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ABSTRACT
The large-scale magnetic Ðelds of stellar and galactic bodies are generally understood to be organized

and ampliÐed by motions in the conducting Ñuid media of these bodies. This article examines a mecha-
nism by which continual excitation of the conducting Ñuid by small-scale Ðelds results in production of
large-scale Ðelds. The excitation of the induction equation by small-scale Ðelds is parameterized as sto-
chastic forcing, and the crucial role of the nonnormality of the induction operator in determining the
spatial and temporal structure of variation in the large-scale Ðelds is emphasized. A cylindrically sym-
metric helical Ñow is used to provide illustrative examples.
Subject headings : hydrodynamics È ISM: magnetic Ðelds È MHD È Sun: magnetic Ðelds

1. INTRODUCTION

It is generally accepted that the magnetic Ðelds of stars
and galaxies are ampliÐed and organized by magneto-
hydrodynamic processes associated with motions in the
conducting Ñuid of these bodies. This process of Ðeld ampli-
Ðcation is governed by the induction equation for the mag-
netic Ðeld B in a conducting Ñuid medium with velocity ¿,
which can be written in the nondimensional form:

LB
Lt

\ $ – (¿ – B)] 1
R

m
$2B , (1)

$ Æ B \ 0 , (2)

where representative dimensional scales for the spatial
extent of the domain, L , and for the magnitude of the veloc-
ity of the mean motion, U, have been taken, and time has
been nondimensionalized by L /U. The induction equation
can be characterized by a single nondimensional number

the magnetic Reynolds number, where g is theR
m

\ UL /g,
magnetic di†usivity of the medium.

The induction equation governing the dynamics of mag-
netic Ðelds in a moving Ñuid is explicitly linear in the mag-
netic Ðeld so that if the velocity Ðeld is known, the
properties of the magnetic Ðeld can be obtained by linear
methods. Boundary conditions on the magnetic Ðeld are
usually chosen to correspond either to an idealized insula-
tor, in which case B is continued into a potential Ðeld in the
insulating region, or to a perfect conductor, in which case
both the normal component of the magnetic Ðeld and the
tangential component of the current are required to vanish.

The traditional procedure used to determine the stability
of equation (1) is to assume modal solutions of the form

so that equation (1) becomes an eigenproblem forB \ BŒ ept
the generally complex eigenvalue p :

pB \ $ – (¿ – B)] 1
R

m
$2B . (3)

Exponential instability occurs for solutions B with Re
p [ 0. Historically, demonstrating existence of an unstable
eigenmode was important for establishing the possibility of

Ðeld growth in light of the antidynamo result of Cowling
(1934). For cases in which the induction equation has a
complete set of orthogonal eigenfunctions, the eigen-
spectrum exhausts the possibilities for perturbation growth
so that the boundary in separating regions of Re p [ 0R

mfrom those with Re p \ 0 also separates regions in which all
perturbations decay from regions in which at least one per-
turbation grows. In cases of physical interest, the induction
equation does not in general have orthogonal eigenvectors,
therefore there is the possibility of perturbation growth
even in cases for which all eigenvalues of equation (3) have
Re p \ 0.

Recently it has been more widely appreciated that con-
centrating on the modal solution form greatly restricts the
dynamics of Ðeld growth allowed by equations (1) and (2).
Recognition of the importance of nonmodal perturbation
growth in Ñuid mechanics goes back to the work of Kelvin
(1887) and Orr (1907), and nonmodal growth processes
have been identiÐed in connection with the formation of
cyclones (Farrell 1982, 1984, 1989) and in the transition to
turbulence (Farrell 1988 ; Gustavsson 1991 ; Butler &
Farrell 1992 ; Reddy & Henningson 1993 ; Farrell &
Ioannou 1993a). The possibility of nonmodal growth of
magnetic Ðeld in the induction equation was discussed by
Mo†att (1978) and more recently by Childress & Gilbert
(1995).

The possibility of transient growth depends on the non-
normality of the operator. An operator is nonnormal if it
does not commute with its adjoint in a chosen inner
product. The inner product with most physical signiÐcance
for our problem is the volume-integrated magnetic energy
associated with the norm of the magnetic Ðeld B. If theL 2operator has a decaying spectrum, it can amplify pertur-
bations only in norms associated with inner products for
which it is nonnormal. Those initial perturbations that
amplify and deÐne the growing subspace of the operator
and methods for identifying them in the context of the
problem of magnetic Ðeld generation are presented in
Farrell & Ioannou (1998).

In addition to providing methods for analyzing non-
modal growth of deterministic initial perturbations in
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highly nonnormal systems such as the induction equation,
nonnormal analysis also provides methods for analyzing
Ðeld maintenance in the statistically steady state due to
continual excitation of the mean operator arising from
unresolved velocity and magnetic Ðelds. Unresolved scale
e†ects have been previously parameterized as stochastic
excitation of the underlying mean dynamical operators in
the astrophysical context (Hoyng 1987a, 1987b, 1988, 1993 ;
Choudhuri 1992 ; Ossendrijver, Hoyng, & Schmitt 1996), in
the geophysical turbulence of the midlatitude atmospheric
jet (Farrell & Ioannou 1995), and in laboratory turbulence
of shear Ñow (Farrell & Ioannou 1993b, 1998).

In the case of magnetic Ðelds, parameterization of forcing
of the mean Ðeld by unresolved scales has traditionally
taken the form of the a e†ect according to which the unre-
solved scales produce a coherent Ðeld with the structure of
the curl of the mean Ðeld itself (Parker 1955 ; Braginskii
1965a, 1965b ; Steenbeck, Krause, & 1966 ; HoyngRa� dler
1992). Observations, however, show a rich variability of the
magnetic Ðeld both in space and time (Rand & Kulkarni
1989 ; Minter & Spangler 1996), suggesting that accounting
for the stochastic nature of the forcing of the mean Ðeld by
the unresolved scales may be necessary for a more complete
understanding of Ðeld generation and maintenance from
internal magnetohydrodynamic processes. Alternatively,
forcing of the mean Ðeld may arise from outside the mani-
fold of the internal magnetohydrodynamic processes.
Examples of this would be the dynamical e†ects of massive
stars generating strong winds and sporadic supernovae,
both of which produce distortions of the Ðeld and generate
turbulence (McCray & Kafatos 1987 ; Zweibel & Heiles
1997). In these cases of externally imposed forcing a sto-
chastic analysis of the response of the induction equation is
necessary to understand the organization of the large-scale
Ðelds.

2. STOCHASTIC DYNAMICS OF THE

INDUCTION EQUATION

After separation of velocity and magnetic Ðelds into mean
(resolved) and deviation (unresolved) components, ¿ \ ¿6

and the mean (large-scale) Ðeld is seen to]¿@ B \ B ] B@,
evolve according to equation (1) as

LB
Lt

[ $ – (¿6 – B)[ 1
R

m
$2B \ $ – (¿@ – B@) . (4)

Traditionally the e†ect of unresolved velocity and mag-
netic Ðelds has been modeled using mean Ðeld param-
eterization. The most common mean Ðeld parameterization
of the induction equation is to replace the e†ects of the
deviations from the mean contained in the term on the
right-hand side of equation (4) with two modiÐcations of
the equation ; Ðrst, an increase of di†usion over its value
due to conductivity alone in order to take account of the
enhancement of di†usivity caused by the turbulence
and, second, introduction of a term proportional to the
curl of the mean magnetic Ðeld. This parameterization is
referred to as the a e†ect because the term in the curl of B
is often written in the form The magnitude of a$ – aB.
can be shown under certain conditions to be proportional
to the helicity of the perturbation velocity Ðeld and, in
particular, to vanish with the helicity (Steenbeck &
Krause 1966). This parameterization of the unresolved
scales by the a e†ect is useful but not completely compre-

hensive. Unresolved magnetic Ðelds in turbulent Ñows may
have substantial spatial and temporal Ñuctuations that
produce contributions to the forcing term on the right-hand
side of equation (4) not accounted for by the time-invariant
a e†ect. It follows that a complete characterization of the
mean Ðeld maintained by equation (4) must involve analyz-
ing the response of equation (4) to spatially and temporally
varying Ðelds (Hoyng 1987b, 1988, 1993 ; Choudhuri 1992 ;
Ossendrijver et al. 1996).

In the physical systems addressed in this study, there is a
well-deÐned large-scale Ñow that is disturbed by spatially
and temporally varying perturbations arising from smaller
scale magnetic and velocity Ðelds. We study the large-scale
magnetic Ðeld maintained by the unresolved scales. The
large-scale magnetic Ðeld of interest here can be traced pri-
marily to coherent stretching by the large-scale velocity
Ðeld, resulting in ampliÐcation of large-scale magnetic Ðeld
perturbations. In order to isolate this mechanism, the Ñuc-
tuating term on the right-hand side of equation (4) is
replaced by a stochastic forcing d correlated in time and
with prescribed spatial correlation. The forcing arising from
the interaction between and B@ is more complex than the¿@
white-noise parameterization we use, but more exact spe-
ciÐcation of the properties of the stochastic forcing is
deferred while attention is directed toward characterizing
the response of the mean induction equation to generic
forcing. One reason for deferring more precise character-
ization of the forcing is the expectation that only a relatively
small subspace of disturbances will be found to amplify
sufficiently to play a signiÐcant role in maintaining the
large-scale Ðeld. That most disturbances do not amplify sig-
niÐcantly restricts the relevant components of the forcing
produced by the unresolved scales. Dissimilar forcings may
produce similar responses provided only that the forcings
similarly excite these relatively few components that are
highly ampliÐed.

Although the derivation of equation (4) is formally rigor-
ous, the physical meaning of the mean magnetic Ðeld and of
deviations from the mean may be variously interpreted
(Mo†att 1978 ; Hoyng 1987b, 1992). To be concrete, we
interpret the bar in equation (4) to be an azimuthal average,
in which case equation (4) describes a forced equation for
the axisymmetric magnetic Ðeld, with the assumption that
interaction between the nonaxisymmetric Ñuctuations in
the magnetic and velocity Ðelds result in generation of
axisymmetric magnetic Ðeld. We consider the Ñuctuating
velocity and magnetic Ðelds to be stochastic and approx-
imate the last right-hand term in equation (4) by

$ – (¿@ – B@) \ f (r, t) , (5)

where f gives the spatial and temporal structure of stochas-
tic forcing while at the same time assuring that the forcing is
nondivergent and that it meets appropriate boundary con-
ditions. For simplicity we consider a generic stochastic
process that is normally distributed and d-correlated in time
with zero mean.

The physical mechanism envisioned in this formulation is
distinct from that envisioned in theories based on exponen-
tial modal instability of the induction equation (1). Modal
instability is supposed to produce from an inÐnitesimal
initial condition an exponentially growing magnetic Ðeld
with the structure of the most unstable mode. This Ðeld
eventually reaches Ðnite amplitude and equilibrates in some
manner the theory does not specify. In contrast, from the
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point of view of equation (4), the Ðnite-amplitude Ðeld is
regarded as maintained in a statistically steady state by
disturbances produced by interaction between the unre-
solved velocity and magnetic Ðeld components. For highly
nonnormal mean operators, the Ðeld maintained by this
forcing does not strongly depend on the structure of the
forcing. The reason is that a nonnormal operator greatly
ampliÐes a subspace of perturbations (distinct from the
eigenmodes of the operator), and this subspace, which is
referred to in the sequel as the growing subspace of the
operator, dominates the structure of the maintained mag-
netic Ðeld energy resulting from any reasonably broadband
forcing. So long as the forcing adequately excites these
growing structures, the structure of the maintained energy
will be primarily determined by these amplifying structures
and will be insensitive to the details of the forcing. In addi-
tion, the temporal variability of the magnetic Ðeld is con-
trolled by the associated time development of the same
dominant growing perturbations.

3. STOCHASTIC DYNAMICS OF THE AXISYMMETRIC FIELD

IN A HELICAL FLOW

3.1. Formulation
Consider the axisymmetric Ñow in a cylindrical domain

with azimuthal (h) velocity depending only onUh \ r)(r)
radius (r) and axial (z) velocity Ðeld, also dependingU

z
(r)

only on radius, but with no radial Ñow. Stochastically
forced axisymmetric magnetic Ðeld perturbations,

B
r
\ BŒ

r
(t, r)eikz , Bh \ BŒ h(t, r)eikz , B

z
\ BŒ

z
(t, r)eikz , (6)

evolve in time according to the induction equation (4). In
cylindrical coordinates this takes the form

dBŒ
r

dt
\ [ikU

z
BŒ

r
] 1

R
m

LBŒ
r
] f

r
(r, t) , (7)

dBŒ h
dt

\ [ikU
z
BŒ h ] r

d)
dr

BŒ
r
] 1

R
m

LBŒ h ] fh(r, t) , (8)

dBŒ
z

dt
\ [ikU

z
BŒ

z
] dU

z
dr

BŒ
r
] 1

R
m

A
L ] 1

r2
B
BŒ

z
] f

z
(r, t) , (9)

in which appears the di†usion operator in cylindrical polar
coordinates :

L \ 1
r

d
dr
A
r

d
dr
B

[ 1
r2[ k2 . (10)

We denote the stochastic forcing by andf
r
(r, t), fh(r, t),

which satisfy the boundary conditions. To ensuref
z
(r, t),

nondivergence of the magnetic Ðeld, the stochastic forcing is
required to be divergenceless. With a divergenceless forcing,
the radial and azimuthal magnetic Ðeld equations (7) and (8)
can be solved independently because they decouple from
the axial equation (9). The axial magnetic Ðeld can then be
obtained from

1
r

d(rBŒ
r
)

dr
] ikBŒ

z
\ 0 , (11)

which enforces for the axisymmetric case nondivergence of
the magnetic Ðeld. We consequently consider only the
radial and azimuthal equations (7) and (8) with arbitrary
magnetic Ðeld forcing f

r
(r, t), fh(r, t).

With the di†erential operators discretized on n points
using central di†erences, evolution of the magnetic Ðeld
obeys the matrix induction equation :

dB
dt

\ AB] Fm(t) , (12)

where is the 2n column vector with the Ðrst nB\ [BŒ
r
, BŒ h]Tcolumns corresponding to the values of at each gridBŒ

rfollowed by the collocated values of The spatially con-BŒ h.1tinuous stochastic noise f in equation (5) is approximated
by the discrete forcing Fm(t). The spatial distribution of the
forcing is provided by the matrix F. Physically, each column
of F corresponds to a given magnitude and spatial structure
of the forcing magnetic Ðeld. Inclusion of F in the formula-
tion allows restriction of the spatial structure of the forcing
magnetic Ðeld. The vector m is taken to be a d-correlated
white-noise process of zero mean satisfying

Sm
i
(t1)mj

(t2)T \ d
ij
d(t1[ t2) ; (13)

this assumption greatly simpliÐes the calculations in the
sequel. The discretized induction operator has the form

A \(
t
:

[ikU
z
] (1/R

m
)L

r
0

ikr d)/dr [ikU
z
] (1/R

m
)Lh

)
t
;

, (14)

where is the discretized di†usion operator of equationL
r(10), in which the appropriate boundary conditions for BŒ

rare applied. The operator is also the discretized di†usionLhoperator in which the appropriate boundary conditions for
are imposed. The boundary conditions for these twoBŒ hÐelds are di†erent.

A conducting inner boundary at requires thatr \ r0

BŒ
r
(r0) \ 0 ,

d(rBŒ h)
dr

K
r0

\ 0 . (15)

If the domain extends to the symmetry axis, then regularity
of the axisymmetric Ðeld components at the symmetry axis
requires

lim
r?0

rBŒ
r
\ 0 , lim

r?0
rBŒ h \ 0 ; (16)

we impose insulating boundary conditions at r \ 1 :

BŒ h(1)\ 0 ,
d(rBŒ

r
)

dr
K
r/1

\ o k oK0( o k o )
K0@ ( o k o )

BŒ
r
(1) , (17)

with the modiÐed Bessel function and its derivative.K0 K0@Magnetic Ðeld perturbations will be measured by their
total magnetic Ðeld energy per unit volume, which is taken
as the deÐnition of the inner product for the column vector
B :

pBp2\ (B, B)

4
1

k0(r22[ r12)
P
r1

r2
r dr( oBŒ

r
o2] oBŒ h o2] oBŒ

z
o2) . (18)

We adopt a Riemann sum approximation for this integral ;
the inner product can then be written in matrix form in

1 The number of discretization points n is selected so that convergence
to the continuous operator is obtained. Convergence of the discretized
induction equations is veriÐed by doubling resolution. It was determined
in this way that grid points are required.O(R

m
1@3)
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terms of the column vector B as

pBp2\ BsMB , (19)

where ¤ denotes the Hermitian transpose and the magnetic
energy metric matrix M is of the form

M \
2d

k0(r22 [ r12)
(
t
:

r ] (1/k2)DsD 0
0 r

)
t
;

, (20)

where is the magnetic permeability of the medium andk0the spatial interval between two consecutive discretization
points is denoted by d. The discretized operator D arises
from expressing the axial magnetic Ðeld component inB

zterms of the radial and is given byB
r

D \ 1
r1@2 ] r1@2 d

dr
, (21)

and Ds denotes its adjoint in the inner product : (BŒ
r
, BŒ

r
) \

with the appropriate boundary conditions/
r1
r2 dr BŒ

r
*BŒ

rimposed on The metric matrix M is manifestly positiveBŒ
r
.

deÐnite and Hermitian.
In this inner product, the induction operator A in the

presence of a mean velocity straining Ðeld is nonnormal, i.e.,
the induction operator does not commute with its adjoint,
therefore implying that the eigenvectors of AAAs D AsA,
are not orthogonal in this inner product and perturbation
growth, measured in this inner product, is possible even
when all the eigenvalues of A decay.

The forced response of the magnetic Ðeld obtained from
equation (12) is given by

B(t)\
P
0

t
eA(t~s)Fm(s)ds . (22)

The ensemble average magnetic Ðeld energy maintained at
time t by the stochastic forcing can be calculated making
use of the properties of the white-noise vector m (eq. [13]) as
follows (we make use of the summation convention) :

SpB(t)p2T \ SB
i
*(t)M

ij
B

j
(t)T

\
TP

0

t P
0

t
ds ds@ e

ia
AR(t~s)F

ab
* m

b
*(s)M

ij
e
jc
A(t~s)F

cd
m
d
(s@)
U

\ F
ba
s
AP

0

t
ds e

ai
As(t~s)M

ij
e
jc
A(t~s)

B
F

cb

\ trace [FsQ(t)F] , (23)

in which the Hermitian operator

Q(t)4
P
0

t
eAs(t~s)MeA(t~s) ds (24)

has been deÐned. This operator serves to accumulate over
time t the magnetic energy from the stochastic forcing ;
through equation (23) Q(t) transforms the speciÐc magnetic
Ðeld forcings, the columns of F, into the stochastically main-
tained mean magnetic Ðeld energy. When A has decaying
spectrum, Q(t) integrates a product of decaying exponen-
tials, thus ensuring the existence as t ] O of the steady state
matrix Q=. In practice, it is convenient to obtain Q=
directly from the solution of the Lyapunov equation :

AsQ= ] Q=A \ [M , (25)

where M is the energy metric matrix of equation (20). This
Lyapunov equation results directly from di†erentiating
equation (24) to obtain

dQ(t)
dt

\ M ] AsQ(t) ] Q(t)A , (26)

the Ðxed point of which is obtained when Q= solves equa-
tion (25). Note that solving for Q= from equation (25) is
computationally advantageous compared with integrating
equation (24).

The expression for the ensemble average magnetic energy
of equation (23) reveals that for a set of unitary forcings
(FFs \ I, i.e., all forcings are orthonormal in the domain)
the maintained magnetic energy structure is independent of
the speciÐc set of forcing distributions as

trace [FsQ(t)F]\ trace [FFsQ(t)]\ trace [Q(t)] . (27)

This implies that if the magnetic Ðeld is forced by any com-
plete unitary set of spatial structures, the maintained mag-
netic energy will be the same. In the sequel we choose a
unitary set of forcings in order to characterize most trans-
parently the spatial and temporal response inherent in the
mean induction equation. If the set of forcing functions F is
not unitary, then the mean magnetic energy depends on the
speciÐc forcing. Nevertheless, the dependence of the
response on the forcings is weak for highly nonnormal oper-
ators (Farrell & Ioannou 1993c).

Note that the eigenfunctions of the positive deÐnitef
iHermitian matrix Q(t) render the bilinear form anf

i
s Q(t) f

iextremum and naturally order the magnetic Ðeld forcings
according to their contribution to the maintained energy at
time t. Consequently, the eigenfunction of Q= with the
largest eigenvalue corresponds to the forcing structure that
contributes most to the statistically steady ensemble mag-
netic Ðeld energy. A particular unitary forcing matrix F can
be constructed consisting of the eigenfunctions of Q=
ordered in columns according to their decreasing eigen-
values, which orders them in contribution to the stochasti-
cally maintained magnetic energy. The forcings ordered in
this way will be referred to as the stochastic optimals.
Because the induction operator A in the presence of velocity
strain is nonnormal, these stochastic optimals are distinct
from the eigenfunctions of the induction operator.2

If the spectrum of Q= falls o† rapidly with mode number,
then only the Ðrst few stochastic optimals maintain most of
the statistically steady magnetic energy, and the Ðeld is
insensitive to other aspects of the forcing so long as the
forcing adequately excites these few dominant stochastic
optimal spatial structures.

The unitary set of stochastic optimals, which are ordered
in their contribution to the excitation of the ensemble mean
magnetic Ðeld energy, should be contrasted with the unitary
set of structures ordered according to the fraction of the
maintained ensemble mean magnetic Ðeld energy that each
explains. This unitary set of magnetic Ðeld structures

2 Consider the case in which the metric is the identity, M \ I ; then,
directly or conversely, if A is normal, A commutes with As and consequent-
ly their eigenvectors are the same. In that case the eigenvectors of A and
the eigenvectors of coincide, and from eq. (24) it follows that theeAsteAt
eigenvectors of A and the eigenvectors of Q(t), which are the stochastic
optimals, also coincide. The proof is easily extended to an arbitrary metric
by transforming the variable in the induction equation to M1@2B.
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ordered according to their individual role in explaining the
total ensemble mean magnetic Ðeld energy will be referred
to as the empirical orthogonal functions (EOFs) of the
maintained magnetic Ðeld ; these are identical to the

decomposition of the mean Ðeld. ToKarhunen-Loe� ve
obtain the EOFs, we form the magnetic Ðeld energy covari-
ance matrix :

C
ij
(t)\ S[M1@2B(t)]

i
[M1@2B(t)]

j
*T

\
C

M1@2
AP

0

t
eA(t~s)FFseAs(t~s) ds

B
M1@2

D
ij

, (28)

where we have proceeded as in equation (23) and made use
of the Hermitian and positive deÐnite properties of the
energy metric matrix M. Consider the matrix, X, consisting
of the eigenfunctions of this covariance matrix arranged in
columns. The EOFs are the columns of the matrix M~1@2X.
Because the covariance matrix is Hermitian, the EOFs form
an orthonormal set of magnetic Ðeld structures in the mag-
netic Ðeld energy inner product (eq. [19]). The eigenvalues
of the magnetic Ðeld covariance matrix are the statistically
steady magnetic Ðeld energy accounted for by their corre-
sponding eigenfunctions. The EOFs are ordered in descend-
ing order of their eigenvalues. By construction, the trace of
the covariance matrix is the ensemble mean magnetic
energy.

If A has a decaying spectrum, the covariance matrix inte-
grates a product of decaying exponentials and the existence
of the steady state covariance matrix C= is ensured. Di†er-
entiation of equation (28) shows that the covariance matrix
solves the equation

dC(t)
dt

\ M1@2(FFs ] AM~1@2C(t)M~1@2

] M~1@2C(t)M~1@2As)M1@2 , (29)

so that in the limit t ] O, for a stable A, the covariance
matrix solves the companion Lyapunov equation to equa-
tion (25) :

AM~1@2C=M~1@2] M~1@2C=M~1@2As \ [FFs , (30)

from which C= is easily obtained given the induction oper-
ator A and the forcing matrix FFs ; when F is unitary, C=
depends only on the dynamical operator and the chosen
metric. Knowing C= allows calculation of the magnetic
Ðeld structures into which the magnetic energy is concen-
trated, the EOFs, which are related to the eigenfunctions of
C= through multiplication by the matrix M~1@2. The eigen-
values of C= determine the fraction of the statistically
steady magnetic energy accounted for by the corresponding
EOFs. The volume-averaged magnetic Ðeld energy
SpBp2T \ trace (C=) is the sum of these eigenvalues.

If A is normal, the forcing is unitary (FFs \ I), and the
metric is the identity, then A, C(t), and Q(t) commute and
the stochastic optimals, the EOFs and the modes of the
dynamical system coincide. For such systems, eigenanalysis
of A suffices for understanding the stochastic dynamics of
perturbations in the linear limit. In contrast, for nonnormal
systems such as that arising in the magnetic Ðeld generation
problem in the astrophysical context, the stochastic opti-
mals, the EOFs, and the modes of the induction operator
are all distinct, and nonnormal analysis methods are neces-
sary to solve for the steady state statistics.

3.2. Spectral Properties of the Induction Operator in a
Helical Flow

We have already seen that the di†usion operators in
equation (14) di†er only in the boundary conditions
imposed on them. The operator acts on the radial mag-L

rnetic Ðeld, while the operator acts on the azimuthal, andLhthe boundary conditions satisÐed by these two Ðelds are
di†erent (cf. eq. [17]). In the Ðnite-dimensional representa-
tion of and this di†erence in boundary conditionsL

r
Lh,leads to matrices that di†er only in the entries that operate

on the function values in the vicinity of the insulating
boundary r \ 1. The near-equality of the operators andL

rfor axisymmetric perturbations, and the fact that in ALh(cf. eq. [14]) the vector uncouples from the vector,B
r

Bhresult in eigenfunctions of both and[ikU
z
] 1/R

m
L

rwith nearly the same eigenvalue giving[ikU
z
] 1/R

m
Lhrise to the possibility of resonant excitation of the azimuthal

Ðeld by the radial Ðeld. Indeed, examination of the stable
spectrum of the dynamical operator A reveals that in the
presence of both di†erential rotation and axial shear there
exists a set of eigenfunctions with nearly degenerate eigen-
values trapped in the inner region which have only the
azimuthal Ðeld component.

To examine this near resonance of the induction equa-
tion, consider the following velocity distribution in the
region 0\ r \ 1 :

)(r) \ 2
G
)0 ] 1 [ )0

2
C
1 ] tanh

Ar [ r0
d
BDH

]
C
1 [ tanh

Ar [ r1
d
BD

, (31)

U
z
(r) \ d

Se
2

d
dr
G
exp

C
[ (r [ r

c
)2

d2
DH

, (32)

where e is the base of natural logarithms. For a Ñow con-
tained in a cylinder with outer radius r \ 1, we choose

and d \ 0.05 to)0\ 0.4, r0\ 0.345, r1\ 0.6, r
c
\ 0.545,

obtain a strong region of di†erential rotation adjacent to
the model core boundary at r \ 0.25, and a second region of
di†erential rotation near r \ 0.6 which adjusts the angular

FIG. 1.ÈAngular velocity )(r) and axial velocity as a function ofU
z
(r)

radius of the helical Ñow as given in eqs. (31) and (32).
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FIG. 2.ÈFirst 50 eigenvalues p of the induction operator A for the Ñow
given in eqs. (31) and (32) with azimuthal wavenumber m\ 0 and axial
wavenumber k \ [1 at The eigenvalues have been markedR

m
\ 104.

alternatively with circles and crosses in order to highlight the nearly reso-
nant modes.

velocity to a zero value. Between these two regions of di†er-
ential rotation we place a region of axial upwelling and
downwelling modeling a meridional circulation adjacent to
a core boundary. The angular velocity Ðeld (eq. [31]) and
axial velocity Ðeld (eq. [32]) are shown in Figure 1.

The spectrum of the operator with velocity proÐle given
by equations (31) and (32) for and axial wavenum-R

m
\ 104

ber k \ [1 shown in Figure 2 reveals the existence of
nearly resonant modes, the most important of which are
the second and the third least damped pairs. The magnetic
Ðeld components of the least damped eigenfunction,
which is not nearly resonant, is seen in Figure 3 to be con-
centrated in the outer region near the insulating boundary.

FIG. 3.ÈRadial magnetic Ðeld (top panel), azimuthal magnetic ÐeldB
r(middle panel), and axial magnetic Ðeld (bottom panel) in the merid-Bh B

zional plane (r, z) for the least stable mode for the Ñow shown in Fig. 1 at
with axisymmetric perturbations, azimuthal wavenumber m\ 0,R

m
\ 104

and axial wavenumber k \ [1. The eigenvalue is p \ [0.0027[ 0.0002i.
The magnetic Ðeld satisÐes boundary conditions appropriate for regularity
at r \ 0 and an insulating outer wall. The maximum value of the corre-
sponding Ðeld components is indicated in the ordinate label of each panel.

FIG. 4.ÈRadial magnetic Ðeld (top panel), azimuthal magnetic ÐeldB
r(middle panel), and axial magnetic Ðeld (bottom panel) in the merid-Bh B

zional plane for the Ðrst nearly resonant mode for the Ñow shown in Fig. 1
at with axisymmetric perturbations, azimuthal wavenumberR

m
\ 104

m\ 0, and axial wavenumber k \ [1. The eigenvalue is
p \ 0.0071] 0.0006i. The magnetic Ðeld satisÐes boundary conditions
appropriate for regularity at r \ 0 and an insulating outer wall. The
maximum value of the corresponding Ðeld components is indicated in the
ordinate label of each panel.

Because the axial velocity is nearly zero in the outer region,
the frequency of the mode is very small. As expected, the
nearly resonant modes are concentrated near the symmetry
axis where the and operators have the same boundaryL

r
Lhconditions. The structure of the Ðeld of the nearly resonant

second and third eigenfunction (with approximately
p \ [0.0071] 0.0006i) in the same graph shown in Figure
4 reveals the coincidence of the eigenfunctions. As expected,
the nearly resonant eigenfunctions involve only the azi-
muthal Ðeld which is concentrated near the sym-
metry but extends also into the region with di†erential
rotation.

FIG. 5.ÈOptimal magnetic energy growth as a function of time scaled
by for axisymmetric perturbations with axial wavenumber k \ [1R

m
1@3

for and 104. The Ñow is shown in Fig. 1. Note the secondaryR
m

\ 1200
growth indicative of resonance.
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The existence of nearly resonant eigenfunctions associ-
ated with a core azimuthal Ðeld gives the inner region par-
ticular dynamical signiÐcance. The presence of poloidal
Ðeld in the vicinity of the inner region robustly excites
growth of toroidal Ðeld in this region. Figure 5 shows the
maximum energy attained by any initial perturbation of
unit magnetic energy as a function of time. This is found by
evaluating the square of the energy norm of the propagator
of the induction operator (eq. [14]) i.e., (forp eAstMeAt p
details see Farrell & Ioannou 1998). In the absence of reso-
nance, the Ðeld decays after an initial energy growth leading
to peak Ðeld energies of at a time of imply-O(R

m
2@3) O(R

m
1@3),

ing that stochastic forcing of the induction equation will
produce ensemble mean magnetic energy of By con-O(R

m
).

trast, the resonant behaviour in Figure 5 shows that this
initial energy peak is followed by persistent growth, which
we shall see in the next section produces a pronounced
increase in the forced response.

Resonant eigenfunctions can be strongly excited by Ðelds
in the core boundary region. In connection with Ðeld organ-
ization in stars, the radiatively dominated core is properly
located below the convection zone and this boundary
region has been implicated in supporting such Ðelds
(Layzer, Rossner, & Doyle 1979 ; Parker 1987).

4. AXISYMMETRIC RESPONSE OF THE INDUCTION

EQUATION TO STOCHASTIC NOISE

4.1. Organization of the Stochastically Maintained
Magnetic Field

Consider the statistically steady response to white-noise
forcing of the induction equation with constant large-scale
velocity Ðeld. For a normal dynamical system with decaying
spectrum the energy maintained by stochastic forcing is
proportional to the sum over the inverses of the decay rates
of the modes, while the transient growth process in non-
normal dynamical systems such as the induction equation
leads to ensemble energy levels that can be orders of magni-

tude greater. For example, if the induction equation matrix
A is nearly defective,3 indicative of a highly nonnormal
system, then the maintained ensemble mean magnetic Ðeld
energy can become especially large with the resulting reso-
nant increase in energy scaling inversely as the cube of the
decay rate of the resonant mode rather than inversely with
the Ðrst power as for a normal system. If, as is often the case,
the modal decay rates are proportional to then theR

m
~1

mean magnetic Ðeld energy maintained increases in the
presence of this resonance for large Reynolds number
approximately as anticipating that the growth of theR

m
3 ,

resonant modes dominates the magnetic energy.
The evolution of an initial magnetic Ðeld perturbation

typically comprises a phase in which the Ðeld changes struc-
turally and intensiÐes linearly in time due to stretching fol-
lowed by a di†usive phase in which the Ðeld decays,
eventually assuming the Ðxed structure of the least stable
mode (cf. Farrell & Ioannou 1998). Consequently, the mag-
netic Ðeld structure that accounts for most of the mean Ðeld
energy when the induction equation is stochastically forced
will not be that of the least damped mode but rather a
structure representing the mean over the growth-and-decay
cycle of all excited perturbations. These mean structures are
the EOFs which are found by eigenanalysis of the sta-
tistically steady covariance matrix C= obtained from the
dynamical operator through solution of the Lyapunov
equation (eq. [30]). The eigenvalues of the positive deÐnite
Hermitian covariance matrix C= can be ordered, and their
corresponding orthogonal eigenfunctions order the func-
tions (EOFs) according to their contribution to the mean
Ðeld magnetic energy. The magnetic Ðeld associated with
the Ðrst EOF, accounting for 87% of the mean magnetic
energy, is shown in Figure 6a. This Ðrst EOF is distinct

3 Defective matrices are those with linearly dependent corresponding
eigenfunctions. This can happen only if the matrix is nonnormal. Normal
matrices may have degenerate eigenvalues, but their eigenfunctions span
the space.

FIG. 6a FIG. 6b

FIG. 6.È(a) Radial magnetic Ðeld (top panel), azimuthal magnetic Ðeld (middle panel), and axial magnetic Ðeld (bottom panel) in the meridionalB
r

Bh B
z(r, z)-plane for the Ðrst axisymmetric EOF at Reynolds number that accounts for 87% of the mean magnetic energy. The azimuthal wavenumber isR

m
\ 104

m\ 0, and the axial wavenumber is k \ [1. The Ñow is shown in Fig. 1. The maximum value of the corresponding Ðeld components is indicated in the
ordinate of each panel. (b) As in (a), but for the Ðelds associated with the Ðrst stochastic optimal at which when forced produces 90% of theR

m
\ 104,

ensemble mean magnetic Ðeld energy.
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FIG. 7.ÈAsterisks : Percentage ensemble mean magnetic Ðeld energy
accounted for by the Ðrst six empirical orthogonal functions (EOFs) of the
magnetic Ðeld covariance ordered according to their contribution to the
ensemble mean. Circles : Percentage ensemble mean magnetic Ðeld energy
produced by the Ðrst six stochastic optimals ordered according to the
ensemble mean energy each is responsible for producing. The example
treats the stochastically forced axisymmetric Ðeld with azimuthal wave-
number m\ 0 and axial wavenumber k \ [1 at for the ÑowR

m
\ 104

shown in Fig. 1. Note that 99% of the ensemble mean energy is accounted
for by the Ðrst three EOFs, and 99% of the ensemble mean energy is
produced if the magnetic Ðeld forcing is restricted to the Ðrst three stochas-
tic optimals.

from the least damped mode (cf. Fig. 3) due to the non-
normality of the dynamics, and speciÐcally to the resonance
between the toroidal and poloidal Ðelds in the vicinity of the
inner cylinder.

The Ðrst stochastic optimal, obtained by eigenanalysis of
the matrix Q in equation (25), is the magnetic Ðeld forcing
structure that maintains the largest magnetic Ðeld energy. It
is responsible for producing 90% of the total magnetic Ðeld
energy when all the ordered stochastic optimals are equally
forced. This implies that the details of the stochastic forcing
are not likely to be important provided that the stochastic
forcing projects on the Ðrst stochastic optimal. The com-
ponents of the magnetic Ðeld associated with the Ðrst sto-
chastic optimal are shown in Figure 6b.

In Figure 7 the percentage of ensemble mean magnetic
energy accounted for by the Ðrst EOFs and that forced by
the Ðrst stochastic optimals are shown. Note that at R

m
\

104 the mean magnetic Ðeld energy is explained by the Ðrst
three EOFs and produced almost completely by the Ðrst
three stochastic optimals. This indicates that the magnetic
Ðeld energy can be described almost completely by the Ðelds
of the Ðrst three EOFs and produced by magnetic Ðeld
forcing concentrated in the Ðrst three stochastic optimals.
Concentration of the magnetic energy on the Ðrst EOFs
demonstrates the process of organization of the large-scale
Ðeld arising from the nonnormal growth processes.

4.2. T emporal V ariation of the Stochastically Maintained
Magnetic Field

The area average of the axial magnetic Ðeld, denoted
over the conducting region at a given axial level is[B

z
],

taken as a convenient proxy for the axisymmetric dipole
moment, which has no exact counterpart in cylindrical
coordinates. A time series of for the induction equation[B

z
]

FIG. 8.ÈTime variation of the area-averaged axial magnetic Ðeld over
the conducting region for axisymmetric perturbations with k \ [1 at[B

z
]

The Ñow is shown in Fig. 1. The stochastic noise driving theR
m

\ 104.
induction equation is red with correlation time of 10 nondimensional units.

with insulating outer boundary and with red-noise forcing
having correlation time 10 advective time units is shown in
Figure 8. The response of the induction equation to sto-
chastic forcing is aperiodic, but reversals typically occur
separated by approximately 1000 nondimensional units.
That the period between reversals greatly exceeds the
advective timescale is due to the frequency response of the
operator, which exhibits a very sharp peak near zero fre-
quency as seen in Figure 9, which shows the power spec-
trum of the magnetic energy (the method used to obtain the
power spectrum is described in the Appendix). The lower
curve in the same Ðgure shows the power spectrum of the
ensemble mean magnetic Ðeld energy that results from
exciting a normal operator with the same eigenvalues as the
nonnormal induction operator that gave rise to the upper

FIG. 9.ÈPower spectrum of magnetic Ðeld energy as a function of non-
dimensional angular frequency u produced by stochastic forcing of the
induction equation for the Ñow shown in Fig. 1 with azimuthal wavenum-
ber m\ 0 and axial wavenumber k \ [1, and Also shownR

m
\ 104.

(lower curve) is the equivalent normal response. Note that the response of
the nonnormal induction operator is larger and of a di†erent shape than
that of the equivalent normal operator.
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curve. Note that nonnormality leads to greater values of the
energy power spectrum at all frequencies.

The nonnormal growth process can highly amplify selec-
ted modes of the system, consequently, if these modes are
oscillatory and have decay rates that are long compared to
their period, it is expected that the response will be nearly
periodic. Such an example can be easily obtained. Consider
the helical Ñow treated in Farrell & Ioannou (1998) which is
conÐned between a conductor at r \ 0.5 and an insulator at
r \ 1 with angular velocity and axial velocity)\ e~r2
equal to the angular velocity, and no radial velocity (the
induction operator for this Ñow is not defective). A time
series of for this case with insulating upper boundary is[B

z
]

shown in Figure 10. The response is almost periodic with
period approximately 15 advective time units consistent
with the frequency of the second least damped mode, which
is the only mode with appreciable This mode is e†ec-[B

z
].

tively excited by stochastic forcing, as seen in Figure 11,
where the power spectrum of the magnetic Ðeld energy is
shown. The prominent peak at nondimensional frequency
near [0.4 corresponds to the second least damped mode.
The lower curve in the same Ðgure shows the power spec-
trum of the ensemble mean magnetic energy that results
from exciting a normal operator with the same eigenvalues.
Note again that nonnormality leads to higher values of the
power spectrum at all frequencies and especially higher
response of the second least damped mode.

The examples treated were chosen to show that both
nearly periodic and aperiodic responses may result from
stochastic excitation.

4.3. Energetics of the Stochastically Maintained
Magnetic Field

We have outlined a model for mean Ðeld maintenance in
which nonmodal magnetic Ðeld growth sustains the large-
scale ensemble mean magnetic Ðeld energy in response to
stochastic forcing arising from the unresolved scales. One
expects in such a system that the magnetic energy produced
by stretching of the large-scale magnetic Ðeld by the large-
scale velocity Ðeld would exceed the energy injected by the

FIG. 10.ÈAxial Ðeld at Ðxed z averaged over the conducting region for
axisymmetric perturbations with azimuthal wavenumber m\ 0 and axial
wavenumber k \ [1 and Magnetic Ðeld reversals are seen toR

m
\ 104.

occur with approximately 15 time unit period. The Ñow is )\U
z
\ e~r2.

FIG. 11.ÈPower spectrum of magnetic Ðeld with azimuthal and axial
wavenumbers m\ 0 and k \ [1, and for the model problemR

m
\ 104

with Ñow Also shown (lower curve) is the equivalent)\ U
z
\ e~r2.

normal response. The prominent peak in the nonnormal response near
nondimensional frequency [0.4 corresponds to the 15 advective time-unit
period in the axial Ðeld seen in Fig. 10.

stochastic forcing, so that the primary energetic balance in
the mean equation is between the nonmodal growth and
di†usive dissipation, with the stochastic forcing assuming a
catalytic role. This is not a logical necessity, however, as one
may imagine energetics dominated by the unresolved scales
with the mean induction operator acting simply to deter-
mine the mean Ðeld response to this forcing, as would occur
for instance in the case of a stochastically forced normal
system such as equation (4) in the absence of large-scale
velocity and with the right-hand side of the equation
replaced by a stochastic forcing term. Nevertheless, we
expect that the resolved scale dynamics are energetically
dominant and calculate the energetics of the stochastically
forced induction equation.

The energy is proportional to and an energy/
V

B2 dV
equation is obtained by multiplying equation (4) by andB
integrating over the Ñuid volume. If a statistical steady state
is obtained, we have the following balance among the
average rate of magnetic energy production by the deforma-
tion velocity Ðeld acting on the magnetic Ðeld (A), the
average rate of stochastic input of magnetic energy (B), and
the average rate of dissipation (C) :

TP
V

B Æ (¿6 Æ $)B dV
U

]
TP

V
B Æ f dV

U

A B

\ 1
R

m

TP
V
($ – B)2 dV

U
. (33)

C

With the Ansatz of equation (13) all terms in equation (33)
can be estimated directly from the covariance matrix C=.4

4 For example, if we know the covariance of a Ðeld G, i.e., C
ij
G \

then we can immediately calculate the covariance of any Ðeld thatSG
i
G

j
*T,

is a linear transformation of G, i.e., of W \ TG. Clearly CW\ TCGTs.
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At this point, we restrict the spatial scales of the forcing f,
which in a resolved discrete formulation corresponds to
restricting the rank of F. We retain m magnetic Ðeld forc-
ings, which reduces the rank of the forcing matrix F from its
full rank 2n to m\ 2n. We assume this restriction because
the relative magnitude of the terms in the energy equation
(33) depends on the rank of the forcing matrix F because the
stochastic input (B) is proportional to the number of
degrees of freedom excited. It can be shown that the sto-
chastic input per unit volume is

T1
V
P
V

B Æ f dV
U

P trace (F sMF ] FMFs) , (34)

where the discrete representation of the stochastic forcing in
equation (12) has been assumed. When each of the forcings
(the columns of F) is of unit magnitude and orthogonal in
the M inner product, then the stochastic input increases in
proportion to the number of degrees of freedom excited by
the forcing matrix F, while the ensemble mean magnetic
Ðeld energy and the rate of magnetic energy production (A)
increases most rapidly for the forcings that span the Ðrst few
stochastic optimals, and as more forcings are added it con-
verges to a Ðnite value. Consequently, as the rank of the
matrix increases, the ratio A/B decreases.

To assess the energetics we take a sequence of forcing
matrices each with columns the Ðrst m stochastic opti-F

mmals obtained previously for the Ñow shown in Figure 1
ordered according to their contribution to the ensemble
mean magnetic Ðeld energy. In Figure 12, the average rate
of magnetic energy production for unit stochastic input is
plotted as a function of the rank m of for 103,F

m
R

m
\ 102,

and 104. It is evident that the production term dominates
the energetics provided only that the forcing is sufficiently
limited in the basis of the stochastic optimals, which corre-
sponds to limiting the excitation of highly damped small
scales. Under these circumstances, the major energy source

FIG. 12.ÈRate of production of magnetic energy by the mean Ñow
shown in Fig. 1 normalized by the stochastic input as a function of the
number of stochastic optimals included in the forcing matrix F. The sto-
chastic optimals are ordered in descending order according to their contri-
bution to forcing the maintained ensemble mean magnetic Ðeld energy.
The average rate of production exceeds the stochastic input when it has a
value greater than unity. The cases of 103, and 104 are shown forR

m
\ 102,

the model problem. The azimuthal wavenumber is m\ 0, and the axial
wavenumber is k \ [1.

for the maintenance of the magnetic Ðeld is the kinetic
energy of the mean velocity Ðeld.

5. DISCUSSION AND CONCLUSIONS

A major component of the theoretical basis for under-
standing ampliÐcation and organization of large-scale mag-
netic Ðelds is the kinematic dynamo problem in which a
velocity Ðeld is speciÐed in a conducting Ñuid and the induc-
tion equation is solved to determine whether an initially
small perturbation magnetic Ðeld grows. Traditionally, this
problem has been studied by using the method of normal
modes. The method of normal modes as it is usually applied
seeks exponentially growing solutions to autonomous per-
turbation dynamical operators arising from linearization
about a stationary mean state of a nonlinear dynamical
system. In the case of the kinematic dynamo, however, the
induction equation is explicitly linear in the magnetic Ðeld
and if the Lorentz force can be ignored in the dynamical
equation for the motion of the Ñuid, then the stability
properties of the induction equation should determine the
Ðeld growth and organization.

Stochastic excitation of the induction equation allows a
model for the maintenance of large-scale mean Ðelds to be
constructed in which transient growth of perturbation mag-
netic Ðeld is primarily responsible for sustaining the Ðeld
against di†usive damping. The stochastic forcing term can
arise from two fundamentally di†erent sources. If it arises
from processes internal to the magnetohydrodynamics, then
it constitutes a forcing of the resolved scales by the unre-
solved scales. However, the more general formulation of the
forcing we have used allows also modeling a statistical
steady state in which the primary forcing is produced by
processes external to the magnetohydrodynamics itself. The
structure and magnitude of the forcing may be speciÐed by
appeal to either theory or observation, but to be e†ective it
must project on the restrictive subspace of structures the
forcing of which results in the dominant contribution to
accumulating the Ðeld energy, these being the stochastic
optimals. The physical importance of including a stochastic
parameterization of the Ñuctuating term arising from unre-
solved scales in the induction equation has been previously
recognized, but perceived analytic difficulties in specifying
the forcing with sufficient accuracy were thought to pre-
clude implementation of this idea (Hoyng 1988). However,
this objection is based on analysis of essentially normal
model systems such as the a2 dynamo,5 in which the very
great ampliÐcation of a small subset of modes, which we
have seen in our example of the helical dynamo, does not
occur. In highly nonnormal systemsÈsuch as the induction
equation in strong shearÈthis extreme ampliÐcation of a
restricted subspace of perturbations greatly simpliÐes the
problem of parameterizing the forcing : the form of the
forcing matters little so long as it projects on the highly
growing subspace. The ensemble mean Ðeld energy is found
to be concentrated in very few structures which demon-
strate the inherent organization of the large-scale Ðeld.
These dominant structures are dictated by the Ñow and not
by the speciÐc forcing.

5 The a2 dynamo example treated by Hoyng (1988) is slightly non-
normal, but the nonnormality stems only from the insulating boundary
conditions at the surface of the conducting Ñuid and leads to a physically
inconsequential modiÐcation of the modal dynamics as discussed by
Hoyng (1988).
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Alternatively, the right-hand side of equation (4) may be
interpreted as arising from processes not directly involved
in the magnetohydrodynamics, such as injection of turbu-
lence into galaxies by massive stars and supernovae
(McCray & Kafatos 1987 ; Minter & Spangler 1996) and
small-scale turbulent convection in the case of stellar mag-
netic Ðelds. The stochastic analysis described here is partic-
ularly suited to these cases in that it provides a theory for
the structure and variability of the large-scale magnetic
Ðelds (EOFs) as well as information on which structures are

the important components of the magnetic Ðeld forcing
(stochastic optimals).

Direct numerical simulation and improved observations
of stellar and galactic Ðelds may soon provide a test for
physically based conceptual models such as that presented
here.

We thank Peter Hoyng for his helpful comments. This
work was supported in part by NSF ATM-96132362.

APPENDIX A

POWER SPECTRUM ARISING FROM THE STOCHASTICALLY FORCED INDUCTION EQUATION

Asymptotically stable nonnormal dynamical systems exhibiting large transient response to impulsive forcing also exhibit
enhanced asymptotic response to stochastic forcing. The response at a given frequency of a normal dynamical system is well
known to depend on the proximity of the speciÐed frequency to the resonant frequencies of the system (Hoyng & Schutgens
1995). In nonnormal dynamical systems the response additionally depends on the nonnormality of the operator, which can
lead to a response orders of magnitude higher than that expected from normal resonance and additionally to a maximum of
response not necessarily at the frequency of the least damped mode (Farrell & Ioannou 1994).

Consider the forced induction equation (12) with asymptotically stable induction operator A :

dB
dt

\ AB] Fm(t) . (A1)

With the aid of the Fourier transform pair,

B(t) \
P
~=

=
BŒ (u)eiut du , (A2)

BŒ (u) \ 1
2n
P
~=

=
B(t)e~iut dt , (A3)

the magnetic Ðeld response at frequency u can be expressed as

BŒ (u) \ R(u)Fmü (u) , (A4)

in terms of the resolvent

R(u) \ (iuI [ A)~1 , (A5)

where I is the identity.
When all frequencies are excited equally, as would be the case for uncorrelated white-noise forcing of unit variance, i.e.,

Smü
i
(u1)m

ü
j
*(u2)T \ 1

2n
d
ij
d(u1 [ u2) , (A6)

the response ensemble mean magnetic Ðeld energy is given by

SpBp2T \
TP

~=

= P
~=

=
du du@B

i
*(u@)M

ij
B
j
(u)ei(u~u{)t

U

\ 1
2n
P
~=

=
duF

ba
s R

ai
s (u)M

ij
R

jc
(u)F

cb

\ 1
2n
P
~=

=
duP(u) , (A7)

with the magnetic energy power spectrum deÐned as

P(u)\ trace (FsRs(u)MR(u)F) . (A8)

Note that for unitary forcing, FFs \ I, the power spectrum is independent of the forcing structures.
The eigenvalues of the resolvent R are and it can be shown that(iu [ j

i
)~1,

P(u) º ;
i/1

N trace (M)
o iu[ j

i
o2 , (A9)
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with equality only when A is normal (Ioannou 1995). This inequality has the important implication that the power spectrum
produced by spatially uncorrelated white-noise forcing of the nonnormal induction equation nearly always exceeds the power
spectrum obtained as a summation of the contributions from the poles of the resolvent, often as is appropriate for the case of a
normal operator. In practice, for highly nonnormal systems the nonnormal response is orders of magnitude larger than the
equivalent normal response of the operator given by the right-hand side of equation (A9). This can be seen in Figure 9 for the
Ñow shown in Figure 1, which has a defective dynamical operator, and in Figure 11 for the model Ñow which)\U

z
\ e~r2,

does not have a defective operator. In both cases the equivalent normal response is shown along with the nonnormal
response.

The area under the curve of the energy power spectrum is the maintained ensemble mean magnetic Ðeld energy. Because of
the nonnormal growth, the spectrum is highly peaked, which implies a long decorrelation time. In nonnormal systems such as
the induction equation, estimates of decorrelation times based on the decay rate of the least damped mode may grossly
underestimate the true decorrelation time.
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