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Abstract. An energy transfer analysis of turbulent plane Couette flow is per­
formed. It is found that nonlinear interaction between the [0, ±1] modes is princi­
pally responsible for maintaining the mean streamwise turbulent velocity profile. 
The [0, ±1] modes extract energy from the laminar flow by linear non-modal growth 
mechanisms and transfer it directly to the mean flow mode. The connection of this 
work to linear/nonlinear models of transition is discussed. 

1 Introduction 

In recent work a model for maintenance of turbulence in wall-bounded flows 
has been proposed [11,15]. It is argued that the backbone of the turbulent 
state is a quasi-periodic, self-sustaining cycle consisting of streak generation 
by linear advection, streak breakdown by a spanwise-inflectional instability, 
and vortex regeneration by nonlinear interaction of the products of the streak 
breakdown. This work was carried out by direct simulation of turbulent flow 
by reducing the size of the computational box to a minimal flow unit for 
sustaining turbulence and by analysis of low-dimensional dynamical systems. 

In this paper we investigate movement of energy in wavenumber space in 
the turbulent Couette flow considered in [11] using energy transfer analysis. 
We find that it is interaction between modes [0,1] and [0, -1] that is princi­
pally responsible for maintaining mean streamwise turbulent velocity profile. 
These two modes extract energy from the laminar flow by linear, non-modal 
mechanisms and transfer it directly to the mean flow mode. The relation­
ship of these findings to linear/nonlinear models of sustained turbulence is 
discussed. 

2 Energy Transfer Analysis 

In the plane channel geometry the flow is between two infinite flat horizontal 
plates at y = ±l. All distances are non-dimensionalized by h, the channel 
half-height, and all velocities by V, the difference between the centerline and 
wall velocities. The Reynolds number is defined by R = h V 1/1, where /I is 
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the kinematic viscosity. We let x, y, and z denote the streamwise, normal, 
and spanwise directions, respectively. For Couette flow the laminar velocity 
is U(y) = (y, 0, 0). 

We assume that disturbances are periodic in the horizontal directions and 
have the form: 

M N 

( t) R l{ '" '" uA mn (y, t)eima. J x+inf3 J Z}, U x, y, z, = ea L.-J L.-J (1) 
m=-Mn=-N 

where umn = (umn , Vmn ' Wmn ) and a f and (3 f are the fundamental wavenum­
bers. Let [m, n] denote the mode with integer streamwise and spanwise wave­
numbers m and n, respectively. 

The disturbance energy density in mode [m, n] is 

It can be shown that [13] 

dEmn = L (t) + M (t) + '" r[pqj[kll (t) dt mn mn L.-J mn , (3) 

where the sum is over all modes satisfying m = p+k and n = q+f. The term 
Lmn is the contribution due to linear terms in the disturbance equations, 
such as dissipation and interaction between mode [m, n] and the laminar 
flow, Mmn is the contribution due to nonlinear interaction between mode 
[m, n] and the modified mean flow uoo, and rM'~j[kll is the contribution due 
to nonlinear interaction between modes [p, q] and [k, fl. For the [0,0] mode 
the linear term is non-positive, as it represents dissipation, Moo(t) = 0, and 
the nonlinear interaction term consists of integrals involving Reynolds stress 
quantities like UpqVkl and WpqVkl, where p + k = q + f = o. 

The evolution of the total disturbance energy, E, in all modes is given 
by the Reynolds-Orr equation [5]. Assuming periodicity of the disturbance in 
the horizontal directions, we have 

dE / 1 di = - (U'(y)uv + RV)dx, (4) 

where integration is over one periodic unit, V, which denotes dissipation, is 
positive, U (y) is the laminar flow, and u and v are the disturbance streamwise 
and normal velocities [5]. Both terms in (4) originate from linear terms in 
the disturbance equations. Nonlinear terms in the disturbance equations do 
not appear explicitly in (4). Hence, only linear mechanisms are directly re­
sponsible for changes in total disturbance energy. The nonlinear terms in the 
disturbance equations are energy conserving. They do not contribute directly 
to total changes in energy, but do move energy in wavenumber space. 



213 

3 Results and Discussion 

The simulations are performed on a Cray T90 using a code that solves the 
three-dimensional N-S equations in the channel [12] and the results are an­
alyzed on a workstation using Matlab. The flow parameters are the same as 
in [11]: af = 1.14 and f3f = 1.66, R = 400, and the number of modes in 
horizontal directions in (1) is M = N = 7. 

We generate a turbulent flow starting with a relatively large amplitude 
(E(O) ~ 2.5 x 10-3) optimal streamwise vortex in modes [0, ±1] [4]. The flow 
evolves and we find that disturbances are maintained to at least t = 1500, 
where time is scaled by h IV. Flow quantities are analyzed for the time interval 
[1000,1150]. The mean streamwise velocity averaged over the time interval 
satisfies the wall law in the viscous sub-layer and the Reynolds based on 
friction velocity has an average value of ~ 33.5, well above the value 20 for 
laminar flow. 

We have computed disturbance energy in various wavenumbers. The dis­
turbance energy is greatest in modes with streamwise wavenumber m = 0, 
primarily [0,0] and [0, ±1]. We will focus our attention on energy transfer 
into these modes. 

Figure 1 plots dEooldt and various terms on the right hand side of (3) 
for this mode. The principal positive energy transfer is from the interaction 
of the [0,1] and [0, -1] modes. The linear term makes a large negative con­
tribution. Interactions involving other modes with streamwise wavenumber ° or modes with non-zero stream wise wavenumber make a smaller net con­
tribution to the energy transfer. We have checked the magnitude of various 
interactions that are not plotted and it does not appear that relevant contri­
butions to the transfer into [0,0] are being neglected. In physical space, the 
[0, ±1] interaction works to maintain mean streamwise shear; the key term is 
Reynolds stress product of the streamwise and normal velocities. 

Figure 2 plots dEOlldt and various terms on the right-hand side of (3) 
for this mode. The principal positive contribution is linear. The mean flow 
contribution makes a large negative contribution. Other nonlinear interac­
tions make relatively small contributions to the net transfer. By symmetry 
the analogous plot for mode [0, -1] is the same as Figure 2. Note that energy 
is continually extracted from the laminar flow. 

As mentioned in the Introduction, the process by which vortices gener­
ate streaks is essentially linear. During this process there can be substantial 
growth in disturbance energy as energy is extracted from the laminar flow. 
This is due to non-modal (or transient) growth mechanisms [8,14], as Cou­
ette flow is linearly stable for all Reynolds numbers. In inviscid flow the 
growth is algebraic in time [6]. In the viscous case there can be substantial 
transient growth in energy before the eventual decay in linear calculations. 
Streamwise vortices are among the most effective structures in extracting en­
ergy from the laminar flow. The mode [0,1] corresponds to streamwise and 
spanwise wavenumbers a = ° and f3 = 1.66, respectively. Among streamwise-
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Fig. 1. Energy transfer into [0,0]. The curve labeled other p = 0, k = 0, corresponds 
to the sum of all contributions from all allowable interactions of modes (p = 0, q] and 
[k = 0, l] other than [0,1] + [0, -1]. The curve labeled p = 1, k = -1 corresponds 
to the sum of all contributions from allowable interactions of modes (p = 1, q] and 
[k = -1,l]. 
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Fig.2. Energy transfer into [0,1]. The curve labeled Mean corresponds to the 
contribution from the modified mean flow. 

independent modes, this wavenumber combination has the greatest potential 
for non-modal growth in Couette flow [4]. 
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Energy transfer among a triad of modes satisfies a conservation law. It 
can be shown that [13) 

rJg,l][O,-ll(t) = -MO,l (t) - MO,-l (t). (5) 

This equality means that the contribution to the transfer into [0,0) due to 
the [0, 1) + [0, -1) interaction is balanced by the transfer out of [0, 1) and 
[0, -1) due to the mean flow interaction. In light of the discussion above, we 
are led to the following interpretation. Energy is extracted from the laminar 
flow by [0, ±1] and other modes by linear mechanisms. Part of this energy is 
transferred instantaneously to [0,0], where it maintains the turbulent mean 
shear. The [0,0) cannot extract energy directly from the laminar flow. 

Streamwise streaks are not effective in extracting energy from the laminar 
flow. In the self-sustaining cycle mentioned above, streamwise streaks break 
down and regenerate streamwise vorticity in the spanwise modes, which can 
effectively extract energy from the laminar flow. Although the results will 
not be plotted here, we have verified that streamwise vorticity is periodically 
regenerated in the [0, ±1) modes; the key interactions involve modes with 
streamwise wavenumbers m = ±1, consistent with results in [11). 

We have repeated the above calculations for the time interval [1150, 1300] 
and the results are qualitatively similar. Energy is continuously extracted 
from the laminar flow by the [0, ±1) modes, which then transfer this energy 
directly to [0,0). 

Our findings on turbulent Couette flow are consistent with recent work 
on heuristic models of transition and turbulence [1-3,7,9,10). In the mod­
els considered in these papers, structures called inputs extract energy from 
the laminar flow by linear non-modal growth mechanisms, converting inputs 
to ouputs - streaks to vortices, for example. The output structures cannot 
extract energy from the laminar flow. The nonlinear terms (or random scat­
tering terms) are energy conserving. Their role is to convert outputs back to 
inputs allowing the process to repeat. 

In the present work, computations are performed in a small computational 
box to isolate the self-sustaining cycle. In future work we plan on performing 
energy transfer analysis of a more realistic turbulent channel flow. 
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