbulence using the Linearized Navier
Stokes (LNS) equations, which can be analyzed comprehensively using linear systems theory.'*!3
The LNS equations capture a number of fundamental aspects of turbulence dynamics including
the non-normal disturbance amplification mechanism,'®2* which has been shown to be necessary
for energy production in fully turbulent flow?* and to play a key role in the bypass transition
mechanism.”> The LNS equations also provide specific insights into the mechanism maintaining
turbulence including the role of the coupling between the Orr-Sommerfeld and Squire equations in
generating the robust transient growth of streaks by the lift-up process that is an integral compo-
nent of the roll/streak mechanism underlying the SSP in wall-bounded shear flows.?®?” The LNS
equations have also proven successful in predicting second-order statistics in these flows.?6-28-34

The current work employs a statistical state dynamics (SSD) model that incorporates a combi-
nation of the reduction of order and the simplification of dynamics approaches. This model is
based on the restricted nonlinear (RNL) dynamical system, which is a second order closure of the
dynamics of the turbulent statistical state comprising the joint evolution of the streamwise constant
mean flow (first cumulant) and the ensemble second order perturbation statistics (second cumulant).
The SSD is closed either by parametrizing the higher cumulants using stochastic excitation or
by setting the third cumulant to zero, see, e.g., Ref. 50. Restricting the NS equations to the first
two cumulants retains the nonlinear interaction between the perturbation momentum fluxes and
the mean flow but neglects explicit calculation of the nonlinear interactions among the streamwise
varying perturbations. Turbulence was first studied in a RNL modeling framework using the sto-
chastic structural stability theory system,>® which we will refer to as the RNL,, system. In the RNL,,
system, the second cumulant is obtained by solving the time dependent Lyapunov equation for the
perturbation covariance dynamics. This time dependent Lyapunov equation represents the dynamics
of an infinite ensemble of realizations of the perturbation structure. As a result, the SSD of the
RNL,, system is autonomous, which is particularly useful for obtaining analytical results. However,
the covariance matrix dimension for a perturbation dynamics of O(N) is O(N?), which limits the
resolution of models that can be studied directly using the RNL., model. In order to overcome
this limitation in subsequent implementations of the RNL model, the covariance was estimated
from a single realization of the perturbation dynamics.3®*’ This approximation shares the dynamical
restrictions of the RNL,, system but, unlike the RNL,, model, it retains small fluctuations in the
perturbation covariance due to the perturbation covariance dynamics not being that of an infinite
ensemble. It is this dynamical restriction that is primarily responsible for the insights into turbulence
dynamics obtained from the RNL framework.?®” The existence of fluctuations in the approximate
covariance does not greatly affect the correspondence between simulation results obtained using the
analytically tractable RNL., and those obtained with the numerically tractable RNL implementation
used in this work.¢

The goals of this work are to further investigate the dynamics of RNL turbulence and to
examine the implications of its simplified structure for understanding wall-turbulence. The pri-
mary focus of our study is the mechanisms that maintain the turbulent flow and determine the
structure of its statistical mean state. It is natural that in studying these mechanisms, attention is
focused on the dynamics of the streak and roll structures. These structures, which are ubiquitous
in wall-turbulence, respectively, comprise the large-scale streamwise streaks of high and low speed
fluids and the associated streamwise vortices, the circulations of which reinforce the streaks through
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the linear non-normal lift-up mechanism. Understanding the dynamical mechanisms determining
the structure of the mean and perturbation fields and maintaining the statistical equilibrium state
of wall-turbulence require understanding the dynamics of these structures. The rolls and streaks
in wall-turbulence are not associated with an unstable linear mode but rather are maintained by a
nonlinear instability process that is associated with linear non-normal growth of both the stream-
wise invariant roll and streak structures and the streamwise varying perturbation fields that main-
tain the roll structure. A dynamical mechanism advanced to explain this nonlinear instability is
referred to as a SSP. The first such process traced the origin of the perturbations required to sustain
linear non-normal streak growth to the break-up of previously generated streaks.’®*! An alterna-
tive explanation of the SSP suggested that Reynolds stresses arising from inflectional instability
of the streak maintain the roll circulations.”*>*} However, analysis of simulations subsequently
revealed that most streaks are too weak to sustain strong inflectional instability, which resulted in
the suggestion that transient growth gives rise to the roll-maintaining perturbations.*' Transiently
growing perturbations have also been shown to maintain the roll circulation in the RNL system.
However, in contrast to previously proposed transient growth based mechanisms,***! the transiently
growing perturbations in RNL turbulence result not from the random occurrence of optimal pertur-
bations associated with streak breakdown but rather from systematic parametric instability of the
time-dependent streak.'>#+43

In this work, we study the RNL dynamics both by approximating the closure for the third
cumulant of the RNL,, SSD using a stochastic forcing and by approximating the closure of this
SSD that sets the third cumulant to zero. The main results demonstrate that RNL turbulence is
naturally maintained solely through interactions between the streamwise mean flow (i.e., the k, = 0
streamwise Fourier component) and a small set of streamwise varying modes (i.e., the k, # 0
streamwise Fourier components). Moreover, we establish that a minimal configuration for maintain-
ing turbulence can be obtained by limiting the streamwise Fourier support of the RNL turbulence
to a single streamwise varying mode. A second contribution of this work is an investigation of
RNL turbulence in extended channels. Specifically, we show that RNL turbulence self-sustains in
channels with streamwise extents of 9676, where ¢ is the half channel height. These results suggest
that self-sustaining RNL turbulence continues to exist in channels with infinite streamwise extent.

This paper is organized as follows. Section II contains a derivation of the RNL model from
the NS equations and establishes its relation to the RNL,, system. In Section III, we describe our
numerical approach. Then, in Section IV, we show that the RNL system naturally maintains a turbu-
lent state that is consistent with that of direct numerical simulations (DNS) and that RNL turbulence
is supported by only a small set of streamwise Fourier components (modes). In Section IV B, we
truncate the streamwise wavenumbers over which RNL turbulence is sustained to a single stream-
wise varying mode and explore the set of these streamwise wavenumbers over which the turbulence
is sustained. We also explore the sensitivity of the turbulence statistics to the retained wavenumber.
Finally, we conclude the paper and point to directions of future study.

Il. MODELING FRAMEWORK

Consider a plane Couette flow between walls with velocities =U,,,. The streamwise direction is
x, the wall-normal direction is y, and the spanwise direction is z. Quantities are non-dimensionalized
by the channel half-width, ¢, and the wall velocity, U,,. Time, t, is non-dimensionalized by ¢/U,,. The
lengths of the channel in the streamwise and spanwise directions are, respectively, L, and L. Stream-
wise averaged, spanwise averaged, and time-averaged quantities are, respectively, denoted by angled
brackets, (®) = LLX fOL" e dx, square brackets, [o] = LLZ OLZ' e dz, and an overline @ = % fOT o dr,
with T sufficiently large. The velocity field uz is decomposed into a streamwise averaged mean,
U(y,z,t) = (U,V,W), and the deviation from this mean (the perturbation), u(x, y, z,7) = (4,v,w). The
pressure gradient is similarly decomposed into a streamwise averaged mean, VP(y,z,t), and the
deviation from this mean, Vp(x, y, z,t). The corresponding NS equations are
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1
U,+U-VU+VP—EAU=—<u-Vu>, (1a)
1
u,+U-Vu+u-VU+Vp—ﬁAuz—(u~Vu—(u-Vu))+e, (1b)
V.-U=0, V-u=0, (lc)

where € is a stochastic excitation used to initiate turbulence and the Reynolds number is defined as
R = U,6/v, with kinematic viscosity v.

Obtaining the SSD corresponding to (1) requires solving the infinite hierarchy of cumulant
equations, see, e.g., Refs. 46 and 47. However, a useful and tractable approximation to the full SSD
is obtained by closing this infinite hierarchy at second order by either neglecting the third camulant
or parametrizing it appropriately. We refer to this approximation as the RNL,, system and use the co
to indicate that the ensemble of realizations is infinite. Physical realizations of the RNL,, system can
be obtained by making the ergodic assumption that the ensemble averages and streamwise averages
are equal and consequently, the first cumulant is the streamwise averaged flow. In this work, we will
approximate the second cumulant of the RNL., dynamics by the streamwise average of the spatial
two-point correlations obtained from a single u field realization. The resulting approximation to the
RNL, system is governed by the following equations:

1
U,+U-VU+VP—EAU= —(u - Vu), (2a)
1
u,+U‘Vu+u-VU+Vp—EAu=e, (2b)
V.-U=0, V-u=0. (2¢)

We refer to Equation (2) as the RNL model. The dynamics in (2) correspond to setting &£ = 0
and parametrizing the perturbation-perturbation nonlinearity, u - Vu — (u - Vu) in (1b), with the
stochastic excitation e. These equations approximate the closure of the SSD at second order using
a stochastic parametrization of the higher order cumulants or alternatively by neglecting the third
cumulant, which corresponds to setting e = 0. Nonlinear equation (2a) describes the dynamics of
a streamwise averaged mean flow driven by the divergence of the streamwise averaged Reynolds
stresses, which we denote by, e.g., (uu), (uv). Equation (2b) describes the influence of the stream-
wise constant mean flow, U(y, z,t), on the linearized perturbation dynamics.

lll. NUMERICAL APPROACH

The numerical simulations in this paper were carried out using a spectral code based on
the Channelflow NS equations solver.***’ The time integration uses a third order multistep semi-
implicit Adams-Bashforth/backward-differentiation scheme that is detailed in Ref. 50. The dis-
cretization time step, At, is automatically adjusted such that the Courant-Friedrichs-Lewy (CFL)
number is kept between 0.05 and 0.2. The spatial derivatives employ Chebyshev polynomials in
the wall-normal (y) direction and Fourier series expansions in the streamwise (x) and spanwise (z)
directions.’! No-slip boundary conditions are employed at the walls and periodic boundary condi-
tions are used in the x and z directions. Aliasing errors from the Fourier transforms are removed
using the 3/2-rule detailed in Zang and Hussaini.>> A zero pressure gradient is imposed in all simu-
lations. Table I provides the dimensions of the computational box, the number of grid points, and
the number of spectral modes for the DNS and RNL simulations. The DNS and RNL simulations
are initialized with a laminar flow. Turbulence is then initiated by applying the respective stochastic
excitations € in (1) and e in (2) over the time interval ¢ € [0,500]. These divergence free stochastic
excitations are delta correlated in time and delta correlated in space at the level of the spatial Fourier
discretization. In order to perform the RNL computations, the DNS code was restricted to the
dynamics of (2).

We also perform a number of flow simulations where the flow dynamics of the RNL model is
restricted to a single streamwise varying perturbation and the streamwise averaged mean flow. We
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TABLE I. Geometry for the numerical simulations. x/8, y/d, and z/6
define the computational domain, non-dimensionalized by the channel half-
height, 6. Nx, N, and N are the number of grid points in their respective
directions. M and M ; are the number of Fourier modes used before dealias-
ing and M, is the number of Chebyshev modes used in each simulation.

Case x/6 ylo z/6 NxXNyXN; MxXMyXM;

DNS-A [0, 47]
DNS-B [0, 8x]
DNS-C [0, 127]
DNS-D [0, 167]
RNL-A [0, 4x]
RNL-B [0, 87]

[-1,1 128 X 65 x 128 128 X 65 X 65
[-1,1
1,1
[-1,1
[-1,1
[-1,1
RNL-C [0,127] [-1,1
[-1,1
1,1
[-1,1
[-1,1
[-1,1
[-1,1

] ]
] ] 128 x65x 128 128 x 65 X 65
] ] 128 x65x 128 128 X 65 X 65
] ] 128 x65x 128 128 X 65 X 65
] ] 16x65%x128 16 X 65X 65
] ] 32x65x128 32x65x65
1 [0,4n] 48 x65x 128 48 X 65 X 65
RNL-D [0,167] ] ]
RNL-E  [0,24r] ] ]
RNL-F  [0,32x] ] ]
RNL-G  [0,487] ] ]
RNL-H [0,647] ] ]
RNL-I  [0,727] ] ]

64 X 65 %x 128 64 X 65 X 65
96 X 65 X 128 96 X 65 X 65
96 X 65 X 128 96 X 65 X 65
96 X 65 X 128 96 X 65 X 65
120 X 65 x 128 120 x 65 x 128
138 X 65 x 128 138 x 65 X 65

implement this restriction by adding a damping term &u to perturbation dynamics (2b) to obtain

1
U;+U-VU+ VP - EAU: —(u - Vu), (3a)
1
u,+U~Vu+u-VU+Vp—EAu—{;‘u:e, (3b)
V-U=0, V-u=0. 3¢)

We then restrict the RNL dynamics to a single nonzero Fourier number, k, = +i by increasing the
damping coefficient, ¢ in (3b), from O to 1/A¢ over a period of 100 time steps for all k, # +i. We
refer to these restricted dynamics as the truncated RNL system. The flow geometries and wave-
lengths associated with the active Fourier number k, = +i for simulations of these restricted RNL
systems are given in Table II.

IV. RESULTS

In this section, we first demonstrate the agreement of RNL simulations with DNS in different
channel configurations. We then show that turbulence in this RNL system is naturally supported by
a small number of streamwise varying modes. In addition, the system can be truncated so that it is
supported by a single streamwise varying mode interacting with the mean flow. All simulations in
this section are at R = 1000; the full parameter set for each simulation is given in Tables I and II.

A. The streamwise wavenumber support of RNL turbulence

The RNL system has been shown to maintain turbulence with a mean flow and structural
features that closely resemble those of DNS.?¢3745 In the current work, we study the RNL system
described by (2) across a range of channel configurations. Figure 1 demonstrates that RNL simula-
tions produce mean velocity profiles consistent with those from DNS in channels with streamwise
extents varying from 476 to 16m6. Based on the results shown in Figure 1 and observations that
the flow structures are consistent with those reported in Ref. 36, we conclude that the RNL system
captures the essential features of turbulent flow over a range of operating conditions. In addition,
we observe that varying the channel length does not significantly affect the nature of turbulence
sustained in the RNL system. We now show that RNL turbulence is naturally supported by a
greatly reduced set of streamwise varying wavenumbers. In particular, we demonstrate that when
e in Equation (2b) is set to 0, the RNL model reduces to a minimal configuration in which only
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TABLE II. Geometry for the numerical simulations of the truncated RNL system. 1, is the wavelength of the undamped
streamwise varying perturbations. x /6, y/d, and z /& define the computational domain, non-dimensionalized by the channel
half-height, 6. Nx, N, and N are the number of grid points in their respective directions. My and M, are the number of
Fourier modes used before dealiasing and M, is the number of Chebyshev modes used in each simulation.

Case Ag x/6 y/o z/6 NxXNyXN My xMy XM
D1 4o [0, 4] [-1,1] [0,47] 32 x65x%x 128 32 X 65 X 65
D2 2nS [0, 4] [-1,1] [0,47] 32 X 65 x 128 32 X 65 X 65
D3 46 /3 [0, 47] [-1,1] [0,47] 32 x 65 x 128 32 X 65 X 65
D4 s [0, 47] [-1,1] [0,47] 32 x65x%x 128 32 X 65 X 65
D5 45 /5 [0, 4] [-1,1] [0,47] 32 x 65 %128 32 X 65 X 65
D6 276 /3 [0, 47] [-1,1] [0,47] 32 x 65 x 128 32 X 65 X 65
D7 4ns/7 [0, 4] [-1,1] [0,47] 32X 65x 128 32 X 65 X 65
K1 48716 [0, 48] [-1,1] [0,47] 96 X 65 x 128 96 X 65 X 65
K2 24716 [0, 487] [-1,1] [0,47] 96 X 65 x 128 96 X 65 X 65
K3 16716 [0, 487] [-1,1] [0,47] 96 x 65 x 128 96 X 65 X 65
K4 1276 [0, 487] [-1,1] [0,47] 96 x 65 x 128 96 X 65 X 65
K5 48n6/5 [0, 487] [-1,1] [0,47] 96 X 65 x 128 96 X 65 X 65
K12 4nd [0, 487] [-1,1] [0,47] 96 X 65 x 128 96 X 65 X 65
K15 1676/5 [0, 487] [-1,1] [0,47] 96 X 65 x 128 96 X 65 X 65
K16 3nd [0, 48] [-1,1] [0,47] 96 X 65 x 128 96 X 65 X 65
K20 12n6/5 [0, 487] [-1,1] [0,47] 96 x 65 x 128 96 X 65 X 65
K24 2nd [0, 487] [-1,1] [0,47] 96 X 65 x 128 96 X 65 X 65
K25 4876/25 [0, 487] [-1,1] [0,47] 96 X 65 x 128 96 X 65 X 65
K30 8nd/5 [0, 48] [-1,1] [0,47] 96 X 65 x 128 96 X 65 X 65
K40 678/5 [0, 487] [-1,1] [0,47] 128 x 65 x 128 128 x 65 X 65
K50 24768/25 [0, 48] [-1,1] [0,47] 160 x 65 x 128 128 x 65 x 65
K60 4nS5/5 [0, 487] [-1,1] [0,47] 160 x 65 x 128 128 x 65 x 65

a finite number of streamwise varying perturbations are maintained, while the energy in the other
streamwise varying perturbations decays exponentially. In order to quantify the energy in the pertur-
bations at each wavenumber k,,, we define the streamwise energy density as the perturbation energy
associated with streamwise wavelength A,,, which is given by

Ly 6 pLx ,
E,, (1) = Eu,ln(x, Y,2,t)"dx dy dz. 4)
o JsJo

Here, u,,, is the perturbation, u = (u,v,w), associated with Fourier components with streamwise
wavelength A,,. The natural support of the RNL turbulence is then defined as the set of streamwise

1
[ — Lx =48 [ — Lx=4n8
L see- Lx=8n8 L .. === Lx=8né
05 [ == Lx=12n8 [ - Lx=12n8
“ k. —-= Lx=16n8 L Lx = 16n8
) [ [
™~ 90 e
o .
ospEgo -
1 I P 1 SR BN BT B
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
y/o y/o
(a) (b)

FIG. 1. Turbulent mean velocity profiles (based on a streamwise, spanwise, and time average) from (a) simulations of the
RNL model and (b) DNS for channels with L = {4x,8x, 127, 167}6.
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modes n for which
tlim E,,(t) = eps, 5

when e = 0 in Equation (2b), where eps is a threshold defined based on the numerical accuracy of
the simulation.

Figure 2 demonstrates how the natural support of the RNL system compares to the full stream-
wise energy spectrum supporting turbulence in DNS. Figures 2(a) and 2(b) show the time evolu-
tion of the streamwise energy densities, E,,, for cases RNL-D and DNS-D, respectively. Both of
these simulations were initiated with a stochastic excitation, respectively, € in (1b) and e in (2b),
containing a full range of streamwise and spanwise Fourier components. The excitation was termi-
nated at ¢ = 500. Figure 2(b) demonstrates that in the DNS, all streamwise perturbations remain
supported. In contrast, the number of streamwise Fourier components supporting RNL turbulence
rapidly converges to the small set comprising its natural support. For the RNL simulation in a 1676
channel, the energy densities associated with all streamwise wavelengths 1, < 876/3 decay rapidly
after the stochastic excitation is removed. This convergence of the RNL natural streamwise Fourier
support to a small set of wavenumbers persists over a large range of Reynolds numbers. These
results demonstrate that simulations using the RNL system require substantially less computational
resources than DNS.

The difference between the unforced RNL system and the NS equations is the removal of the
perturbation-perturbation nonlinearity term, u - Va — (u - Vu). The maintenance of RNL turbulence
supported by a small subset of the streamwise Fourier components demonstrates the existence
of a set of active perturbations that are maintained though interactions with the time-dependent
streamwise averaged mean flow. The perturbations that naturally decay in the unforced RNL system
cannot be sustained without excitation from nonlinear perturbation-perturbation interactions. The
fact that the absence of these weakly interacting perturbations does not significantly alter either
the mean flow or the maintenance of turbulence suggests that these perturbations do not play a
significant role either in the maintenance or regulation of the RNL turbulent state and are in this
sense inactive. Previous work demonstrating the close correspondence in the mean profile and the
time-averaged Reynolds stress components shown in Figures 1 and 6 in the work of Thomas et al.*®
underscores this point. In what follows, we will further characterize the support of turbulence in the
RNL system by examining the streamwise energy density as a function of the streamwise extent of
the channel.

The natural support of RNL turbulence in a channel with a streamwise extent of 167§ consists
of all of the streamwise varying modes with wavelengths longer than 876/3. This lower limit was

1x1073

Streamwise Energy Density

Streamwise Energy Density

1x10°°
1000 2000 3000 4000 5000 6000 400 800 1200 1600 2000
Time Time
(2) (b)

FIG. 2. Selected streamwise energy densities for cases (a) RNL-D and (b) DNS-D at R = 1000 for a channel with L, = 1676.
The energy densities of the streamwise varying perturbations that are supported in the RNL simulation are shown in the
following manner: A1 =166 (black solid), 1, =876 (red dot), A3 =1676/3 (blue dash), 1¢ =875 /3 (gold dot-dash). The
modes that decay when the RNL is in a self-sustaining state are shown in thin grey lines in both panels.



105104-8 Thomas et al. Phys. Fluids 27, 105104 (2015)

1x10"! 1x1071
Z b=y
73 5 hy =32n8 L 5 )y = 4878
|/ 1x0 b = 1678 R 110 b = 2475
o] g =875 = ha = 1275
E © hg =48 2 M1z =4nd
« a2 =8m8/3 =9 . - )y =310
Rt e Mg =278 @ 1x10° hog = 2
.E © )\.20 = 8n8/5 z l )\430 = 8n8/5
: s
g g I
$ o g 1x08 - ]
5 = A
»n | x V L
I A | R B
0 2000 4000 6000 0 2000 4000 6000
Time Time
(a) (b)

FIG. 3. Streamwise energy densities for (a) case RNL-F and (b) case RNL-G in Table I at R = 1000 with streamwise channel
lengths Ly =3276 and L, =487n4, respectively.

previously observed to be 476 /3 for case RNL-A. Each of the RNL simulations described in Table I
demonstrates a similar lower limit on the wavelengths included in their natural support. Based on
the plot in Figure 2(a), it remains unclear whether there is an upper bound on the wavelengths
comprising the natural support of RNL turbulence. In order to investigate this question further, we
next consider the unforced RNL model in longer channels.

Figures 3(a) and 3(b), respectively, show the time evolution of the streamwise energy densities,
E,,, for cases RNL-F and RNL-G with respective streamwise channel lengths L, = 3276 and
L, = 48n6. In both of these simulations, turbulence is initiated by applying a stochastic excitation e
in Equation (2b) from ¢ = 0 to r = 500. Figure 3(a) reveals that in the channel with L, = 3274 the
streamwise energy density E,, is consistently lower than E,,. It should be noted that this is the first
channel length in this study where this behavior is observed, i.e., in cases RNL-A, RNL-B, RNL-C,
and RNL-D, which are described in Table I, the energy density associated with 4, has the greatest
magnitude. Figure 3(b) shows that for case RNL-G, the streamwise varying mode with the longest
wavelength, A, = 4874, clearly decays to zero, confirming the existence of an upper wavelength
limit of the natural support of RNL turbulence. The maximum wavelengths in the natural support
of RNL turbulence in channels with streamwise extents of L, = 4878 and L, = 64x6 are A = 2476
and A = 3274, respectively. From the data across a number of channel configurations, we estimate
that the respective lower and upper bounds of the wavelengths corresponding to the set of modes in
the natural support of RNL turbulence at R = 1000 are approximately 276 and 3276.

Figure 4 shows the wavelength, A, at which the largest time-averaged streamwise energy den-
sity occurs for each of the cases described in Table II. For RNL simulations with L, < 3276 the
longest wavelength has the highest mean energy density. However, for the RNL simulations in chan-
nels with L, > 3279, the most energetic wavelength is near 16r5. The most prominent exception
is case RNL-H where L, = 6474. In this case the energy density for 1¢ = 3276/3 is 1.7% greater
than the energy density associated with 14 = 1675. We also note that cases RNL-E and RNL-G with
respective channel lengths of 2476 and 7276 do not admit a streamwise mode with a wavelength
of 1676. In case RNL-E the two nearest wavelengths 2476 and 1276 have nearly identical energy
densities, and for case RNF-G the maximum energy density occurs at 44 = 1875. We conclude that
1676 is a reasonable approximation for the ideal length for structures interacting with the mean flow
regardless of the channel length.

Figure 4 also shows the long and short wavelength limits, respectively, denoted by A,,,, and
Amin, corresponding to the highest and lowest wavenumbers of the modes in the natural support of
the RNL system at R = 1000. The short wavelength limit shows relative invariance with respect to
the streamwise extent of the channel, L,. For cases with L, € [167,967]5, the short wavelength
limit is constrained to a small range of values A,,;, € [5S7/2,37]5, whereas cases with L, < 1676
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FIG. 4. The wavelengths corresponding to the longest A,,4, (black squares) and shortest A,,, (blue triangles) modes in the
natural support of the RNL system along with the wavelength corresponding to the mode with the largest average energy
density, A(supE 4,,) (red circles) all as a function of streamwise channel length, L, for R = 1000. Lines are shown solely to
guide the eye.

have smaller A,,;, values. We do not see the same invariance in the long wavelength limit of this
support. For simulations with L, € [2r,247]d, the long wavelength limit, A,,,,, corresponds to A,
the wavelength associated with the channel length. For channels with L, € [327,967]6 the long
wavelength limit, 4,,,,, corresponds to A,, the wavelength associated with the channel half-length.
In describing the long wavelength limit, we are limited by the discretization in the streamwise direc-
tion. If there is an invariant for the long wavelength limit, it could only be discovered by examining
cases with extremely large streamwise channel lengths, which is a direction for future work. For
simulations in channels with L, € [27,167]5, the largest time-averaged streamwise energy density,
A(sup E,,,), also occurs at wavelengths associated with the channel length, 1,. For systems with
Ly € [247,967]6, this maximum generally occurs at A = 1676 unless the streamwise discretization
does not permit this wavelength. In those cases, A(sup E,,) occurs at the permitted wavelength
that is closest to 1679, i.e., for L, = 72xd, the maximum time-averaged streamwise energy density
occurs at 44 = 1876.

B. Truncating the streamwise Fourier support of the RNL system

The results in Sec. IV A illustrate the natural support of RNL turbulence under a number of
different conditions. We now show that RNL turbulence can be supported even in cases where the
dynamics is restricted to a single streamwise varying perturbation interacting with the streamwise
averaged mean flow. We then explore the relationship between the natural support of the RNL
system and that of the truncated RNL system. In what follows, we refer to the RNL system with
no streamwise Fourier mode truncation as the baseline RNL system. In Section IV A, we observed
that simulations of case RNL-G exhibit both the upper and lower limits of the natural support of
RNL turbulence, so we study the truncated systems in channels with L, = 4876. The numerical
details for the truncated RNL simulations are provided in Section III and a full list of the simulation
parameters for these cases is given in Table II.

Figure 5 demonstrates that truncated RNL systems all have an appropriately shaped mean
velocity profile (based on a streamwise, spanwise, and time average) and that these profiles are
qualitatively similar to those obtained with the baseline RNL system. In particular, for cases K3 and
K4, the profiles are almost identical and have R, values of 53.4 and 57.0, respectively, which are
close to the value of R; = 56 in the baseline system. Cases K12, K16, K24, and K40 show higher
shear stress at the wall and correspondingly higher R; values of 64.5, 69.6, and 64.5, respectively.
Selective filtering of streamwise varying perturbations in the RNL system was previously shown to
strongly influence both the mean velocity profile and the spanwise spectra of the velocity field.”?
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FIG. 5. Turbulent mean velocity profiles (based on a streamwise, spanwise, and time average) obtained for cases RNL-G,
K3, K4, K12, K16, K24, and K40 all at R = 1000. Cases where the RNL is truncated to longer wavelengths exhibit a mean

profile similar to the baseline RNL simulation (case RNL-G).

Previous work has also shown that higher dissipation is associated with the inclusion of shorter
wavelength perturbations.’® This implies that the higher wavenumber and therefore higher dissi-
pation cases K12, K16, K24, and K40 require a higher shear stress in order to attain a statistical
equilibrium, which is the trend observed in the mean velocity profiles of Figure 5.

Figures 6(a) and 6(b) respectively show the time evolution of

2E,,, for simulations of case

K3 and case K4, in Table II. The wavelengths of the untruncated modes, respectively, A3 = 1676
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FIG. 6. Panels (a) and (b) show /2E ,,, versus time for cases K3 and K4, respectively. Panels (c) and (d) show /2E,,, for
the undamped wavelength (A3 =166 and 4= 1276, respectively), the RMS perturbation velocity, Up,, the RMS streak
velocity, Usireak, and the RMS roll velocity, Ug,y, for cases K3 and K4, respectively. In all panels, R = 1000.



105104-11 Thomas et al. Phys. Fluids 27, 105104 (2015)

and A4 = 1276, are both within the natural support of the RNL model in a channel with L, = 4874,
as shown in Figures 3(b) and 4. Both of these cases exhibit self-sustaining turbulent behavior
despite the severe restriction in the streamwise harmonics. The rapid decay of the truncated
wavenumbers subsequent to the removal of the stochastic excitation at ¢ = 500 is evident in Fig-
ures 6(a) and 6(b).

Figures 6(c) and 6(d), respectively, replot 4/2E,,, in Figures 6(a) and 6(b) alongside the RMS

perturbation velocity,
Upers = | D 2E 0, ©6)
n

L. 6
UStreak = / / (U - [U])2 d.’/ dZ, (7)

0 J-s

Ly 6
Ugon = / / V2+ W2dy dz. ®)

0 J-s

We note that in simulations for cases K3 and K4, both the RMS perturbation velocity, Up,,;, and the
RMS roll velocity, Ug,y, return to levels comparable to those prior to the truncation, after a transient
period. From Figures 6(c) and 6(d), it is clear that this adjustment occurs over a much longer time
interval for case K3 as compared to case K4.

Figure 7 shows the same results as in Figure 6 for case K24. The single undamped streamwise
varying perturbation wavelength of 1,4 = 276 corresponds to a mode that is well outside of the
natural support of the associated RNL-G (baseline) case; however, this system is still able to sustain
RNL turbulence with a reasonable mean profile as seen in Figure 5. For this case, 4/2E,,, is approx-
imately 5% of the RMS perturbation velocity of the flow. When the damping is applied at = 500,
the value of 4/2E,,, increases by an order of magnitude such that \/2E,,, is nearly the same as the
time-averaged RMS perturbation velocity prior to the application of the damping.

Figure 8(a) shows the streamwise energy densities for case K2 in which only 4, = 2476 and the
mean flow is retained. In this case, the flow becomes laminar after the damping is introduced and
this behavior leads us to conclude that the RNL system in a 4876 channel cannot sustain turbulence
when the dynamics is restricted to perturbation structures of length 1, = 247§ interacting with the
mean flow. The RNL system also cannot sustain turbulence for case K1 in which only 1, = 4876 is
retained.

As in the natural support of the baseline RNL system, there is a high wavenumber mode that
corresponds to a short wavelength limit beyond which turbulence is not robustly maintained. This

the RMS streak velocity,

and the RMS roll velocity,
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FIG.7. (a) 4/2E ,,, versus time for case K24. (b) 4/2E ,,, for the undamped wavelength (224), the RMS perturbation velocity,
Ubpers, the RMS streak velocity, Usireqk, and the RMS roll velocity, Ug,y, for case K24. In all panels, R = 1000.
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FIG. 8. Panels (a) and (b) show /2E 4, versus time resulting for cases K2 and K60, respectively. Panels (c) and (d) show
\2E,,, for the undamped wavelengths (A2 and ¢, respectively), the RMS perturbation velocity, Up,;, the RMS streak
velocity, Usireak, and the RMS roll velocity, Ug,y, for cases K2 and K60, respectively. In all panels, R = 1000.

behavior can be seen in Figures 8(b) and 8(d), which reveals the existence of a short wavelength
limit beyond which RNL turbulence can be supported by perturbations at a single streamwise
varying wavenumber. As in the case of the long wavelength boundary, the undamped wavelength,
in this case Agp, does not show any increase in energy. There is a region of uncertainty concerning
the maintenance of RNL turbulence in cases where a relatively short wavelength is retained. For
the conditions used in K50, K60, and K70, some cases maintained turbulence, while others relami-
narized. Similarly some of the simulations with the conditions of case D6, which corresponds to a
truncated RNL simulation retaining only A¢ = 276/3, maintain turbulence and others relaminarize.
However, in case D7 which retains only the mode associated with 17 = 476/7, the simulation
always relaminarizes. This conditional relaminarization behavior in the truncated RNL system may
be related to the state of the system at the initiation of damping. However, fully characterizing the
factors that lead to the sustenance of turbulence versus relaminarization given a particular sequence
of random forcings to initiate turbulence is a topic of ongoing work.

The natural support of RNL turbulence and the single streamwise varying modes that support
turbulence in the truncated RNL system for channels with L, = 4876 is summarized in Figure 9.
The wavelengths associated with the natural support of baseline RNL system are shaded grey. The
modes in the natural support for the baseline RNL systems correspond to wavelengths ranging from
approximately 276 to 24xm6. In contrast, the long wavelength limit associated with the truncated
RNL system is approximately 166. The short wavelength limit is approximately ¢, which is also
shorter than the lowest mode in the natural support of the baseline RNL model. A full characteriza-
tion of the factors determining the bounds of both the set comprising the streamwise Fourier support
of the baseline RNL model and the set of single streamwise varying modes that can maintain
turbulence through interactions with the mean flow will provide further insight into the nature of the
RNL SSP and are the subject of ongoing work.
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FIG. 9. Time-averaged RMS perturbation velocity, Up,; (black squares), RMS streak velocity, Usgyeqr (red circles), and
RMS roll velocity, Ug,y (blue triangles) for the set of truncated RNL systems in Table II with L, =48x5. All simulations
are at R = 1000. The shaded region indicates the natural streamwise Fourier support of the baseline RNL model. The set of
perturbation wavelengths that sustain turbulence in the truncated RNL system is disjoint from the natural support of the RNL
dynamics.

Figure 9 also demonstrates the impact of truncation on the RMS velocities associated with
the perturbation energy and important flow structures. The RMS roll velocity, Ug,y, increases with
decreasing truncation wavelength, plateauing near the point where the truncation can no longer
sustain turbulence. Conversely, the RMS perturbation velocity, Up,,;, decreases along with the trun-
cation wavelength. This increase in RMS perturbation velocity with truncation wavelength is also
associated with an increase in the intensity of the streamwise normal Reynolds stress component.
There is no clear trend in the RMS streak velocity. We conclude that the choice of truncation wave-
length strongly influences the coupling between the perturbations and the roll circulation, while the
streak amplitude is relatively robust to truncation. Understanding how truncation affects a wider
range of flow properties is the subject of ongoing work.

V. CONCLUSIONS AND DIRECTIONS FOR FUTURE WORK

In this paper, we have shown that the RNL system intrinsically produces a minimal representa-
tion of turbulence that is supported by a streamwise averaged mean flow and a small set of stream-
wise varying perturbations. This minimal state arises spontaneously when the stochastic parame-
trization of the nonlinear interactions among the streamwise varying perturbations is eliminated in
the perturbation equation. The retained modes actively participate in the transfer of energy from the
time-dependent streamwise averaged mean flow to the perturbation field and we refer to this set of
modes as the natural support of self-sustaining turbulence in the RNL system. Convergence of the
support of RNL turbulence to this reduced set of streamwise harmonics is consistent with the results
reported in Ref. 45. That work demonstrated that the RNL perturbation dynamics with no external
excitation is a time-dependent linear system that will eventually attain the asymptotic perturbation
structure spanned by its top Lyapunov vectors.

The results also demonstrate that the ability of the RNL system to self-sustain turbulence is
remarkably robust. In particular, we show that RNL turbulence can be sustained when the dynamics
is limited to comprise a single streamwise varying mode interacting with the streamwise averaged
mean flow. The wavelengths of the streamwise varying perturbations that comprise the natural
support of the RNL turbulence lie in a closed interval and our calculations suggest that this inter-
val becomes independent of channel size for long enough channels. The set of single streamwise
wavenumbers that support RNL turbulence is found to extend to shorter wavelengths than those that
are present in the natural support of the baseline RNL model but not to longer ones.
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The results presented here and the previously reported close correspondence between RNL
simulations and DNS suggest that the fundamental mechanisms underlying wall-turbulence can be
analyzed using highly simplified RNL systems. The RNL framework provides distinct advantages
over other minimal models that have been employed. First, the equations are directly derived from
the NS equations and are easy to implement within an existing DNS code. Second, implementations
of RNL minimal models do not rely on a particular Reynolds number or channel size and therefore,
Reynolds number trends as well as the dynamics of the RNL SSP in large channels can be explored
using these models. Finally, the RNL system inherently captures the dynamics of key flow struc-
tures as intrinsic elements of the system dynamics in a computationally and an analytically tractable
framework. These advantages make it a powerful tool for probing the dynamics of wall-turbulence.
The insight gained through such studies can then be tested using DNS and exploited to develop flow
control strategies.
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