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Streamwise rolls and accompanying streamwise streaks are ubiquitous in wall-bounded
shear flows, both in natural settings, such as the atmospheric boundary layer, as well
as in controlled settings, such as laboratory experiments and numerical simulations.
The streamwise roll and streak structure has been associated with both transition from
the laminar to the turbulent state and with maintenance of the turbulent state. This
close association of the streamwise roll and streak structure with the transition to
and maintenance of turbulence in wall-bounded shear flow has engendered intense
theoretical interest in the dynamics of this structure. In this work, stochastic structural
stability theory (SSST) is applied to the problem of understanding the dynamics
of the streamwise roll and streak structure. The method of analysis used in SSST
comprises a stochastic turbulence model (STM) for the dynamics of perturbations
from the streamwise-averaged flow coupled to the associated streamwise-averaged flow
dynamics. The result is an autonomous, deterministic, nonlinear dynamical system for
evolving a second-order statistical mean approximation of the turbulent state. SSST
analysis reveals a robust interaction between streamwise roll and streak structures
and turbulent perturbations in which the perturbations are systematically organized
through their interaction with the streak to produce Reynolds stresses that coherently
force the associated streamwise roll structure. If a critical value of perturbation
turbulence intensity is exceeded, this feedback results in modal instability of the
combined streamwise roll/streak and associated turbulence complex in the SSST
system. In this instability, the perturbations producing the destabilizing Reynolds
stresses are predicted by the STM to take the form of oblique structures, which is
consistent with observations. In the SSST system this instability exists together with
the transient growth process. These processes cooperate in determining the structure of
growing streamwise roll and streak. For this reason, comparison of SSST predictions
with experiments requires accounting for both the amplitude and structure of initial
perturbations as well as the influence of the SSST instability. Over a range of
supercritical turbulence intensities in Couette flow, this instability equilibrates to form
finite amplitude time-independent streamwise roll and streak structures. At sufficiently
high levels of forcing of the perturbation field, equilibration of the streamwise roll and
streak structure does not occur and the flow transitions to a time-dependent state. This
time-dependent state is self-sustaining in the sense that it persists when the forcing
is removed. Moreover, this self-sustaining state rapidly evolves toward a minimal
representation of wall-bounded shear flow turbulence in which the dynamics is limited
to interaction of the streamwise-averaged flow with a perturbation structure at one
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streamwise wavenumber. In this minimal realization of the self-sustaining process,
the time-dependent streamwise roll and streak structure is maintained by perturbation
Reynolds stresses, just as is the case of the time-independent streamwise roll and
streak equilibria. However, the perturbation field is maintained not by exogenously
forced turbulence, but rather by an endogenous and essentially non-modal parametric
growth process that is inherent to time-dependent dynamical systems.
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1. Introduction
In their experiments on transition to turbulence in boundary layers, Klebanoff and

collaborators identified a prominent structure consisting of streamwise roll vortices and
associated streamwise streaks (Klebanoff, Tidstrom & Sargent 1962). This streamwise
roll and streak structure is commonly observed both in natural settings, such as the
atmospheric boundary layer, as well as in controlled laboratory settings and numerical
simulations. While the boundary in a simulation can be assumed analytically smooth
and the flow in a laboratory experiment can be carefully prepared so that the level of
background turbulence is kept small, most naturally occurring systems are substantially
perturbed by upstream conditions and imperfections in the boundaries. This naturally
occurring background turbulence is commonly simulated in laboratory experiments by
using an upstream grid (Matsubara & Alfredsson 2001; Kurian & Fransson 2009).
Interaction between streamwise roll and streak structures and this forced field of
turbulence can strongly influence the dynamics of the streamwise roll and streak
(Westin et al. 1994). One goal of this work is to improve understanding of the
dynamics of the interaction between the streamwise roll and streak structure and
background turbulence in transitional flows.

The Klebanoff modes are recognized to be precursor structures for the process
of bypass transition in which these structures, despite being hydrodynamically stable
in the sense of modal stability, instigate transition to a fully turbulent state. After
transition, the streamwise roll and streak structure persists but becomes rapidly varying
in space and time. This time-dependent streamwise roll and streak structure is believed
to be involved in the process maintaining turbulence in shear flow (Kim, Kline &
Reynolds 1971; Jiménez & Moin 1991; Hamilton, Kim & Waleffe 1995; Jiménez &
Pinelli 1999; Schoppa & Hussain 2002). Further evidence for the involvement of this
structure in maintaining the turbulent state is provided by minimal channel simulations
in which the streamwise roll and streak structure is observed to be in a self-sustaining
time-dependent state (Hamilton et al. 1995; Waleffe 1995, 1997; Jiménez & Pinelli
1999). A second goal of this work is to improve understanding of the dynamics of the
streamwise roll and streak structure in the self-sustaining process (SSP).

We turn first to the robust observation of the streamwise roll and streak structure
in boundary layers prior to transition to turbulence, which presented a problem
historically because this structure is not unstable in planar shear flow. The robust
appearance of this structure was first explained by appeal to the lift-up mechanism
(Ellingsen & Palm 1975; Landahl 1980). This insight was later advanced by
recognition of the connection between the lift-up mechanism and the non-normality
of the associated dynamical operator. Non-normal operator analysis confirmed that
the optimally growing perturbations, over sufficiently long time intervals, are
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streamwise rolls and streaks (Butler & Farrell 1992; Reddy & Henningson 1993;
Trefethen et al. 1993; Schmid & Henningson 2001). However, for short optimizing
times the linear optimal perturbations are oblique structures (Farrell & Ioannou
1993a,b; Jovanovic & Bamieh 2005) and, interestingly, oblique perturbations have
also been identified as nonlinear optimal structures for transition in Couette flow
(Monokrousos et al. 2011). Consistent with the optimality of these structures, both
the long time optimal streamwise roll and streak and the short time optimal oblique
perturbations have been convincingly seen in observations and simulations (Sirovich,
Ball & Keefe 1990; Adrian 2007; Hutchins & Marusic 2007; Wu & Moin 2009) and
also shown to be essentially related to the non-normality of shear flow dynamics (Kim
& Lim 2000; Schoppa & Hussain 2002).

The mechanism of non-normal growth has been clarified and its importance in
bypass transition and maintenance of turbulence is now widely accepted. However, the
route by which non-normality leads to the formation of streamwise rolls and streaks in
turbulent wall-bounded shear flows, and the part played by this coherent structure in
both the transition to turbulence and maintenance of the turbulent state remains to be
determined comprehensively.

Appearance of the streamwise roll and streak in shear flow could result from its
being the most amplified outcome of a linear initial value problem or from a nonlinear
mechanism in which turbulent Reynolds stresses generate and amplify this structure.
These are fundamentally related explanations because both the linear non-normal
growth and the nonlinear Reynolds stress interaction mechanisms exploit the same
non-normal lift-up mechanism.

The linear non-normal lift-up mechanism can be induced by introducing a
streamwise roll perturbation directly into the flow, perhaps by using a trip or other
device. Using non-normal operator analysis, Andersson, Berggren & Henningson
(1999) and Luchini (2000) identified the streamwise roll and streak in developing
boundary layers as an optimally spatially amplifying structure forced at the leading
edge. A related approach is to force the flow stochastically, with the stochastic
forcing regarded as modelling external disturbances (Farrell & Ioannou 1993d ,e, 1994;
Bamieh & Dahleh 2001; Jovanovic & Bamieh 2005; Hoepffner & Brandt 2008;
Gayme et al. 2010; Hwang & Cossu 2010b). In these stochastically forced models,
the streamwise roll and streak structure is envisioned to arise from excitation of
optimal or near-optimal perturbations by the forcing.

The nonlinear non-normal mechanism can result from streamwise roll forcing
by interacting discrete oblique waves and/or Tollmien–Schlichting waves (Benney
1960, 1984; Jang, Benney & Gran 1986; Schmid & Henningson 1992; Reddy et al.
1998; Brandt, Henningson & Ponziani 2002) and from Reynolds stresses associated
with marginally stable critical layers (Hall & Sherwin 2010).

It may be thought that the linear mechanism, which is first order in the perturbation
amplitude, should dominate over the second-order nonlinear mechanism because
perturbation amplitudes in boundary layers are typically small. However, Berlin &
Henningson (1999), in simulations of transition in a parallel flow approximation to
the Blasius boundary layer, found that streaks of the same order of magnitude are
generated by linear and nonlinear mechanisms for an initial random perturbation field
with 1 % velocity fluctuations. Dominance of the nonlinear mechanism in a boundary
layer subjected to free stream turbulence (FST) was also found by Jacobs & Durbin
(2001). Perhaps the most compelling evidence for the importance of the nonlinear
growth mechanism is the observation that streamwise roll initial conditions decay
in amplitude if FST levels are not sufficiently high (Alfredsson & Matsubara 1996;
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Bakchinov, Katasonov & Kozlov 1997; Westin et al. 1998), while these structures
grow downstream in the presence of moderate levels of FST (Westin et al. 1994).
Moreover, both the linear and nonlinear mechanisms can participate in streamwise
roll and streak growth with the linear providing the initial growth and the nonlinear
becoming important near the time of transition (Brandt, Schlatter & Henningson 2004).
In this work we show how the linear and the nonlinear mechanisms cooperate to form
an unstable structure exploiting both mechanisms. Indeed, the experiments discussed
above suggest that such a cooperative instability may often be involved in formation of
the streamwise roll and streak.

However, such an instability must differ qualitatively from the familiar
hydrodynamic modal instability because the streamwise roll and streak is exponentially
stable in that sense. The streamwise roll provides a powerful mechanism for forming
and amplifying streamwise streaks in shear flow through the lift-up mechanism.
However, in the absence of feedback between the amplifying streak and streamwise
roll this powerful growth mechanism does not result in instability. Owing to the
large streak growth produced by a streamwise roll perturbation, placing even a weak
coupling of the streak back to the roll, such as is provided by a small spanwise frame
rotation, produces destabilization (Komminaho, Lundbladh & Johansson 1996; Farrell
& Ioannou 2008a). The close association between the growing streak and oblique
waves suggests that these waves are involved in providing the feedback destabilizing
the streamwise roll and streak in the presence of turbulent perturbations (Schoppa
& Hussain 2002). If we observe a turbulent shear flow in the cross-stream/spanwise
plane at a fixed streamwise location, we see that, at any instance of time, there is
a substantial Reynolds stress forcing tending to form streamwise rolls. The problem
is that this streamwise roll forcing is not systematic and so it vanishes in temporal
or streamwise average and therefore does not produce a coherent forcing of the
streamwise roll circulation. However, streamwise roll forcing by the Reynolds stresses
could, at least in principle, be organized by the presence of a streak to produce the
coherent positive feedback between the streak and roll required for instability. We
demonstrate that this mechanism does result in instability by deriving a dynamical
system for the statistical mean turbulent state at second order from which we obtain
the unstable streamwise roll/streak/turbulence mode. The mechanism of this instability
is illustrated in figure 1.

This instability of interaction between the turbulence and the streamwise roll and
streak differs from the mechanism of transient growth of an initial streamwise roll
in that the streamwise roll is being continually forced by the perturbations. However,
a streamwise roll resulting from an optimal perturbation would generally excite an
eigenmode of this interaction dynamics thereby transforming the transiently growing
streak, and its decaying streamwise roll, into a continuously growing mode. When so
initiated by a finite optimal streamwise roll initial condition, the streamwise roll and
streak instability would, at least initially, inherit the spatial scale of the optimal rather
than manifest the scale of the maximal instability.

In order to construct a theory for this instability we require a method of
analysis applicable to turbulence/mean flow interaction. The analysis method we
use is based on a dynamical system for evolving a second-order approximation of
the turbulent state. We refer to this dynamical system as the stochastic structural
stability theory (SSST) system. This method for analysing the dynamics of turbulence
was developed to study the phenomenon of spontaneous jet formation in planetary
atmospheres (Farrell & Ioannou 2003, 2007, 2008a; Bakas & Ioannou 2011) and
has also been applied to the problem of spontaneous jet formation from drift wave
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FIGURE 1. The roll/streak growth process (RGP) in which turbulent perturbations are
organized by the streak to produce Reynolds stresses collocated to force the associated
streamwise roll, which in turn amplifies the streak via the lift-up mechanism.

turbulence in magnetic fusion devices (Farrell & Ioannou 2009). In SSST, the
turbulence is simulated using a stochastic turbulence model (STM) (Farrell & Ioannou
1993c, 1996a; DelSole & Farrell 1996; Bamieh & Dahleh 2001; DelSole 2004; Gayme
et al. 2010). The STM provides an evolution equation for the streamwise-averaged
perturbation covariance from which the Reynolds stresses can be obtained. Coupling
this equation to an evolution equation for the streamwise-averaged flow produces
a nonlinear dynamical system for the co-evolution of the streamwise-averaged flow
and its associated perturbation covariance: this is the SSST system. Related second-
order closures have recently been proposed by Marston, Conover & Schneider (2008),
Marston (2010), Tobias, Dagon & Marston (2011) and Srinivasan & Young (2012).

The SSST equations constitute an autonomous and deterministic system in the
variables of the three components of the streamwise-averaged flow and the streamwise-
averaged perturbation covariance. While hydrodynamic instability is supported by
the SSST dynamical system, the primary instability in SSST dynamics has no
counterpart in the stability theory of laminar flow; it is rather the new form of
cooperative streamwise roll and streak plus turbulence instability described above.
We refer to this cooperative instability as structural instability to distinguish it from
hydrodynamic instability. This new instability is referred to as structural because when
the equilibrium state is unstable the system bifurcates to a new state on a distinct
attractor. The SSST equations incorporate the nonlinear feedback between the evolving
streamwise roll and streak and its consistent field of turbulence which may produce
equilibration to stable states. These equilibrium states differ from exact coherent
structures, as in Nagata (1990), in being both stable and maintained by interaction
with an incoherent perturbation field. However, as the perturbation forcing increases,
the SSST equilibrium states ultimately lose stability. The resulting instability leads to
transition to a time-dependent state, which we show self-sustains on removal of the
exogenous forcing.

Self-sustaining states have been the subject of numerous studies and the primary
mechanism advanced to explain how these states are maintained is a cycle in which
the streamwise roll is forced by Reynolds stresses associated with modal instability of
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FIGURE 2. The SSP in which a time-dependent streak induces parametric growth of
perturbations which produce Reynolds stresses that amplify the associated streamwise roll
and maintain the streak via the lift-up mechanism.

the streak (Hamilton et al. 1995; Waleffe 1997). The mechanism maintaining the self-
sustaining state in SSST is similar in that perturbation Reynolds stress forcing of the
highly non-normal streamwise roll and streak structure is central. However, it differs in
that an essentially time-dependent, non-normal, parametric growth mechanism, rather
than modal instability, is responsible for maintaining the perturbation field (Farrell &
Ioannou 1996b, 1999; Pedlosky & Thomson 2003; Poulin, Flierl & Pedlosky 2003;
Farrell & Ioannou 2008b; Poulin, Flierl & Pedlosky 2010). This self-sustaining cycle
is illustrated in figure 2.

We begin in § 2 by formulating the dynamics of the interaction between
perturbations and streamwise-averaged flows using a stochastic parameterization for
the perturbation–perturbation nonlinearity and the external forcing. In § 3 we present
the SSST system, which is a second-order closure of this dynamics. In § 4 we
introduce the turbulence/mean flow interaction instability and study the bifurcation
properties of the SSST system. In § 5 we study the dynamics underlying the growth
and nonlinear equilibration of the streamwise roll and streak instability. In § 6 we
study the growth of optimal perturbations in the SSST system and extend our results
to a parallel flow approximation of the Blasius boundary layer. In § 7 we study
transition to the self-sustaining state of the SSST system. In § 8 we show that this
self-sustaining state leads to a minimal representation of turbulence. In § 9 we examine
the dynamics underlying this self-sustaining state.

2. Formulation of the dynamics of the interaction between perturbations and
streamwise-averaged flows

Averaging in the streamwise, x, direction is denoted with a bar, and streamwise-
averaged quantities are indicated by uppercase characters; spanwise, z, averages
are denoted with square brackets, [·], and ensemble averages with angle brackets,
〈·〉. Velocity fields are decomposed into streamwise-averaged components and
perturbations (indicated lowercase) so that the total streamwise velocity in the x
direction is U(y, z, t) + u(x, y, z, t), the cross-stream velocity in the y direction is
V(y, z, t)+v(x, y, z, t), the spanwise velocity in the z direction is W(y, z, t)+w(x, y, z, t)
and the pressure is P(y, z, t) + p(x, y, z, t). In vector form U = (U,V,W) and
u = (u, v,w). Consider, as in a Couette flow, a channel in which the walls at y = ±Ly
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move with velocity in the streamwise direction ±U0, respectively. Impose periodic
boundary conditions in x and z, with periodicity Lx and Lz, respectively. Non-
dimensionalize distance with the cross-stream channel half-width, Ly, and time with
Ly/U0, and define the Reynolds number as R= U0Ly/ν, with ν the kinematic viscosity.

Consider the flow of a unit density fluid obeying the non-divergent Navier–Stokes
equations:

ut + U ·∇u+ u ·∇U +∇p−1u/R=−(u ·∇u− u ·∇u)+ e, (2.1a)
U t + U ·∇U +∇P−1U/R=−u ·∇u, (2.1b)

∇ ·U = 0, ∇ ·u= 0. (2.1c)

In the perturbation equation (2.1a) the nonlinear terms have been augmented by an
explicit external perturbation forcing, e. A stochastic parameterization is introduced
to account for both the perturbation external forcing and the perturbation–perturbation
interactions, u · ∇u − u ·∇u. With this parameterization, the perturbation equation
(2.1a) becomes

ut + U ·∇u+ u ·∇U +∇p−1u/R= E. (2.2)

Perturbation equation (2.2), coupled with the mean flow equation, (2.1b), form a
nonlinear system which we will show captures the fundamental behaviour of wall-
bounded shear flow turbulence.

It is convenient to express (2.2) in terms of cross-stream velocity v and cross-stream
vorticity, η = ∂zu − ∂xw. The equation then takes the form (cf. Schmid & Henningson
2001):

1vt + U1vx + Uzzvx + 2Uzvxz − Uyyvx − 2Uzwxy − 2Uyzwx −11v/R=1Ev, (2.3a)
ηt + Uηx − Uzvy + Uyzv + Uyvz + Uzzw−1η/R= Eη (2.3b)

where Ev and Eη are the stochastic excitation in these variables. In (2.3), interaction of
the perturbation velocities with W and V has been neglected because these velocities
are much smaller than U. The spanwise and streamwise perturbation velocities are
obtained from the cross-stream velocity and vorticity as follows:

12w=−vyz − ηx, 12u=−vyx + ηz, (2.4)

with 12 ≡ ∂2
xx + ∂2

zz.
The mean flow equation (2.1b) can be written as

Ut = UyΨz − UzΨy − ∂yuv − ∂zuw+11U/R, (2.5a)

11Ψt = (∂yy − ∂zz)(ΨyΨz − vw)− ∂yz(Ψ
2

y − Ψ 2
z + w2 − v2)+1111Ψ/R. (2.5b)

In (2.5b), 11 ≡ ∂2
yy + ∂2

zz; V and W are expressed in terms of the streamfunction, Ψ , as
V =−Ψz and W = Ψy.

In (2.5a), the streamwise mean velocity, U, is forced by the term, −∂yuv − ∂zuw,
which is the streamwise component of the perturbation Reynolds stress divergence, and
by the term, UyΨz − UzΨy, the first part of which is the familiar lift-up mechanism. In
(2.5b), the Reynolds stress term, −(∂yy− ∂zz)vw− ∂yz(w2− v2), provides the streamwise
roll forcing generating streamwise vorticity, Ωx =11Ψ , while the mean flow advection
term, (∂yy − ∂zz)ΨyΨz − ∂yz(Ψ

2
y − Ψ 2

z ), redistributes Ωx.
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3. Formulation of the SSST dynamics
In the previous section we have simplified the perturbation dynamics by using

a stochastic parameterization for the quadratic perturbation nonlinearity and the
background turbulence forcing. For each realization of the stochastic excitation the
perturbation equations (2.3) provide a single realization of the perturbation field,
which interacts with the streamwise-averaged flow governed by (2.5). However, the
streamwise-averaged flow interacts with streamwise localized structures, separated on
average by the decorrelation scale of the perturbation field in the streamwise direction.
The net effect of these localized structures on the streamwise-averaged flow can be
obtained from an ensemble of realizations of the perturbation field. The dynamics
of the interaction of an infinite ensemble with the mean flow is used in the SSST
dynamics, which we now formulate.

Fourier expand the perturbation fields in x:

v =
∑

k

v̂k(y, z, t)eikx, η =
∑

k

η̂k(y, z, t)eikx, (3.1)

with a finite number of k > 0 and the k = 0 streamwise wavenumber excluded.
In matrix form, the perturbation evolution equations for each streamwise Fourier
component, discretized in y and z on N = NyNz points, are

dφ̂k

dt
= Ak(U)φ̂k + εk, (3.2)

where

φ̂k =
(
v̂k

η̂k

)
(3.3)

is the perturbation state in which each variable is considered as a column vector, and
U is a matrix with diagonal elements the streamwise-averaged streamwise velocity.
The stochastic term, εk, on the right-hand side of (3.2), which parameterizes the
neglected nonlinear terms and the external excitation at wavenumber k, will be
specified below. The matrix Ak is

Ak(U)=
(

LOS LC1

LC2 LSQ

)
, (3.4)

with

LOS =∆−1(−ikU∆+ ik(Uyy − Uzz)− 2ikUz∂ z

− 2ik(Uz∂
3
yyz + Uyz∂

2
yz)∆

−1
2 +∆∆/R), (3.5a)

LC1 = 2k2∆−1
(
Uz∂y + Uyz

)
∆−1

2 , (3.5b)

LC2 = Uz∂y − Uy∂ z − Uyz + Uzz∂
2
yz∆

−1
2 , (3.5c)

LSQ =−ikU∆+ ikUzz∆−1
2 +∆/R. (3.5d)

In (3.5) we denote the matrix approximations of the operators by bold symbols. ∆−1

and ∆−1
2 are the inverses of the matrix Laplacians, ∆ and ∆2, which are rendered

invertible by enforcing the boundary conditions. The boundary conditions satisfied
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by the Fourier amplitudes of the perturbation fields are periodicity in x and z and
v̂k = ∂yv̂k = η̂k = 0 at y=±1.

In terms of the perturbation state, φ̂k, the perturbation velocities are

ûk = Lk
uφ̂k, v̂k = Lk

vφ̂k, ŵk = Lk
wφ̂k, (3.6)

with the matrices given by

Lk
u = [−ik∆−1

2 ∂y −∆−1
2 ∂ z ], (3.7a)

Lk
v = [I 0], (3.7b)

Lk
w = [−∆−1

2 ∂
2
yz −ik∆−1

2 ]. (3.7c)

The stochastic term, εk, on the right-hand side in (3.2) is expressed as fkFkξ(t)
where ξ(t) is a 2N column vector of random variables, Fk is a matrix that determines
the spatial correlation of the forcing, and fk is a scalar used to control the amplitude of
the forcing. The stochastic vector, ξ(t), is a Gaussian random process which has zero
mean and is delta correlated in time:

〈ξ(t)ξ †
(s)〉 = Iδ(t − s). (3.8)

In the above, † denotes Hermitian transpose and I is the identity matrix.
Consider an ensemble of perturbation fields obeying (3.2). The ensemble average

perturbation covariance, Ck = 〈φ̂kφ̂
†

k〉, can be shown (cf. Farrell & Ioannou 1993e) to
evolve according to the time-dependent Lyapunov equation:

dCk

dt
= Ak(U)Ck + CkA

†
k(U)+ f 2

k Qk, (3.9)

in which

Qk = FkF
†
k . (3.10)

Equation (3.9) is the autonomous and deterministic STM that provides an evolution
equation for the perturbation covariance from which all second-order turbulence
statistics can be determined. For a given streamwise-averaged velocity, U , the STM
provides accurate second-order perturbation statistics (Farrell & Ioannou 1998b; Laval,
Dubrulle & McWilliams 2003) and it has been widely used to model the dynamics of
turbulence in channel flows (Farrell & Ioannou 1993e, 1998a; Jovanovic & Bamieh
2005; Hoepffner & Brandt 2008; Hwang & Cossu 2010a; Gayme et al. 2010).
The STM has also been instrumental in advancing robust control of channel flow
turbulence (Bewley & Liu 1998; Farrell & Ioannou 1998b; Hogberg, Bewley &
Henningson 2003; Kim & Bewley 2007). In addition, the STM has been used to
obtain the midlatitude atmospheric jet perturbation structure (Farrell & Ioannou 1995;
Zhang & Held 1999; DelSole 2004; Marston et al. 2008).

The stochastic forcing used in the STM is generally taken to be approximately
spatially white in order to maintain a broad spectrum of perturbations typical of
turbulence (Farrell & Ioannou 1993e; Bamieh & Dahleh 2001). Similar to its role
in the above works, the role of the stochastic forcing in this work is to produce a
broadband field of perturbations rather than to duplicate a particular physical source
of turbulence such as wall roughness or FST that results from an upstream grid
and our predictions may suffer from this simplification. However, we believe that
the essential dynamics are captured with a uniformly distributed broadband stochastic
forcing, although this remains to be verified in future work.
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When turbulence was forced using an upstream grid by Westin et al. (1994), the
FST resulting filled the test section of their boundary layer with a broad spectrum
of perturbations at a nearly constant turbulence intensity of around Tu = 1.5 %. In
their simulations, Wu & Moin (2009) used an upstream isotropic forcing to produce
patches of turbulence that propagate downstream, reaching values of Tu = 1–3 % in
the region of streak growth. These levels of FST exceed the FST levels that can
be achieved in the test sections of low-turbulence wind tunnels by as much as two
orders of magnitude. In this study we use stochastic forcing producing perturbation
velocities corresponding to turbulent intensities in the range 1–3 %, which are typical
of experiments in transitional boundary layer flows.

In this work, the stochastic forcing maintaining the turbulence is chosen so that each
degree of freedom is excited equally in energy. As will be explained below, this is
accomplished by choosing:

Qk = M−1
k , (3.11)

where, using the definitions of the velocity operators (3.6),

Mk = 1
4NyNz

(
Lk†

u Lk
u + Lk†

v Lk
v + Lk†

w Lk
w

)
. (3.12)

It follows that the volume-averaged perturbation energy density, at streamwise
wavenumber k is

Ek = φ̂†

kMkφ̂k. (3.13)

Owing to the equalities:

〈Ek〉 = 〈φ̂†

kMkφ̂k〉 = trace(Mk〈φ̂kφ̂
†

k〉)= trace(MkCk), (3.14)

the ensemble average energy density of the perturbation field is obtained by
multiplying the covariance, Ck, by Mk.

The choice of forcing covariance given in (3.11) can be motivated by noticing
that if the dynamics were only a scale-independent linear damping, so that A = −rI ,
then multiplying (3.9) by Mk, and choosing Qk = M−1

k , we obtain a steady state with
covariance Ck = M−1

k /(2r) and as a result MkCk = I/(2r), which shows that choosing
Qk = M−1

k results in each degree of freedom being equally excited in energy.
This choice of perturbation forcing distributed uniformly in energy has the

advantage both of approximating the broadband nature of turbulent fluctuations and
of removing the stochastic forcing structure from consideration as a variable in the
problem.

In this work, the stochastic forcing covariance, Qk, is scaled to maintain at
equilibrium a volume-averaged root mean square (r.m.s.) perturbation velocity, 1 %
of the maximum velocity, when it is used to force the Couette flow profile with
fk = 1 in (3.9). Explicitly, Qk is scaled so that

√
2〈Ek〉 = 0.01, where 〈Ek〉 is given

by (3.13) and Ck solves (3.9) with U = y, fk = 1 and the left-hand side set to
zero. The explicit parameter, fk, serves as the primary control parameter in this
work. This parameter controls the percentage volume-averaged turbulence intensity,
defined and denoted as {Iu} = 100

√
2〈Ek〉/3. For the Couette flow profile and with the

chosen normalization of the forcing, {Iu} = fk/
√

3. The commonly available measure of
turbulence in experiments is the FST intensity, Tu. While these measures are not the
same, they correspond closely as measures of turbulence intensity.
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The covariances, Ck, which evolve according to STM dynamics (3.9), provide the
Reynolds stresses for the mean flow equation (2.5) under the ergodic assumption
of equating streamwise and ensemble averages. For example, it is assumed that
the Reynolds stress component uv = 〈uv〉. This implies that this Reynolds stress
component, at streamwise wavenumber k, is equal to Re(uv|k), where Re denotes
the real part and the vector symbol uv|k is defined as

uv|k ≡ 1
2 diag(〈ûkv̂

†
k〉)

= 1
2 diag(〈Lk

uφ̂k (L
k
vφ̂k)

†〉)
= 1

2 diag(Lk
uCkL

k†
v ). (3.15)

In (3.15), diag(B) denotes the vector with elements the diagonal of the matrix B. The
total Reynolds stress is the sum over the contributions from the streamwise harmonics:

uv=
∑

k

Re(uv|k). (3.16)

The streamwise-averaged flow equation (2.5) can be expressed concisely in the form:

dΓ
dt
= G(Γ )+

∑
k

Re(LRSCk), (3.17)

where Γ ≡ [U,Ψ ]T and Ck is the covariance at wavenumber, k. In (3.17), G is

G(Γ )=
(

∂yU ◦ ∂zΨ− ∂zU ◦ ∂yΨ+∆1U/R

∆1
−1[(∂yy − ∂zz)∂yΨ ◦ ∂zΨ − ∂yz(∂yΨ ◦ ∂yΨ− ∂zΨ ◦ ∂zΨ)+∆1∆1Ψ/R]

)
. (3.18)

In the above equation ◦ denotes the Hadamard product. The forcing of Γ by the
Reynolds stresses at the wavenumber k is

LRSCk =
(

−∂yuv|k − ∂ zuw|k
∆1
−1[−(∂yy − ∂ zz)vw|k − ∂yz(w2|k − v2|k)]

)
, (3.19)

where uv|k is given in (3.15) and

uw|k ≡ 1
2 diag

(
Lk

uCkL
k†
w

)
, w2|k ≡ 1

2 diag
(
Lk

wCkL
k†
w

)
, v2|k ≡ 1

2 diag
(
Lk
vCkL

k†
v

)
. (3.20)

Equation (3.9) and (3.17) comprise the SSST system for the streamwise roll and streak
plus turbulence dynamics:

dCk

dt
= Ak(U)Ck + CkA

†
k(U)+ f 2

k Qk, (3.21a)

dΓ
dt
= G(Γ )+

∑
k

Re(LRSCk). (3.21b)

Equation (3.21a), with dimension 4N2
y × N2

z , is a time-dependent Lyapunov equation
for the spatial covariance, Ck, of the perturbation field at streamwise wavenumber k.
This equation involves the perturbation dynamical operator at wavenumber k, Ak(U),
linearized about the instantaneous streamwise-averaged streamwise flow, U. The spatial
structure of the parameterized stochastic perturbation forcing is given by Qk and its
amplitude by fk. Equation (3.21b), with dimension 2Ny × Nz, is the evolution equation
of the streamwise-averaged flow state, Γ , which is determined by the dynamical
operator of the streamwise-averaged flow G(Γ ) and the perturbation Reynolds stresses
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obtained from the sum over all retained k of the perturbation covariances by operating
with LRS. This equation is coupled nonlinearly to (3.21a) through the mean flow U.

System (3.21) constitutes a closed, deterministic, autonomous, nonlinear system.
Because the SSST system is autonomous, its fixed points

Ak(Ueq)Ckeq + CkeqA†
k(Ueq)=−f 2

k Qk, G(Γeq)=−
∑

k

Re
(
LRSCkeq

)
, (3.22)

identify statistical equilibrium states.
Underlying the SSST dynamics are:

(a) the assumption that perturbation–perturbation interactions and the external sources
of turbulence in the perturbation equations can be parameterized as an additive
stochastic forcing delta correlated in time;

(b) the ergodic assumption that the streamwise average of the perturbation covariance
can be obtained from the ensemble average over realizations of the forcing.

Some of the properties of SSST dynamics are as follows.

(a) SSST constitutes a closure of the streamwise-averaged turbulence dynamics at
second-order with the state of the SSST system being the statistical mean state
of the turbulence. The SSST system is the dynamics of the co-evolution of the
streamwise-averaged flow and a second-order approximation to its associated field
of turbulent perturbations. Although the effects of the turbulent Reynolds stresses
are retained in this system, the fluctuations of the turbulent Reynolds stresses are
suppressed by the ensemble averaging so that the dynamics of turbulence/mean-
flow interaction, and particularly the equilibria arising from this interaction, are
revealed with great clarity.

(b) The SSST state vector provides a second-order approximation to the probability
density function (p.d.f.) of the streamwise-averaged turbulent state. In order to
obtain the evolving ensemble mean p.d.f. using direct numerical simulation (DNS)
it would be required to perform a number of DNS integrations equal to the state
dimension.

(c) The attractor of the SSST system dynamics may be a fixed point, a limit cycle
or be chaotic. Examples of each type have been found in the SSST dynamics of
geophysical and plasma turbulence (Farrell & Ioannou 2003, 2008a, 2009).

(d) The SSST system introduces a new stability concept: the stability of an
equilibrium between a streamwise-averaged flow and its associated field of
turbulence. This instability of a SSST equilibrium is called structural and it arises
from the mechanism of interaction between the perturbations and the mean flow,
which is distinct from the mechanism of hydrodynamic instability.

4. SSST equilibria and their structural stability
Couette flow is an equilibrium of the SSST system at perturbation forcing amplitude

f = 0. As f increases, new spanwise-independent SSST equilibria are obtained. These
equilibria satisfy (3.22) with spanwise-independent Ueq(y) and Ψeq = 0. Consistent
with the spanwise independence of both the equilibrium mean flow and the imposed
forcing, Ckeq is also spanwise independent and it follows that there is no streamwise
roll forcing.

We now calculate the change in Ckeq resulting from a streak perturbation, δUs(y, z),
to Ueq(y). The streak component, Us, is here defined as the departure of the streamwise-
averaged flow U from its spanwise average [U], i.e. Us = U−[U]. With the introduction
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of this streak perturbation, Ckeq no longer satisfies the equilibrium condition, (3.22),
and this perturbation results, as seen from (3.21a), in the instantaneous rate of change
of the covariance field:

dCk

dt
= δAkCkeq + CkeqδA

†
k, (4.1)

where δAk = Ak(Ueq + δUs) − Ak(Ueq) is the change in the linear operator due to δUs.
This results in a Reynolds stress, which can be obtained from the second component
of (3.19), that implies the instantaneous streamwise roll streamfunction acceleration:

∂ ttΨ =∆−1
1 (−(∂yy − ∂ zz)∂ tvw− ∂yz∂ t(w2 − v2)), (4.2)

where the rates of change of the Reynolds stresses are obtained by introducing the
time derivative of Ck into (4.2).

Four example streak perturbations, δUs, together with vectors of the induced
streamwise roll velocity accelerations, ∂ tt(V ,W ) = ∂ tt(−∂ zΨ , ∂yΨ), from (4.2), are
shown in figure 3. Remarkably, all of these streak perturbations produce streamwise
roll forcing configured to amplify the imposed streak perturbation through the lift-up
mechanism. This robust Reynolds stress-mediated feedback between the streamwise
streak and roll has important implications for the maintenance of turbulence in
shear flows. We will show below that even when the streak structure is highly
complex and time dependent, as in a turbulent shear flow, the streamwise roll forcing
produced by the perturbation Reynolds stresses remains collocated with the streak
so as to amplify the streak. Moreover, this tendency of imposed streaks to induce,
through the modification of the perturbation field, streamwise roll forcing with a
tendency to reinforce the imposed streak provides the mechanism for a streamwise
roll and streak plus turbulence cooperative instability in shear flow. However, most
streak perturbations organize turbulent Reynolds stresses that do not exactly amplify
the streak that produced them, as is shown prominently in the case of the streak
perturbation in figure 3(a). Exponential modal growth of a streak and its associated
streamwise roll and perturbation fields results if the streak organizes precisely the
perturbation field required for its amplification.

We now show that exponentially unstable streamwise roll and streak modes arise
in a spanwise-independent field of forced turbulence if the perturbation forcing
amplitude exceeds a threshold. Consider an equilibrium solution (Ckeq,Γeq) of (3.22).
The stability of this equilibrium is determined by eigenanalysis of the perturbation
equations, obtained by taking the first variation of (3.21). These perturbation equations
are

dδCk

dt
= AkeqδCk + δCkA

†
keq + δAkCkeq + CkeqδA

†
k (4.3)

dδΓ
dt
=
∑

i

∂G
∂Γi

∣∣∣∣
Γeq

δΓi +
∑

k

Re (LRSδCk) . (4.4)

In (4.3), Akeq is the linear perturbation operator about the equilibrium mean flow Ueq,
Ckeq is the corresponding covariance at equilibrium and δAk = Ak(Ueq + δU) − Ak(Ueq)

is the change in the linear operator due to δU. The total perturbation to the mean flow
is δΓ = [δU, δΨ ]. The perturbation to the covariance, Ckeq, is δCk. Equations (4.3)
and (4.4) are linear in δCk and δΓ and eigenanalysis of these equations determines
the structure and growth rate of the modes of the equilibrium [Ckeq,Γeq]. When
the equilibrium, [Ckeq,Γeq], becomes unstable, the mean flow and the associated
perturbation field bifurcate from the equilibrium solution.
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FIGURE 3. (Colour online) The rate of change of streamwise roll acceleration induced
by streak perturbations to a Couette flow that is maintained turbulent by stochastic
forcing. Distortion of the turbulence by the streak perturbation induces Reynolds stresses
that force roll circulations supporting the streak via the lift-up mechanism. Shown are
contours of the imposed streak perturbations, δU, and vectors of the resulting rate of
change of roll acceleration, (V̈, Ẅ). This figure demonstrates the tendency for streamwise
streak perturbations to organize supporting streamwise-averaged roll forcing from the
perturbation field. The Reynolds number is R = 400, the perturbation forcing amplitude
is f = 4.1, the spanwise width is Lz = 1.2π and the streamwise wavenumber is k =
2π/(1.75π) = 1.143: (a) δU = cos(πy/2) sin(2πz/Lz); (b) δU = cos(πy/2) sin(4πz/Lz);
(c) δU = cos(3πy/2) sin(4πz/Lz); (d) δU = cos(3πy/2) sin(6πz/Lz).

For sufficiently high turbulence intensities, the spanwise-independent equilibria
become structurally unstable with exponentially growing mean flow eigenfunctions
in the form of streamwise rolls and streaks. We demonstrate this for a channel
with Lz = 1.2π, at R = 400, and for a perturbation field at the single streamwise
wavenumber k = 1.143. This channel geometry is the same as that used in most of
the simulations of Hamilton et al. (1995). The power method is used to find the
structure and growth rate, λ, of the most unstable eigenmode of equations (4.3) and
(4.4). The calculations use Ny = 21 and Nz = 40 points, with convergence verified at
double resolution.

The spanwise-independent equilibrium is stable for f 6 fc = 4.75, with f the
perturbation forcing amplitude at the retained wavenumber. At fc this equilibrium
becomes structurally unstable, while remaining hydrodynamically stable. The most
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FIGURE 4. (Colour online) The most unstable streamwise roll and streak eigenfunction of
the SSST system linearized about the spanwise uniform equilibrium at perturbation forcing
amplitude f = 6.86. The growth rate of this mode is λ = 0.014. Shown are velocity vectors
(δV, δW) (a) and streamwise velocity δU (b). The maxima of (δU, δV, δW) are proportional
to (1, 0.06, 0.03). Consistent with the lift-up mechanism, positive δV is associated with
negative δU. This figure demonstrates that the tendency for streamwise streak perturbations
to organize supporting streamwise roll forcing from the forced turbulence, shown in figure 3,
leads to the formation of an unstable streamwise roll and streak eigenmode. Other parameters
are as in figure 3.
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FIGURE 5. (Colour online) Growth and equilibration of the streamwise roll and streak
eigenfunction shown in figure 4. The r.m.s. streak velocity and r.m.s. roll velocity initially
grow exponentially with the predicted growth rate, λ = 0.014, until t ≈ 600 after which
an equilibrium is established. This figure demonstrates that SSST dynamics includes the
nonlinear mechanism of streak equilibration as well as the mechanism of unstable streamwise
roll and streak growth.

unstable eigenfunction at f = 6.86 is shown in figure 4. When this eigenfunction is
introduced into the SSST system with small amplitude, it grows at first exponentially
at the rate predicted by its instability and then asymptotically equilibrates at finite
amplitude, as shown in figure 5. This equilibrium solution, shown in figure 6, is a
steady, finite-amplitude streamwise roll and streak.
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FIGURE 6. (Colour online) The finite-amplitude streamwise roll and streak resulting from
the equilibration of the eigenmode shown in figure 4. Shown are the streamwise-averaged
streamwise flow, U(y, z), (contours) and the streamwise-averaged velocities, (V,W) (vectors).
Consistent with the lift-up mechanism, positive V is associated with a decrease in U. The
maxima of the fields (U,V,W) are (0.26, 0.02, 0.009). The perturbation forcing amplitude
for this equilibrium is f = 6.86.

The bifurcation diagram of the SSST equilibria is shown in figure 7 as a function of
bifurcation parameter f . The finite-amplitude streamwise roll and streak equilibria are
structurally stable for fc 6 f 6 fu. At fu = 6.9 there is a second bifurcation in which the
equilibrium becomes structurally unstable, while remaining hydrodynamically stable.
Examples of these equilibria are shown in figure 8. In these equilibria the spanwise
average flow profile, [U], departs only slightly from the Couette flow profile, U = y.
Indicative of this nearness to Couette flow is the low viscous dissipation rate of the
flow in these equilibria. This dissipation rate is defined as

D= 1
R

1
2LxLyLz

∫ Lx

0

∫ Ly

−Ly

∫ Lz

0
|ω|2 dx dy dz (4.5)

where ω = ∇ × u is the total vorticity of the flow. The minimum dissipation rate, DC,
is obtained for Couette flow and the ratio, D/DC, for equilibria with fc 6 f 6 fu is in
the range 1 6 D/DC < 1.4, while this ratio is of order three in the turbulent state.

The nearly laminar streamwise roll and streak equilibria shown in figure 8
have spanwise wavenumber 2. For the equilibrium at f = 6.86, this wavenumber
corresponds to a streak spacing, expressed in wall units, of z+ = 45. The non-
dimensional wall unit, which is indicated by a superscript +, is defined as
lν ≡ (R[Uy(−1)])−1/2, where [Uy(−1)] is the spanwise-averaged shear at the lower
boundary. We note that this streak spacing is about half the z+ = 100 seen in
turbulent boundary layers (Smith & Metzler 1983). As we show below, when the SSST
system transitions to the time-dependent state the streak spacing becomes z+ = 100, as
observed in turbulent flows.

Analogous bifurcation behaviour is obtained if the Reynolds number is used as the
bifurcation parameter instead of the perturbation forcing amplitude. A regime diagram
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FIGURE 7. (Colour online) SSST bifurcation diagram for the Couette problem. Shown are
the r.m.s. streak velocity (squares) and r.m.s. streamwise roll velocity (circles) as a function
of the perturbation forcing amplitude, f . For f < 4.75, both the streamwise streak and roll
velocities are zero. At fc = 4.75 the spanwise uniform equilibrium bifurcates to an equilibrium
with a streamwise roll and streak. The dashed line indicates the

√
f − fc dependence of the

streamwise roll and streak velocities near this critical fc. Stable streamwise roll and streak
equilibria extend up to fu = 6.9 beyond which the streamwise roll and streak transitions to
a time-dependent state. The dashed line indicates the

√
fu − f dependence of the streamwise

roll and streak amplitude near this critical fu. The Reynolds number is R = 400, the spanwise
width is Lz = 1.2π and the streamwise wavenumber is k = 2π/(1.75π)= 1.143.

showing the bifurcation boundaries as a function of both R and f is shown in figure 9.
Bifurcation from spanwise uniform equilibria to stable equilibria with streamwise
rolls and streaks occurs on crossing the curve indicated fc(R), and bifurcation to a
time-dependent state occurs on crossing fu(R). From figure 9, it is clear that the
threshold curve, fu(R), for transition to the time-dependent state is very accurately fit
by the function: fu(R) = 2200/(R − 89). This function suggests that the turbulence
intensity, {Iu}, producing structural instability scales asymptotically as R−α with α = 1.
Bifurcation to this time-dependent state implies transition to turbulence in the SSST
system and therefore α provides a Reynolds number scaling for the threshold value of
f producing transition to turbulence for sufficiently small initial conditions. The same,
or nearly the same, exponent is obtained by assuming that transition is determined
by the Reynolds number scaling of the amplitude of an initial condition required to
produce a marginally hydrodynamically unstable streamwise streak (Kreiss, Lundbladh
& Henningson 1994; Reddy et al. 1998; Chapman 2002).

In laboratory experiments or DNS simulations of forced turbulence there is likely
to be a finite-amplitude optimal or near-optimal initial condition at least episodically
present in the turbulence that would serve to initiate the growth of a streamwise roll
and streamwise streak and set the streak spacing in the spanwise direction (Brandt
et al. 2002). When initiated by a sufficiently small streamwise roll perturbation,
the perturbation/mean-flow interaction would result in an increase in growth rate of
the evolving transient streamwise roll and streak for subcritical turbulence intensity,
corresponding to f < fc. This increase in growth rate would be followed by finite
amplitude equilibration for higher turbulence intensities in the range fc 6 f 6 fu,
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FIGURE 8. (Colour online) Streamwise-averaged velocity of the SSST equilibria in figure 7
at various values of f . (a) The equilibrium at f = 4.1 is spanwise uniform. (b) At f = 4.9 the
spanwise uniform flow is structurally unstable and leads to an equilibrium with a weak streak.
(c) The equilibrium at f = 6.1. (d) The equilibrium at f = 6.86. The streamwise-averaged
flow associated with these equilibria becomes increasingly inflected in the cross-stream as
f → fu. The contour interval is 0.2.

and by transition to time dependence for f > fu. For example, consider an initial
condition consisting of the t = 50 optimal among streamwise roll perturbations. When
this perturbation is introduced into a Couette flow at R = 400 in the presence
of turbulence with various values of f the resulting evolution is as shown in
figure 10. The optimal initial condition is seen to recruit the turbulent perturbation
field to support and maintain itself, producing increased growth for f 6 fc; increased
growth followed by approach to a finite-amplitude equilibrium for fc 6 f 6 fu; and,
ultimately, destabilization for f > fu. These examples demonstrate how a sufficiently
small-amplitude optimal initial streamwise roll structure is effectively converted into
a SSST eigenmode in the presence of a forced turbulence field. This eigenmode
then promotes transition to a time-dependent state. However, as the amplitude of the
initial streamwise roll perturbation increases, the transient growth mechanism would
increasingly dominate the streamwise roll and streak growth process.

5. Dynamics of the SSST streamwise roll and streak in Couette flow
Diagnostics of the dynamics of the streamwise roll and streak are shown in

figure 11. The streamwise roll is maintained solely by the perturbation Reynolds stress
(cf. figure 11c) while the streamwise streak is maintained by the lift-up mechanism (cf.
Figure 11b). The direct effect of the Reynolds stress on the streamwise streak is to
damp it (cf. figure 11d).
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FIGURE 9. (Colour online) SSST streamwise roll and streak regime diagram for the Couette
problem. In region I the equilibria are spanwise uniform. In region II the equilibria are
streamwise roll and streaks. In region III there are no equilibria and only time-dependent
streamwise roll and streak structures exist. The curves fc(R) (squares) and fu(R) (triangles)
indicate structural instability boundaries. The instability boundary for transition to the time-
dependent state is well fit by the function fu = 2200/(R − 89) (solid). This figure implies
that either R or f could be used as the bifurcation parameter in the SSST dynamics and that
the associated volume-averaged turbulence intensity, {Iu}, required to assure transition to the
time-dependent state in SSST dynamics decreases asymptotically as R−1. The spanwise width
is Lz = 1.2π and the streamwise wavenumber is k = 2π/(1.75π)= 1.143.

We turn next to examine the structure of the perturbation field associated with
the streamwise roll and streak equilibrium, making use of the proper orthogonal
decomposition (POD) method (Lumley 1967). In the POD method the perturbation
field structures are ordered according to their contribution to the total perturbation
energy. This is achieved by performing an eigenanalysis of M1/2

k CkeqM1/2
k , where Ckeq is

the equilibrium covariance and Mk is the energy metric (3.12) (cf. Farrell & Ioannou
1993e). The result is a complete set of eigenfunctions that are orthogonal in energy,
called empirical eigenfunctions (EEs). We find that the perturbation energy is spread
over many of these EE structures, but as f increases, a single EE becomes dominant
and its structure becomes an increasingly good representation of the perturbation field.
For the equilibrium at f = 6.86, the dominant EE, which accounts for 24 % of the
perturbation energy, is shown in figure 12. This EE is a sinuous oblique structure
collocated with the streak. Its structure is very close to that of the least damped
mode of Ak(Ueq(y, z)). The eigenvalues, σ , of Ak(Ueq), are shown in figure 15 for
the equilibria of figure 8. The emergence of this sinuous mode, which has been
implicated in streak breakdown and transition to turbulence, is apparent (Kim et al.
1971; Jiménez & Moin 1991; Hamilton et al. 1995; Waleffe 1997; Reddy et al. 1998).

This dominance of the sinuous mode in the perturbation field need not result from
unstable mode growth. In fact, as was noted by Schoppa & Hussain (2002), this
mode emerged in their simulations primarily from non-normal growth processes. In
Appendix we show how the optimal perturbation for exciting this sinuous mode is
calculated and in figure 13 we show this optimal perturbation. Owing to the high
non-normality of Ak(Ueq(y, z)), introduction of the perturbation that optimally excites
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FIGURE 10. (Colour online) Development of a streamwise roll and streak initial condition
in the presence of various perturbation forcing amplitudes in Couette flow as indicated by
the maximum square streak velocity, U2

s . The initial condition is the t = 50 optimal among
perturbations with k = 0 excited with r.m.s. velocity amplitude 0.05 % of the maximum
velocity of the Couette flow, U0. The optimal is evolved in the presence of forced turbulence
in equilibrium with perturbation forcing amplitudes; f = 0, 4.5, 5.7, 6.5, 6.9, 7.35. The
curve for f = 0 indicates the transient growth followed by decay of this initial perturbation
in the absence of feedback from the forced turbulence. Note that for f < fc = 4.75 the streak
initially grows but then decays, with the rate of decay reduced by its interaction with the
forced turbulence. For fc < f < fu = 6.9, the optimal evolves to a non-decaying streamwise
roll and streak equilibrium structure, while for f > fu, it becomes structurally unstable and
ultimately time dependent. This figure shows that interaction with turbulence sustains the
growth of an optimal initial condition. The Reynolds number is R = 400, the spanwise width
is Lz = 1.2π and the streamwise wavenumber is k = 2π/(1.75π)= 1.143.

the sinuous mode results in energy growth by a factor of 1900 more than would
introduction of the mode itself. While the optimal perturbation for exciting the mode
is the optimal perturbation in the limit of large time, the perturbation that results in
optimal growth over 10 units of time has similar structure and produces comparable
growth, as shown in figure 14. For understanding the RGP it is important to note that
coherent forcing of the streamwise rolls results from both the optimal for exciting the
mode and the optimals over shorter times (cf. Figure 14).

The sinuous mode produces Reynolds stresses that force the streamwise roll, and
thereby indirectly force the streak, but also produces Reynolds stress that directly
damp the streak. This dual role of the sinuous mode in both forcing and damping
the streak is explicitly modelled in the fourth-order system of Waleffe (1997) (cf. his
equation (20)).

To compare the relative contributions of the Reynolds stress arising from the sinuous
mode in damping the streak to the indirect effect of its Reynolds stress in building
the streak, via its forcing of the streamwise roll, we impose a modification of the real
part of the eigenvalue of the mode at equilibrium. Specifically, if σrE is the damping
rate of the sinuous mode, we set this damping rate equal to 0.9σrE (less damped)
and 1.1σrE (more damped), and advance the SSST (3.21) in time. When the mode is
more damped, the streak amplitude increases while when the mode is less damped, the
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FIGURE 11. (Colour online) Diagnostics of the dynamics of the streamwise roll and streak
SSST equilibrium shown in figure 6. (a) Acceleration of the streamwise roll, (V̇, Ẇ),
resulting from self-advection by the mean roll velocity, (V,W). The maximum of V̇
is 10−4. (b) Acceleration of the streamwise-averaged streamwise flow, U̇, induced by
the streamwise roll, the maximum of U̇ is 10−2, mainly due to the lift-up mechanism,
(−UyV). (c) Acceleration of the streamwise roll, (V̇, Ẇ), resulting from the perturbation
Reynolds stresses. The maximum of V̇ is 10−3. This term exceeds the self-advection by
the streamwise roll velocities, shown in (a), by an order of magnitude and determines the
structure of the streamwise roll. (d) Acceleration of the streamwise-averaged streamwise
flow, U̇, induced directly by the perturbation field Reynolds stresses. This term has
maximum magnitude 10−2 and decelerates the streak. This figure demonstrates that the
finite-amplitude streamwise roll and streak is maintained indirectly by the perturbation
driven streamwise roll, through the lift-up mechanism, while the direct effect of the
perturbation Reynolds stress is comparable in magnitude and configured to decelerate
the streak: (a) curl(1−1((VW)zz− (VW)yy− (W2)yz+ (V2)yz)i); (b) −UyV − UzW; (c)
curl(1−1(〈vw〉zz−〈vw〉yy−〈w2〉yz+〈v2〉yz)i); (d) −〈uv〉y−〈uw〉z.

streak amplitude decreases, as shown in figure 16. We conclude that the net effect of
the sinuous mode is to stabilize this equilibrium streak.

The perturbation field is supported by transient growth, primarily of the optimal
perturbations. Moreover, these optimal perturbations also provide the coherent
vorticity forcing maintaining the streamwise rolls. Although this tendency to generate
streamwise vorticity occurs regardless of the presence of the streak (cf. figure 14 case
with f = 4.1), the streak collocates these optimal evolving structures, aligning them so
that their Reynolds stress divergence coherently forces the streamwise roll.

6. SSST analysis of streamwise roll and streak growth in the Blasius boundary
layer under the parallel flow approximation

While Couette flow is a canonical problem for theoretical study, many of
the simulations and observations available for comparison with theory for the
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FIGURE 12. (Colour online) Velocity field of the first energy POD EE for the equilibrium
with f = 6.86, shown in figure 6. This EE alone accounts for 24 % of the perturbation energy.
Velocity vectors are superposed on contours of streamwise velocity, which has maximum
u = 0.16. This figure demonstrates that a dominant sinuous wave structure, collocated with
the streak, arises from the interaction between the streak and the forced turbulence field.
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FIGURE 13. (Colour online) Velocity field of the perturbation that optimally excites the
least-damped sinuous mode, which has structure very close to the EE shown in figure 12.
Optimal perturbations that maximize energy amplification for shorter time periods have
similar structure. A unit energy initial condition in the form of this perturbation excites
the sinuous mode in energy by a factor of 1900 greater than an initial condition consisting
of the sinuous mode itself. It follows that the sinuous mode amplitude, and by extension the
first EE of the POD, arises from perturbations in the forced turbulence almost entirely due to
non-normal growth processes.

emergence of streamwise rolls and streaks involve boundary layer flows, particularly
developing Blasius flow. Computational resource limitations prevent us from solving
the developing flat plate boundary layer problem. Instead, we have chosen to study a
Blasius boundary layer profile that is maintained constant in the streamwise direction.
This parallel flow approximation is widely applied in relating non-normal growth and
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FIGURE 14. (Colour online) Energy growth and associated streamwise roll forcing resulting
from energy optimal perturbations to equilibria with Couette boundary forcing. (a) Energy
growth of the t = 10 optimal perturbation to the streak equilibrium at f = 6.86 (solid), and to
the spanwise uniform equilibrium at f = 4.1 (dashed) (respectively shown in figure 8d,a).
The optimal is excited at unit energy and has streamwise wavenumber k = 1.143. Also
shown is the growth of the adjoint mode which excites optimally the least-damped mode
of Ak(Ueq) for the equilibrium flow at f = 6.86 (dash-dot). (b) Associated streamwise roll
forcing induced by these optimal perturbations as indicated by the maximum rate of change of
streamwise vorticity, |Ω̇x|. This figure demonstrates that streamwise roll forcing is associated
with optimal growth and that optimal perturbations produce streamwise roll forcing regardless
of the presence of a streak. The streak serves only to collocate the streamwise roll forcing.

modal instability analyses to observations and simulations of developing boundary
layers (Schlatter et al. 2008; Cossu et al. 2011).

Consider a Blasius boundary layer flow, Ubl(y) (cf. Batchelor 2000, p. 310), in
which the parallel flow assumption has been made so that the flow is maintained as
a stationary solution at a chosen fixed Reynolds number. The Reynolds number is
defined as Rδ∗ = U∞δ∗/ν, with U∞ the free stream velocity, ν the kinematic viscosity,
δ∗ ≡ 1.72δ the displacement thickness and δ the Blasius length scale, δ = √νl/U∞,
in which l is the distance from the leading edge. The channel size is Ly = 7 and
Lz = 2π/m, where m is the spanwise wavenumber of the streamwise roll and streak
under study. A discretization on Ny = 30, Nz = 30 grid points is used. The stochastic
forcing is limited to a single streamwise wavenumber, k = m. The stochastic forcing
covariance matrix, Qk, given in (3.11), has been scaled so that perturbation forcing
amplitude f maintains at equilibrium the percentage volume-averaged turbulence
intensity {Iu} = f /

√
3, when the Blasius flow is forced with this scaled Qk. The Blasius

profile is maintained in SSST equilibrium for chosen values of the perturbation forcing
amplitude, f , by introducing the necessary body force in the streamwise direction into
(3.21b).
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FIGURE 15. (Colour online) Emergence of the sinuous mode of the equilibria in figure 8.
Shown are the least-stable eigenvalues, (σr, σi), of the operator, Ak. Note the emergence of
the prominent mode as the streak increases in magnitude with increasing f (arrow). This
is the sinuous mode that is commonly observed to accompany streaks nearing transition to
turbulence: (a) f = 4.1; (b) f = 4.9; (c) f = 6.1; (d) f = 6.86.

The most unstable SSST streamwise roll and streak eigenmode and its growth
rate is obtained from (4.4) for Rδ∗ = 600 and Rδ∗ = 1200 by using the power
method. For the perturbation forcing amplitude f = 1.5, this growth rate as a function
of m is shown in figure 17(c). At Rδ∗ = 600 the maximum growth rate occurs
at mmax = 1.2 while at Rδ∗ = 1200 the wavenumber of the maximum moves to
mmax = 2.3. These spanwise wavenumbers correspond to spacing between low-speed
streaks of 1z = 3δ∗ for Rδ∗ = 600 and 1z = 1.6δ∗ for Rδ∗ = 1200, which contrasts
with streak spacings between 4δ∗ and 7δ∗ seen in developing Blasius boundary layers
(Westin et al. 1994; Matsubara & Alfredsson 2001). This discrepancy can be explained
by noting that the initial condition for the instability is provided by the optimal,
which sets the spanwise scale of the streamwise roll and streak, with its subsequent
growth augmented by the SSST instability. A related linear/nonlinear two-stage growth
process was studied previously by Berlin & Henningson (1999) and Brandt et al.
(2002).

The global optimal occurs at mopt = 0.51 with optimal energy growth Gopt = 1681
at R∗δ = 1200 and Gopt = 400 at R∗δ = 600, as shown in figure 17(a). This spanwise
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FIGURE 16. (Colour online) Influence of damping the sinuous mode on equilibrium streak
amplitude. Shown as a function of time for both increase and decrease in sinuous mode
damping are: r.m.s. streak amplitude (a), r.m.s. roll amplitude (b), and r.m.s. perturbation
velocity (c), for decreasing (solid) and increasing (dashed) the damping rate of the
sinuous mode compared with its damping rate at equilibrium. The corresponding values at
equilibrium are also shown (dotted). The equilibrium is that at f = 6.86, shown in figure 6.
Although the sinuous mode both drives and damps the streak, this figure demonstrates that the
net effect of the sinuous mode is to damp the streak.

wavenumber, mopt, corresponds to streak spacing 1z = 7.2δ∗. Similar results were
obtained by Butler & Farrell (1992) under the parallel flow assumption and in spatially
developing Blasius boundary layers by Andersson et al. (1999) and Luchini (2000).
The structure of the streak at topt, shown in figure 17(b,c), also agrees with these
previous results and the SSST unstable mode at mopt has this same streak structure (cf.
figure 17e,f ). Notably, and in contrast to the decay with time of the amplitude of the
optimal streamwise roll, the streamwise roll associated with this SSST mode continues
to grow in amplitude in time as shown in figure 18 for the case of Blasius flow
maintained at Rδ∗ = 1200 with perturbation forcing amplitude f = 1.25. This increase
of the amplitude of the streamwise roll with time agrees with the observations of
Alfredsson & Matsubara (1996).

We now show that with perturbation forcing amplitude 0 < f < fu, with fu the
threshold amplitude for structural instability, a streamwise roll of sufficiently small
initial amplitude attains greater growth than it would in the absence of turbulence, but
ultimately decays, while for f > fu, even a small-amplitude initial condition eventually
evolves into an exponentially growing structure (we did not find any stable streamwise
roll and streak equilibria in Blasius flow). Development of the global optimal in the
presence of four levels of perturbation forcing amplitude is shown in figure 19 for
the case of a Blasius flow maintained at Rδ∗ = 1200. Augmentation of the optimal
growth (cf. the curve for f = 0) by interaction with the perturbations is clear (cf. the
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FIGURE 17. (Colour online) SSST streamwise roll and streak eigenmode growth and optimal
growth in a Blasius boundary layer at Reynolds numbers Rδ∗ = 600 and Rδ∗ = 1200. (a)
Square root of the optimal energy growth factor,

√
G, of k = 0 perturbations as a function of

spanwise wavenumber of the streak, m. The global optimal growth, G= 1681, for Rδ∗ = 1200,
occurs at spanwise wavenumber mopt = 0.51, which corresponds to streak spacing 1z= 7.2δ∗.
The time at which this optimal growth occurs is topt = 960. (b) Streamwise roll velocities,
(δV, δW), of the global optimal for Rδ∗ = 1200, at t = 0 (dash) and topt (solid). (c) Streak
velocity, δU, of the global optimal for Rδ∗ = 1200 at topt. (d) SSST eigenmode growth rate
as a function of the eigenmode spanwise wavenumber, m, for perturbation forcing amplitude
f = 1.5. Perturbation streamwise wavenumbers are chosen so that k = m. The maximum
growth rate for Rδ∗ = 1200 is σr = 0.0125 and occurs at spanwise wavenumber m = 2.3. The
maximum growth rate for Rδ∗ = 600 is σr = 0.002 and occurs at m= 1.2. (e) Streamwise roll
velocities, (δV, δW) and (f ) streak velocity, of the unstable mode at mopt and Rδ∗ = 1200. The
growth rate at mopt is σr = 0.001. This figure demonstrates that the optimal perturbation and
the SSST unstable mode coexist and that the structure of the optimal perturbation is nearly
identical to that of the unstable eigenmode at mopt.

curve for f = 0.5). For a streamwise roll with spanwise wavenumber mopt the structural
instability threshold is at fu = 0.8, and for any f > fu the flow eventually transitions
to the time-dependent state regardless of the amplitude of the initial perturbation. This
transition to a time-dependent state is shown in figure 19 for f = 1.25 and f = 1.5.
Experiments in developing boundary layers reported in Andersson et al. (1999) show
that for the Reynolds number ReT = 486 750, equivalent to R∗δ = 1200, transition
occurs at Tu ≈ 1.8 %. The value fu = 0.8, equivalent to {Iu} = 0.46 %, is predicted for
transition for arbitrarily small initial roll perturbations by our parallel flow model. The
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FIGURE 18. (Colour online) Effect of turbulence on the development of the global optimal
structure in Blasius flow at Rδ∗ = 1200. The global optimal perturbation at mopt = 0.51 (cf.
figure 17b,c) is excited at r.m.s. velocity 0.1 % of the free stream velocity, U∞, in the presence
of turbulence with f = 1.25 at perturbation streamwise wavenumber k = 0.51. Shown are the
low-speed streak velocity (a) and the cross-stream component of the streamwise roll velocity,
V (b) at t = 400, 800, 1000, 1200, all prior to transition. The figure shows that in the presence
of forced turbulence the cross-stream velocity increases together with the streak. In contrast,
for f = 0 the optimal streamwise roll velocity necessarily decreases.

smaller threshold value, {Iu} = 0.46 %, for the SSST instability at R∗δ = 1200 is at least
consistent with the experimental observations because in developing boundary layers
the streamwise RGP occurs over the perturbation trajectory at Reynolds numbers
smaller than R∗δ = 1200. Moreover, as shown above, initial conditions would typically
play a central role in determining the transition scenario in experiments.

A feature of the development of the streamwise roll and streak structure at finite
amplitude, seen in figure 20, is a pronounced asymmetry between the low- and high-
speed streaks, in which the low-speed streak is notably enhanced. This enhancement,
which is also seen in observations (Hernon, Walsh & McEligot 2007), helps to explain
the prominence of low-speed streaks in the dynamics of transition. This asymmetry is
also obtained when optimal streak perturbations are evolved nonlinearly (cf. Andersson
et al. 2001) and is reflected in the structure of the exact nonlinear solutions found in
plane shear flows (cf. Waleffe 1998). The fact that this asymmetry is obtained in the
SSST framework establishes that inclusion of the full nonlinearity is not required for
its explanation.
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FIGURE 19. Development of the global energy optimal in Blasius flow at Rδ∗ = 1200 in the
presence of four levels of perturbation forcing amplitude. The global optimal perturbation at
mopt = 0.51 (cf. figure 17b,c) is excited at r.m.s. velocity 0.1 % of the free stream velocity,
U∞, in the presence of turbulence with f = 0, 0.5, 1.25, 1.5, all at perturbation streamwise
wavenumber k = 0.51. Shown is the square of the maximum streak velocity. This Blasius
flow is structurally stable at mopt = 0.51 for f < fu ≈ 0.8 so that for f = 0.5 the streak
initially grows but then decays, albeit with its rate of decay reduced by interaction with
the turbulence. The profile is structurally unstable for f > fu and therefore for f = 1.25 and
f = 1.5 the streak grows exponentially leading to transition to the time-dependent state. This
figure demonstrates that the interaction between forced turbulence and an optimal initial
condition in the Blasius flow converts the transiently growing initial condition into a SSST
eigenmode and for f > fu into an unstable eigenmode which necessarily leads to transition.

Although the streaks reach large amplitude they produce modest change in the
spanwise- and streamwise-averaged flow, [U], prior to establishment of the time-
dependent state, as shown in figure 21. Similar small variations in 1U = U − [U]
have been observed, prior to transition, in developing boundary layers subjected to
FST (Westin et al. 1994; Matsubara & Alfredsson 2001), and in boundary layers with
developing optimal streaks (Cossu & Brandt 2002).

The linear followed by nonlinear two-stage growth process leading to transition, in
which the linear optimal provides the initial condition for the growth of the structural
instability, serves to explain the observation that streamwise roll initial conditions,
which decay in amplitude in the absence of FST, grow in the presence of FST
(Alfredsson & Matsubara 1996; Bakchinov et al. 1997; Westin et al. 1998).

7. Transition to the time-dependent state in Couette flow
We saw that for an f > fc in Couette flow the spanwise uniform equilibrium

becomes structurally unstable, giving rise to a growing streamwise roll and streak
mode. This instability evolves into a finite-amplitude stable streamwise roll and streak
equilibrium for fc < f < fu, but for f > fu fails to equilibrate, instead transitioning
directly to a time-dependent state. Failure of continuation algorithms to find an
equilibrium solution for f > fu, and the absence of limit cycle behaviour, indicates
that the transition to the time-dependent state for f > fu is through a saddle-node
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FIGURE 20. (Colour online) Development of the global optimal structure in Blasius flow
at Rδ∗ = 1200 in the absence of forced turbulence (a,b) and with forced turbulence (c,d).
The global optimal perturbation at mopt = 0.51 (cf. figure 17b,c) is excited at r.m.s. velocity
0.1 % of the free stream velocity, U∞. (a) Snapshot at t = 800 of the streamwise-averaged
streamwise flow, U(y, z) (contours) and streamwise roll velocities, (V, W) (vectors) for f = 0
(cf. figure 19). Consistent with the lift-up mechanism, positive V is associated with a decrease
in U. (b) The corresponding streak velocity, Us = U − [U], at the level of its maximum
y/δ∗ = 1.31. (c) The corresponding snapshot at t = 800 for f = 1.25 and k = 0.51. (d) The
corresponding streak velocity at the level of its maximum, y/δ∗ = 1.18. The velocities are
normalized by U∞ and other parameters are as in figure 19. The nonlinearity retained in
SSST dynamics predicts the marked enhancement of the low-speed streak at this time prior to
transition.

bifurcation. Saddle-node bifurcations have also been associated with exact coherent
structures (i.e. Nagata 1990, 1997; Waleffe 1998, 2001, 2003; Halcrow et al. 2009)
and low-order models (i.e. Waleffe 1997).

The streamwise roll and streak equilibria for fc < f < fu are hydrodynamically stable
even when highly inflected. As f approaches fu the perturbation field is increasingly
dominated by the sinuous mode. For f > fu, as shown in figure 22 for evolution of
the streamwise roll and streak with f = 8.2, the flow transitions to a time-dependent
state, coincident with the streak becoming hydrodynamically unstable. This scenario of
transition is consistent with the streak breakdown mechanism (Reddy et al. 1998).

Streamwise roll and streak structures during the transition to, and establishment of,
the time-dependent state are shown in figure 23. The streamwise flow, with streak
spacing z+ ≈ 50, transitions to a time-dependent state, with streak spacing z+ ≈ 100,
which is characterized by streak collapse occurring at irregular intervals (panel for
t = 600). This time-dependent state is similar to the self-sustaining state seen in
minimal channel turbulence simulations (Jiménez & Moin 1991; Hamilton et al. 1995),
and the streak-spacing of z+ ≈ 100 also agrees with observations (Smith & Metzler
1983; Komminaho et al. 1996).
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FIGURE 21. (Colour online) Streamwise velocity defect resulting from the development of
the global energy optimal in Blasius flow at Rδ∗ = 1200. The global optimal perturbation
at mopt = 0.51 (cf. Figure 17b,c) is excited at r.m.s. velocity 0.1 % of the free stream
velocity, U∞. The turbulence is forced at k = 0.51 with f = 1.25. (a,c,e) Spanwise-averaged
streamwise velocity for the optimal streamwise roll and streak evolution shown in figure 19
(stars). For comparison, the associated Blasius boundary layer flow profile is also shown
(solid). (b,d,f ) Difference between the spanwise-averaged streamwise velocity and the Blasius
profile. This defect is normalized by the magnitude of its minimum value. This figure shows
that development of the optimal streamwise roll and streak in SSST, prior to transition,
induces small changes in the boundary layer profile that are consistent with observations
(cf. Westin et al. (1994), their figure 7): (a) t = 1300; (b) |1Umin| = 0.025; (c) t = 1500;
(d) |1Umin| = 0.057; (e) t = 1560; (f ) |1Umin| = 0.083.

This time-dependent state is self-sustaining in the sense that it persists if the forcing
is removed, by setting f = 0.
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FIGURE 22. (Colour online) Structural instability induced transition to the time-dependent
state starting from Couette flow. Shown are r.m.s. perturbation velocity (solid), r.m.s. roll
velocity (dashed) and r.m.s. streak velocity (dash-dot). The dotted line at t = 200 marks
the time when the instantaneous streamwise-averaged flow first becomes hydrodynamically
unstable. The perturbation forcing amplitude is f = 8.2 and other parameters are as in
figure 3.

8. The minimal self-sustaining turbulence dynamics obtained from SSST
An important property of the self-sustaining state, with f = 0, in SSST is that the

covariance, Ck, collapses to rank one. Collapse to rank one of Ck results from the fact
that the Lyapunov equation:

dCk

dt
= Ak(U)Ck + CkA

†
k(U) (8.1)

in the absence of stochastic forcing and with given U(t), admits as a solution the

rank-one covariance, Ck = φ̂kφ̂
†

k , in which φ̂k evolves according to

dφ̂k

dt
= Ak(U)φ̂k. (8.2)

In (8.2) all initial states, φ̂k, evolve asymptotically to the first Lyapunov vector and
this happens for every k. It follows that all full-rank covariances will asymptotically
approach rank one. Consequently, the SSST dynamics with f = 0 reduce to the
nonlinear interaction between the first Lyapunov vector for each k and the streamwise-
averaged flow, governed by

dφ̂k

dt
= Ak(U)φ̂k, (8.3a)

Ck = φ̂kφ̂
†

k, (8.3b)
dΓ
dt
= G(Γ )+

∑
k

Re(LRSCk), (8.3c)

where the operators in (8.3) are as in (3.21).
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FIGURE 23. (Colour online) Streamwise roll and streak structure during the transition to,
and establishment of, the time-dependent state shown in figure 22. Snapshots are shown
of the streamwise-averaged streamwise flow (contours), and vectors of the streamwise-
averaged cross-stream/spanwise flow. Consistent with the lift-up mechanism, positive V
is associated with a decrease in U. At t = 200, the streamwise flow has just become
perturbation unstable. Channel distances are measured in wall units, revealing the time-
dependent state to be characterized by streaks with mean spacing of about z+ = 100.
The streak episodically collapses (cf. the figure for t = 600), and reforms. The contour
interval is 0.2: (a) t = 200; (b) t = 300; (c) t = 400; (d) t = 500; (e) t = 600;
(f ) t = 860.

We wish to show using SSST that the self-sustaining state naturally produces
a minimal representation of turbulence in wall-bounded shear flow in the sense
that the dynamics is limited to the interaction of the streamwise-averaged flow
with a small number of streamwise harmonic perturbations. In the self-sustaining
state, with f = 0, we have shown that for each k in (8.3a) an initially full-
rank covariance, Ck, collapses under SSST dynamics to the rank-one covariance

Ck = φ̂kφ̂
†

k , with φ̂k the Lyapunov vector associated with its first Lyapunov exponent,
λk = limt→∞(1/t) ln |φ̂k(t)|. Moreover, if the largest λk is attained at a single
streamwise k, the perturbation energy will become progressively concentrated in
this single wavenumber associated with the largest λk, which is necessarily λk = 0,
consistent with a bounded solution trajectory.
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FIGURE 24. (Colour online) Perturbation complexity decrease associated with establishment
of the minimal self-sustaining state as f → 0. The time-dependent state is initialized with
perturbation forcing amplitude f = 8.2 and zero covariance. Subsequently, f is decreased
to f = 4.1 at t = 400 and to f = 0 at t = 800, after which time the state is unforced
and self-sustaining. (a) Fraction of the total perturbation energy (top solid) accounted for
by streamwise wavenumbers k0 (solid), 2k0 (dashed), and 3k0 (dash-dot), with k0 = 1.143.
For t > 800 in this log plot, suppression of the subdominant perturbations at streamwise
wavenumbers 2k0 and 3k0 is indicated by their exponential decay at the rate of their
negative Lyapunov exponents, while the dominant k0 component necessarily has the zero
Lyapunov exponent of the state trajectory. This plot reveals complete dominance of the k0
perturbation in the self-sustaining state subsequent to t = 800. (b) Fraction of perturbation
energy in each of the first three empirical eigenfunctions associated with the dominant
streamwise wavenumber, k0 = 1.143 (first EE: solid; second EE: dashed; third EE: dash-
dot). Simultaneous with the concentration of perturbation structure in the single streamwise
wavenumber, k0, is the collapse of the covariance to rank one at this wavenumber. The
collapse of the state to rank one is complete for f = 0, but even for f = 8.2, which
parameterizes strong perturbation/perturbation nonlinearity, the tendency for reduction of the
perturbation state to a single structure remains robust. Here R= 400, and other parameters are
as in figure 3. This figure reveals that this self-sustaining state is intrinsically associated with
a minimal representation of turbulence.

Transition to this minimal dynamics is demonstrated by considering the SSST
system (3.21) for Couette channel flow at R = 400 with equal forcing at the three
perturbation wavenumbers: [k/2, k, 2k] with k = 1.143 and with perturbation forcing
amplitude, fk = 8.2 for each wavenumber. Spanwise symmetry of the Couette flow
is broken with a small initial streak perturbation. The result of such an experiment
is shown in figure 24. The system rapidly transitions to a time-dependent state with
perturbation energy distributed among all structures. However, when the perturbation
forcing amplitude, fk, is reduced to zero, at t = 800, so that the system becomes fully
self-sustaining, the perturbation energy becomes concentrated in the single streamwise
wavenumber k = 1.143, as shown in figure 24 (top and middle panels). Moreover, this
collapse of perturbation energy to k = 1.143, is accompanied by the collapse of the
associated covariance, Ck, to rank one, as shown in figure 24 (bottom panel). This
collapse is consistent with the emergence of the dominant Lyapunov vector associated
with (8.3a), as discussed above.
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FIGURE 25. (Colour online) Initial condition induced transition to the self-sustaining state
starting from Couette flow. Shown are r.m.s. perturbation velocity (solid), r.m.s. streamwise
roll velocity (dashed) and r.m.s. streak velocity (dash-dot). This figure demonstrates that
transition to the self-sustaining state can be induced by an initial condition in the absence
of externally forced turbulence. This self-sustaining state is maintained by the nonlinear
interaction between the streamwise-averaged flow and a single streamwise harmonic
perturbation. The initial condition is a t = 10 energy growth optimum at k = 1.143 excited
with r.m.s. velocity 6.8 % of U0. The perturbation forcing amplitude is f = 0 and other
parameters are as in figure 3.

This perturbation covariance rank collapse at k0 demonstrates how this self-
sustaining turbulent state dynamics naturally reduces to a single time-dependent
perturbation structure interacting with the mean flow, providing a minimal
representation of shear flow turbulence. It also suggests a mechanism by which a
dominant coherent structure arises in turbulence and identifies this structure with the
first Lyapunov vector of (8.3a), together with the associated streamwise-averaged flow.
While nonlinear interaction among perturbations opposes this rank collapse in the
full equations, this mechanism of rank collapse remains robust and helps explain
the tendency for a small number of coherent structures to dominate the variance in
wall-bounded shear flow turbulence, as has often been remarked (Berkooz, Holmes &
Lumley 1993).

We now demonstrate the establishment and maintenance of a self-sustaining state
by perturbing the Couette flow at R = 400 with the t = 10 energy growth optimal
perturbation at k = 1.143. This optimal, when introduced at r.m.s. amplitude 6.8 %
of U0, results in rapid transition to a self-sustaining state, as shown in figure 25.
This self-sustaining state, the structure of which is shown in figure 26, is essentially
similar to the time-dependent state obtained with stochastic forcing included, shown in
figure 23.

This minimal turbulence dynamics accurately approximates many aspects of Couette
flow turbulence. In figure 27 we plot the projection of the turbulent state on the plane
of the non-dimensional energy input rate,

I ≡ 1
R

1
2Ly

(
[U(1)] d[U]

dy

∣∣∣∣
y=1

− [U(−1)] d[U]
dy

∣∣∣∣
y=−1

)
, (8.4)
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FIGURE 26. (Colour online) Streamwise roll and streak structure during the transition to,
and establishment of, the time-dependent state shown in figure 25. Snapshots are shown of
the streamwise-averaged streamwise flow (contours), and vectors of the streamwise-averaged
cross-stream/spanwise flow. Consistent with the lift-up mechanism, positive V is associated
with a decrease in U. Channel distances are measured in wall units, revealing the time-
dependent state to be characterized by streaks with mean spacing of about z+ = 100. At
t = 30, the streamwise-averaged flow has just become hydrodynamically unstable. The streak
episodically collapses (cf. the figure for t = 1280), and reforms. The contour interval is 0.2:
(a) t = 2; (b) t = 10; (c) t = 30; (d) t = 200; (e) t = 1250; (f ) t = 1280.

and the non-dimensional energy dissipation rate, D, given by (4.5). This trajectory is
consistent with the I/D trajectory obtained in simulations of Couette flow turbulence
(Kawahara & Kida 2001; Gibson, Halcrow & Cvitanović 2008). Further, the mean
streamwise flow maintained by this minimal self-sustaining state at f = 0, as well as
by the SSST state at f = 8.2, which are shown in figure 28, are close to that obtained
in simulations (Kawahara & Kida 2001). The corresponding cross-stream distributions
of the mean r.m.s. perturbation velocities for this minimal self-sustaining state, shown
in figure 29, are also similar to these distributions simulated under turbulent conditions
(Kawahara & Kida 2001). These comparisons verify that fundamental features of
turbulence are captured by this minimal self-sustaining state.
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FIGURE 27. (Colour online) Trajectory of the self-sustaining state shown in figure 25 on the
plane of the energy input rate, I, and the energy dissipation rate, D. The trajectory begins at
Couette flow (lower left point in trajectory) and settles into a transient chaotic trajectory with
values of I and D typical of turbulence. Both I and D have been normalized by the value
for laminar Couette flow. This figure demonstrates that the self-sustaining state I/D plane
trajectory is consistent with simulations of Couette flow turbulence.

9. The parametric mechanism maintaining the self-sustaining state
We wish to gain a clearer understanding of the physical mechanism supporting the

self-sustaining state. The robust tendency for streaks to organize the perturbation field
producing Reynolds stresses supporting the streak, via the lift-up mechanism, was
illustrated in connection with the streak perturbations shown in figure 3. This tendency
also produces the SSST streamwise RGP illustrated in figure 1. Although the streak is
strongly fluctuating in the self-sustaining state, this tendency of the streak to organize
oblique supporting perturbations is retained as illustrated in figure 30. The time
derivative of the domain average square streamwise vorticity, d/dt(

∫
dy dzΩ2

x /(2LyLz))

with Ωx =Wy − Vz, provides a measure of the streamwise roll forcing. A times series
of this diagnostic is also shown in figure 30. It is remarkable that the perturbations, in
this highly time-dependent state, produce streamwise vorticity forcing maintaining the
streamwise roll not only on average but at nearly every instance of time.

This robust tendency for perturbation Reynolds stresses to maintain the streak
through the lift-up mechanism explains the maintenance of the streamwise roll and
streak structure by the perturbations. However, maintenance of the perturbations in the
self-sustaining state remains to be explained. It is tempting to appeal to hydrodynamic
instability of the time-dependent streak to explain the maintenance of the perturbations
(Hamilton et al. 1995; Waleffe 1997). Indeed, eigenanalysis of the instantaneous
streamwise-averaged flow reveals that instability would occur, assuming the flow time-
dependence could be ignored, as can be seen from the maximum mode growth rates
shown in figure 31. However, this instability is only notional as its growth rate time
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FIGURE 28. (Colour online) Spanwise- and time-averaged streamwise flow, [U](y), for
the self-sustaining state shown in figure 25 (solid), and for the time-dependent state with
perturbation forcing amplitude f = 8.2, shown in figure 22 (dash-dot). For comparison, the
spanwise- and time-averaged streamwise flow from the simulation of Kawahara & Kida
(2001) at the same Reynolds number is shown (dashed). This figure demonstrates that
both the self-sustaining state and the time-dependent state with forced turbulence produce
a streamwise-averaged flow profile consistent with simulations of Couette flow turbulence.
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FIGURE 29. (Colour online) Cross-stream distribution of spanwise- and time-averaged
perturbation statistics for the self-sustaining state in figure 25. Shown are spanwise- and
time-averaged r.m.s.: streamwise velocity

√〈u2〉 (solid circles), cross-stream velocity
√〈v2〉

(solid triangles) and spanwise velocity
√〈w2〉 (solid squares). For comparison, the time and

spanwise mean flows from the simulation of Kawahara & Kida (2001) at the same Reynolds
number are also shown (dashed). Velocities are normalized by the maximum Couette flow
velocity. This figure demonstrates that the self-sustaining state produces turbulent velocity
statistics consistent with simulations of Couette flow turbulence.



186 B. F. Farrell and P. J. Ioannou

0

0

–20

0

20

0

0

0.05

0.10

0.15

200 400 600 800 1000 1200 1400
t

0 1600

–20

20

–50 50

(a) (b)

(c)

–50 50

FIGURE 30. (Colour online) Streamwise roll forcing by perturbation Reynolds stresses in the
self-sustaining state shown in figure 25. (a) Vectors of instantaneous cross-stream/spanwise
velocity acceleration, (V̇, Ẇ), at time t = 980. (b) Streamwise roll and streak structure at the
same time. (c) Time series of streamwise roll forcing as indicated by the rate of change of
the average square streamwise vorticity. It is remarkable that the perturbations, in this highly
time-dependent state, produce streamwise roll forcing, not only on average, but also at nearly
every instance of time.

scale, τ = 1/σr ≈ 25, is the same as the growth rate correlation time, τ = 25 (cf.
figure 31). Moreover, perturbation growth rate is weakly associated with unstable
mode growth rate, as can be seen from comparison of their respective time series, or
from a scatter plot of these growth rates, both shown in figure 31.

Therefore, it appears that the perturbations are not sustained by modal instability.
In order to test this, an integration of a turbulent state at R = 800 was performed
with the instantaneous flow enforced to be stable by setting all eigenvalues, (σr + iσi),
with σr > 0 to (−0.001 + iσi) at each time step. Despite suppression of all instability,
the time-dependent state continues to be self-sustaining. Persistence of the self-
sustaining state is verified by time series obtained after this intervention, shown in
figure 32. In fact, it can be seen from figure 32 that the streak is stronger in the
stabilized self-sustaining state than it is in the non-stabilized state, which is consistent
with reduced energy extraction from the streak when instability is suppressed.

This experiment shows that, in the self-sustaining state, perturbation energy is
maintained by a growth mechanism that is unrelated to modal instability (cf. Schoppa
& Hussain 2002). We wish to gain an understanding of this mechanism. Despite
the lack of modal instability, perturbations are still able to extract energy through
non-normal interaction with the mean state, but in a stable, time-independent flow
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FIGURE 31. (Colour online) Comparison between perturbation growth rate and modal
growth rate for the self-sustaining state in figure 25. (a) Maximum mode growth rate (dashed),
σr, and perturbation growth rate (solid), (1/2E) dE/dt. (b) Scatter plot of these growth rates.
The temporal correlation time of σr is τc = 25, and the mean of σr is 0.04. The correlation
coefficient between these growth rates over the whole simulation is 0.2. This figure indicates
that maintenance of the perturbation energy in the self-sustaining state is not significantly
related to streak instability.

the resulting perturbation growth, however large, is ultimately transient and could not
maintain the perturbation field. In the example of figure 32, the system is stable
and, if it were not time dependent, the perturbations would ultimately decay and
the flow would laminarize to the Couette flow. It is a remarkable fact that, in time-
dependent dynamical systems, the non-normal growth, which would be transient in
a time-independent system, can be sustained to produce exponential growth through
an essentially non-normal parametric mechanism (Farrell & Ioannou 1996b, 1999;
Pedlosky & Thomson 2003; Poulin et al. 2003; Farrell & Ioannou 2008b; Poulin
et al. 2010). This non-normal parametric growth process underlies the instability of a
damped harmonic oscillator with periodically varying restoring force, a system which,
like the stabilized system example described above, is non-normal, time-dependent and
modally stable at every instance of time.



188 B. F. Farrell and P. J. Ioannou

0.1

0.2

0.3

0.1

0.2

0.3

r.
m

.s
. v

el
oc

ity
0

0.4

0

0.4
r.

m
.s

. v
el

oc
ity

100 200 300 400 500 600 700 800

100 200 300 400 500 600 700
t

800

(a)

(b)

FIGURE 32. (Colour online) Self-sustaining state at R = 800 with and without modal
instability. (a) The self-sustaining state time evolution in the variables r.m.s. perturbation
velocity (solid), r.m.s. roll velocity (dashed) and r.m.s. streak velocity (dash-dot). (b) The
same variables for the stabilized self-sustaining state. This state was made stable at every
instance of time in the following manner: all unstable eigenfunctions were ascribed growth
rate −0.001 while their phase speed and structure were left unchanged. The turbulence is
unforced, f = 0, and other parameters are as in figure 3. Suppression of modal instability
results in a self-sustaining state with stronger rather than weaker streaks. This figure
demonstrates that modal instability does not maintain perturbation variance in the self-
sustaining state.

This non-normal parametric growth mechanism can be illustrated by projecting the
perturbation states, φ̂k, associated with the self-sustaining states shown in figures 25
and 26, on the instantaneous directions of energy growth. To facilitate calculating
this diagnostic, transform the perturbation state to ψk ≡ M1/2

k φ̂k and the perturbation
dynamics to

dψk

dt
= Ãkψk, (9.1)

with Ãk ≡ M1/2
k Ak(U(t))M

−1/2
k (cf. Appendix). Perturbation energy growth directions are

those associated with positive eigenvalues of the Hermitian matrix, D = Ãk+ Ãk
†
, while

decay directions are associated with negative eigenvalues (Farrell & Ioannou 1996a,b).
Therefore, the instantaneous growth rate can be partitioned into contributions from
orthogonal growing and decaying subspaces, spanned by the eigenvectors of Dg and
Dd , respectively:

1
Ek

dEk

dt
= ψ

†
kDψk

ψ†
kψk

= ψ
†
k(Dg + Dd)ψk

ψ†
kψk

. (9.2)

A plot with axes consisting of the sum of the projections of the perturbation state on
the growing and on the decaying subspaces provides a two-dimensional trajectory of
the system in the coordinates of growth rate and decay rate. Assuming the solutions of
(8.3) are statistically steady, the time average perturbation growth rate is zero implying
that the time average of the projections on the growing and decaying directions are
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equal. This implies that the projection of the state lies, on average, along the diagonal
in these coordinates, while a perturbation state maintained by a neutral mode would lie
at a point on the diagonal. Time series representing the self-sustaining state trajectories
with and without stabilization of modal instability of the instantaneous flow are shown
in figures 32 and 33. These trajectories are essentially similar and because one of these
systems is constrained to be always stable, we conclude that the perturbations in both
of these systems are sustained by the time-dependent, non-normal, parametric growth
process.

This SSP is illustrated in figure 2; the streak grows by organizing the perturbation
Reynolds stresses to drive its associated streamwise roll while the perturbations are
sustained by the parametric growth mechanism associated with the time dependence of
the streak.

10. Summary and conclusion

Two fundamental problems in wall-bounded shear flow turbulence research are
understanding the mechanism of transition from the laminar to the turbulent state in
perturbation stable flows and understanding the mechanism maintaining the turbulent
state, once it is established. In this work, we have used SSST, which provides
a deterministic, autonomous, nonlinear dynamical system for evolving a second-
order approximation to the statistical mean turbulent state, to study the dynamics
of streamwise roll and streak interaction with turbulence in both transition to and
maintenance of turbulence. Underlying the SSST dynamics are the assumptions that
the perturbation–perturbation interactions and the external sources of turbulence in the
perturbation equations can be parameterized as an additive stochastic forcing delta
correlated in time and that the streamwise average of the perturbation covariance can
be obtained from the ensemble average over realizations of the forcing.

Applied to the transition problem, SSST reveals a new instability arising from
interaction between the streamwise rolls and streaks and forced turbulence. Prior
to transition to freely maintained turbulence, forced turbulence is always present in
naturally occurring wall-bounded shear flows, so that this interaction instability of the
streamwise roll and streak is likely to influence transition in such natural settings. We
showed that the SSST instability exploits the optimality of the lift-up mechanism by
organizing perturbation Reynolds stresses to coherently force the streamwise roll. This
robust process of Reynolds stress organization by the streak, resulting in forcing
of the associated streamwise roll, provides the coupling between the streak and
the streamwise roll required to produce modal instability from the powerful non-
normal transient growth provided by the lift-up mechanism. This instability effectively
transforms the otherwise transient growth of optimal or near-optimal perturbations
arising in the forced turbulence into persistently growing modal streamwise roll and
streak structures.

Linear optimal excitation theory accurately predicts the streamwise roll and streak
structure seen in transitional boundary layers (Luchini 2000; Andersson et al. 2001).
However, there may be insufficient forcing of the initial condition to produce transition
before the eventual decay of the transiently growing streamwise roll and streak
(Brandt et al. 2002). Indeed, localized streamwise roll and streak initial conditions
are observed to decay in the presence of very low FST (Alfredsson & Matsubara
1996; Bakchinov et al. 1997; Westin et al. 1998). An alternative, and potentially
complementary, mechanism is the formation of streamwise rolls and streaks from
the nonlinear interaction of oblique waves (Benney 1960, 1984; Jang et al. 1986;
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FIGURE 33. (Colour online) Trajectory of the self-sustaining state both with and without
modal instability suppression. The coordinates are the projections of the state on the
growing and on the decaying subspaces of the dynamical operator. (a) Trajectory of
the unmodified self-sustaining state. (b) Trajectory of the stabilized self-sustaining state.
Because this system is stable at every instance of time, it would asymptotically approach
the zero perturbation state if its mean state time dependence were suppressed. This figure
implies that the non-normal parametric mechanism maintains perturbation variance in both
these self-sustaining states: (a) R = 800, σr < 0.16, 〈σr〉 = 0.045; (b) R = 800, σr < −0.001,
〈σr〉 = −0.0011.

Schmid & Henningson 1992; Reddy et al. 1998; Brandt et al. 2002). SSST analysis
unites linear optimal theory with nonlinear perturbation/mean-flow interaction theory
by showing that forcing of the streamwise roll by the perturbation field arises naturally
from the robust process of turbulence organization by streaks. Moreover, in forced
turbulence a finite-amplitude optimal or near-optimal perturbation would exist, at
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least episodically, and such a perturbation would serve as an initial condition for
the SSST streamwise roll and streak instability. We showed how the perturbation
Reynolds stresses augment the growth of such an initial streamwise roll and streak.
These processes cooperate in determining the structure of growing streamwise roll and
streak perturbations. For this reason, comparison of SSST predictions with experiments
requires accounting for both the amplitude and structure of initial perturbations as
well as the growth rate of the SSST instability. If the level of forced turbulence is
sufficiently high, an initially small-amplitude streamwise roll perturbation is converted
into an unstable mode leading to transition. However, if the initial roll perturbation
is large this unstable growth phase may be of less importance. After transition to
the time-dependent state has occurred this state persists even if the turbulence is no
longer externally forced. This mechanism of structural instability mediated transition to
a self-sustaining state addresses the first problem mentioned above: transition from the
laminar to the turbulent state in perturbation stable shear flow.

The streak spacing in the self-sustaining state is maintained through the parametric
growth SSP mechanism, illustrated in figure 2. The streak spacing predicted by this
parametric growth process is in agreement with observations of streak spacing of
∼100 wall units in turbulent Couette flow. Before transition to the self-sustaining state
the streamwise roll and streak growth is determined in part by the RGP mechanism,
illustrated in figure 1. In Couette flow, the streamwise roll and streak spacing predicted
by the RGP instability is approximately 50 wall units. There is no contradiction in the
existence of these two scales of roll and streak organization given that the 50 wall unit
spacing is associated with forced nearly laminar rolls and streaks while the 100 wall
unit spacing is associated with the self-sustaining turbulent state.

The self-sustaining state studied here naturally evolved to a minimal turbulent
system in which the dynamics is limited to the interaction of the streamwise-averaged
flow with a single streamwise harmonic perturbation. This minimal turbulent system,
which proceeds naturally from the SSST dynamics, provides a particular advantage for
our study because the mechanism maintaining turbulence in this minimal system can
be understood with clarity. In this self-sustaining state, we find that the streamwise
roll is systematically maintained by the robust organization of perturbation Reynolds
stress by the time-dependent streak while the streak is maintained by the streamwise
roll through the lift-up mechanism. Systematic maintenance of the perturbation field
results from the non-normal parametric growth mechanism arising from the interaction
between the time-dependent streak and the perturbation. We hypothesize that this
naturally emergent, minimal, self-sustaining, turbulent system captures the fundamental
mechanism maintaining turbulence in wall-bounded shear flow.
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Appendix. Optimal excitation of a mode in the energy norm

To determine the perturbation that excites optimally in energy a given eigenmode of
the matrix Ak(Ueq), transform the perturbation state to ψ̂ k = M1/2

k φ̂k, with Mk the energy
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metric defined in (3.12), so that the transformed dynamics become

dψ̂ k

dt
= Ãkψ̂ k, (A 1)

with Ãk ≡ M1/2
k Ak(Ueq)M

−1/2
k . With this transformation, the perturbation energy density

at streamwise wavenumber k, Ek in (3.13), is given simply by the inner product:

Ek = ψ̂†

kψ̂ k. The adjoint mode, ψ̂ k,a, of eigenmode ψ̂ k,m of Ãk, is the eigenmode of Ã†
k

with eigenvalue equal to the complex conjugate of the eigenvalue of ψ̂ k,m. It follows

that ψ̂ k,b ≡ ψ̂
∗
k,a is the biorthogonal of ψ̂ k,m, that is, it is orthogonal to all of the

other eigenmodes of Ãk. It can be shown that this perturbation structure excites the
eigenmode ψ̂ k,m optimally in energy (Farrell 1988; Farrell & Ioannou 1996a). Then,
the optimal amplitude of excitation of the unit energy eigenmode ψ̂ k,m resulting from a
unit energy initial condition with the structure of its biorthogonal, ψ̂ k,b is

a= 1

|ψ̂†

k,bψ̂ k,m|
. (A 2)

The ratio of the energy in the eigenmode resulting from excitation by this unit energy
optimal, rather than direct excitation of the mode itself at unit energy, is a2. For
normal operators a = 1 while for highly non-normal operators, such as the evolution
operator for a shear flow, this ratio is typically large.
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