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ABSTRACT 

Recently, a new theoretical and conceptual model of quasigeostrophic turbulence has been advanced_ in wh!ch 
eddy variance is regarded as being maintained by transient growth of perturbations arising from sources 11lcludmg 
the nonlinear interactions among the eddies, but crucially without a direct contribution of unstable modal growth 
to the maintenance of variance. This theory is based on the finding that stochastic forcing of the subcritical 
atmospheric flow supports variance arising from induced transfer of energy from the backgroun~ flow to the 
disturbance field that substantially exceeds the variance expected from the decay rate of the associated normal 
modes in an equivalent normal system. Herein the authors prove that such amplification of variance is a general 
property of the stochastic dynamics of systems governed by nonnormal evolution operators _and ~at c_on~eq_uently 
the response of the atmosphere to unbiased forcing is always underestimated when cons1deratton ts limited to 
the response of the system's individual normal modes to stochastic excitation. 

1. Introduction 

A subset of perturbations in a baroclinic, barotropic, 
or mixed jet can exhibit substantial transient growth 
even when all perturbations decay with time in the 
asymptotic limit. The meteorological applications of 
this phenomenon have included development of a the­
ory for the formation of cyclones (Farrell 1984, 1989; 
Montgomery and Farrell 1992) and for the growth of 
errors in numerical simulations (Lacarra and Talagrand 
1988; Farrell 1990; Molteni and Palmer 1993; Mureau 
et al. 1993; see also Trefethen 1992). 

It has sometimes been argued that these optimally 
growing perturbations are exceptional in the sense that 
in the absence of asymptotically growing modes tran­
sient growth could not sustain variance levels charac­
teristic of the midlatitude atmosphere unless the initial 
conditions were biased to favor the optimally growing 
subset. The well-known result of constancy of pertur­
bation energy for an initially isotropic set of perturba­
tions imposed on unbounded constant shear flow is of­
ten cited as supporting this argument (Kraichnan 1976; 
Shepherd 1985; Farrell and loannou 1993a). It is plau­
sible to conclude from this example that variance levels 
characteristic of the midlatitude atmosphere or of tur­
bulent laboratory flows require at least the sporadic in­
tercession of exponential instabilities, which through 
equilibration and nonlinear spectral scattering maintain 
the observed levels of variance (note that the mean 
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level of perturbation kinetic energy in the midlatitude 
atmosphere is ~ 10% of the mean kinetic energy, while 
in turbulent laboratory flows the corresponding vari­
ance is ~ 1 % ) . 

However, it has been recently found in physically 
motivated model studies of the midlatitude jet and lab­
oratory channel flows (Farrell and loannou 1993b,c, 
1994a,b) that unbiased stochastic forcing quite gener­
ally leads to maintained levels of variance that greatly 
exceed the variance levels resulting ·from the balance 
between energy accumulated from stochastic forcing 
and energy dissipated by the normal modes in isolation 
as would be anticipated from classical stochastic theory 
of normal dynamical systems (Wang and Uhlenbeck 
1945). These examples reveal that extraction of energy 
from the background shear is a robust means of am­
plifying variance and strongly suggest that transient 
growth, which is a necessary consequence of the non­
normal evolution operator of the linearized dynamics, 
significantly contributes to maintaining the atmo­
spheric variance in apparent contradiction to the earlier 
results obtained for unbounded constant shear flow. 

Here we provide a resolution of this apparent con­
tradiction. It is first shown that in nonnormal dynamical 
systems like the midlatitude atmosphere the maximum 
perturbation energy amplification over a given time in­
terval results from a perturbation that is not of modal 
form and that this amplification exceeds that of the 
maximally growing mode over the same time interval. 
We also show that the minimum perturbation energy 
amplification is smaller than the amplification due to 
the most damped normal mode. From these two results 
alone it is not immediately obvious that any net energy 
gain can be achieved when all perturbations are excited 
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in an unbiased fashion. However, for nonnormal dy­
namical systems this turns out to be necessarily the 
case, and a proof is provided that the mean perturbation 
energy growth at any time always exceeds the mean of 
the energy growth of the modes taken in isolation. 
Moreover, in the case of a stable modal spectrum sta­
tionary statistics exist, and it can be further shown that 
the maintained variance in nonnormal dynamical sys­
tems always exceeds the variance accumulated from 
the forcing by the individual modes in isolation, pro­
vided that the physical system can be approximated by 
a finite dimensional evolution operator. In addition, it 
is demonstrated that these are general properties of the 
linearized dynamics of systems governed by nonnor-
mal operators. · 

2. Formulation and proof of the main result 

A stochastically forced linear dynamical system can 
be represented in the general form 

d.x; dt = cAijxj + 'f/;jf.j, (1) 

in which x is a complex state vector; .A is the generally 
nonnormal operator of the linearized dynamical sys­
tem; and E is a Gaussian white-noise forcing, which is 
spatially 8 correlated, with the spatial distribution of 
the forcings imposed by a unitary 'fl, by which all avail­
able spatial scales are equally excited. Note that with 
unitary forcing the specific distribution of the forcings, 
given by the columns of 'fl, does not affect the resulting 
statistics (Farrell and Ioannou l 993c). Generalized ve­
locity coordinates have been chosen to represent the 
state vector so that the steady-state energy takes the 
simple form of the Euclidean norm of the state vector: 
(£"') = limi-.oo(xt(t}x(t)), which exists for asymptot­
ically stable systems .A, for which necessarily all ei­
genvalues have negative real parts [we denote ensem­
ble averaging by ( ) , complex conjugation by *, and 
hermitian conjugation by t]. When the differential op­
erator in ( 1 ) is approximated, as in all numerical sim­
ulations of the atmosphere, .A is represented by a finite 
dimensional matrix. We note that for shear flows the 
governing linear operator .A is nonnormal (i.e., ._At .A 
* ..A..At)with the consequence that the eigenvectors of 
the operator that correspond to distinct eigenvalues are 
not orthogonal. 

It can be shown that for an asymptotically stable .A 
the maintained variance is given by (Farrell and Ioan­
nou 1993b) 

(£"') = trace ( L"' e.AI~ e-A dt) 

= trace(L"' e.Ale-A'dt), (2) 

which is independent of the spatial forcing distribution 

since 'YlfJt = /,where I is the identity matrix. Note that 
E' = x t e Jt 'e .Al x gives the energy growth at time t for 
an initial perturbation x with unit energy, and trace (E') 
gives the mean growth at time t when all perturbations 
are equally excited. 

We will prove that under the above conditions, 

N 1 
(E"') ~ L -(A·+ A*)' 

1=l I l 

(3) 

where A.; are the eigenvalues of .A, and N is the dimen­
sion of the system. The sum on the rhs of ( 3) is the 
variance that would result if the operator .A were a nor­
mal operator with the same spectrum as .A, in which 
case the maintained variance is welr known to be the 
sum of the inverse of twice the decay rates of the in­
dividual modes (Wang and Uhlenbeck 1945). 

We first establish that the maximum energy increase 
that can be attained by any perturbation over a given 
time t is greater than that attained by the fastest growing 
mode and that the minimum energy attained by any 
perturbation is less than that attained by the least grow­
ing mode; that is, 

min · ,,;;; e<1';H,Jr,,;;; max , 
(

xte-A 1e.A1x) • (xte-A 1e.A1x) 
xtx xtx 

(4) 

where A.; is any eigenvalue of .A and the extrema are 
taken over all x. Consider the singular value decom­
position e.At = usvt, where u and v are unitary and 
S diagonal with real nonnegative entries called singular 
values. Define "B = vt e.A'V so that "Bt6/J = 5 2

• The max­
imum energy attained by any perturbation is the great­
est singular value of 5 2

, while the minimum energy 
attained is given by the least singular value of 5 2

• Note 
also that 613 is similar to e .Ar and therefore 613 has the same 
eigenvalues as e.A'. Consider the Rayleigh quotient, 

xt613t613x 
§l(x) = t , 

xx 
(5) 

which satisfies 

min(S2 ),,;;; fl(x),,;;; max(52 ). (6) 

Clearly, for any eigenvector X; of 613 with eigenvalue A.; 
we have §l(x;) = e (1';H;'>r, and consequently, 

min ,,;;; e (1';+1', >r ,,;;; max , 
(

xtedt'e.Alx) • (xtedt'e.Alx) 
xtx xtx 

(7) 

which establishes the inequality. 
Remarkably, in addition to (7) a further constraint 

is always true: at each instant in time the mean energy 
growth, when all perturbations are equally excited, ex­
ceeds the corresponding mean growth of the normal 
modes of .A taken in isolation. Specifically, we will 
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prove that for any finite dimensional nonnormal oper­
ator .A, 

N 

trace(e.A're.At') ~ L, e<A;+Ailr, (8) 
j=l 

and equality holds if and only if the operator is normal, 
which would require the absence of barotropic and 
baroclinic shear for a zonal atmospheric jet. 

In order to prove ( 8 ) consider the Schur decompo­
sition of e.A' (Golub and Van Loan 1989): 

e.A't = U(D + T)Ut, (9) 

where U is unitary and D is diagonal with entries eV, 
with A; the eigenvalues of .A, and T is an upper trian­
gular matrix with zero elements along the diagonal. 
Since trace (DTt) = 0, we obtain 

trace(e.A're.At') = trace(DDt + ITt) ~ trace(DDt) 
N 

= L e (A;+Aj)r' (10) 
i=I 

which establishes inequality ( 8). Only when .A is nor­
mal does T = 0 and equality hold. 

Integrating (10) over time yields the desired in­
equality for the maintained variance: 

trace(f"' e.A'te.At'dt) ~ L 1 * , ( 11) 
o i= 1 -(A;+A;) 

with equality only when .A is normal. This result is a 
property of the nonnormality of the operator, and it 
holds regardless of whether there are perturbations that 
lead to initial growth: it holds even when all pertur­
bations initially decay, that is, when all the eigenvalues 
of .A + .At are negative. 

Alternatively, we can proceed in the frequency do­
main (Farrell and Ioannou 1993b, 1994a) using the fact 
that the ensemble average energy is given as an integral 
over real frequencies by 

1 J"' (E"') = 
2

7r _
00 

F(w)dw, (12) 

with the individual frequency response 

F(w) = trace["Rt(w)"R(w)] (13) 

expressed in terms of the resolvent of the operator .A: 

(14) 

with /J the identity. The eigenvalues of the resolvent are 
( iw - A; ) - i , and arguments similar to those that led to 
( 8) show that 

N 1 
trace["Rt(w)"R(w)] ~ ;~ liw _A; 12 , (15) 

with equality only when .A is normal. This inequality 
has the important implication that the frequency re-

sponse of a nonnormal operator would always be un­
derestimated if it were simply characterized as a sum­
mation of the contributions from the poles of the re­
solvent as would be the case if the operator were 
normal [ for an illuminating discussion cf. Trefethen et 
al. ( 1993) and Reddy and Henningson ( 1993)]. In the 
atmosphere this implies, for instance, that the excitation 
of quasi-stationary perturbations is inevitably under­
estimated in atmospheric models in which the sources 
of nonnormality of the operator are ignored (i.e., mod­
els that do not include the baroclinic or barotropic shear 
or the departure from zonality of the background flow). 
Integration of ( 15) over all frequencies again gives in­
equality ( 11 ) . 

3. Conclusions 

Because of the nonnormality of the linear dynamical 
operator governing the evolution of perturbations on a 
spatially varying atmospheric basic state, the maximum 
perturbation growth at any finite time exceeds the 
growth due to the maximally growing normal mode. In 
addition, the mean perturbation growth when all per­
turbations are equally excited always exceeds the cor­
responding mean growth of the modes taken in isola­
tion. It follows that studies restricted to the growth of 
individual normal modes of the atmosphere lead nec­
essarily to an underestimate of the instability of the 
atmosphere. Further, the maintained variance in the 
necessarily nonnormal atmospheric flow will always be 
underestimated by the variance maintained in an other­
wise equivalent normal system. 

We have shown this result for the case of finite di­
mensional operators, which covers all practical repre­
sentations of atmospheric dynamics. Although the 
spectrum of the analytic operator governing the linear 
evolution of diffusively damped perturbations on a 
background flow in a bounded domain can be shown 
to consist of discrete points (DiPrima and Habetler 
1969; Herron 1980), it is customary to idealize the dis­
sipation of geophysical flows and disregard the zonal 
asymmetries of the background flow with the result that 
part of the spectrum is represented by a continuum. For 
example, the case of unbounded constant shear flow, 
for which analytic solutions exist, has often been in­
vestigated. In this flow there is no discrete spectrum, 
and isotropic initial perturbations in the inviscid case 
and the case of Rayleigh damping lead to no net energy 
amplification in the presence of shear compared to that 
found without shear (in which case the operator is nor­
mal), while higher-order dissipations lead only to mod­
est increase with shear of the variance over that which 
would be maintained in the absence of shear ( Kraich­
nan 1976; Shepherd 1985; Farrell and Ioannou 1993a). 
In the last of these references it was shown that in order 
to achieve a substantial increase of variance with shear 
when the spectrum is a continuum, it is necessary to 
model the role of modes as persistent structures. When 
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this depository role was modeled as an occlusion a sec­
ular increase of variance with shear was found. While 
no natural persistent structures exist in two-dimen­
sional unbounded constant shear flows there are per­
sistent perturbations in shear flows in the three-dimen­
sional planetary boundary layer, and for that case it can 
be shown that a subset of initial disturbances will 
evolve into slowly dissipating streamwise rolls, allow­
ing a large accumulation of maintained variance com­
pared to that maintained in the case with no shear (But­
ler and Farrell 1992; Reddy and Henningson 1993; Tre­
fethen et al. 1993; Farrell and Ioannou 1993d,e, 
1994a). Analogously, in idealized atmospheric flows a 
small number of modal solutions, albeit decaying, act 
as depository of the nonnormal growth of the contin­
uum spectrum leading to large variances under sto­
chastic excitation (Farrell and loannou 1993b). 

The dominance of nonnormality of the linearized 
evolution operator in atmospheric dynamics makes it 
possible to accurately model the observed atmo­
spheric variance and obtain the atmospheric eddy sta­
tistics by stochastic forcing of the linearized dynam­
ical operator associated with the atmospheric flow 
(Farrell and Ioannou 1994b,c). These results suggest 
a model for turbulence in strongly maintained shear 
flows like the midlatitude atmospheric jet, or pres­
sure-driven laboratory channel flows, in which the 
turbulent state is maintained by stochastic forcing of 
the background flow arising from nonlinear scatter­
ing of eddy energy perhaps augmented by other per­
turbation sources but in any case not dependent upon 
continual excitation from exponential instabilities. 
For this theory to be valid the nonmodal growth must 
be sufficiently large to allow possibly inefficient non­
linear scattering to provide adequate excitation for 
self-maintenance of the stochastic forcing (Farrell 
and Ioannou l 993c). 

In this work it has been shown that an amplifica­
tion inevitably results from nonnormal dynamics. 
Whether this amplification self-consistently supports 
the observed variance is the subject of continued 
study. 
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