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ABSTRACT

Minimizing forecast error requires accurately specifying the initial state from which the forecast is made by
optimally using available observing resources to obtain the most accurate possible analysis. The Kalman filter
accomplishes this for a wide class of linear systems, and experience shows that the extended Kalman filter also
performs well in nonlinear systems. Unfortunately, the Kalman filter and the extended Kalman filter require
computation of the time-dependent error covariance matrix, which presents a daunting computational burden.
However, the dynamically relevant dimension of the forecast error system is generally far smaller than the full
state dimension of the forecast model, which suggests the use of reduced-order error models to obtain near-
optimal state estimators. A method is described and illustrated for implementing a Kalman filter on a reduced-
order approximation of the forecast error system. This reduced-order system is obtained by balanced truncation
of the Hankel operator representation of the full error system and is used to construct a reduced-order Kalman
filter for the purpose of state identification in a time-dependent quasigeostrophic storm track model. The accuracy
of the state identification by the reduced-order Kalman filter is assessed by comparison to the true state, to the
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state estimate obtained by the full Kalman filter, and to the state estimate obtained by direct insertion.

1. Introduction

An important component of forecast error is error in
the analysis of the initial state from which the forecast
is made. Analysis error can be reduced by taking more
observations, by taking more accurate observations, by
taking observations at locations chosen to better con-
strain the forecast, and by extracting more information
from the observations that are available. The last of
these, obtaining the maximum amount of information
from observations, is attractive because it makes exist-
ing observations more valuable and because, at |east for
linear systems, there is a solution to the problem of
extracting the maximum information from a given set
of observations: under appropriate assumptions the
problem of extracting the maximum amount of infor-
mation from a set of observations of alinear systemin
order to minimize the uncertainty in the state estimate
is solved by the Kalman filter (KF; Kalman 1960; Ghil
and Malanotte-Rizzoli 1991; Wunch 1996; Ide et al.
1997; Lermusiaux and Robinson 1999). Moreover, ap-
plication of the Kalman filter to the local tangent error

Corresponding author address: Dr. Brian F Farrell, Division of
Engineering and Applied Sciences, Harvard University, Oxford St.,
Mail Area H0162, Cambridge, MA 02138.

E-mail: farrell @deas.harvard.edu

© 2001 American Meteorological Society

equations of a nonlinear system provides a first-order
approximation to the optimal data assimilation method,
which is valid in the limit of sufficiently small errors.
This nonlinear extension of the KF is referred to as the
extended Kalman filter (EKF; Ghil et al. 1981; Miller
et al. 1994; Ide and Ghil 1997; Ghil 1997).

Unfortunately, the Kalman filter and the extended
Kaman filter require statistical description of the fore-
cast error in the form of the error covariance and ob-
taining the required error covariance involves integrat-
ing a system with dimension equal to the square of the
dimension of the forecast system. Direct integration of
a system of such high dimension is not feasible. At-
tempts to circumvent this difficulty (see review of Ghil
1997) haveinvolved various approximationsto the error
covariance (Bishop et a. 2001; Tippett et al. 2000) and
approximate integration methods (Evensen 1994; Dee
1995; Fukumori and Malanotte-Rizzoli 1995; Cohn and
Todling 1996; Verlaan and Heemink 1997; Houtekamer
and Mitchell 1998).

While the formal dimension of the forecast error sys-
tem obtained by linearizing the forecast model about a
base trgjectory is the same as that of the forecast system
itself, there are reasons to believe that the effective di-
mension is far lower. The trajectory of the system state
in a high-dimensional dynamical system typically lies
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Fic. 1. Redlizations of the time-dependent velocity U(z, t) = 0.2
+ z + u(z t), where u(z, t) is given by (31). The random functions
f;(t) are chosen with zero mean and standard deviation 0.5. The bold
line is the mean wind, U(z) = 0.2 + z

on a small dimensiona subspace of the entire phase
space. In chaotic systems all initial conditions approach
this attractor, which can be embedded in a space of
dimension at most 2d + 1, where d is the attractor
dimension. An estimate of the attractor dimension can
be made from the the number of positive Lyapunov
exponents [the Kaplan—Yorke dimension; Kaplan and
Yorke (1979)] but in any case the attractor dimension
is bounded above by the number of Lyapunov exponents
associated with positive volume growth along the sys-
tem trajectory in phase space (lllyashenko 1983). While
this is useful conceptually for bounding the dimension
of the embedding space, identifying the subspace itself
is more difficult in the case of nonlinear and time-de-
pendent systems. However, in the case of stochastically
forced linear normal systems the analogous subspace to
which the solution is primarily confined can be easily
found by eigenanalysis of the covariance matrix of the
system forced white in space and time. The resulting
empirical orthogonal function (EOF) spectrum typically
falls off rapidly in physical models. The eigenvectors
may be identified with the modes of the normal operator
and the corresponding eigenvalues are the variance ac-
counted for by the modes (North 1984; Farrell and loan-
nou 1996, henceforth FI196). The fact that a restricted
number of EOFs account for nearly all of the variance
in normal systems shows that the effective dynamical
dimension of these systems is small compared with the
dimension of their phase space. This notion of quanti-
fying the effective dimension of normal linear systems
can be extended to bound the effective dimension of
nonnormal systems (Farrell and loannou 2001, hence-
forth FIO1).

In the case of the tangent linear forecast error system
the spectrum of optimal perturbations of the error prop-
agator over the forecast interval typically comprises a
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few hundred growing structures (Buizza and Palmer
1995) and Lyapunov spectra for error growth have
shown similar numbers of positive exponents (Palmer
et a. 1998), which suggests from the above consider-
ations that the effective dimension of the error system
is O(103).

The problem of reducing the order of a linear dy-
namical system can be cast mathematically as that of
finding a finite-dimensional representation of the dy-
namical system so that the Eckart—Schmidt—Mirsky
(ESM) theorem (Stewart and Sun 1990) can be applied
to obtain an approximate truncated system with quan-
tifiable error. The ESM theorem states that the optimal
k-order truncation of an n-dimensional matrix in the
Euclidean or Frobenius norm is the matrix formed by
truncating the singular value decomposition of the ma-
trix to its first k singular vectors and singular values.
A method for exploiting the ESM theorem to obtain a
reduced-order approximation to a dynamical system
was developed in the context of controlling lumped
parameter engineering systems and is called balanced
truncation (Moore 1981; Glover 1984; Zhou and Doyle
1998). Balanced truncation was applied to the set of
ordinary differential equations approximating the par-
tial differential equations governing perturbation
growth in time-independent atmospheric flows by
FI01.

In this work a reduced-order Kalman filter based on
balanced truncation is applied to atime-dependent Lya-
punov unstable quasigeostrophic model of a forecast
tangent linear error system. We first briefly review the
method of balanced truncation of time-independent dy-
namics and then construct areduced-order Ka man filter
for alinear time-dependent storm track error model and
study its accuracy in a series of experiments.

2. Reducing model order by balanced truncation

The error dynamics are assumed to be governed by
the linear system:

dy _
dt

where ¢ is the error state vector and A is the matrix
dynamical operator, which may be time dependent, but
will for the time being be assumed to be time indepen-
dent. Because of the high dimension of the error system
(1) in forecast applications we are interested in explor-
ing the accuracy of reduced-order approximationsto the
system.

Before proceeding with the description of the method
of balanced order reduction we must first choose the
norm that will be used to measure the accuracy of the
approximation. The accuracy is measured by the norm
of the Euclidean length of the errorsincurred in achosen
variable. This norm is the square root of the Euclidean
inner product in thisvariable. If another norm is selected
to measure the accuracy of the approximation, then the

A, D
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30th EOF

FiG. 2. (top) The streamfunction of the 1st and the 30th EOFs along y = 0. The 1st EOF accounts for 23% of the variance, the 30th EOF
accounts for 0.35% of the variance. (bottom) The structure of the streamfunction of the 1st and 30th stochastic optimals. The 1st SO is
responsible for producing 19.7% of the variance; the 30th SO is responsible for producing 0.48% of the variance. The solid curve indicates
the structure of the Rayleigh damping coefficient r(x). The spatially localized damping region simul ates the enhanced dissipation and disruption
that occurs when perturbations encounter the continental landmasses. The damping region suppresses the convective or modal instabilities
that would otherwise occur if the flow were of infinite extent or had periodic conditions, respectively.

most direct method of accounting for this choice is to
transform the variable used to represent the state of the
system so that the Euclidean inner product in the trans-
formed variable corresponds to the new norm. The re-
duced-order approximate system resulting from bal-
anced truncation will in general depend on the norm.
Asdiscussed in FI01, optimal order reduction for stable
normal systemsisimmediate: it is the Galerkin method
based on projection of the dynamics onto the least
damped modes. Difficulties in the reduction process
arise in cases for which the system is nonnormal in the
variable corresponding to the chosen norm. Then the
Galerkin method based on projection on the least
damped modes is suboptimal and the reduction must
proceed by including in the retained subspace the dis-

tinct subspaces of the preferred excitationsand preferred
responses of the system. Throughout this paper we have
chosen streamfunction as the error variable, the rms of
which is to be minimized in the construction of the
model order reduction. However, we find that the results
do not change qualitatively if the energy norm is chosen
instead.

The preferred structures of response of the nonnormal
storm track system arereveal ed by stochastically forcing
the system with spatially and temporally uncorrelated
unitary forcing and cal culating the eigenfunctions of the
resulting mean covariance matrix P = (") (the brack-
ets denote an ensemble average, and T the Hermitian
transpose of avector or amatrix). The covariance matrix
under such forcing is given by
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Fic. 3. The Hankel singular values (stars) compared to the eigen-
values of the covariance matrix P (circles), and the eigenvalues of
the stochastic optimal matrix Q (crosses). The Hankel singular values
are the square roots of the eigenvalues of the product PQ. Note that
the variance accounted for by the EOFs (the eigenvalues of P), and
the variance generated by the SOs (the eigenvalues of Q) fall much
more rapidly with mode number than do the Hankel singular values.

p= f et @)
0

and this integral is readily calculated by solving the
Lyapunov equation (FI196),

AP + PAT = —I, 3)

which P satisfies, as can be easily verified. The Her-
mitian and positive definite matrix P characterizes the
response of the system and its orthogonal eigenvectors,
ordered in decreasing magnitude of their eigenvalue, are
the EOFs of the system under spatially and temporally
uncorrelated forcing.

The preferred structures of excitation of the system
are determined from the stochastic optimal matrix,

Q= f x erltert i, 4

the orthogonal eigenvectors of which, in decreasing
magnitude of their eigenvalue, order the forcing struc-
tures according to their effectiveness in producing the
statistically maintained variance (for a deterministic in-
terpretation of Q see FI01). The eigenvectors of Q are
called the stochastic optimals (SOs) and because of the
nonnormality of the system are distinct from the EOFs.
The stochastic optimal matrix Q satisfies the back Lya-
punov equation:

AQ + QA = —I. (5)

Lyapunov equations (3) and (5) have unique positive
definite solutions P and Q if A is stable. The covariance
matrix P and stochastic optima matrix Q need to be
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determined in order to proceed with order reduction by
balanced truncation.

A successful order reduction must accurately ap-
proximate the dynamics of the system, which can be
expressed as the mapping of all past (square integrable)
forcingsto all future responses of the system. Thislinear
mapping of inputs to outputs is called the Hankel op-
erator. Application of the ESM theorem to the Hankel
operator provides the optimal low-order truncation of
the dynamics. Remarkably, because of the separation
between past forcings and future responsesin the Hankel
operator representation of the dynamics this operator
has finite rank equal to the order of the system; its
singular values, denoted by h, are the square root of the
eigenvalues of the product of the covariance and sto-
chastic optimal matrix, PQ. The balanced truncation
transforms the internal coordinates of the system so that
the transformed covariance matrix P and stochastic op-
timal matrix Q become identical and diagonal (while
preserving the inner product of the physical variables).
The dynamical system is then truncated in these trans-
formed balanced coordinates. The balanced truncation
retains a leading subset of EOFs and SOs of the dy-
namical system and preserves the norm. Balanced trun-
cation preserves the stability of the full system and pro-
vides an approximation with known error bounds that
is found in practice to be nearly optimal (Moore 1981;
Glover 1984; FI01). The procedure used to implement
the balanced truncation is now briefly reviewed.

Consider a general k-order truncation of the N-di-
mensional system (1):

dej

dt
where A, is the reduced k X k dynamical matrix, with
k < N, and ¢, the associated reduced-order k-dimen-
sional state vector, which is related to the full state vec-
tor by the transformation 4 = Xi,. Similarly, the re-
duced state vector i, is related to the full state vector
by . = YT (the dagger denotes the Hermitian trans-
pose of a matrix), which implies that Y'X = I,, where
l, is the k-order identity matrix. Matrices Y and X de-
termine the transformation from the full system to the
reduced system. The matrix A,, governing the dynamics
in (6), is

= Ak‘sza (6)

A, = YIAX. 7

Further details on the construction of the biorthogonal
matrices X and Y are given in the appendix.

A measure of the accuracy of the truncation is the
maximum difference that can occur between the full
system response, i(t), and the reduced-order system
response, ¢ (t). This measureis the H.. norm of the error
system:

IA = AJl. = sup,|IR(w) = R(w)l., (8)

in which the resolvent of the full system, R(w), is de-
fined as R(w) = (iwl — A)~* and the resolvent of the
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full-order projection of the reduced system is R(w) =
X(iwl, — A) 1. It isto be recalled that the L, norm of
amatrix, denoted as || - ||, isequal to itslargest singular
value.

Assuming the Hankel singular values have been or-
dered as decreasing in magnitude, it can be shown that
the error in the H,, norm (8) of the approximation of
the full system by any k-order system A, satisfies the
inequality

N
hen = A = Al =2 _%1 h;, C)
where h, ., is the first neglected Hankel singular value
(Zhou and Doyle 1998). Although h,_., is only alower
bound on the error, we have found in examples that this
lower bound is nearly attained.

3. Constructing a reduced-order Kalman filter
a. The full-order Kalman filter

Consider the perturbation field to be observed only
at specific locations and times. The perturbation dynam-
ics are linear and fully described by the sure time-de-
pendent operator A(t), which in the case of a forecast
model is the tangent linear operator.

The perturbation field, i, in the true forecast model
is thus assumed to be governed by the deterministic
equation:

dys

& = A0
while the error forecast model is assumed to advance
the perturbation field from timet; to timet,, , according
to the equation

P(tia) = ML) P(t) + n(t), (11)

where 7 is a white noise process, describing the model
error, with zero mean and covariance' Q, The propagator
M(t,) is defined as

(10)

M(t) = lim [ ] excsinr,

7-0 j=1

(12)

obtained by m advances of the system by the infinites-
imal propagators ert+in7 where m and 7 satisfy the re-
lation t,,, — t; = mr, and the matrix A(t) is assumed
to govern the evolution. We select the times t; to be the
times at which observations of the perturbation stream-
function are made.

A vector of observations y° (of length N,,) is made
at timet; and at prescribed locations. These observations
are assumed to be linear combinations of the true per-
turbation field and a measurement uncertainty

* Note that the Q that denotes the model error covariance hereafter
is distinct from the Q that we used in section 2, which denotes the
stochastic optimal matrix.
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yP = p(t) + e, (13)

where 7{ is the observation matrix (of size N,, X N)
and e is the error in the observations at time t;, which
will be assumed to be white in time with known spatial
covariance, R. These observations are entrained serially
with the forecast to produce the analysis

pat,,) = Pit) + KO — HY'(t,), (14)

in which K is referred to as the gain matrix (of size N
X Ngp, Pa(t,.,) is the analyzed state at time t,,,, and
i(t,,,) the forecast state at time t.,,. The forecast is
obtained by advancing the previous analyzed state 2(t;)
using the system propagator (12); that is,

Pr(tia) = Mt)pa(t). (15

The gain X interpolates between the observations,
ye, and the forecast, s'(t;). A plausible choice, if the
observations are good, is to trust the observations over
the forecast and simply correct the analysis to the ob-
servations. This is called direct substitution (Daley
1991). While direct substitution creates imbalance in
primitive equation models, it provides a useful example
in the balanced quasigeostrophic model used here. Al-
ternatively, a variational problem can be formulated to
find the gain that minimizes the expected error between
the analysis, 2, and the true state, ¢, which determines
an optimal % called the Kalman gain (Kalman 1960;
Ghil and Maanotte-Rizzoli 1991; Wunch 1996). The
optimality of % is predicated on knowledge of the sta-
tistical structure of the forecast error and of the obser-
vation error. The forecast and analysis error structure
are characterized, respectively, by the error covariance
matrices 7 (t;) = ([¢(t;) — " ()¢ (k) — ¢'(t)]") and
P2(t) = [p(t) — ()[4 (t) — 2(t)]") (( - ) denotes
an ensemble average). The Kalman gain at timet, , is
given by

K1) = P )H[HP()H + K] (16)

If the observation error covariance, ®, predicts a large
error in a structure compared to the forecast error in
that structure, #P'(t,.,)#", the analysis tends to adopt
the forecast for that structure, ignoring the observations;
and if the observation error is expected to be small
compared to the forecast error in astructure, theanalysis
tends to adopt the observations while ignoring the fore-
cast.

The extent to which the forecast is adopted depends
on the analysis error covariance matrix, which is first
advanced in time according to the dynamics given by
Eqg. (11) to produce the forecast error covariance,

Pi(t.) = ML)P(t)M(t) + Q, (17)

and then corrected by the observation statistics to pro-
duce the analysis error covariance:

Ta(ti+1) = ?f(twl) - ‘]((twl)}[Tf(tHl)- (18)
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b. The reduced-order Kalman filter

One problem with implementing the Kalman filter for
state identification for use in forecast is that the matrix
manipulations involved are prohibitively expensive
computationally. This is principally because the error
covariance matrix corresponding to an atmospheric state
with N = O(107) degrees of freedom has dimension N2
= O(10%).

In the previous section we showed how to reduce the
order of an autonomous linear system by obtaining an
accurate balanced truncation of the time-independent
operator A. Consider now a time-dependent operator of
the form A(t) = A, + A,(t), and assume that the mean
operator A, is dominant. In previous work we showed
that perturbation growth in time-dependent nonnormal
systems occurs primarily in the nonnormal subspace of
the time mean operator (Farrell and loannou 1999), a
result verified by Reynolds and Errico (1999) and Ge-
laro et al. (2000, manuscript submitted to J. Atmos. Sci.,
hereafter GRE). In the following we take advantage of
thisresult to obtain an approximate reduced-order model
of atime-dependent system by reducing the order of the
time-dependent operator using the balancing transfor-
mation derived for the mean operator. This procedure
is found to produce an accurate model order reduction
for example nonautonomous stationary systems at far
less computational cost than incurred by balancing at
each time as in van Dooren (2000). In the following the
error covariance matrix and the Kalman gain are ob-
tained using this reduced model and transformed back
to the full space for use in updating the state estimate.

L et the dimension of the full system perturbation vec-
tor, s, be N, and of the reduced system, ¢, be k with
k < N. The variables in the reduced system, i, are
related to the variables in the full system, 4, by the
transformation . = Y'¢. The evolution equation in the
s, coordinates is

d -

S = A0
where A, (t) = YTA(t)X, asin (7). In this approximation
the biorthogonal bases Y and X remain the balancing
transformation of the mean operator A, instead of being
recalculated at each step.

In the reduced-order system variables the observation
matrix is #* = 7{X, so that the error covariance matrix
in the reduced-order system, P4(t,) = Y®P(t)Y", is
evolved according to the reduced-order dynamics (10):

(19)

PA(t) = MAE)P)ME) + Q5 (20)

where @ is the model error covariance projected on the
reduced-order space, that is, Q< = YQY', and 9/« is the
reduced-order propagator. The reduced-order covariance
matrix is corrected by the observation statistics:
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Pat,,) = PI(t,) — KAL) AHPI(LL,),
in which the reduced-order Kalman gain is
K¥(tisa) = PO )H[HPI (4, )H + R] T (22)

where g« = YRYT.

The Kalman gain that will be used in the full system
in order to entrain the observations asin (14) is obtained
from the reduced-order system gain:

K = XK, (23)

with the superscript indicating that the Kalman gain is
obtained from the reduced-order system.

(21)

4. Constructing a reduced-order Kalman filter for
a model storm track error system

a. Formulating the storm track error model

Consider an idealized model of the midlatitude storm
track consisting of a Boussinesq atmosphere with con-
stant stratification and constant shear in thermal wind
balance on a B-plane channel with periodic boundary
conditions in the zonal, x, direction; solid walls |ocated
at two latitudes in the meridional, y, direction; and a
solid lid at height z = H, simulating the tropopause.
The observed zonal localization of a midlatitude storm
track is simulated in the model by terminating the chan-
nel with alinear damping modeling the storm track exit
region. The stability properties of such a storm track
model are discussed in FI96.

Zonal and meridional lengths are nondimensionalized
by L = 1200 km, vertical scales by H = fL/N = 10
km, velocity by U, = 50 m s7%, and time by T = L/
U,, so that a time unit is approximately 6.7 h. The
Brunt-Vaisalafrequency isN = 102 s7*, and the Cor-
iolis parameter is f = 104 s*. The corresponding non-
dimensional value of the planetary vorticity gradient is
B = 0.46.

The nondimensional linearized equation that governs
evolution of streamfunction perturbations is

avry
ot

dzu(2)
dz2

~U(V2Dy —

B - D

— r(x)Vay, (24)

in which the perturbation is assumed to be in the form
P(x, z t) eV, where | is the meridiona wavenumber;
V2ys is the perturbation potential vorticity, with V2 =
92/0x? + 92/9z2 — 12; and D = d/9x. The perturbation
potential vorticity damping rate r(x) is taken to vary
smoothly in the zonal direction with form

2— tanh(x _87T/4) + tanh <7X — ;W/2>

in which parameters controlling the maximum damping
rate and the width of the damping region have been
chosento be u = 5and § = 1.5, respectively. The mean

10 =4 . (25)
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velocity profile isU(z) = 0.2 + z The zonal extent of
the reentrant channel is 0 < x < 44} latitudinal walls
are located at y = 0 and y = 1; and the ground and
tropopause boundaries are located at z= 0 and z = 1,
respectively. In the following we consider perturbations
with | = 1.

Conservation of potential temperature at the ground
and tropopause provides the boundary conditions:

Y Wy ~ ¥

o = ~UODZ + U(ODY — r()
~T,D> - 12y az=0, (26)

2 _ _ Wy N

o = ~U@DT + V(DY — r()
az=1, @7

where U’(0) and U’ (1) denote the velocity shear at z =
0 and z = 1, respectively. The coefficient of Ekman
damping I'y = (N/U,)(v/2f)*¥2 is given the value I, =
0.0632 corresponding to a vertical eddy momentum dif-
fusion coefficient v = 20 m? s~* in the boundary layer.

The waves evolve with nearly zero damping in the
middle third of the channel (a length of 277L = 7500
km), which models the core of the storm track. Because
in this model absolute instabilities do not exist with
everywhere westerly flow, the storm track is asymptot-
icaly stable for all meridional wavenumbers because
all perturbations are eventually absorbed on entering the
highly dissipative sponge (FI96).

Two scenarios are investigated. In the first a tran-
siently growing disturbance excited near the western
boundary of the storm track is modeled using the re-
duced-order system, the purpose being to illustrate the
accuracy of the reduced-order model approximation of
the autonomous dynamics. In the second, time depen-
dence is added to produce a Lyapunov unstable model
of atangent linear forecast error system, the time mean
operator remaining stable, with the purpose of evalu-
ating the accuracy of the Kalman filter obtained by the
reduced-order model in an unstabl e time-dependent sys-
tem. Such an unstable time-dependent system provides
an even more stringent test of the state estimator than
does the time-independent stable and unstable model
error systems studied by Todling and Ghil (1994), Ghil
and Todling (1996), and Cohn and Todling (1996).

The perturbation dynamics of the time mean storm
track are governed by

(28)
where
A, = (V) —-(0.2 + 2DV2 — BD — r(x)V?],(29)

in which the Helmholtz operator, V2, has been made
invertible by incorporating the boundary conditions.?

2 For waves with a constant meridional wavenumber |, the operator
V2 is invertible even for homogeneous boundary conditions.
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In the time-dependent storm track the perturbation
dynamics described by the time-dependent operator
A(t), which is the sum of the operator, A,, arising from
linearizing about the time mean zonal flow, is given by
(29), and the time-dependent deviation operator,

d2u(z t)
dz?

obtained from the linearization of the simple storm track
model about zonal velocity fluctuations, u(z, t). We con-
sider a fluctuating zonal wind of form

L), COS(;) f.(0)

uzt) = —= >
. (mz
+ f4(b) sm<?> + f,()2,

2
where f,(t) is ared noise process with mean zero, stan-
dard deviation 0.5, and decorrelation time 1.5 days. This
red noise process is generated by

df, = —a f,dt + o dW, (32)

with W a Wiener process. The standard deviation of f,
is given by o(2a) ~¥2 and the decorrelation time is 1/a.
The desired values are achieved for a = 1/5, and o =
(1/10)v2. The profiles were chosen to give variance in-
creasing with height, and also to lead to aimost surely
westerly winds. Typica realizations of the resulting
mean flow are shown in Fig. 1. It should be emphasized
that the time-dependent operator A(t) is not to be re-
garded as an uncertain operator. The operator is certain
and the time dependence of the operator is assumed to
be deterministic. We use the stochastic system (32) only
for convenience to generate a sample realization from
a class of statistically similar realizations.

The dynamical operator is approximated spectrally in
the zonal direction and with finite differences in the
vertical. With 40 zonal harmonics and 10 levels in the
vertical the resulting dynamical system has N = 400
degrees of freedom.

AL() = (V2| —u(z )DV2 + D|, (30)

+

[1— cos(272)]

(3D)

b. Applying balanced truncation to the mean storm
track error model

In order to obtain a balanced truncation of the storm
track model governed by mean operator A, given in
(29) we first obtain the covariance matrix, P, and the
stochastic optimal matrix, Q, by solving Lyapunov
equations (3) and (5), respectively. The eigenfunction
of P associated with the largest eigenvalue is the first
EOF of the perturbation field, and the eigenfunction of
Q associated with the largest eigenvalue is the first SO
of the perturbation field. The structure of the first EOF,
which accounts for 23% of the streamfunction pertur-
bation variance, is concentrated in the exit region of the
storm track as can be seen in Fig. 2 (top-left panel). By
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Fic. 4. (top left) The streamfunction along y = 0 of the first retained basis vector of the balanced truncation of the system, given by the
first column of X. (top right) The streamfunction of the 10th basis vector of the expansion of the balanced truncation, given by the 10th
column of X. (bottom left) The streamfunction of the biorthogonal of the first basis vector. It is given by the first column of Y. (top right)
the streamfunction of the 10th basis vector. It is given by the 10th column of Y.

contrast, thefirst SO, which isresponsiblefor generating
19.7% of the streamfunction perturbation variance, is
concentrated at the entrance region of the storm track
and is nearly orthogonal to the first EOF as can be also
seen in Fig. 2 (bottom-left panel). This near orthogo-
nality between the EOF structures and SO structures
remains even at order 30. Balanced truncation accom-
plishes an accurate representation of the dynamics by
retaining both the structure of the dominant EOFs and
of the SOs. It is clear from Fig. 2 that truncations based
on projections on the leading EOFs will be very sub-
optimal as the leading EOFs span well only the exit
region of the storm track, leaving the dynamically im-
portant entry region of the storm track, where pertur-
bations start growing, virtually without support in the
span of the retained basis.

Although the error in the frequency response of a
balanced truncation [cf. Eq. (9)] is bounded above by

twice the sum of the neglected Hankel singular values
and below by the first neglected Hankel singular value,
experience shows balanced truncation of fluid systems
results in errors close to the lower bound. The Hankel
singular values and the eigenvalues of P and the Q for
the storm track model are shown in Fig. 3. Note that
the decrease with mode number of the eigenvalues of
P and of the eigenvalues of Q is more rapid than that
of the Hankel singular values. But this more rapid de-
crease with mode number of the eigenvalues of P and
Q does not indicate the order required for an accurate
approximation; this is instead determined by the first
neglected Hankel singular value, which falls more slow-
ly with mode number.

It is often assumed that a system can be well ap-
proximated by the Galerkin method based on projec-
tion onto a subspace of its leading EOFs; with the
effectiveness of the truncation being judged from the



3 * * |
~ * o w0k * !
o * * * *
ot * *
* *
* * * *
* * *
* *
2.5 * * * oy
* *
* *
3k 4
* *
35 L I . . .
-15 -10 -5 d 5 10 15

R{w)

Fic. 5. The frequency [ (w)] and decay rate [J(w)] of the eigen-
values of the original system (stars), and of the order-60 balanced
operator A, ¢ (circles).

magnitude of the eigenvalues of the neglected EOFs.
While this is valid for normal systems, we see here
that for nonnormal systems the decrease with mode
number of the eigenvalues of the covariance matrix
is misleading and generally optimistic as an estimate
of the order required for an accurate approximation.

A subset of the columns of X is retained in the bal-
anced truncation. This nonorthogonal basis and its
biorthogonal, the columns of Y, are constructed so as
to capture the structures supporting the dynamics most
efficiently, simultaneously accounting for the preferred
responses (EOFs) and the preferred excitations (SOs) of
the dynamics. The 1st and the 10th structures retained
in the dynamics (the 1st and the 10th columns of X)
and their biorthogonal structures (the 1st and 10th col-
umns of Y) are shown in Fig. 4.

The storm track model and its reduced-order approx-
imate have very different eigenvalue spectra (Fig. 5).
The eigenvalue spectrum of the reduced-order approx-
imate is such that the frequency response of the ap-
proximate system is as close as possible to that of the
original system, which is shown in Fig. 6. This results
both from a decrease in the stability of the reduced
system compared to that of the full system and from
the nonnormality of the reduced system.

The accuracy of the approximation is measured by the
H.. norm of the error dynamica system [|A, — Ag eoll-os
which, as discussed in the previous section, lies between
the lower bound given by the first neglected Hankel sin-
gular value, hy, = 13.8, and the upper bound: 2 3%, h,
= 1.8 X 10 The largest singular value of the error
system resolvent as a function of frequency is shown in
Fig. 7, where it can be seen that |[A, — Agyell. = 28.5,
which shows that the balanced truncation error in this
example is only approximately twice its lower bound.
The error is nearly white for the span of frequencies that
correspond to the frequencies of the system eigenmodes
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order 60 balanced truncation
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FiG. 6. The maximum singular value of the resolvent R(w) = (iwl —
A,)~* of the full system as a function of frequency, w. The frequency is
in dimensiond units of 1/d. The maximum of the curve is the H., norm
of A, which is found here to be 198.1. Also shown is the maximum
singular value of the resolvent Rgy(w) = (iwl — Agg) * Of Ay, Which
is the operator obtained from an order-60 balanced truncation of A,. The
maximum of this curves is the H,. norm of A4, which is found to be
196.2.

(5). For comparison, the error incurred in the order-60
Galerkin method based on projection of the dynamics
onto the first 60 EOFs and the error incurred in an order-
60 Galerkin projection onto the first 60 least damped
modes, are also shown in Fig. 7. It can be seen that the
EOF projection performs appreciably worse than the bal -
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FiG. 7. The maximum singular value of the error system A, — Ay 4,
as a function of frequency, w. The frequency is in dimensional units
of 1/d. The system A, ¢, is an order-60 approximation obtained from
A by balanced truncation. The maximum of this curve is the H., error
of the order-60 balanced truncation, which is seen here to be 28.5. The
theoretical minimum error of an order-60 truncation, which equals the
first neglected Hankel singular value hy, = 13.8, and the theoretical
upper bound on the error, which equal s the sum of the neglected singular
values 2%, h, = 1800, are also shown. The balanced truncation is seen
to be nearly optimal. Similarly, H., errors are shown for order-60 modal
and the Galerkin method based on a 60 leading EOF projection.
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Fic. 8. The square of the Frobenius norm of the resolvent of the
full system A, of the order-60 system obtained by balanced truncation
Ag, and of the error system A, — A, ¢, as a function of frequency,
w. Thefrequency isin units of 1/d. The square of the Frobenius norm
of the resolvent at each frequency is the sum of the squares of the
singular values. The areas under these curves give the variance main-
tained under spatially and temporally white forcing of unit spectral
density in each degree of freedom.

anced truncation, while the modal truncation at this order
is useless.

The streamfunction variance maintained by spatially
and temporally white forcing of unit spectral magnitude
is given by

trace(P) = 1 J x F(w) do, (33)
27 |
where the streamfunction spectral density F(w),
F(w) = trace(Rt(w) R(w)), (34)

is the square of the Frobenius norm? of the resolvent,
R(w) (F196). A plot of the Frobenius norm of the
spectral density F(w) is shown in Fig. 8 for both the
full system and the order-60 balance truncation. Note
that while the response streamfunction variance is
well approximated by the reduced system over the
frequency range for which the variance is large (0.5
d-*-9 d-1), the error variance exceeds the response
variance itself at very small frequencies and at very
high frequencies.

The optimal growth* as a function of optimizing time
attained by the full system and by the following are all
shown in Fig. 9: the order-60 balanced truncation, the
order-60 system obtained by the Galerkin method based
on projection on the first 60 EOFs, the order-60 system

3 The Frobenius norm of a matrix is also equa to the rms of the
singular values of the matrix.

“The optimal growth at time, t, is defined as the maximum per-
turbation growth that can occur over time t. For an autonomous sys-
tem, governed by A, the optimal growth at t is given by the largest
singular value of ere or by |erd|,.
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Fic. 9. Optimal growth, ||er||,, as a function of time for the storm
track model. Shown is the optimal growth for the full system with
400 degrees of freedom, the optimal growth produced by an order-
60 approximate system obtained by balanced truncation of the full
system, the optimal growth attained by the order 60-approximate
system obtained by the Galerkin method based on projection on the
first 60 EOF's, the first 60 SOs, and the first 60 least damped modes.

obtained by the Galerkin method based on projection
on the first 60 SOs, and the order-60 system obtained
by Galerkin projection on the first 60 least damped
modes. Note that the balanced truncation performsvery
well, reproducing the optimal growth nearly perfectly
up to t = 5, corresponding to about 2 days. By com-
parison the EOF and SO truncations perform apprecia-
bly worse and the modal truncation gives even poorer
results.

The structure of the initial perturbation that leads to
greatest square streamfunction growth at t = 10 in the
full system, together with the resulting structure, is
shown in Fig. 10; for comparison these structures as
obtained by the truncated system are also shown. The
structures are well captured by the order-60 reduced
system.

c. Constructing a reduced-order Kalman filter for a
time-dependent storm track error model

We have shown how to obtain an accurate balanced
truncation of atime-independent operator A. In previous
work we showed that perturbation growth in time-de-
pendent nonnormal systems occurs primarily in the non-
normal subspace of the time mean operator (Farrell and
loannou 1999). In the following we take advantage of
thisresult to obtain an approximate reduced-order model
of atime-dependent system by reducing the order of the
time-dependent operator using the balancing transfor-
mation derived for the mean operator. This reduced sys-
tem is used to advance the error covariance matrix that
determines the Kalman gain.

Although the time mean system, A, isasymptotically
stable, inclusion of physically realistic time dependence
of the zonal wind results in a nonautonomous system
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Fic. 10. (left) The streamfunction of the optimal perturbation leading to the greatest square streamfunction growth at t = 10, and (right)
the evolved optimal streamfunction, at the optimizing time t = 10. (top) Streamfunction for the full system; (bottom) the corresponding

streamfunction for the order-60 balanced truncation.

governed by the Lyapunov unstable composite operator,
A, + A, (t), which models the tangent linear forecast
system (Farrell and loannou 1999; GRE). We attempt
to recover the state of this Lyapunov unstable system
in order to test the accuracy of the reduced-order Kal-
man filter. Because the system A, + A,(t) is sure the
system (11) has Gaussian probability density function
under the Gaussian stochastic forcing, n, and the Kal-
man filter is provably optimal.’

We seek to perform state estimation on the time-de-
pendent storm track model introduced in the previous
section with damping parameter w = 1.5 in (25). This
system is asymptotically unstable with Lyapunov ex-
ponent A = 0.075.

SIf A(t) were uncertain, then the probability density function of
the streamfunction would not necessarily remain Gaussian and the
Kaman filter could be suboptimal.

We assume for the example that the model error in
the true system has error covariance Q = g3, where
Iy isthe N X N identity, and g = 0.075. Four obser-
vations of the true system are taken at longitudes x =
4.7 and x = 6.9 and at heights z = 0.1 and z = 0.78
at time intervals = 0.1. The observations are noisy
with variance r = 2 X 103, corresponding to a di-
mensional rms velocity error of 5 m s—t. The obser-
vational errors are uncorrelated and the observation er-
ror covariance is therefore ® = rl,, where |, isthe 4 X
4 identity.

A Kaman gain is computed using (16)—(18) in order
to estimate the true state using (14) and (15). Theinitial
estimate of the true state is the zero state. The initial
estimate of the covariance matrix, 2(0), in (17) is not
important if the model error is full rank. We assume
that initially we do not possess any knowledge of the
structure of the error covariance and take
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Fic. 11. The growth rate of a random initial perturbation as a
function of time. For large times the growth rate of any perturbation
approaches the first Lyapunov exponent, which for the time-depen-
dent flow considered is approximately A = 0.075. Also shown is the
growth rate as identified with a full Kalman filter and with the order-
40 reduced Kalman filter.

2(0) = aC'C, (35)

where C is a random matrix with normalized columns
so that the variance of C is N, where N is the dimension
of the full system. We consider the case « = 0.1.

The reduced-order Kalman filter is obtained using an
order-40 balanced truncation® of the time-dependent

%1n the previous section we used as an example of the method of
balanced truncation a model storm track (with a time-independent
mean zonal flow) retaining 60 degrees of freedom. However, wefound
that the Kalman filter can successfully identify the state of the system
with balanced truncation at order 40.
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Fic. 12. (first panel) The state at t = 0. (second, third, and fourth
panels) Theinitial estimate before observations are entrained (defined
to be the zero state). Observations are made at longitudes x = 4.7
and x = 6.9, and at heights z = 0.1 and at z = 0.78, every 0.1 units
of time. The solid curve indicates the structure of the Rayleigh damp-
ing coefficient r(x).
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FiG. 13. (a) Streamfunction of the true state at t = 15. (b) Stream-
function of the analyzed state obtained using a full Kalman filter. (c)
Streamfunction of the analyzed state obtained using a Kalman filter
calculated from a balanced truncation of the full system to 40 degrees
of freedom. (d) Streamfunction obtained by direct substitution.

equations with the balancing transformation derived for
the time-independent mean operator, A,. The initial es-
timate of the true state is the zero state and the initial
error covariancein the reduced space, 7¢(0), istheinitial
error covariance assumed for the full-order Kalman filter
(35) projected onto the reduced space, that is, 7<(0) =
YP(0)Y*t.

First we compare the growth rate of a random initial
perturbation in the true system with the growth rate
obtained in the analyzed system using a full Kalman
filter, and using an order-40 reduced-order Kalman filter.
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FiG. 14. (a) Streamfunction of the true state at t = 150. The state
isincreasing with Lyapunov exponent A = 0.075. (b) Streamfunction
of the analyzed state obtained using a full Kalman filter. (c) Stream-
function of the analyzed state obtained using a Kalman filter calcu-
lated from a balanced truncation of the full system to 40 degrees of
freedom. (d) Streamfunction obtained by direct substitution.
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Fic. 15. The relative error of the Kalman filter estimate, ¢, the
order-40 reduced-order Kalman filter estimate, iy, and the direct
substitution estimate, ., as a function of time. The relative error
is defined as the Euclidean distance between the true state and its
estimate normalized by the Euclidean length of the true state.

In Fig. 11 we plot the three growth rates, A(t), obtained
by three systems, all initialized with the same random
initial perturbation ¢,. The growth rate at time t is de-

fined as
Alt) = % In(@),

where (1) is the streamfunction at time t. The growth
rate curves plotted in Fig. 11 are indistinguishable and
all three systems converge to the same Lyapunov ex-
ponent, A. Convergence to the Lyapunov exponent of
the true system by the analyzed system using a full-
order Kalman filter and by the analyzed system using
an order-40 reduced-order Kalman filter demonstrates
that the reduced-order Kalman filter can reproduce the
growth of perturbationsin the full-order time-dependent
system.

We investigate now the convergencein structure. The
true system starts at t = O with an optimal perturbation,
Yo, that gives optimal growth in streamfunction at t,,
= 10 when the system is advanced to t,, by the time
mean operator A,; that is, the initial state of the error
system is the first right singular vector of erot. For
comparison we also include an estimation of the error
state based on direct substitution of the true state at the
observational sites.

In the four panels of Fig. 12 are shown the true state
(top panel), and the three initial state estimates. By t =
5 both the Kalman filter based on integrating the full
error covariance matrix and the order-40 reduced-order
Kaman filter give a good estimate of the true state,
while direct substitution is unable to give a good esti-
mate. By t = 15 the state has been almost perfectly
estimated by both the Kalman filter and the reduced
Kaman filter, as can be seen in Fig. 13. The good es-

(36)
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timation is preserved asymptotically as can be seen in
Fig. 14. The estimate by direct substitution on the other
hand remains poor.

The estimation error, defined as the rms difference
between the estimated state and the true state, normal-
ized by the magnitude of the true state is shown as a
function of time in Fig. 15. Both the Kalman filters are
seen to produce analyses that are very accurate, while
direct substitution performs poorly.

5. Discussion and conclusions

Optimal utilization of observing resources requires
that the structure of the time-dependent error be taken
into account in identifying the state. The error covari-
ance matrix contains the required information but the
high dimension of the forecast system precludesdirectly
obtaining it. In this work we described a method for
obtaining an approximate error covariance and an ap-
proximate state identification using a Kalman filter
based on balanced truncation of the tangent linear fore-
cast error system.

As a first example balanced truncation was used to
reduce an autonomous forecast error model of order 400
to order 60. The truncated model provides an accurate
approximation to the dynamics as measured by the max-
imum error in the system frequency response. Both the
optimal perturbation evolution and the dominant EOFs
and SOs were also found to be well approximated. A
Kalman filter for the full system obtained using a Kal-
man gain obtained from the reduced system with 40
degrees of freedom was found to be as effective in ob-
serving the state.

However, the error dynamics of an atmospheric fore-
cast is controlled by the tangent linear system where the
linearization has been performed about the time-depen-
dent forecast trgjectory. Because the forecast error sys-
tem is time dependent it is important to extend the sys-
tem approximation method to time-dependent systems.
This was done by performing a second experiment on
a time-dependent system in which the balanced trun-
cation derived from the mean operator was applied to
reduce the order of the full time-dependent operator to
order 40 over the forecast period.

Comparison of the performance of afull Kalman filter
and approximate filters obtained by balanced truncation
on the order-400 storm track model reveals that trun-
cation at order 40 is sufficient to provide accurate flow-
dependent covariances for the purpose of approximating
the Kalman gain.
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APPENDIX

Calculation of the Balancing Transfor mation

In balanced truncation the transformation of coordi-
nates implied by the biorthogonal bases X and Y is such
as to simultaneously diagonalize matrices P and Q,
which have astheir eigenfunction the EOFs and the SOs,
respectively. We follow the method of constructing the
biorthogonal basis X and Y given by van Dooren (2000).
Alternative methods of balancing and further detailscan
be found in the seminal papers of Moore (1981) and
Glover (1984), in the textbook by Zhou and Doyle
(1998), or in FIO1.

In the transformed coordinates the covariance matrix
becomes P, = Y'PY and the stochastic optimal matrix
becomes Q, = X'QX. The balancing transformations Y
and X are found by decomposing the positive definite
covariance matrix, P, and stochastic optimal matrix, Q,
as follows:

P=S'S, Q=RMR, (A1)

which requires a Cholesky factorization of P and Q
(Golub and van Loan 1996; van Dooren 2000). The
singular value decomposition of the product SR isthen
obtained:

SRt = USVH, (A2)

in which the diagonal elements of X are the Hankel
singular values, h, that is, the square roots of the ei-
genvalues of PQ.

A k-order truncation is formed by retaining the first
k columns of U, denoted by U,; the first k columns of
V, denoted by V,; and the diagonal matrix consisting of
the top k Hankel singular values, denoted by 3, and
defining the projection matrices as

Y = RV,3 ¥ X = StUS%, (A3

whose columns form a biorthogonal basis, that is, YTX
= |, where |, is the identity matrix of order k. These
transformation matrices determine the k-order balancing
transformation from which the reduced k-order system
(6) is derived.

and
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