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Origin and growth of structures in boundary layer flows 

B. F. Farre ll, P. J . Ioannou 

1 Introduction 

A central goal of high Reynolds nwnber fluid dynrunics is to gain a comprehen­
sive understanding of the origin and gro\vth of perturbations in shear fto\vS in 
\vhlch the rate of strain of the background velocity provides the source of energy 
of the perturbations. ln a.IJ cases the availability of energy for perturbation growth 
can be determined by linearizing the equations of motion about the appropriate 
background flow and searching for growing perturbations. If all possible perturba­
tions are exrunined and only decaying ones are found then it is certain that the 
background flow \vill persist when subjected to a sufficiently small disturbance. 
However, determining the potential for growth of all possible perturbations has 
not been the historical course of inquiry in stability theory. Rather, traditional 
stability theory follows the program of Rayleigh (1880) according to which insta­
bility is traced to the existence of exponentially gro\ving modes of the linearized 
dynamic equations. The classical application of the normal mode paradigm envi­
sions unstable modes growing exponentially from infinitesimal beginnings over a 
large number of e-foldings so that the exponential mode of greatest growth even­
tually etnerges as a finite amplitude wave. This assumption of undisturbed growth 
is necessary to ensure the asymptotic dominance of the most rapidly gro\ving nor­
mal mode which in turn permits the theory to make predictions concerning the 
structures of finite amplitude. Acceptance of the theory of small oscillations \V8S 

encouraged by its success in application to problems such as the Rayleigh-Benard 
and Rayleigh-Taylor problems. 

Despite the wide acceptance accorded the normal mode theory there remained 
difficulties of correspondence in boundary layer shear flows between the observed 
temporal variation and spatial structure of growing perturbations and the time 
independent structure of the normal modes. While modal theory predicts that 
the most unstable perturbations should be 2-dimensional (Squire, 1933) transition 
proceeds in practice by amplification of fully three-dimensional structures. 

Such discrepancies and lingering theoretical questions involving the need to 
complete the normal modes in the case of linear inviscid dynamics by inclusion 
of a continuous spectrum of singular neutral modes led to reexamination of the 
results of Kelvin {1887) and Orr {1907) on the stability of the continuous spectrum 
by Case (1960). These inquiries showed that the continuous spectrum is stable in 
the sense that it fails to produce unbounded growth in the limit t- > oo and 
this negative result was generally interpreted as a proof assuring that the stability 
of a How could be determined solely from inspection of its modal spectrum for 
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exponential instabilities. However, it is now more 'videly appreciated that the 
modal spectrwn only determines stability in the t- > oo Limit and that a more 
general analysis is necessary to determine the stabil.ity properties at finite time. 
Given that all experiments are conducted in finite time and that the time scale 
for formation of energetic structures in the boundary layer is rapid finite time 
stability analysis would seem to be the more appropriate and indeed inquiry sho,vs 
that in the boundary layer there are non-modal transient disturbances \vith large 
growth rates on rapid time scales. The most rapidly gro,ving of these disturbances 
exhibit transient structural evolution during development that characterizes the 
observed development of the coherent structures in the boundary layer. Freed of 
concentrating on the t - > oo asymptotic, this generalized stability theory allows 
a much closer correspondence to be made with observed structures which are highly 
variable both temporally and structurally (Farrell, 1988; Gustavsson, 1991; Butler 
& Farrell, 1992; Reddy, Schmid & Henningson, 1993; Trefethen et al. , 1993; Farrell 
& Ioannou, 1993a; Reddy & Henningson, 1993; Farrell & loannou, 1996). 

The existence of a subspace of growing disturbances suggests a mechanism 
by which the aggregated growth of individual structures supports the statistically 
steady variance of the fully turbulent flow. It can be shown that the net source 
of energy to the perturbation field attributable to nonlinear interactions among 
waves vanishes and it follows that extraction of energy from the forced background 
flow by the subspace of growing disturbances, which is fully described by linear 
dynru.nics, must be responsible for maintaining eddy energy in the fully developed 
turbulent state (Joseph, 1976 ; Henningson and Reddy, 1994). This observation 
suggests a mechanistic model for t he turbulent state in which the mean Bow is 
subjected to continuous perturbative forcing (Farrell and Ioannou, 1993b, 1994, 
1995). The appropriate method of analysis for such a turbulence model is the 
stochastic dynamics of non-normal Linear systems. 

The elements of generalized stability theory are revie\ved below. 

2 Response of the non-normal operator associated 
with boundary layer flows to impulsive excitation 

The equation governing first order perturbation dynamics in the boundary layer 
is a special case of the general linear dynamical system: 

du -dt 
A u, (1) 

where u = [v , !]Jr, is the state variable for each streamwise and spanwise Fourier 
component, v is the cross stream perturbation velocity and !] is the cross-stream 
perturbation vorticity. The dynamical operator in (1) is obtained from the lin­
earized Navier-Stokes equations by eliminating the pressure field using the conti-
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nuity equation. The operator A is given by: 

with: 

A = [~ ~] ' 

L = b. - 1 
( -i k U b. + i k U" + b.b./ R ) , 

S = -i k U + b./ R , 

C = -i l U', 
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(2) 

(3.a) 

(3.b) 

(3.c) 

and in which the Laplacian operator is given by: b. = ::2 - K 2 , with J( being the 

total horizontal wavenumber: K 2 = k2 + 12 , and k , l the sreamwise and spanwise 
wavenumbers respectively. The mean velocity in the stream\vise direction which 
varies only in the cross-stream direction, y, is U and cross-stream derivatives of 
the mean fields are denoted with a dash. The equations have been rendered non­
dirnensional with the maximum background velocity in the channel, U0 , and the 
channel half-width, L so that the Reynolds number is R = u!Li v denoting t he 
kinematic viscosity. A well posed inversion of the Laplacian in (3a) requires incor­
porating the boundary conditions at the channel walls y = ±1. 

The components of the dynamical operator (2) are the Orr-Sommerfeld op­
erator, L, the coupling operator between cross-strea.in velocity and vorticity, C , 
\vhich corresponds physically to the generation of cross-stream vorticity by tilting 
of the mean spanwise vort icity; and the advection-diffusion Squire operator, S . 

In the following it is assumed that (2) bas been discretized so that A is the 
associated linearized dynamical matrix operator. lf the background state is steady 
so that A is not a function of time then the solution to (1) is explicit: 

u(t) = eAt u(O) . (4) 

The central distinguishing attribute of A that determines its transient dy­
namics is its normality, i.e. whether or not A A t = A t A . H A commutes with 
its Hermitian transpose, here indicated by the superscript dagger, then A is nor­
mal and has a complete set of orthogonal eigenvectors. Perturbation growth rate 
for normal A 's is bounded above by the member of the eigenspectrun1 of A with 
maximum real part. 

Because the finite time perturbation dynamics of a non-normal operator can 
not be ascertained from the spectrum of the operator it is necessary to gener­
alize ideas of perturbation growth by considering the growth, a , of an arbitrary 
perturbation u(O) over time t: 

2 (u(t) , u(t)) (eAtu(O) , eA1u(O)} 
(j - - -

- (tt(O) , u(O)) - (u(O), u(O)) -

(eA't eA1u(O) , u(O)) 

( u(O) , u(O)) 
(5) 

The inner product {-, ·) generates t he Euclidean norm for the vector space: 
II · II = (·, ·) 1/

2
. It follows from (5) that a complete set of orthogonal pertur-
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bations ti(O) can be ordered in growth over time t by eigenanalysis of the matrix: 
eA' t e A t. In particular, the greatest growth over time t as measured by the square 
of the Euclidean norm is given by the maximum eigenvalue of eA't e A t which 
is also equal to lleA1112 as can be also seen immediately from the singular value 
decomposition of eA t. The initial condition that gives the maximum growth at a 
given time is referred to as the optimal perturbation at that time. 

There are two asymptotic limits of interest in connection with the excitation 
of the propagator. In the limit t - > oo maximum growth is obtained by the 
eigenfunction associated with the eigenvalue with maximum real part just as nor­
mal mode theory would suggest. To see this consider the matrix E constructed by 
arranging the eigenvectors of A as columns in order of growth rate together with 
the diagonal matrix, ~. of the associated modal growth factors, from which the 
following similarity transformation of the propagator can be constructed: 

(6) 

In the limit t - > oo the first column of E and the first row of E - 1 exponentially 
dominate with amplification factor eR.eal(A1 1) t : 

1. A t E A 11 L E- 1 1m e a {J = al e •P · 
t - > 00 

(7) 

It can be seen by appeal to Schwartz's inequality that the initial condition of unit 
norm producing maximwn growth over time tis the complex conjugate of E - i 1p 
which is the conjugate of the biorthogonal of the leading eigenvector rather than 
the leading eigenvector itself: 

(8) 

Modal theory correctly predicts that in the limit t - > oo that eigenvector which 
has associated eigenvalue with maximum real part dominates. Not so obvious is 
the fact that the optimal initial condition with which to excite that mode is the 
conjugate of the biorthogonal of the dominant mode rather than the mode itself. 

Given the observed mean time scale for the formation of coherent structures 
the t - > oo asymptotic is not likely to provide a realistic precursor for the 
formation process. Of greater utility for this purpose is analysis of the t - > 0 
limit of (5) which controls the initial growth of perturbations. Analysis of this 
limit provides the maximum possible instantaneous growth rate and the structure 
that produces this maximum growth rate. The growth rate and the perturbation 
of maximum instantaneous growth itself also provides a constructive nonlinearly 
valid bound on the potential for perturbation growth in the flow (Joseph, 1976). 

T he limit as t - > 0 is easily obtained by Taylor expansion of the matrix 
e A ' t e A t in (5): 

eA' t eAt :::::; (I + A ft) (I + A t) 

= I + (A + A f)t + O(t2 ), 
(9) 



Origin ai1d gro1vth of structures in boundary layer flows 79 

where I is t he identity. It follows t hat a tight upper bound on instantaneous gro1vth 
rate, and the structure producing this maximum instantaneous growth rate can 
be found by eigenanalysis of the matrix A + A t . The maximum eigenvalue of 
(A + A t)/2 and its associated eigenvector provide the required growth rate and 
structure. Eigenanalysis of A + A t typically reveals that high gro1vth rates over 
short times can be realized in boundary layer flows even for 101v Reynolds numbers 
for 1vhich all normal modes of A are damped. 

The most relevant time scales for the development of coherent stnlctures in 
the boundary layer a re between t he asymptotic limits l - > 0 and l - > oo and 
for these intermediate time scales the initial and final structures are found most 
easily fron1 t he SVD analysis of the propagator e A '. Given that both asymptotic 
limits are subsumed it is appropriate to refer to t his analysis as the generalized 
stability analysis of the system (1). 

3 Response of non-normal dynamical systems 
to continuous excitation 

'fransient gro1vth of disturbances in shear flow can be t raced to a substantial 
subspace of perturbations that extract energy from t he background flow. In section 
2 analysis of t hese growing pertw·bations was framed as an initial value problem 
involving as a para1neter the physically relevant interval in t ime over 1vhich gro1vth 
occurs. The appropriate method of analysis for studying the maintenance of t ime 
mean variance by continuous incoherent forcing is the stochastic dynamics of the 
associated non-normal system. 

The stochastically forced linear dynamical system can be written in the form: 

du 
dt = A u + F 71(t), (10) 

in 1vhich 71(t) is a temporally Gaussian white-noise forcing con1ponent,vise 6-
correlated with zero ensemble mean and unit ensemble covariance: 

(11) 

Tbe spatial distribution of the forcings is provided by t he matrix F , and if it is 
chosen to be unitary the resulting statistics beco1ne independent of the particular 
choice of F. 

To obtain t he stochastic grolvth of perturbations we first write the forced 
solution of (10) as: 

u( t) lot e A (t - s) F 11(s) ds. (12) 
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The variance maintained by this stochastic forcing is given in the Euclidean norm 
by: 

< llu(t) 112 > = (fo' ds fo' ds'11f(s)F feA
1
<t- •) eA(t- s'lF 17(s')) 

=Trace ( F f fo' eA'(t- •) eA(t- •) ds F ) 

= Trace (F t BF) , 

revealing that the hermitian operator 

B ' = fo' eA
1

• e A • ds , 

(13) 

(14) 

accumulates the perturbation growth when all perturbations are stochastically ex­
cited. This operator should be compared with the operator e A 

1 
t e At eigenanalysis 

of which reveals the optimal perturbation growth as we have seen in the previous 
section. An alternative and computationally preferable method for calculating the 
stochastic dynamical operator B1 results from differentiating (14) with respect to 
time to obtain: 

(15) 

in which I is the identity matrix. 
In direct analogy with the analysis of optimal growth in the previous section 

a complete set of orthogonal forcings forming the columns of a unitary F can be 
found for the stochastic variance at time t in (13) by eigenanalysis of the positive 
definite hermitian B '. If the operator A is asymptotically stable a stationary 
solution is obtained in which the eigenfunctions of B00 are ordered according to 
their contribution to the variance of the statistically steady state. The forcings 
ordered in this way will be referred to as stochastic optimals. 

The stochastic optimals most effectively excite the stationary variance and 
should be contrasted with the orthogonal structures that most effectively span 
the maintained variance, which are commonly referred to as the EOF's of the 
dynamical system. The stochastic optimals bear a relationship to the EOF's in 
the stochastic analysis analogous to that between the optimal excitation and the 
optimal response in the SVD analysis of the propagator of the initial value problem. 
To obtain the EOF 's we need first to form the correlation matrix: 

Cl; = < ui(t) uj(t) > 
(16) 

which satisfies: 

(17) 
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Each eigenvalue of the positive definite hermitian operator C 1 equals the variance 
accounted for , under unbiased forcing and at titne t , by the pattern of its corre­
sponding eigenvector, and the pattern that corresponds to the largest eigenvalue 
contributes most to the perturbation variance at t. 

If A is normal and the forcing unitary (FFt = I ) then A , B 1, C 1 commute 
and the stochastic optimals, the EOF's, and the modes of the dynamical system 
coincide. For such a system eigenanalysis of A suffices for understanding the statis­
t ics of the perturbations in the linear limi.t. In contrast, for non-normal systems 
the stochastic optimals, t he EOF's and the modes of the dynamical operator are 
all distinct (Farrell & Ioannou, 1993b; 1995). 

If A is asymptotically stable the system approaches a statistically steady 
state as t increases in \Vhich B 00 and C 00 satisfy the Lyapunov equations : 

AC 00 + C 00A t = - F F t 

A t B 00 + B00 A = - I . 
(18) 

The Lyapunov equations (18) are readily solved for B 00 and C 00 given the asymp­
totically stable operator A and the forcing correlation matrix F . 

4 Conclusions 

The turbulent state of \vall bounded pipe and channel Hows is characterized by 
energetic interactions bet\veen the highly sheared mean How of the boundary layer 
and a subset of coherent disturbances having the form of streamwise streaks and 
associated stream,vise vortices. Because of the very high shears found in the bound­
ary layer, perturbation dynainics may plausibly be anticipated to be dominated 
by the mean straining field which forms the primary interaction between the mean 
flow and the perturbat ions and which is incorporated in the linear dynainical op­
erator. This fundamental linearity of boundary layer turbulence is demonstrated 
by con1parisons performed between simulations with and without inclusion of non­
linear wave interactions (Lee et al., 1990). Despite this evident simplicity of the 
dynamics, straightfonvard calculation of the eigenspectrum of the linearized dy­
namical operator fails to produce structures with the observed form of streanl\vise 
vortices. This failure of correspondence can be understood from the perspective 
of analysis of the nou-normal operator associated with the Linear dynamics as due 
to the fact that while the perturbatious of maximal gro,vth in the linear proble.m 
take the form of streamwise rolls these are not the eigenfunctions of the linearized 
operator, rather they are the optimal structures identified with the first singular 
vectors of the propagator arising from the dynamical operator in an appropriate 
norm a11d with an appropriate t ime interval for development. 
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