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ABSTRACT 

The theory of excitation of tidal oscillations in a fluid planetary body is formulated, and separable equa­
tions are derived that extend the results of the classical theory of tides to the nonhydrostatic interiors of 
planets. The theory is applied to the example of the gravitational tidal response of Jupiter to forcing by lo. 
The tidal response is found to crucially depend on the static stability in the interior of the planet, the response 
of the planet being as much as two to three orders of magnitude greater than the response with a neutral 
interior. The tidal dissipation factor Q is calculated for Jupiter and found to agree with the values required by 
the astronomical arguments only if the interior has finite (though small static stability. We are led to the 
conclusion that the interior of Jupiter must have regions which are stably stratified. 
Subject headings: planets and satellites: individual (Jupiter) 

I. INTRODUCTION 

Jupiter has a rotational period of 9.92 hr and a radius 
approximately 10 times greater than Earth's and 10 times 
smaller than the Sun's. The main constituents of the plant, 
hydrogen (90% by mass) and helium (10%), do not solidify, 
and because of the low density the mass of the planet is only 
318 times greater than Earth's. The planet is primarily made up 
of a highly compressed but relatively cold liquid, with an inte­
rior core at probably 0.1 of the planetary radius. The visible 
atmospheric envelope is approximately at a pressure of 1 bar 
and a temperature of 150 K, while the pressure at the core is 
approximately 40 Mbar at a temperature of nearly 20,000 K 
(Stevenson 1978). Observations on the thermal emission 
revealed the existence of an interior heat source which 
accounts for around 35°/o of the 14 W m- 2 emitted to space. 

While much progress has been made in our understanding of 
the general structure of the planet (cf. Stevenson 1978), most of 
the meteorologically relevant information is limited to the 
region above the visible clouds of the planet. The data for the 
meteorology of the planet is still scant, making the theories for 
the observed cloud level circulations speculative (Ingersoll 
1990). 

It was suggested recently (Ioannou & Lindzen 1993, here­
after IL) that the excitation of the outer planets by the gravita­
tional tidal potential of their satellites may prove to be a useful 
probe of the planetary structure. The planets are subjected to a 
forcing of known magnitude and frequency, and observation of 
the response provides information about the mean thermody­
namic structure. The gravitational forcing is distributed 
throughout the planet, and the response in the atmosphere, 
concentrated in the higher Hough modes, will crucially depend 
on the excitation in the interior. It is the purpose of this paper 
to formulate the theory of tidal excitation of Jupiter by lo, the 
satellite that dominates the time-varying Jovian tidal potential 
(see IL). 

One of the most important unknowns for the meteorology of 
the planet is the distribution of static stability below the visible 
clouds. It is widely assumed that the internal heat source of the 
planet convectively adjusts the deep atmosphere to a neutrally 
buoyant state. Under this assumption the interior responds 
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weakly to imposed gravitational tidal driving (Houben & 
Gierasch 1977; Houben 1978). We relax the assumption of 
exact neutrality in the interior and find that the tidal response 
is markedly enhanced even for small values of the stratification. 

Associated with the excitation of tides is the long-standing 
problem of determining the tidal dissipation which is 
responsible for the evolution of the orbits of the satellites 
(Darwin 1910). Observations of the rate of tidal dissipation can 
provide a clue to the interior stability structure of the planet. 
Briefly, when the rotation period of the planet is smaller than 
the orbital period of the satellite, the tidal dissipation is associ­
ated with a torque that decreases the rotation period of the 
planet, leading to an increase in the angular momentum of the 
satellite by a factor denoted by A, where A > I. If the satellite 
is in a prograde orbit around the planet, its resulting angular 
momentum will be 

(I.I) 

where 2n/ws is the new orbital period of the satellite and D its 
new distance from the planet, and the subscript "0" denotes 
the corresponding initial values. Kepler's third law 

w; D 3 = w;, 0 D~ 

and equation (I.I) lead to 

D=A 2D0 , 

Ws = A- 3ws,O. 

(1.2) 

(1.3) 

(1.4) 

Consequently the orbit of a prograde satellite will expand, and 
the orbital period will increase. The opposite is true for retro­
grade satellites. The rate of expansion depends on the angular 
momentum transfer A, which in turn is an increasing function 
of the tidal dissipation. Because of this effect the present loca­
tion of the satellites of a planet provides a bound on the 
average tidal dissipation in the planet. 

Tidal friction is measured by the quality factor Q defined by 
Goldreich & Soter (1966): 

2ir(peak tidal energy stored) 
Q = . (1.5) 

(energy lost per cycle) 
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For Earth Q R> 10. The fluid nature of the outer planets leads 
to a larger value of Q. If lo were torn from the surface of 
Jupiter 4.5 x 109 yr ago, its present position allows the calcu­
lation of a lower bound on the time average of Q ~ 7 x 104 

(Goldreich & Soter 1966; Yoder & Peale 1981). Recent calcu­
lations of the Laplacian resonance of Io, Europa, and Gany­
mede, the observation of anomalous heat output from Io 
(Matson, Ransford, & Johnson 1980; Sinton 1981), and estima­
tion of the secular acceleration of Io from the 300 yr record 
of eclipse observations (Lieske 1987) suggest that 
4 x 104 < Q < 5 x 10' (cf. Greenberg 1987, 1989; Malhotra 
1991), although values as small as Q ,; 1.4 x 104 are possible 
(Tittemore 1990). Further, the rather small value of tidal 
Q R> 104 estimated on Uranus (Tittemore & Wisdom 1989) 
strengthens the possibility of Q being closer to the 104 bound 
on Jupiter. 

For the case of Earth the astronomical estimates can be 
accounted for by the dissipation of the ocean tide (although 
there are still unresolved issues; Platzman 1984). No convinc­
ing source of tidal dissipation has been identified for Jupiter 
and the outer planets. It is clear that equilibrium tide calcu­
lations cannot produce the desired values; for example, Gold­
reich & Soter (1966) estimated the Q associated with 
dissipation of the equilibrium tide by eddy viscosity distributed 
over the top 103 km of the planet and arrived at QR> 1013

• 

Calculations of the tidal excitation of Jupiter under the 
assumption of a neutral interior produced a flux ~ 1011 W of 
gravity wave energy propagating away from the planet, imply­
ing QR> 109 (Houben 1978; Houben & Gierasch 1977). Values 
closer to the observed are achieved by considering the dissi­
pation of the body tide at the solid core of the planets giving 
QR> 106-107 (Dermott 1979). Presently the only known 
mechanism capable of producing tidal dissipation in Jupiter 
which is consistent with the observed heat output of Io is 
dissipation of the tidal fields by hysteresis in the tidally induced 
oscillations of helium raindrops in the planet's interior 
(Stevenson 1983). 

We find that relaxing the assumption of neutrality of the 
interior allows values of tidal dissipation consistent with evolu­
tionary theory, and in addition the tidal dissipation can reach 
1016 W resulting in adequate dissipation in Jupiter to account 
for the volcanism of Io. 

In IL we have presented the tidal equations for a non­
hydrostatic ideal gas atmosphere. In § 2 we extend classical 
tidal theory to planetary interiors taking into account the 
effects of sphericity and self-gravity. By ignoring the nonradial 
component of the rotation vector in the coriolis force (the 
traditional approximation; Eckart 1960) we arrive at a separ­
able set of equations. We argue that the traditional approx­
imations will be accurate because the dynamic development of 
tidal disturbances occurs at the outer lOo/o of the radius of the 
planet. The meridional structure satisfies the Laplace tidal 
equation which has been solved in IL. 

In § 3 we describe the thermodynamic structure of Jupiter. 
For simplicity we assume a planetary interior which satisfies 
a polytropic constitutive relation with index 1. Following 
Cowling (1941) we allow the existence of static stability in the 
interior by assuming adiabatic compressibilities r 1 > 2. The 
polytropic interior is matched to an ideal gas atmosphere with 
the observed temperature above the visible clouds. 

In § 4 we present the WKB theory of the vertical structure 
equation. We delineate the regions for which inertial, gravity, 
and acoustic oscillations are possible. In§ 5 we treat the case of 

a planet with a neutral interior. We discuss the various atmo­
spheric boundary conditions and show that the tidal response 
is small. In § 6 we perform calculations with a stable interior 
and calculate the corresponding tidal dissipation factor Q. 

2. THE EQUATIONS OF SMALL ADIABATIC MOTIONS 

OF A PLANET 

The planet will be modelled as an inviscid adiabatic fluid 
rotating with constant angular velocity co. We will derive the 
equations of motion that govern the small adiabatic oscil­
lations about a motionless and spherically symmetric mean 
state in a frame of reference rotating with the planet. The 
motion is assumed to be caused by the gravitational tidal 
potential of a satellite revolving around the planet. Let w, v, 
and u denote the radial (r), zonal (</>), and meridional (8, the 
colatitude) component of velocity in spherical coordinates. Let 
the subscript" o" refer to an equilibrium value of any quantity, 
and let a symbol without a subscript represent the perturbed 
part of that quantity. 

The equation of continuity, linearized about a motionless 
and spherically symmetric basic state in hydrostatic balance, is 

iJp dp. 
iJt +wa;:-+p.x=O, (2.1) 

where pis the density, and x the divergence: 

1 iJ(r2 w) 1 iJv 1 iJ(u sin 8) 
X = ~ ---a;:- + r sin 8 iJ<f> + r sin 8 iJ8 

(2.2) 

The linearized thermodynamic equation for adiabatic 
motion about the hydrostatic mean state is 

(2.3) 

where pis the pressure, g0 the acceleration of gravity due to the 
mean distribution of mass, and c the speed of sound: 

c2=r1Po. (2.4) 
Po 

The Brunt-Viiisiila frequency, N, is given by 

N 2 = -g (dlnp 0 + g0
). 

0 dr c2 (2.5) 

The compressibility at constant entropy, r 1 = (dlnp/dlnp),, 
reduces, for an ideal gas, to y, the ratio of specific heat at 
constant pressure to that at constant volume. In the interior of 
the planet and in stellar interiors r 1 is a variable quantity 
(Chandrasekhar 1955). However, its variation is relatively 
small, and we assume r 1 to be constant in the interior of the 
planet. Also, note that thermally driven turbulent eddy 
exchanges have been ignored in equation (2.3). 

Combining equations (2.1) and (2.3) we obtain 

iJp 2 Jt = p0(g0 w - c X) . (2.6) 

The gravitational potential consists of an equilibrium part, 
<ll0 , and a perturbed part, <ll. They satisfy, separately, the 
Poisson equations 

V2 <1>0 = 4nGp0 , V2<1> = 4nGp , 

with G the universal constant of gravitation. 

(2.7) 
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We ignore the effect of perturbation density on the gravita­
tional potential. This approximation, due to Cowling (1941), is 
accurate for motions of higher order meridional and azimuthal 
structure for which the gravitational potential due to the per­
turbation density at one part of the fluid cancels that from 
other parts (Unno et al. 1979). Cowling (1941) provided some 
justification for ignoring <I>, even when the motion is of low 
meridional and azimuthal order. With the Cowling approx­
imation, the perturbation potential, <I>, is externally determined 
and equal to the tidal potential, an which is related to its 
surface value, n, by 

2 
n,. = !l(O) r 

2 
eiat+is.P , 

a 
(2.8) 

in which u is the frequency of the gravitational forcing, and, s, 
the zonal wavenumber. The gravitational forcing of Jupiter by 
lo is primarily semidiurnal with s = 2. For the values of the 
frequency and the tidal potential at the surface of the planet 
refer to IL. 

The inviscid momentum equations, neglecting the nonradial 
component of the rotation vector in the coriolis force (the 
traditional approximation, Eckart 1960), become 

ou I oP 
- - 2w cos ev = - - - (2.9) 
ot r oe , 

ov 1 oP 
-+2wcos8u= ---- (2.10) 
ot rsin8o<f>' 

aw op on, 
P. at= - or - p, a,- g,p, (2.11) 

in which p =Pf Po+ n, is the reduced pressure. The traditional 
approximation is accurate for large-scale motions in stable 
thin spherical shells (Phillips 1966). The traditional approx­
imation could be extended deeper into the planet. Validity of 
the extension of the approximation into the interior is sug­
gested by the fact that the tidal motions are confined in large 
measure to the outer layers of the planet. The above approx­
imations, the traditional, the Cowling, and the inviscid, result 
in major simplification. The equations become separable under 
these approximations which affords easy and familiar interpre­
tation similar to that in the classical theory of tides (Chapman 
& Lindzen 1970). The major point of departure from the clas­
sical theory is retention of the nonhydrostatic terms in the 
radial momentum equation (2.11) which become important in 
the planetary interior when the Brunt-Viiisala frequency is 
small. 

Assume that the tidal response has reached a periodic state 
under the forcing of the revolving satellite. The dependence of 
the perturbed quantities on time and azimuthal angle will be 
the same as that of the forcing which has the form eicrt+is<P. We 
will continue to denote the perturbed quantities with the same 
symbol as previously, it being understood that the quantities 
refer to the (u, s) mode. 

Eliminating the horizontal velocities and substituting into 
the divergence, x, we obtain 

1 o(r2w) iu 
X = 2 -

0 
- + '-·-' 2 F[P] , 

r r '"tWr 
(2.12) 

where F is the Laplace tidal operator, which determines the 
meridional structure of the tidal fields and which depends only 
onf = u/2w. For the gravitational forcing of Jupiter by lo this 

quantity isf= 0.766 (see IL). Expanding the various fields in 
terms of Hough functions, E>.(O), we obtain, that is, for the tidal 
potential: 

r' ~ 
Q = _ " g 0 (O)eiat + is<P 

r 2L,,nn · 
a ' 

(2.13) 

The divergence equation (2.12) becomes 

1 a(r2w") ia a2 

Xn=2-
0
----h 2Pn, 

r r 9s n r 
(2.14) 

where the subscript, n, denotes the order of the Hough mode, 
Os• the gravitational acceleration at the surface of the planet, 
and h, the equivalent depth of the Hough mode. The values of 
the equivalent depths for Jupiter due to the tidal forcing of lo 
are derived in IL. 

Eliminating the density from equations (2.11) and (2.3) we 
obtain 

, = (dP Jdr) - (N 2/g,)P, + (N 2/g.'JD,(r2/a 2
) 

,, u' _ N' (2.15) 

where the radial displacement, ~n = wJia. Eliminating the 
divergence, x., from equations (2.6) and (2.14) gives 

1 d(r
2
(.'J ( 1 1 a') g, n, r

2 

-,-d-+ -,--h--, P,--,(,=--,--,. (2.16) 
r r c 9s " r c c a 

We transform equations (2.15) and (2.16) into canonical form 
by defining 

- _ , ( I' o. ) ~" = r ~n exp - Jo c2 dr ' p (l'N') Pn = .....!! exp - - dr . 
Po o 9o 

(2.17) 

In terms of the new variables equations (2.15) and (2.16) 
become 

de r' ( c' a' ) -"=h(r)- ---1 ffe. 
dr c2 9shn r 2 

r'n ( l' g ) +--,:exp - ~dr, 
9s n o C 

(2.18) 

djjn 1 2 2 ----(u N )' 
dr - h(r)r2 - '" 

2r ( l' N' ) -20nexp - -dr , 
a o 9o 

(2.19) 
where 

h(r) = exp [f ( ~: -:; )dr J. (2.20) 

3. THE THERMODYNAMIC BASIS STATE OF JUPITER 

The planet is taken to be a mixture of hydrogen and helium 
with a constant abundance of 90% H 2 by mass. The planet's 
thermodynamic state is taken to be different in the interior of 
the planet than in the atmospheric envelope (see Fig. 1). The 
atmosphere is assumed an ideal gas with y = 1.4. We assume 
that the gas in the interior of the planet obeys the polytropic 
constitutive relation 

(3.1) 

with K a constant to be determined by the mass of the planet, 
M, and the requirement that the density vanish at the planet's 
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Atmospheric Envelope 

Polytropic 
Interior 

Core 

~ 

FIG. 1.-Schematic or the different regions of the planet. In the atmospheric envelope we assume the ideal gas law. The polytropic interior obeysp., = Kp;. From 
the cloud level to the center of the planet there are approximately 18 scale heights. The atmospheric envelope under the visible clouds is 4-10 scale heights deep. 

surface (r = a) through the solution of 

d ( 2 0 _ 2 dp,) 4itG 2 - rp - =---rp 
dr 0 dr nK 0

' 

(3.2) 

the Lane-Emden equation (Chandrasekhar 1955). 
Early theoretical studies of the interior constitution of the 

Jovian planets (de Marcus 1958; Opik 1962) and gravimetric 
inversions (Hubbard 1974) indicated that the distribution of 
mass is hydrostatic and to a good approximation consistent 
with the polytropic constitutive relation with n ~ 2. On the 
other hand, work on the high-pressure thermodynamics of 
hydrogen-helium mixtures (Stevenson 1978; Hubbard & Ste­
venson 1984) indicated that the adiabatic compressibility 
parameter r 1 increases with pressure from the ideal gas value 
of "'1.4 at the atmospheric envelope to "'3 for pressures of the 
order of 1 Mbar, and over a substantial range of pressures is 
"'2, leading to the conclusion that the polytropic equation of 
state p0 = Kp~ is a convenient and an appropriate simplifica­
tion of the constitutive relation in the interior of the planet. 
The polytropic relation with n = 2 has the advantage that the 
distribution of density can be solved in closed form 

, sin (nq) 
P.(r) = Poc p,(q) = Poc ---;;;-- > (3.3) 

where q = r/a, p, is the normalized density, and the density at 
the center of the planet is Poe= nM/4a3

. The polytropic con­
stant K is determined to be K = 2Ga2 /n. 

The mean density and the mean of pressure' are plotted as a 
function of the radius of the planet in Figures 2 and 3, respec­
tively. The pressure is expressed in terms of the number of scale 
heights x = - ln (p/Pc1oud), where Pcioud is taken to be the pres­
sure at the top of the visible clouds of the planet ("' 300 mbar). 
Remarkably, there are only about 18 scale heights from the 
visible atmospheric envelope to the center of the planet, while 
there are only four scale heights from 0.9a to the center of the 

planet. The tidal response at the atmospheric envelope 
depends on the number of scale heights spanning the distance 
between the atmospheric envelope and the levels of excitation 
primarily concentrated in the interior of the planet (see IL). As 
a consequence the tidal response will primarily depend on the 
outermost layers of the planet. 

The gravitational acceleration can be derived from the dis­
tribution of mass and is given by 

dp, 
go= -gs d;J' (3.4) 

In Figure 4 we plot the variation of the gravitational acceler­
ation as a function of the radius of the planet. 

Although, the interior is taken to obey the polytropic rela­
tion with n = 2, following Cowling (1941) we also allow for 
r 1 ~ 2. When r I = 2 the interior is neutral, that is, N = 0. 

E 

" 
"' 3 

0 2 
a. 

o~~~~~~~~~~~~~~~~~~~~ 

0.0 0.2 0.4 0.6 0.8 1.0 

r I a 

FIG. 2.-Mean density or Jupiter as a [unction of the fractional radius of the 
planet. It is calculated for the polytropic interior p., = Kp;. 
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F10. 3.-Mean pressure of Jupiter as a function of the fractional radius of 
the planet. It is calculated for the polytropic interior p., = Kp;. The pressure is 
plotted in terms of the log-pressure coordinate, x, which indicates the number 
of scale heights. At the center of the planet the pressure is around 34 Mbar, at 
the cloud tops is 0.3 bar. Note that there are around 18 scale heights from the 
visible clouds to the center of the planet, out of which the 15 are between the 
clouds and 0.9 of the radius of the planet 

When r 1 > 2 the interior is stably stratified with Brunt­
Viiisiilii frequency given by 

N' = !!., r, - 2 J._ (dfJ0 )' = r 1 - 2 ~ (3.5) 
a r1 Po d,, r1 Poaos 

and the speed of sound is given by 

2 ri ,... 
C = 2 g1<ap0 • (3.6) 

For Jupiter the distribution of Nin the interior of the planet 
and in the deep atmosphere is unknown. The existence of an 
internal heat source leads to the widely accepted view that the 
interior is in an average state of neutral stability (Hubbard & 
Smoluchowski 1973; Stevenson & Salpeter 1976). The pro­
cesses that maintain the mean static stability are complex and 
poorly understood even for the well-observed terrestrial atmo­
sphere and ocean. In general, it can be argued that if heat from 

40 

35 

30 
'l' 

"' 25 
E 

20 
0 

CJ 15 

10 

5 

0 
0.0 0.2 0.4 0.6 0.8 1.0 

r I a 
F1G. 4.-Distribution of the gravitational acceleration in Jupiter as a func­

tion of the fractional radius of the planet. It is calculated for the polytropic 
interior p

0 
= Kp;. Note that the maximum acceleration occurs at around 0.7 

of the planetary radius. 

0.20 ~ 

0.18 r , • 2.005 

0.16 

0.14 

' 0.12 • • 0.1 0 0 

0.08 
z 

0.06 

0.04 
0 

0.02 

0.00 ~ 

0.0 0.2 0.4 0.6 0.8 1.0 

'I a 

FIG. 5.-Brunt-Viiislilii frequency, N, in the interior of Jupiter, as a function 
of the fractional radius of the planet. The interior mean state satisfies the 
polytropic constitutive relation with n = 2 and f 1 = 2.085. The dashed line 
shows the frequency of the external periodic forcing, u. For comparison, note 
that at the visible cloud level N ~ 65 u. 

the interior is supplied to the surface by thin convective 
plumes, the interior must maintain an average positive static 
stability if the compressional heating in the downwelling 
regions is to be balanced by loss of heat (Lindzen 1977). We 
show in the next sections that the inclusion of even small posi­
tive static stability in the interior of the planet has a dramatic 
effect on the tidal response at the atmospheric envelope. In this 
sense, the study of the tidal response of the planet with a neu­
trally buoyant mean state is dynamically singular. Note that 
low levels of static stability, although dynamically significant, 
may be difficult to detect by direct measurement of N. 

The idealized distribution of N in the interior of the planet 
which is given by equation (3.6) is shown in Figure 5 for r 1 = 
2.085. Note the rapid decrease of N caused by the rapid 
increase of density with radius and the eventual vanishing of 
the gravitation acceleration at the center of the planet; for 
r/a < 0.75 we find N < u. At the atmospheric envelope N is of 
the order of 2 x 10- 2 s - 1 which is ,., 65 u at the 100 mbar level 
(see Achterberg & Ingersoll 1990). Note that N > u is necessary 
for oscillations to behave as vertically propagating waves (cf. 
§ 4). Note as well that at the outer parts of the planet, below the 
atmospheric envelope, N < 10 a, a value of static stability 
which may be hard to distinguish observationally from neu­
trality. 

To estimate the possible range of values of the compress­
ibility parameter r 1 let us first assume that the idealized dis­
tribution of N, equation (3.6), is valid up to the visible region of 
the atmospheric envelope of Jupiter. In this case, the r 1 that 
matches the observed lapse rate of about 2 K km_, at the 
atmosphere is 2.56. We will instead assume an atmospheric 
thermal state, adapted from Acterberg & Ingersoll (1990), 
which places the transition from the ideal gas atmosphere to 
the polytropic interior at 4-10 scale heights below the visible 
clouds (details of this construction are presented in Appendix 
A). Generally we assume that the static stability rapidly 
decreases in the deep atmosphere of the planet above the poly­
tropic interior, but we consider the possibility of the existence 
of local regions of higher stability (i.e., due to compositional 
differentiation or disequilibrium of the parastates and ortho­
states of molecular hydrogen) as suggested by the arguments of 
Conrath & Gierasch (1984) and Gierasch & Conrath (1987). 
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Under these conditions a large range of values of r i. that is, 
2.01 < r 1 < 2.15, is consistent with continuous transition from 
the atmosphere to the polytropic interior. 

4. QUALITATIVE DESCRIPTION OF TIDAL MOTION 

Assume slow variation of the coefficients of the radial struc­
ture equations (2.18)-(2.19) so that we can perform a WKB 
analysis. Under this assumption, we obtain the local dispersion 
relation 

2 _ (_£__ a' _ ) (N
2 

- a
2

) 
KR - h 2 1 2 . 

9s m r c 
(4.1) 

with KR the radial wavenumber. 
The equivalent depth, h,,, can be used to obtain an estimate 

of the horizontal wavenumber. Consider a rotating planar 
channel at colatitude (J with local coriolis parameter f 0 = 
2 w cos 0 (Lindzen 1990). The Laplace tidal equation for this 
planar channel gives 

(]2 - 1; 
Yshn = --,-- • 

KH,s 

(4.2) 

with KH,s the total horizontal wavenumber (in units of inverse 
length) at the surface of the planet. Note that smaller equiva­
lent heights correspond to higher horizontal wavenumbers. 
The horizontal wavenumber at the surface is related to the 
horizontal wavenumber at any radius r, KH, by 

(4.3) 

The geometrical constraint requires for a given horizontal 
wavenumber at the surface of the planet, KH,s• that 
limr_,0 KH = oo. With equation (4.3) the dispersion relation 
takes the form 

(4.4) 

describing all the possible mixed internal gravity, inertial, and 
acoustic oscillations. Consider c -+ oo to reduce equation (4.4) 
to the familiar dispersion relation for inertia-gravity oscil­
lations: 

Kie= a
2 -f: 

Ki N1 - a1. (4.5) 

To have propagation it is necessary to have either N ~ a ;:::: 
/ 0 or N ::; a ::; f 0 • The former condition is expected to be satis­
fied in the atmospheric envelope of the planet for some waves 
of positive equivalent depth (recall from equation [ 4.2] that 
hn > 0 is associated with a > fo). In the interior of the planet 
and for modes of positive equivalent depth we expect trapping 
unless the stratification is sufficiently strong, which happens 
only at the outer layers of the planet. A plot of Ki a2 

(nondimensionalized by the radius of the planet a) is shown in 
Figure 6 for Jupiter for various equivalent heights for a neutral 
interior (r 1 = 2.00) and an interior with some stability (r 1 = 
2.01). Note that the modes of positive equivalent depth, which 
can amplify at the atmospheric envelope, will be strongly 
trapped in the deep interior of the planet regardless of the 
value of 1 1. At the outer parts of the planet, where the stratifi­
cation is significant, only the higher order Hough modes can 
propagate in accord with the discussion in IL. 
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FIG. 6.-Square of radial wavenumber (made nondimensional by multi­
plying with the radius of the planet, a, as a function of the fractional radius of 
the planet Jupiter. The solid curves show the wavenumber for a planet with 
r 1 = 2.01 in the interior for the second Hough mode (marked with a 2), the 
tenth Hough mode (marked with a 10), and the sixteenth Hough mode 
(marked with a 16). The dashed curves show the corresponding values for a 
neutral interior (r = 2.0). Propagation is possible when the square of the 
wavenumber is positive. The presence of stability allows the higher positive 
equivalent depth modes to propagate. This occurs at the outer layers of the 
planet. The tenth Hough mode has equivalent depth of approximately 949 km, 
the tenth Hough mode 29 km, the sixteenth 11 km. 

In the interior and for N ::; a ::; f 0 , only the Hough modes 
with negative equivalent depth can propagate. These modes, 
confined to the poles of the planet, will be trapped in the stable 
atmospheric envelope but in the interior will be propagating 
inertial waves. The wavelength of these inertial oscillations 
decreases toward the center of the planet. It can be shown that 
neglect of the nonradial component of planetary vorticity is 
inappropriate near the center of the planet. To avoid this sin­
gularity at the center of the planet, we appeal to the probable 
existence of a core at rcore ~ 0.13a (Stevenson 1978; Hubbard 
& Stevenson 1984) and limit the integration of the equations to 
r>rcore• 

To delineate the acoustic branch consider equation (4.4) 
with N 2 ~ 0 

(4.6) 

Propagation of acoustic waves is prohibited in the deep inte­
rior by the large value of the speed of sound and of the hori­
zontal wavenumber, KH (see eq. [4.3]). A typical distribution of 
the sound speed in relation to the angular velocity as a func­
tion of Jupiter's radius is shown in Figure 7; for comparison 
the phase speeds of the corresponding equivalent gravity waves 
are tabulated in Table I. Note that the speed of sound in the 
interior exceeds the phase speed of the equivalent gravity 
waves. Consequently, for frequencies characteristic of tidal 
forcing, the acoustic branch does not modify the propagation 
characteristics already derived from the dispersion relation of 
the inertia-gravity waves given by equation (4.5). Exception­
ally, in the outer layers of the plane (i.e., r > 0.96a) acoustic 
propagation is possible by the lowest order Hough modes. For 
example, for a neutral planet, r 1 = 2.00, the gravest Hough 
mode can acoustically propagate at the outermost edges of the 
planet, while the tenth and the sixteenth mode are everywhere 
trapped in the interior of the planet (see Fig. 6). Note that for 
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FIG. 7.-Speed of sound c for a polytrope of index 2. The dashed curve is 
the linear speed due to the rotation of the planet as a function of the planetary 
radius. 

r 1 = 2.01 the gravest Hough mode develops an acoustic duct 
at the outer edges of the planet. 

5. TIDAL OSCILLATIONS IN A PLANET WITH A 

NEUTRAL INTERIOR 

The radial structure equation, expressed in terms of reduced 
pressure, becomes for a planet with a neutral interior er 1 = 2) 

d2~. + (~ +.;._ dp,) dP. + a
2

a (.;._-~ 1
2
)P. = a

2

a ~
2 

n., 
dq q p, dq dq g, p, h. q g, p, 

(5.1) 

with 'I = r/a, the relative distance, and p0 , the normalized mean 
density. The radial displacement is given bye. = l/a2 dP .fdr. 

To specify the boundary condition at the surface of the 
planet (q = I) let us assume that equation (5.1) is valid every­
where in the planet, that is, the stability is neutral even at the 
shallow atmospheric envelope. The outer boundary condition 
is then constant pressure at the outer material surface. This 
condition, linearized about '1 = 1, is 

TABLE 1 

JUPITER 
J~ 0.766, s ~ 2 

Hough Mode 

2 ............... . 
4 ............... . 
6 ............... . 
8 ............... . 
10 .............. . 
12... 
14 .............. . 
16 .............. . 
18 .............. . 
20 .............. . 

h. 
(km) 

948.9 
204.5 

85 
46.1 
28.8 
19.7 
14.3 
10.9 
8.5 
6.87 

4870.8 
2261 
1457.4 
1073.25 
848.9 
701.9 
598.3 
521.3 
461.8 
414 

NoTES.-The equivalent heights, h,., and 
the equivalent gravity wave speed, c1, for the 
first 10 symmetric Hough modes ol Jupiter, 
corresponding to the tidal forcing of the 
planet by lo. 

(5.2) 

which in terms of reduced pressure takes the form 

dP I a
2
a I a

2
a --" +-P,. =-0 •. 

df1 11=1 9s 11=1 9s 
(5.3) 

Note that as q --+ I, {>. "" I - q and dp,/dq --+ - I (for the outer 
planets a2a/g, ""0.1). Equation (5.1) has a regular singular 
point at f1 = 1. However, because the singular terms are identi­
cal to the pressure boundary condition (5.3), the interior solu­
tion of equation (5.1) develops no boundary layer at the surface 
to satisfy the outer boundary condition. 

To determine the outer boundary condition in the presence 
of a stable atmosphere, consider the radial structure equation 
for the shallow and isothermal atmospheric envelope with 
N>u: 

(5.4) 

where x = r/H, and H, the scale height, is given by H = RT/g,, 
with, R, the gas constant per unit mass, T the skin temperature 
of the atmospheric envelope, and " = y - l/y. The atmo­
spheric outer boundary condition (see IL) leads to the solution 
of equation (5.4), P. = Ce""+xl', with 

A = {i(KH/h. - 1/4)1
1
2 if KH/h. - 1/4 > 0 (

5
_
5
) 

-(1/4 - KH/h,J112 if KHfh. - 1/4 < 0 

in which C is a constant to be determined by the continuity of 
pressure and displacement at the interface separating the 
neutral interior satisfying equation (5.1) from the stable atmo­
spheric envelope. Denote the interior variables by "i" and the 
corresponding atmospheric vari3.bles by" a." The conditions at 
the interface are 

dPi a2a u2a _ u2a dP:, 
--"+-P~--n. 

drr 9s 9s - 9s K dx · 
(5.6) 

The outer boundary condition is given either by equation (5.3) 
or (5.6). The lower boundary condition is zero displacement at 
the inner core. 

To investigate the effect of these boundary conditions on the 
solutions we integrate equation (5.1) for various outer bound­
ary conditions and with the inner core located at different 
radii. The resulting radial distribution of pressure, radial veloc­
ity, and zonal velocity are shown respectively in Figures 8, 9, 
and 10. The results are not sensitive to either boundary condi­
tion. It has been shown in § 4 that all Hough modes with 
positive equivalent depth are strongly trapped in the interior of 
the planet (see Fig. 6). This results is the observed insensitivity 
to the lower boundary condition. Note that modes with nega­
tive equivalent depth propagate in the interior, but are trapped 
in the atmosphere. 

It is informative to define the equilibrium radial displace­
ment of a material surface under the influence of the external 
tidal potential, n,: e, •• m• = -0,/g,. The radial displacement 
and the equilibrium displacement are shown in Figure II as a 
function of the radius of the planet. The effectiveness of the 
forcing in exciting tides in the planetary atmosphere is pro­
portional to the difference between the two displacements, 
because the tidal fields are forced by this geopotential disequi­
librium. For example, if the inner planet were separated by a 
solid interface from the atmosphere, atmospheric tides would 
result from the response to the forcing of 13 m geopotential 
disequilibrium at the ground (for Earth the corresponding 
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0 L..~~~~~~~~~~~~~~~~~~~~~~-' 
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"" F1G. 8.-Magnitude of perturbation pressure at the equator as a function of 
the radius due to the tidal excitation of planet Jupiter by its satellite Io. The 
interior is exactly neutral. The phase is almost 0 and is in phase with the 
displacement of the equilibrium tide. The pressure is measured in bar (1 
bar = 105 Pa), and the radius as a fraction of the planetary radius a. Curve 1 
shows the response when a solid boundary (i.e., a core) has been placed at O.la 
and the atmospheric envelope is an isothermal atmosphere of temperature 160 
K. The three indistinguishable curves identified as "2" correspond to the 
integration with a solid boundary at 0.6a and (1) an isothermal atmospheric 
envelope at 160 K, (2) an isothermal atmospheric envelope at 220 K, and (3) no 
atmosphere. This calculation, as well as all the others to follow, was performed 
with the first 14 symmetric Hough modes of positive equivalent depth, and the 
first 10 symmetric Hough modes of negative equivalent depth. 

value is 20 cm which corresponds to a hydrostatic tidal pres­
sure fluctuation of 20 µbar; the observed gravitational tidal 
pressure fluctuation is approximately 60 µbar). Instead the 
neutral interior reduces the geopotential forcing to 30-100 cm. 
This is to be expected because, with the absence of gravita­
tional restoring force, the weak compressional and inertial res­
toring forces cannot oppose the imposed geopotential 
deformation. Remarkably, a planet with neutral interior has 
tiny tidal response, while introduction of small stability in the 
interior leads to greatly enhanced dynamic displacements: 
~ - ~ ••• m•"' 20 m. Previous calculations (Houben 1978; 
Houben & Gierasch 1977) treated a neutral interior and conse­
quently produced small tidal forcing in the atmosphere and a 
resulting tidal dissipation factor Q "' 109

, which is four to five 
orders of magnitudes larger from the values required for 
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;;, 
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• 
0.001 

' --

0.000 
0.0 0.2 0.4 0.6 0.8 1.0 

'I a 
F1G. 9.-Magnitude of the radial velocity at the equator of Jupiter as a 

function of the fractional radius of the planet. The interior is exactly neutral. 
The curves correspond to the same cases as in Fig. 8. 
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FIG. 10.-Magnitude of the zonal (westerly) velocity as a function of frac­
tional radius for various boundary conditions of Fig. 8. The interior has been 
assumed neutral. 

orbital evolution. We can, however, produce a tidal Q consis­
tent with the constraints set by orbital evolution theory by 
assuming that the planetary interior has nonzero stability. 

6. ESTIMATION OF TIDAL EXCITATION AND DISSIPATION IN 

A PLANET WITH A ST ABLE INTERIOR 

Consider a planet with some stability in the interior. The 
solution in the planetary interior is matched to the atmo­
spheric solution which obeys (see IL) 

d'y; + [N'H' + u
2

H (i _ yH)- !JY. = O' (6.l) 
dx Oshn YOs hn 4 

where Yn = Xne-x12, and x =JO dz/H. 
We assume the observed temperature structure above the 

visible clouds (refer to Appendix A). In this region only Hough 
modes of order n > 12 can propagate. Below the clouds the 
static stability is assumed to decrease exponentially at such a 
rate that all the Hough modes are trapped. Transition to the 
polytropic interior takes place at about nine scale heights 
below the visible clouds, and in the interior the static stability 

10 

E 

5 

o L~_...::'~-~-::.....:::::c.::::__~~~~~~~-~~~-~-~ 
0.0 0.2 0.4 0.6 0.8 1 .0 

'I a 
FIG. 11.-Magnitude of the radial displacement as a function of the frac­

tional radius. Curve 1 is the radial displacement calculated from the dynamic 
response in Jupiter, the interior is exactly neutral, and the core has been placed 
at 0.1 of the planetary radius. Curve 2 is the radial displacement of the equi­
librium tide. 
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FIG. 12.-Location of the waveguide in the planetary interior for the twen­
tieth Hough mode (h20 = 6.87 km) as a function of r 1 . The location, X, is 
specified by the number of scale heights below the visible clouds. X 0 corre­
sponds to the center of the planet. The polytropic planetary interior starts at 
x~9. 

is given by equation (3.6) with r 1 > 2. Propagation of the 
higher Hough modes is possible in the outer parts of the plan­
etary interior. Deeper into the planet all the modes with posi­
tive equivalent depth are trapped, and only those with negative 
equivalent depth can propagate. To clarify the influence of the 
static stability in the planetary interior we allow a disconti­
nuity at the interface separating the polytrope from the ideal 
gas atmosphere. Note that introduction of some stability in the 
interior leads to formation of the waveguide, in accordance 
with the discussion in § 4. The structure of the assumed static 
stability is not crucial for the creation of this duct. Note that 
formation of a waveguide, for a given Hough mode, requires 
values of Nin inverse proportion to the local scale height. 

We first present the radial structure of a single Hough mode 
as a function of r 1, choosing for definiteness the twentieth 
mode. The location, marked by the number of scale heights 
below the visible clouds, of the resulting waveguide in the plan­
etary interior as function of r 1 is shown in Figure 12. As r 1 
varies, the waveguide becomes resonant with the driving 
potential. To test the numerical solutions, and the accuracy of 
the WKB approximations of§ 4, we calculate the resonant r, 
from the WKB quantization condition: 

(6.2) 

where k• is the radial wavenumber, given by equation (4.1), 
and r 1 and r 2 the limits of the waveguide. The response of the 
atmospheric envelope as a function of r 1 is shown in Figure 
13. The WKB analysis is accurate even for the first resonant 
mode. 

The strength of the tidal fields in the atmosphere is estimated 
by the resulting radiation energy flux, pw. This energy flux 
represents the power radiated away from the planet and can 
provide an estimate for the associated tidal dissipation factor Q 
through use of equation (1.5). The peak energy of the tidal 
fields is calculated as the maximum potential energy of the tide 
in the planetary interior (Houben & Gierasch 1977; Houben 
1978). Note that the resulting magnitude of Q, although indica­
tive, is certainly an overestimate because neither the dissi-
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2.20 

• = 
- _:_ - - --

• 
• - - - / 

• • 

- : -/ 2.15 

- ' /. -
• -/ -

. / -

• 
/ 2.10 

' - / = - -7 
• -/ 

• 

:--- - -

/ 
• 

2.05 

- - - - -v -

2.00 . 
0.25 0.75 1.25 1.75 2.25 2.75 3.25 3.75 4.25 4.75 5.25 5.75 

(JkRdr)/27t 

F10. 13.-Resonant r 1 according to WKB theory and the numerical calcu­
lation for the twentieth Hough mode. The dotted lines correspond to (n + 1/2)/ 
2, n = 1, 2, ... ; the slanted continuous line is J KRdr/2n as a function ofr1• The 
points of intersection between these two lines specify the resonant r 1 accord­
ing to WKB theory. The horizontal spikes show the radial velocity in m s - 1 at 
10 scale heights above the visible clouds as a function of r 1 ; the values are the 
result of numerical integration. Note the accuracy of the WKB theory. 

pation of the trapped modes nor other forms of dissipation 
have been taken into account. The dependence of the energy 
flux and the associated Qare plotted in Figure 14 as a function 
of r 1 for the twentieth Hough mode. If we disregard the reso­
nant peaks, we note that the amplitude of the tidal fields for 
r 1 > 2.02 asymptotes to a value which is two to three orders 
(recalling that the flux is a quadratic quantity) of magnitude 
larger than the resulting fields with a neutral interior. This 
asymptotic behavior is caused by the slow increase of the 
number of scale heights as the waveguide extends deeper than 
"'0.9a of the planet. Also note that as the stability in the 
interior increases from neutrality the atmospheric response will 
reach a minimum before approaching its asymptotic value. 

20th Hough Mode 

1021 ~~~~~~~~~~~~~~~~~~~~~~ 
1 020 
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1 018 ~ 
1017 . 
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1 013 -
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1 0' 
1 o• 

pw 

Q 

103 '-"--~~L._....J._~_J__~-~~~~L._....!c-"-'_il~,_l_j 

2.000 2.025 2.050 2.075 2.1 00 2.125 2.150 2.175 2.200 
r, 

F10. 14.-Energy flux pw in watts, integrated over the surface of the planet 
at the visible atmosphere for the twentieth Hough mode, as a function of r 1• 

The lower curve shows the corresponding Q. 
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FIG. 15.-Effective forcing as a function of the radius of the planet for 

various r 1• The values are made nondimensional by g, a. 

This is due to the effect of the structure of the distributed tidal 
forcing in the interior. The effective forcing in the interior, 
derived by combining equations (2.18) and (2.19) into a single 
equation for the radial displacement, will depend on the ther­
modynamic structure of the planetary interior as discussed in 
§ 5. The structure of the effective forcing as a function of the 
radius of the planet is shown in Figure 15 for various r 1• We 
notice that for a neutral interior the effective forcing is in phase 
with the driving tidal potential. For very small static stability 
the driving is out of phase with the effective forcing in the deep 
interior and in phase at the outer parts of the planet, leading to 
a reduced response. For r 1 > 2.015 the effective forcing is 
everywhere out of phase with the driving, indicating that the 
frequency of the tidal driving is less than the neutral period of 
the restoring force of the medium. 

Consider the response of the interior when the total tidal 
driving is taken into account. The resulting magnitude of the 
dynamic displacement ~ - ~equilib at the equator of the planet 
is shown in Figure 16. Note the substantial departure from 
equilibrium displacement indicating an energetic response of 
the atmosphere. The resulting energy flux and the associated Q 
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11: r, • 11.00 
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FIG. 16.-Magnitude o[the difference between the dynamic radial displace­
ment and the equilibrium radial displacement at the equator as a [unction or 
the fractional radius or the planet Jupiter. The tidal response or the atmo­
spheric envelope is proportional to the disequilibrium of the dynamic 
response. Curve 1 represents the response of an interior with some stability 
(r 1 = 2.05); curve 2 represents the case of an exactly neutral interior. 
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FIG. 17.-Total energy flux pw in watts, integrated over the surface or the 

planet at the visible atmosphere, as a [unction of r 1• Only the Hough modes 
(n ~ 12) which propagate in the upper atmosphere contribute to the energy 
flux. The lower curve shows the corresponding Q. The dotted curves show the 
corresponding results with an effective dissipation in the planetary interior of 
60hr. 

as a function of r 1 are shown in Figure 17. The resonant peaks 
indicate the selective resonance of different Hough modes. As 
we remarked in IL, the tidal driving, which is proportional to 
the second spherical harmonic, projects on many Hough 
modes, each of which can separately resonate. The resonant 
peaks can be suppressed by introduction of adequate dissi­
pation in the interior. Dissipation can be simulated by allow­
ing the forcing frequency a to assume complex values. For 
large interior dissipation the resonances are diffuse. Such a case 
with a interior dissipation time scale of 60 hr is shown in 
Figure 17. 

Disregarding the resonant peaks, the tidal response asymp­
totes to an energy flux level of ~ 3 x 1014 W over the whole 
surface of Jupiter which corresponds to ~0.005 W m- 2

• The 
associated Q asymptotes to ~ 105 in accord with the value 
expected from astronomical arguments. Note that if the dissi­
pation in the interior is small, so that the resonances are sharp, 
the energy flux can reach the order of 1017-1018 W. These large 
energy fluxes result in values of Q of the order of 103• That such 
a situation is plausible is indicated by the anomalous heat 
output of Io (Yoder & Peale 1981). In the case of reduced 
interior dissipation the tidal fields in the atmosphere may show 
a discernible episodic signature caused by the time variations 
of the interior stability. It is then plausible that tidally forced 
wave fields reach an energy comparable to the thermal emis­
sion of Jupiter (14 W m2 which is "'1017 W). 

7. CONCLUSIONS 

We have extended the classical theory of tides, reviewed in 
IL, to study the tidal response of a deep fluid planetary body. 
We have retained the separation of the meridional and vertical 
structure equations by neglecting the horizontal components 
of the rotation vector in the calculation of the coriolis acceler­
ation. We expect this approximation to give accurate results 
and even prove useful in determining the free modes of a 
rapidly rotating planet. 

The tidal response is found to crucially depend on the dis­
tribution of static stability in the interior. The presence of con­
vection in the planetary interior has often been assumed to 
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lead to a state of neutral stability. While absolute neutrality in 
the interior is a good first approximation to determine the 
mean thermodynamic state, small departures from neutrality 
have important implications for the tidal response. The tidal 
response of the atmospheric envelope is proportional to the 
departure of the tidal fields from their equilibrium value. In the 
absence of any stability in the interior a neutrally buoyant 
material surface deforms and becomes nearly an equilibrium 
equipotential surface leading to small tidal excitation. 

We have shown that the presence of some small static stabil­
ity at the outer parts of the planet leads to dramatic enhance­
ment of tidal response in the atmosphere. The tidal fields are 
then capable of radiating enough energy away from the planet 
to result in a tidal dissipation factor Q consistent with the 
bounds set by astronomical considerations. The presence of 
static stability in the planetary interior creates ducts in which 
the various Hough modes can resonate. If the viscous dissi­
pation is not very large in the planetary interior, we expect this 
resonant behavior to result in episodically very large tidal 
activity as the interior stability is modulated by convection. If 
we disregard the resonant peaks, the tidal activity quickly 
asymptotes to a value which is independent of the amount of 
stability and is consistent with the tidal dissipation required by 
the astronomical arguments. 

We have utilized a very simple model for the static stability 
in which the most stable layers are concentrated in the outer 
parts of the planet, but are separated by a nine scale height 
deep neutrally buoyant region below the clouds. We expect our 
conclusions to apply also to more structured models of interior 
static stability, as long as the static stability is not concentrated 
too deep in the interior. Remarkably, the assumption of a 
rigorously neutral interior is dynamically singular, and, 

encouraged by agreement with astronomically determined 
tidal dissipation, we are led to the hypothesis that the interior 
of the planet should possess some static stability. Verification 
of the hypothesis must await sufficiently accurate observations 
of the tidal response of Jupiter. 

If a forthcoming paper we will present the detailed structure 
of the tidal response in the visible atmosphere as a function of 
the static stability of the planetary interior. We have already 
found that the tidally forced wave fields may produce an 
energy flux comparable to the thermal emission of Jupiter 
( ~ 1017 W). This energy flux may be associated with a source of 
momentum that can maintain the puzzling observed cloud 
level mean zonal circulation of the planet. Using the Eliassen­
Palm theorem (Lindzen 1990) we can estimate the expected 
latitudinally averaged acceleration of the mean flow to be 
~io- 2 m s- 1 day- 1 assuming that the momentum of the 
waves is deposited in a layer of one scale height in depth (25 
km). However, the interaction of vertically propagating and 
vertically trapped modes can lead to a latitudinal redistri­
bution of zonal angular momentum on the scale of the domi­
nant vertically propagating Hough mode (Fels & Lindzen 
1974). These alternating local accelerations will be concen­
trated in restricted latitude bands suggestively resembling the 
visible banding of the planet. Detailed calculation of the 
implied mean zonal accelerations will be presented in a forth­
coming paper. 
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NSF ATM 91-4441. We thank Peter Gierasch for informing us 
of the thesis by Houben. The authors thank Brian Farrell for 
valued assistance. 

APPENDIX 

THE CONSTRUCTION OF THE MEAN STATE 

The temperature of the visible part of the atmosphere is taken to simulate observations on Jupiter (Linda! et al. 1981). Following 
Lindzen (1970) it is expressed as 

( ) 
_ :: '~', C;+ 1 - c, 1 [cosh (x - xjb,)J 

T x - T0 + c1 2 + L. u, 2 n h /') , 
i== 1 COS (Xi Uj 

(Al) 

with IQ= 110 K the minimum temperature above the clouds which is taken to occur at a pressure p0 = 145 mbar. The vertical 
distribution is expressed as a function of 

(A2) 

where x is the log-pressure coordinate, and H the local scale height as a function of distance from the altitude where the minimum 
temperature occurs which is designated the z = 0 level. The cloud tops are one-to-two scale heights below the minimum of the 
temperature. Temperature distribution (Al) holds for x;;,, 0 and agrees with the observed distribution when we take c 1 = 0, 
c2 = 18.011, c3 = 0, x, = 0, x 2 = 2.63, 61 = 4, and 62 = 4(see Fig. 18). 

For the region x;;,, 0 the Brunt-Viiisiilii frequency N 2 is calculated from distribution (Al) and 

2 g, ( I dH) 
N =H K+Hdx' (A3) 

y - I 
K=--. 

y 
(A4) 
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FIG. 18.-Temperature distribution as a function of the log-pressure coordinate x. The cloud tops correspond to around x = -1. The temperature profile for 
x > 0 is taken from observations (Linda! et al. 1981). Under the cloud tops we have assumed that the static stability decreases toward neutrality. 

F10. 19.-Static stability in the atmospheric envelope as a function of the log-pressure coordinate, x. -The temperature minimum is taken as the reference level 
where x = 0. The maximum in the static stability, N1, under the cloud tops is located at X 1 and has a width of 2Xw. N 0 refers to the static stability at the reference 
level, while Nb is the static stability at the base of the atmospheric envelope, just above the transition to the interior polytrope. For the calculations presented in this 
paper we have taken N; = 0. 

For the region 0 > x > X P' X P the level of transition of the polytropic interior, we consider the following distribution of 
Brunt-Viiisiilii frequency 

( x') [ (x-X.+X) (x-X.-X )] N
2 = (N~ - N~) exp - bo + N~ + Nf tanh ~i w - tan ~i w , (A5) 

where N0 is the frequency at level x = 0, Ni the maximum frequency of an interior hump in Brunt-Viiisiilii frequency of width 
2Xw at a level Xi, and Nb the Brunt-Viiisiilii frequency at the base of the atmospheric envelope at the level of transition to the 
polytropic interior (see Fig. 19). 

The temperature distribution in x < 0 is derived by inverting equation (A3) up to X ,, the level of transition to the polytropic 
interior. The transition to the polytropic interior is determined as the level where the density and'-pressure of the mean state are the 
same as the ideal gas density and pressure X P scale heights below the temperature minimum at x = 0. The pressure and density 
distribution is determined by integrating equation (A3) and using the hydrostatic relation and the ideal gas law. The transition level 
X, depends on the distribution of the static stability. To allow for greater flexibility we gradually increase the value of y in this 
region to 1.6. At the visible atmosphere y = 1.4. 

At the transition level to the polytropic interior we also require N~ > N;, that is, Brunt-Viiisiilii frequency just above the 
transition to the interior is greater than the Brunt-Viiisiilii frequency in the interior at the point of transition to the atmospheric 
envelope. Solving equation (3.6) we can thus determine an upper bound for r 1. 

As we noted, we can easily construct ducts to resonate the various Hough modes. Here we present two examples of a resonant 
duct in the atmosphere. For a duct that resonates the tenth Hough mode take ii0 = 0.4, ii;= 0.2, N, = 5 u, Nf = 0.5380 Nl,, and 
X w = 1.1. Matching with the interior places the beginning of the polytropic region at X, = 6.29 under the temperature minimum, 
and X; = 4.35 - X ,. For r 1 = 2.015741 the static stability is continuous at the interface between the polytropic interior and the 
ideal gas atmosphere. 

For the sixteenth Hough mode the duct is well separated from the cloud layer lying deeper in the interior. The parameters for 
resonance are as follows: ii 0 = 3, ii;= 0.2, N, = 5 u, Nf = 0.069150001 Nl,, X w = 0.05. Matching with the interior sets the beginning 
of the polytropic region at X, = 10.3, and X; = 9.40 - x,. For r, = 2.1145 the static stability is continuous at the interface 
between the polytropic interior and the ideal gas atmosphere. 

REFERENCES 

Achterberg, R. K., & Ingersoll, A. P. 1990, J. Atm. Sci., 46, 2448 
Chandrasekhar, S. 1955, An Introduction to the Study of Stellar Structure 

(New York: Dover) 
Chapman, S., & Lindzen, R. S. 1970, Atmospheric Tides (Dordrecht: Reidel) 
Conrath, B. J., & Gierasch, P. J. 1984, Icarus, 57, 184 
Cowling,G. T. 1941, MNRAS, 101, 367 
Darwin, G. H. 1910, in Encyclopaedia Britannica, Vol. 26, Eleventh Edition 

(New York), 938 
De Marcus, W. C. 1958,AJ, 63, 2 
Dermott, S. F. 1979, Icarus, 37, 310 
Eckart, C. 1960, Hydrodynamics of Oceans and Atmospheres (London: 

Pergamon) 
Fels, S., & Lindzen, R. S. 1974, Geophys. Fluid Dyn., 6, 149 
Gierasch, P. J., & Conrath, 8. J. 1987, J. Geophys. Res., 92, 15019 
Goldreich, P., & Soter, S. 1966, Icarus, 5, 375 

Greenberg, R. 1987, Icarus, 70, 334 
--. 1989, in Time Varying Phenomena in the Jovian System, ed. M. J. S. 

Belton, R. A. Weston, & J. Rahe (Washington: NASA), 100 
Houben, H. C. 1978, Ph.D. thesis, Cornell Univ. 
Houben, H., & Gierasch, P. J. 1977, in Proc. Symp. on Planetary Atmospheres, 

R. Soc. Canada, 79 
Hubbard, W. B. 1974,lcarus, 1, 200 
Hubbard, W. B., & Smoluchowski, R. 1973, Space Sci. Rev., 14, 599 
Hubbard, W. B., & Stevenson, D. J. 1984, in Saturn, ed. T. Gehrels & M. S. 

Matthews (Tucson: Univ. Arizona Press), 395 
Ingersoll, A. P. 1990, Science, 248, 308 
loannou, P. J., & Lindzen, R. S. 1993, ApJ, 406, 252 (lL) 
Ledoux, P., & Walraven, T. 1958, in Handbuch der Physick, LI (Berlin: 

Springer), 353 
Lieske, J. H. 1987, A&A, 176, 146 

©American Astronomical Society • Provided by the NASA Astrophysics Data System 

http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1993ApJ...406..266I&amp;db_key=AST


1
9
9
3
A
p
J
.
.
.
4
0
6
.
.
2
6
6
I

278 IOANNOU & LINDZEN 

Linda), G. F., et al. 1981, J. Geophys. Res., 86, 8721 
Lindzen, R. S. 1970,Geophys. Fluid Dyn., I, 303 
--. 1977, in Problems or Stellar Convection (Berlin: Springer), 128 
--. 1990, Dynamics in Atmospheric Physics (Cambridge: Cambridge 

Univ. Press) 
--. 1991, Geophys. Astrophys. Fluid Dyn., 58, 123 
Malhotra, R. 1991, Icarus, 94, 399 
Matson, D. L., Ransford, G. A., & Johnson, T. V. 1980, J. Geophys. Res., 86, 

1664 
6pik, E. J. 1962, Icarus, 1, 200 
Phillips, N. A. 1966, J. Atm. Sci., 23, 626 
Platzman, G. W. 1984, Rev. Geophys. Space Phys., 22, 73 

Sinton, W. M.1981,J.Geophys. Res.,86, 3122 
Stevenson, D. J. 1978, in The Origin of the Solar System, ed. S. F. Dermott 

(Tucson: Univ. Arizona Press), 395 
--. 1983, J. Geophys. Res., 88, 2445 
Stevenson, D. J., & Salpeter, E. E. 1976, in Jupiter, ed. N. Gehrels (Tucson: 

Univ. Arizona Press), 85 
Tittemore, W. C. 1990, Science, 250, 263 
Tittemore, W. C., & Wisdom, J. W. 1989, Icarus, 78, 63 
Unno, W., Osaki, Y., Ando, H., & Shibahashi, H. 1979, Nonradial Oscillations 

of Stars (Tokyo: Univ. Tokyo Press) 
Yoder, C. F., & Peale, S. J. 1981, lcarus,47, 1 

©American Astronomical Society • Provided by the NASA Astrophysics Data System 

http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1993ApJ...406..266I&amp;db_key=AST

