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ABSTRACT
The mechanism by which large-scale magnetic Ðelds in stars and galaxies arise remains uncertain, but

it is believed that initially small internally generated or primordial seed Ðelds are ampliÐed and
organized by motions in the conducting Ñuid interiors of these bodies. Methods for analyzing this
process in the weak Ðeld limit are based on the induction equation and fall into two classes : those
involving advection of the magnetic Ðeld as a passive tracer, and those involving calculation of exponen-
tial instabilities. The former is a nonmodal stability analysis, while the latter is essentially modal. In this
work these two methods of analysis are synthesized, making use of recent advances in the theory of
nonnormal system dynamics. An application of this generalized stability analysis to the helical dynamo
model of Lortz is described in which the maximum Ðeld growth over prescribed time intervals and the
perturbation structures producing this growth are identiÐed.
Subject headings : hydrodynamics È instabilities È magnetic Ðelds È MHD

1. INTRODUCTION

It is generally accepted that ampliÐcation of solar and
galactic magnetic Ðelds can be ascribed to magnetohydro-
dynamic (MHD) mechanisms that tap the kinetic energy of
motions of the conductive Ñuid (Zeldovich, Ruzmaikin, &
Sokolo† 1983). The induction equation governing gener-
ation of magnetic Ðeld by Ñuid motion in the weak Ðeld
limit appropriate to solar and early stages of the develop-
ment of Galactic Ðelds is explicitly linear in the magnetic
Ðeld B and can be written in the nondimensional form
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\ $ – (¿ – B)] 1
R

m
$2B , (1)

$ Æ B \ 0 , (2)

where is the advecting velocity Ðeld and is the¿ R
m

\ UL /g
magnetic Reynolds number. In the deÐnition of theR

mmagnetic di†usivity has been used, where is theg \ k0 p k0magnetic permeability of free space and p is the electrical
conductivity of the medium. Characteristic scales for the
spatial extent of the domain, L , and for the velocity of the
mean motion, U, have also been assumed. Boundary condi-
tions on the velocity Ðeld are implicit in its speciÐcation,
while boundary conditions on the magnetic Ðeld are usually
chosen to correspond either to an idealized insulator, in
which case B is continued into a potential Ðeld in the insu-
lating region, or to a perfect conductor, in which case both
the normal component of the magnetic Ðeld and the tangen-
tial component of the current are required to vanish.

A traditional procedure used to study Ðeld ampliÐcation
governed by equation (1) given a domain and a velocity
Ðeld is to assume modal solutions of the form soB \ BŒ ept
that equation (1) becomes an eigenproblem with complex
eigenfrequencies p implying exponential growth of B at the
rate of Re p :

pB \ $ – (¿ – B)] 1
R

m
$2B . (3)

Historically, demonstrating the existence of unstable
eigenmodes was thought important for establishing the
possibility of Ðeld growth in light of the antidynamo result
of Cowling (1934). The eigenproblem approach has served
this purpose with a number of unstable Ñows having been
identiÐed (Gubbins 1973 ; Pekeris, Accad, & Shkoller 1973).
These results demonstrate modal instability of the induc-
tion equation implying asymptotic growth in the limit
t ] O. For examples such as the a2 dynamo (Mo†att 1978)
in which the induction equation has a complete set of
orthogonal eigenfunctions, the eigenspectrum exhausts the
possibilities for perturbation growth so that the boundary
in separating regions of Re p [ 0 from those with ReR

mp \ 0 also separates regions in which all perturbations
decay from regions in which at least one perturbation
grows. Because the induction equation does not in general
have orthogonal eigenvectors, there is the possibility for
perturbation growth even in cases for which all eigenvalues
of equation (2) have Re p \ 0.

Recognition of the importance of the analogous non-
modal perturbation growth processes in Ñuid mechanics
goes back to the work of Kelvin (1887) and Orr (1907) and
has been studied in connection with the formation of
cyclones (Farrell 1982, 1984, 1989) and transition to turbu-
lence (Farrell 1988 ; Butler & Farrell 1992 ; Gustavsson
1991 ; Reddy & Henningson 1993 ; Farrell & Ioannou
1993a ; Trefethen et al. 1993). While the possibility of non-
modal growth in the induction equation was described by
Mo†att (1978) among others, and has been discussed in an
astrophysical context (Childress & Gilbert 1995 ; Howard &
Kulsrud 1997), systematic application of nonmodal analysis
to this equation has not heretofore been presented. We
choose as an example problem the helical dynamo Ñow
(Ruzmaikin, Sokolo†, & Shukurov 1988 ; Gilbert 1988)
because it has been widely studied and many results relating
to its stability are available. We believe the results we
present below are generic to shear Ñows in conducting Ñuids
and that attempting to model more precisely a stellar or
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galactic Ñow, which is in any case uncertain, is unwarranted
at this point. With this assumed Ñow the induction equation
is highly nonnormal, and transient growth of B occurs for
parameter values for which only decaying eigenmodes exist.
We Ðnd that transient perturbation growth increases as

in agreement with intuition, rather than decreas-R
m

] O,
ing with as does max (Re p), the growth rate of the mostR

munstable eigenmode. This increase of transient Ðeld growth
with that is characteristic of nonnormal dynamics isR

mimportant for physical systems such as stellar interiors
where high magnetic Reynolds number O(1010) make the
slow exponential growth predicted by modal analysis
unlikely to be physically relevant.

In addition to application to Ðeld growth in Ñows that
are assumed to be steady, as in our example problem,
analysis of transient nonnormal growth processes is also
applicable to advancing theoretical understanding of mag-
netic Ðelds that emerge in Ñows which are time dependent
and aperiodic, where traditional modal analysis with its
assumption of temporal homogeneity is not directly applic-
able. E†orts to understand Ðeld growth and maintenance in
time-dependent systems has been based on two approaches :
mean Ðeld theory, such as the a dynamo (Krause & Ra� dler
1980 ; Braginskii 1965a, 1965b ; Hoyng 1992), on the one
hand, and stochastic models (Hoyng 1987a, 1987b, 1988 ;
Farrell & Ioannou 1999a), on the other. These approaches
employ a separation between a resolved Ðeld and an unre-
solved Ðeld, while nonmodal analysis can be used to study
Ðeld growth in time-dependent systems without requiring
separation between resolved and unresolved scales (Farrell
& Ioannou 1996b, 1999b).

We Ðrst review the methods to be used in ° 2 and then
apply them to our simple model example in ° 3.

2. GENERALIZED STABILITY ANALYSIS OF

NONNORMAL SYSTEMS

Generalized stability analysis provides methods for
studying transient growth processes occurring in non-
normal dynamical systems (cf. Farrell & Ioannou 1996a).
The system we wish to analyze is the induction equation (1)
together with its boundary conditions, which can be written
in the general dynamical system form

dB
dt

\ AB , (4)

where A is the linear induction operator, which we will
approximate as a Ðnite-dimensional matrix and B is the
column vector of the components of the magnetic Ðeld. For
our purposes the crucial characteristic of this dynamical
system matrix is its degree of normality. A normal matrix,
deÐned as a matrix for which the commutator AAs [ AsA
vanishes, has orthogonal eigenvectors, and its stability is
determined solely by the growth rates of these eigen-
vectors.1 If the commutator at least someAAs[ AsA D 0,
of the eigenvectors of A are not orthogonal and stability
cannot be deduced solely from the spectrum of A. Instead a
complete stability analysis proceeds from the solution of
equation (4) for the propagator U*t,0+ :

B(t)\ U*t,0+ B(0) , (5)

1 Here As denotes the adjoint matrix deÐned for the inner product (É, É)
by (AsB, B\ (B, AB). In the Euclidean norm the adjoint matrix is the
Hermitian transpose of A.

after which calculation of the spectral norm of the propaga-
tor gives the maximum magnetic Ðeld growth atp U*t,0+ ptime t.2

Maximum instantaneous growth rate at any time t is
obtained as the t ] 0 limit of a Taylor expansion of the
propagator. This maximum instantaneous growth rate at
time t is the greatest eigenvalue of the normal operator
(As ] A)/2, where A is the operator at time t. The corre-
sponding eigenfunction is the Ðeld structure of maximum
instantaneous growth rate. In general, for nonnormal A
both the instantaneous growth rate and the corresponding
structure di†er from the most unstable eigenvalue of A and
its corresponding eigenfunction.

Magnetic Ðeld growth at arbitrary time t is determined
by singular value decomposition (SVD) of the propagator :

U*t,0+\ USVs , (6)

in which U and V are unitary and S is diagonal with posi-
tive elements, each equal to growth at time t of the initial
perturbation speciÐed by the corresponding column of V.
The unitary matrix V has column vectors that span the¿

istate space of the perturbations at the initial time, here
taken to be t \ 0. Each of the is mapped with increase in¿

i
,

amplitude into its associated These orthogonalS
ii

u
i
.

column vectors comprising U span the state space at time t.
The analogous eigenanalysis is

U*t,0+\ ESE~1 , (7)

in which E is the matrix of eigenvectors of A arranged in
columns and j is the diagonal matrix with whichj

ii
\ epit,

provides information on the growth rate and structure of
perturbations only in the limit t ] O. It is easily shown
that Re with equality only when E \ U,max

i
S
ii
º max

i
j
iiwhich in turn implies that A in equation (2) is a normal

matrix.
The goal of generalized stability analysis is to determine

the perturbation growth potential for all times, and for this
purpose analysis of the propagator of the dynamical system
as outlined above is necessary for nonnormal systems such
as that in equation (1).

3. GENERALIZED STABILITY ANALYSIS APPLIED TO THE

HELICAL DYNAMO

3.1. Formulation
We will use as an example problem a helical dynamo

(Gilbert 1988 ; Ruzmaikin et al. 1988) with axially sym-
metric velocities in the radial (r), azimuthal (h), and axial (z)
direction :

U
r
\ 0 , Uh \ U0 r)(r) \ U0 re~r2 , U

z
\ U0 e~r2 . (8)

The Ñow is contained in a cylinder with inner radius r1\
0.5 and outer radius The inner cylinder boundary,r2\ 1.

will be assumed bounded by a perfect electrical conduc-r1,tor, while the outer boundary at will be assumedr2bounded either by a perfect conductor or by an insulator.

Magnetic Ðeld perturbations :

B
r
\ BŒ

r
(t, r)eikz`imh , Bh \ BŒ h(t, r)eikz`imh ,

B
z
\ BŒ

z
(t, r)eikz`imh (9)

2 If A is autonomous the propagator can be written explicitly as a
matrix exponential : U*t,0+ \ eAt.
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evolve in time according to the induction equation :

dBŒ
r
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in which appears the di†usion operator in cylindrical polar
coordinates :

L \ 1
r

d
dr
A
r

d
dr
B

[ m2] 1
r2 [ k2 . (13)

The radial and azimuthal magnetic Ðeld equations (10) and
(11) decouple from the axial equation (12) and can be solved
independently. The axial magnetic Ðeld simultaneously
satisÐes equation (12) while maintaining nondivergence of
the magnetic Ðeld :

1
r

d(rB
r
)

dr
] i

m
r

Bh ] ikB
z
\ 0 . (14)

The magnetic Reynolds number, is deÐnedR
m

\ U0 L /g,
in terms of the length scale the velocity scaleL \ r2[ r1,and the magnetic di†usivity where is theU0, g \k0 p, k0magnetic permeability of free space and p is the electrical
conductivity of the material. Time is nondimensionalized by
the advective timescale The di†erential operators areL /U0.discretized to obtain a Ðnite-dimensional dynamical system,
and convergence is veriÐed by doubling resolution [it was
determined in this way that grid points are requiredO(R

m
1@3)

for convergence of the discretized operator].

3.2. Modal Analysis and Asymptotic Stability of the
Induction Operator

Asymptotic stability or instability of the induction equa-
tion is deduced by examining the temporal eigenvalues of
equations (10) and (11). Di†usive coupling between the
radial and azimuthal magnetic Ðeld components supports
modal instability only for a restricted range of wavenum-
bers k, m. For the continuous Ñows considered here this
dynamo has been demonstrated to be slow, i.e., the growth
rate vanishes as with maximum instabilityR

m
] O,

occurring for m\ [k, under which condition it was shown
by Ruzmaikin et al. (1988) that the growth rate decreases
with Reynolds number as

Re p B
1.4
R

m
1@2[ 3.7

R
m
3@4 . (15)

Application of CowlingÏs theorem (Cowling 1934) ensures
that no unstable mode is supported in the physically inter-
esting case of axisymmetric magnetic Ðeld perturbations
(m\ 0). In addition, for axial and azimuthal wavenumbers

FIG. 1.ÈGrowth rate of the most unstable mode as a function of Rey-
nolds number, for m\ 1 and k \ [0.6, [1. The Ñow is conÐned toR

m
,

the region 0.5\ r \ 1, and the boundary conditions are conducting at the
inner wall and insulating at the outer wall. The dashed curve shows the
asymptotically valid prediction (eq. [15]) for the most unstable growth rate
for m\ 1 and k \ [1.

sufficiently far from the condition m\ [k for maximum
instability, the spectrum is also stable for all Reynolds
numbers. The growth rate of the most unstable mode is
shown in Figure 1 for the annular Ñow (eq. [8]) with insulat-
ing boundary conditions at and conducting bound-r2\ 1
ary conditions at for azimuthal wavenumberr1 \ 0.5,
m\ 1 and for both axial wavenumbers k \ [0.6 and
k \ [1 ; in the same Ðgure the asymptotic expression in
equation (15) is plotted, showing that it captures the behav-
ior of the growth rate as The asymptotic expres-R

m
] O.

sion in equation (15) does not apply to axisymmetric
perturbations, which are found to decay as R

m
~1@3.

The magnetic Ðeld associated with the least damped
mode for the case m\ 1, k \ [0.6 at is shown inR

m
\ 104

Figure 2. The magnetic Ðeld of the least damped mode is
concentrated in a boundary layer of thickness asO(R

m
1@3)

expected from Ðeld expulsion arguments (Mo†att 1978).
Nonnormality of the induction operator implies that the

initial magnetic perturbation that optimally excites the least
damped mode is not the least damped mode itself but its
biorthogonal, which is given by the corresponding least
stable mode of the adjoint operator in the inner product
corresponding to the mean magnetic energy density :

E\ 1
k0(r22[ r12)

P
r1

r2
r dr(oBŒ

r
o2] oBŒ h o2] oBŒ

z
o2) . (16)

In Figure 3 the three components of the adjoint mode
corresponding to the least damped mode are plotted from
which it can be seen that this adjoint mode extends
throughout the Ñow rather than being concentrated at
one boundary as was the case for the corresponding mode
in Figure 2. In Figure 4 the time evolution of the energy of
the initial condition consisting of this adjoint mode of the
least damped mode is contrasted with the time evolution
of the energy of the most unstable mode initial condition.
Magnetic Ðeld intensiÐcation through stretching produces
nearly linear growth for a time period AfterO(R

m
1@3).
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FIG. 2.ÈCross section plots of the radial magnetic Ðeld (top panel),B
rthe azimuthal magnetic Ðeld (middle panel), and the axial magnetic ÐeldBh(bottom panel) in the z\ 0 plane for the least stable mode atB

z
R

m
\ 104

with azimuthal and axial wavenumbers m\ 1, k \ [0.6. The magnetic
Ðeld satisÐes boundary conditions appropriate for a conducting inner wall
and an insulating outer wall.

this interval of linear growth the perturbation assumes the
form of the most unstable mode but with much enhanced
amplitude. It can be shown that the energy ampliÐcation
factor achieved in the excitation of the most unstable
mode by its adjoint mode is inversely proportional to the
square of the energy inner product between the mode and
its adjoint mode (Farrell & Ioannou 1996a), which for this
problem is found to increase with Reynolds number as R

m
1@2.

The signiÐcance of the modes of a nonnormal system is
not so much that the least damped mode asymptotically

FIG. 3.ÈRadial magnetic Ðeld (top panel), the azimuthal magneticB
rÐeld (middle panel), and the axial magnetic Ðeld (bottom panel) in theBh B

zz\ 0 plane for the adjoint mode in the energy metric corresponding to the
least stable mode at with aximuthal and axial wavenumbersR

m
\ 104

m\ 1, k \ [0.6. The boundary conditions are conducting at the inner
wall and insulating at the outer wall. This adjoint mode is the initial
perturbation with unit energy that excites optimally the least stable mode.

FIG. 4.ÈComparison of the energy evolution of an initial perturbation
in the form of the least stable mode and its adjoint mode at R

m
\ 104,

m\ 1, and B\ [0.6. The adjoint mode can be shown to optimally excite
the mode. After a period of transient growth the adjoint mode initial
condition assumes the form of the mode (at t B 120 in this graph). The
asymptotic ratio of the energies of the least damped mode for these con-
trasting initial conditions is approximately 115.

dominates the perturbation structure at large time, but
rather that the modes serve as repositories for energy con-
verted through kinematic deformation from kinetic to mag-
netic form. We have seen above an example of this process
in the optimal excitation of the least damped mode by its
adjoint. A similar situation is shown in Figure 5 for the
unstable case with m\ 1 and k \ [1 and for andR

m
\ 103

In this Ðgure the energy growth of the fastestR
m

\ 105.
growing mode initial condition (dashed lines) is shown to
always underestimate the optimal growth. It is clear that
even though the mode dominates the structure after a time

FIG. 5.ÈModal energy growth (dashed lines) compared with optimal
energy growth as a function of optimizing time for magnetic perturbations
with azimuthal and axial wavenumbers m\ 1 and k \ [1 and for mag-
netic Reynolds numbers andR

m
\ 103 R

m
\ 105.
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FIG. 6a FIG. 6b

FIG. 6.È(a) Radial magnetic Ðeld (top panel), azimuthal magnetic Ðeld (middle panel), and axial magnetic Ðeld (bottom panel) in the z\ 0 plane forB
r

Bh B
zthe inviscid optimal perturbation that achieves the greatest energy growth at t \ 50. Shown here is the optimal perturbation at t \ 0. The dynamics are

inviscid, and the azimuthal and axial wavenumbers are m\ 1, k \ [0.6. (b) The inviscid optimal perturbation evolved forward to the time of optimization
t \ 50. The energy has grown by a factor of 379.

other initial conditions result in far more e†ectiveO(R
m
1@3),

excitation of the mode than does an initial condition con-
sisting of the mode itself.

3.3. Initial Magnetic Field Growth
The initial Ðeld growth process for sufficiently high isR

mwell described by the inviscid problem obtained from the
limit of the induction equations (10), (11), and (12),R

m
] O

which can be integrated immediately to yield the magnetic
Ðeld in terms of its initial state :

BŒ
r
(r, t)\ e~Lad(r)tBŒ

r
(r, 0) , (17)

BŒ h(r, t)\ e~Lad(r)tBŒ h(r, 0) ] r
d)
dr

te~Lad(r)tBŒ
r
(r, 0) , (18)

BŒ
z
(r, t)\ e~Lad(r)tBŒ

z
(r, 0) ] dU

z
dr

te~Lad(r)tBŒ
r
(r, 0) , (19)

with the advection operator. TheL
ad

(r)\ i(m)] kU
z
)

linear growth of and under shearing by the back-BŒ h BŒ
zground Ñow as revealed by equations (18) and (19) implies

quadratic magnetic energy growth. This Ðeld stretching
process can be seen in Figure 6a, where the t \ 50 optimal
initial perturbation (the initial condition that maximizes
magnetic energy growth at time t \ 50) is seen to be
stretched to ever Ðner scales as time proceeds (cf. Fig. 6b). In
the inviscid case this stretching continues unopposed,
producing ever Ðner magnetic Ðeld structure ; in contrast,
for Ñows with any Ðnite value of magnetic Reynolds
number, an initial Ðeld asymptotically approaches the Ðxed
structure of the least damped mode.

Comparing the viscous solutions of equations (10)È(12)
with the inviscid solutions in equations (17)È(19), we Ðnd
that the inviscid solution remains valid until the integrated
e†ect of di†usion becomes O(1) at in agreementt \O(R

m
1@3),

with ParkerÏs (1963) estimate. This is a consequence of di†u-

sion in shearing Ñows leading to decay of the Ðeld at an
exponential rate which increases as t3 (Tung 1983 ; Farrell
& Ioannou 1993a ; refer to the Appendix for details).

3.4. Optimal Field Growth
In order to enforce nondivergence of the magnetic Ðeld in

the initial-value problem, we follow Lortz (1968) in express-
ing the Ðeld in helical coordinates using two scalar func-
tions and with t\ mh ] kz. Inf \ f ü (r, t)eit F\ FŒ (r, t)eit
terms of these functions the Ðeld is

B \ f h ] h – $F , (20)

with the helical vector h deÐned as

h \ r
q

$r – $t , (21)

and q \ m2] k2r2. The Ðeld components are

BŒ
r
\ [i

FŒ
r

, (22)

BŒ h \ [kr
q

f ü] m
q

dFŒ
dr

, (23)

BŒ
z
\m

q
f ü] kr

q
dFŒ
dr

, (24)

for which it can be easily veriÐed that $ Æ B \ 0.
The evolution of the magnetic Ðeld is obtained from inte-

gration of the dynamical system:

d
dt
(
t
:

FŒ
f ü
)
t
;

\ T
(
t
:

FŒ
f ü
)
t
;

, (25)
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FIG. 7a FIG. 7b

FIG. 7.ÈOptimal energy growth as a function of optimizing time for magnetic perturbations with azimuthal and axial wavenumbers m\ 1 and k \ [0.6
for Reynolds numbers as well as for the inviscid case. (b) Optimal energy growth as a function of optimizing time forR

m
\ 103, R

m
\ 104, R

m
\ 105,

axisymmetric magnetic perturbations with azimuthal and axial wavenumbers m\ 0 and k \ [1 for Reynolds numbers asR
m

\ 103, R
m

\ 104, R
m

\ 105
well as for the inviscid case.

with dynamical operator

T \(
t
:

A B
C D

)
t
;

, (26)

where

A\ [ L ad] 1
R

m

A
L ] 1

r2[ 2k2r
q

d
dr
B

,

B\ [ 2
R

m

mk
q

,

C\ [ i
m
r

dU
z

dr
] ikr

d)
dr

] 1
R

m

C
[ 2mk

r2 ]
A2mk

rq
[ 4mk3r

q
B d

dr
] 2mk

q
d2
dr2
D

,

D\ [ L ad] 1
R

m

Am2[ 3k2r2
r2q ] 4k4r2

q2 [ 2k2r
q

d
dr

] L
B

,

(27)

in which is the advection operator and LL ad \ i(m) ] kU
z
)

is the di†usion operator (eq. [13]).
The boundary conditions are

FŒ \ 0 ,
df ü

dr
\ 0 (28)

at a conducting boundary, while at the insulating boundary
at r \ 1,

f ü\ 0 ,
dFŒ
dr

\ m2] k2
o k o

K
m
( o k o )

K
m
@ ( o k o )

FŒ , (29)

with the modiÐed Bessel function and its derivative.K
m

K
m
@

Because we are concerned with the growth of magnetic
Ðeld energy, it is advantageous to deÐne a new generalized
variable :

z\ M1@2(t
:

FŒ
f ü
)
t
;

, (30)

where M is the positive deÐnite Hermitian matrix deÐning
the inner product of the magnetic Ðeld energy density,

E\ zsz\(
t
:

FŒ
f ü
)
t
;
sM(

t
:

FŒ
f ü
)
t
;

. (31)

This energy metric is given by

M \
2

k0(r22[ r12)

(

t

:

t

t

1

r
]
Cr
q

d
dr
Ds d

dr
0

0
r
q

)

t

;

t

t

, (32)

where [(r/q) d/dr]s denotes the operator adjoint to (r/q) d/dr
in the inner product : with appropriate(FŒ , FŒ )\ /

r1
r2 dr FŒ sFŒ

boundary conditions imposed on FŒ .
The optimal energy growth that can be attained at t is

given by the square of the spectral norm of the propagator,
pexp (M1@2TM~1@2t)p, and the perturbation that produces
this optimal growth, which we refer to as the optimal per-
turbation, can be found from an SVD decomposition of the
propagator, as described in ° 2. We have seen in Figure 5
the optimal growth as a function of optimizing time
obtained for azimuthal wavenumber m\ 1 and axial wave-
number k \ [1 and Reynolds number 105, forR

m
\ 103,

which parameters the induction equation is exponentially
unstable. The growth revealed in Figure 5 substantially
exceeds the exponential growth of the most unstable mode
initial condition. By contrast, in Figure 7a the optimal
growth is shown as a function of optimizing time for m\ 1
and k \ [0.6 and 104, 105, all of which areR

m
\ 103,

asymptotically stable cases. The optimal growth for the
inviscid case, which is also shown in Figure 7a reveals the
expected quadratic energy growth with time and provides



No. 2, 1999 OPTIMAL EXCITATION OF MAGNETIC FIELDS 1085

FIG. 8a FIG. 8b

FIG. 8c FIG. 8d

FIG. 8.ÈRadial magnetic Ðeld (top panel), azimuthal magnetic Ðeld (middle panel) and axial magnetic Ðeld (bottom panel) in the z\ 0 plane for theB
r

Bh B
zoptimal perturbation at Reynolds number that achieves the greatest energy growth at t \ 50. Shown here is the optimal perturbation at t \ 0. TheR

m
\ 104

azimuthal and axial wavenumbers are m\ 1, k \ [0.6. (b) Optimal perturbation evolved forward to the time of optimization t \ 50. The energy has grown
by a factor of 142. (c) Optimal perturbation evolved forward to time t \ 100. E\ 21.71. (d) Optimal perturbation evolved forward to time t \ 200. The
perturbation has assumed modal form. E\ 2.132.

an upper bound for perturbation growth for all magnetic
Reynolds numbers. Examination of Figure 7 veriÐes that for

the energy growth of stable and unstable casest \O(R
m
1@3)

are nearly identical, in accord with the arguments given in
° 3.3.

The axisymmetric case is especially interesting physically,
as observed magnetic Ðelds are approximately axially sym-
metric. CowlingÏs theorem precludes the existence of expo-
nentially growing modes in an axisymmetric velocity Ðeld
so that nonmodal growth may be particularly relevant in
explaining the existence of axial dipole Ðelds. The optimal
growth for m\ 0 and k \ [1 plotted as a function of opti-
mizing time in Figure 7b shows robust transient growth
which becomes unbounded as R

m
] O.

The temporal evolution of the perturbation producing
optimal growth at t \ 50 for m\ 1, k \ [0.6 is shown in
Figures 8a, 8b, 8c, and 8d. At Ðrst the evolution parallels
that of the inviscid case (cf. Fig. 6b), then di†usive e†ects
become apparent by t \ 100, and Ðnally the structure

assumes its asymptotic form as the least stable eigenmode
(cf. Fig. 8d and Fig. 2).

In asymptotically stable nonnormal systems a character-
istic measure of stability is the maximum possible energy
growth. This maximum energy growth for the problem at
hand is a function of wavenumber and The time ofR

m
.

maximum growth scales as (refer to Fig. 9), and theR
m
1@3

maximum magnetic energy scales as This is veriÐed inR
m
2@3.

Figure 10, in which the maximum magnetic energy growth
is plotted as a function of Reynolds number both for
axisymmetric and for nonaxisymmetric perturbations.

The perturbation resulting in the greatest instantaneous
energy growth rate can be found as discussed earlier from
eigenanalysis of [(M1@2TM~1@2)s ] M1@2TM~1@2]/2, from
which the critical Reynolds number beyond which thereR

m
c

can be no growth can be determined. For the considered
Ñow and for axisymmetric perturbations and axial wave-
number k \ [1 it is found that there cannot be any pertur-
bation growth for approximately For higherR

m
\ 200.
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FIG. 9.ÈTime at which the global optimal energy is attained as a func-
tion of for azimuthal and axial wavenumbers m\ 1, k \ [0.6 andR

mm\ 0, k \ [1. The dashed lines correspond to R
m
1@3.

Reynolds number the instantaneous growth rate quickly
approaches asympotically the inviscid maximum instanta-
neous growth rate, which is found to be 0.13.

4. DISCUSSION AND CONCLUSIONS

Stellar and galactic bodies commonly contain magnetic
Ðelds embedded in moving conducting Ñuids. In the physi-
cal circumstances addressed in this work these magnetic
Ðelds are sufficiently weak that Lorentz forces can be
ignored in the momentum equation of the Ñuid motions,
and in these cases the induction equation that describes the
evolution of the magnetic Ðeld is explicitly linear. However,
while linear, the induction equation is generally nonnormal,
owing to the straining Ðeld of the moving conductor. These
Ñuid motions organize and amplify the magnetic Ðelds in
the conducting Ñuid, producing coherent large-scale Ðeld
structures. A traditional method for analyzing this process
of growth and emergence of structure in conducting Ñuids is
modal stability analysis, which has been extensively applied
to the induction equation in connection with study of the
initiation of a self-sustained dynamo. However, magnetic
Ðeld growth is not conÐned to Ðelds of modal form, and it
has been previously noted that transient Ðeld growth
arising from nonmodal processes must be included in a
comprehensive stability analysis of the induction equation.

In this work a systematic analysis of nonmodal Ðeld
growth has been presented. This generalized stability
analysis allows identiÐcation of optimally growing Ðeld
structures and places constructive limits on Ðeld growth.
The generalized stability analysis presented here subsumes
modal stability analysis, and unlike modal stability analysis
can be extended to address also the stability properties of

FIG. 10.ÈGlobal optimal energy growth for azimuthal and axial wave-
numbers m\ 1, k \ [0.6 and m\ 0, k \ [1 as a function of TheR

m
.

dashed lines correspond to R
m
2@3.

aperiodic nonautonomous operators (Farrell & Ioannou
1996b).

The helical dynamo of Lortz was chosen as a canonical
example to illustrate application of generalized stability
analysis to the induction equation. Transient growth in
magnetic Ðeld increasing with magnetic Reynolds number is
found over a large region in parameter space. This contrasts
with the results of a modal stability analysis of the same
model problem, which show instability conÐned to a small
region in parameter space and modal growth rates decreas-
ing with indicative of a slow dynamo. PerturbationsR

m
,

producing optimal energy growth at a given time have been
identiÐed for this problem, and in addition perturbations
optimally exciting the modes have been identiÐed for both
growing and decaying modes. The structures producing
optimal instantaneous growth provide a strict bound on the
rate of increase of the magnetic Ðeld that can be extended to
the time-dependent problem. For sufficiently high theR

mstructure producing maximum excitation of a given mode
grows at Ðrst by stretching and then inherits the large-scale
structure of the mode even in cases for which the mode itself
is stable.

These results demonstrate a mechanism for emergence of
large-scale Ðeld structure from small perturbations in pri-
mordial galactic Ðelds. By extension, continual forcing by
internally generated or externally imposed Ðelds combined
with transient growth can sustain Ðeld structures the
analysis of which involves stochastically forcing the under-
lying nonnormal dynamo system (Farrell & Ioannou
1999a).

This work was supported in part by NSF ATM-9216813.

APPENDIX A

MAGNETIC FIELD GROWTH IN CONSTANT SHEAR

Consider a local approximation of the azimuthal velocity by a Cartesian planar Ñow with a constant shear u6 (y)\ ay, u6
being in the streamwise direction x with unit vector i, and y being the cross-stream direction with unit vector j. In such a
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simpliÐed situation the nondimensional equation for the vector potential A, which is related to the magnetic Ðeld by
B \ $ – (Ak), takes the form

LA
Lt

] ay
LA
Lx

\ 1
R

m
+2A . (A1)

It is easy to show that initially sinusoidal perturbations A(x, y, will evolve at time t to0)\ A0 ei(kx`ly)

A(x, y, t)\ A0 exp
G
ik(x [ ayt) ] ily[ 1

R
m

P
0

t
dq[k2] (l [ akq)2]

H
, (A2)

showing that the e†ective di†usion coefficient in the presence of shear is

D\ 1
t
P
0

t
dq

k2] (l [ akq)2
R

m
. (A3)

Consequently, the di†usive e†ects become important at a time with the constant being given by c\ (3/a2k2)1@3.cR
m
1@3

The energy growth of these plane-wave initial perturbations is easily found to be

E(t)
E(0)

\ 1 ] (m[ at)2
1 ] m2 e~2Dt , (A4)

where m\ l/k is the slope of the lines of constant phase of the plane wave. Consequently the instantaneous energy growth
rate, g, is given by

g \ [2am
1 ] m2[ 2k2

R
m

(1] m2) , (A5)

which is maximized by a plane wave that satisÐes

m2\ 1 ] 2k2m
aR

m
(1] m2)2 . (A6)

As the Reynolds number increases, a maximum instantaneous growth of is achieved for plane waves witho a o[ 4k2/R
mi.e., as the perturbation is aligned with the direction of maximum stretching, which for am\[sgn a ] 4k2/(aR

m
), R

m
] O

constant shear Ñow lies at 45¡ from the direction of the Ñow. The maximum instantaneous magnetic Ðeld stretching of Ðelds
aligned in this direction produces maximum instantaneous growth rate of the magnetic Ðeld.3 As the magnetic Reynolds
number decreases, the greatest initial growth rate also decreases until the critical Reynolds number forR

m
c \ 16J3 k2/(9 o a o )

which no growth is possible is reached. The plane wave associated with this critical Reynolds number lies at 60¡ from the
direction of Ñow. For no growth is possible.R

m
\R

m
c

3 This result contrasts with the transient energy growth of stream function perturbations in two-dimensional constant shear Ñow in which, according to
inviscid dynamics, energy is given by the reciprocal of eq. (A4) and the stream function with maximum instantaneous growth rate has wavenumber
m\ sgn a, i.e., in the direction of maximum compression, which lies at 135¡ from the direction of the Ñow.
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