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ABSTRACT 

Obtaining a physically based understanding of the variations with spatial scale of the amplitude and dispersive 
properties of midlatitude transient baroclinic waves and the heat flux associated with these waves is a cen.tral 
goal of dynamic meteorology and climate studies. Recently, stochastic forcing of highly nonnorrnal dynamical 
systems, such as arise from analysis of the equations governing perturbations to the midlatitude westerly jet, has 
been shown to induce large transfers of energy from the mean to the perturbation scale. In the case of a baroclinic 
atmospheric jet, this energy transfer to the synoptic scale produces dispersive properties, distributions of wave 
energy with wavenumber, and heat fluxes that are intrinsically associated with the nonnorrnal dynamics under­
lying baroclinic wave development. 

In this work a method for calculating the spectrum and heat flux arising from stochastic forcing is described 
and predictions of this theory for a model atmosphere are compared with observations. The calculated energy 
spectrum is found to be in remarkable agreement with observations, in contrast with the predictions of modal 
instability theory. The calculated heat flux exhibits a realistic distribution with height and its associated energetic 
cycle agrees with observed seasonal mean energetics. 

1. Introduction 

The large-scale dynamics of the midlatitude atmo­
sphere is dominated by baroclinic waves drawing their 
energy from the mean potential energy of the jet, which 
is in approximate thermal wind balance with the me­
ridional temperature gradient. In addition to their role 
in organizing the local wind and precipitation fields on 
synoptic scales, these waves are also responsible for 
much of the meridional transport of heat and momen­
tum in the midlatitude troposphere. Because of their 
importance to both weather and climate, gaining a 
physical understanding of the origin, maintenance, and 
statistical properties of baroclinic waves has been a 
central theme in dynamic meteorology, and this interest 
has resulted in a variety of proposed explanations and 
theoretical constructs. These ideas include the view that 
latent heat release alone gives rise to cyclones (Ferrel 
1881 ) and the conjecture that the midlatitude jet is 
spontaneously unstable to exponentially growing mo­
dal waves (Solberg 1928; Charney 1947; Eady 1949). 
Recently, it was shown that perturbation growth such 
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as is associated with cyclogenesis can arise from tran­
sient development of nonmodal perturbations (Farrell 
1982, 1984, 1985, 1989). Although this transient 
growth mechanism involves the same baroclinic energy 
source as gives rise to the more familiar exponentially 
unstable baroclinic waves, the flow need not support 
exponential instabilities for transient baroclinic wave 
development to occur; so it follows, for instance, that 
integral theorems for the existence of exponential in­
stabilities need not be restrictive of disturbance growth 
in flows dominated by transient growth (cf. Charney 
and Stem 1962). 

Regardless of whether the time mean baroclinic state 
of the atmosphere supports an unstable mode, obser­
vations reveal that the time and space scales over which 
disturbances are correlated [ ""='0(6) days (Leith 
1973)] are insufficient for modal dominance to arise 
from exponential growth of initial perturbations not ini­
tiated with normal-mode form given that a subset of 
perturbations can be shown to grow far more rapidly 
[Farrell (1989) and Lin and Pierrehumbert (1988) ar­
gue that a realistic modal e-folding is 0(3) days at the 
largest synoptic scales and over the oceans] . 

In this work we assume that the atmosphere can be 
modeled as asymptotically stable (all eigenvalues cor­
respond to asymptotic decay). We believe that ob­
served resemblance between the normal-mode struc-
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ture and dispersive properties and the structure and dis­
persive properties of baroclinic waves arises because 
the normal modes are structurally similar to preferred 
response structures under unbiased forcing. In the sto­
chastic analysis presented in Farrell and loannou 
( l 993b) this property of the modes was expressed in 
the analysis by the fact that the modes gave rise to poles 
in the expansion of the resolvent. However, while a 
normal dynamical system's response can be identified 
with the modes associated with singularities in the re­
solvent, we will see that this identification is consid­
erably obscured as the nonnormality of the system in­
creases so that a distorted picture of the mode emerges 
in the response of the nonnormal system. 

A comprehensive theory of baroclinic dynamics 
should permit calculation of the statistical average 
spectral distribution of the dominant synoptic-scale 
waves as well as of the heat flux resulting from these 
waves. A problem of long standing in the dynamics of 
the midlatitude atmosphere is that of reconciling the 
observed dominance of global wavenumbers near 5 in 
the transient energy spectrum with the inviscid expo­
nential modal instability of linearized GCMs at global 
wavenumber 12-15 (Gall et al. 1979). The resolution 
of this difficulty has been traditionally ascribed to the 
intercession of some nonlinear equilibration phenom­
enon, as was originally suggested by Gall ( 1976). As 
we will show, however, failure to obtain the observed 
spectra is not a fault of linear theory itself but rather of 
its application. When the subcritical linear operator is 
forced stochastically, the underlying structure of its re­
sponse is revealed to be that of the observations. 

While observations show the heat flux on the largest 
space and time scale to be adequately modeled over the 
seasonal cycle by an approximately linear flux/ gradient 
relationship (Sellers 1969; North 1975; Oort and Peix­
oto 1983), predictions based on baroclinic theory vary 
widely. Using the concept of baroclinic adjustment, 
Stone ( 1978), Lindzen and Farrell ( 1980), and Lind­
zen ( 1993) predict that the gradient is relaxed to mar­
ginal stability by the waves, which produce whatever 
flux is necessary to accomplish this stabilization. Using 
arguments based on mixing length theory and the struc­
ture of exponential unstable waves, Green ( 1970) pre­
dicted a quadratic relationship between the meridional 
temperature gradient and the heat flux, while Held 
( 1978) using similar methods obtained powers of 2 and 
5, depending on the relative dominance of the {3 effect. 
While diffusion appears to be adequate for the purpose 
of constructing simple climate models and the coeffi­
cient of diffusion required by such a model can be de­
termined empirically, from the point of view of dynam­
ics a more fundamental understanding is desirable. One 
might hope that such a deeper understanding would 
lead to a more accurate parameterization, but regardless 
of whether a simple parameterization arises from this 
study, understanding the underlying physics remains an 
important goal. 

The central idea of this work is that the dynamics of 
baroclinic waves in strong shear is dominated by dif­
ferential advection, which is reflected i111 the nonnor­
mality of the linear operator and that the role of non­
linearities, while important, can be parameterized. The 
analytic technique used to determine the baroclinic 
wave spectrum and heat flux makes use of recent results 
in the stochastic dynamics of nonnormal systems (Far­
rell and loannou l 993a,b,c). 

2. Formulation 

a. The model 

Consider a baroclinic shear flow strongly maintained 
by thermal forcing, as is the case in the earth's midlati­
tude jets. We wish to determine the statistical equilib­
rium variance and heat flux resulting from stochastic 
excitation of this background state. The variance and 
quadratic perturbation fluxes are assumed to be ade­
quately modeled by quasigeostrophic linear dynamics, 
which forms the basis of the theory. The effects of non­
linearity are parameterized in the theory by choosing 
an appropriate stochastic forcing amplitude and dissi­
pation. Interior radiative dissipation and wave-wave­
induced decorrelation are modeled by constant linear 
damping, while surface-induced spindown is modeled 
by Ekman damping. We assume a pure baroclinic flow 
confined to a channel bounded by rigid walls in the 
meridional direction y to the interval -y, ,;;; y ,;;; Ye and 
in the vertical direction z between the ground and a lid 
that will be taken to be located at z, == 50 km. The 
effects of sphericity are represented by the {3-plane ap­
proximation; that is, the Coriolis parameter is taken as 
f = fo + {Jy. Vertical density variation with a constant 
scale height 

H = - .!_ dp 
p dz 

is allowed, and vertical variation of the Brunt-Vaishla 
frequency N is included to model the troposphere­
stratosphere stability transition. 

With these assumptions the quasigeostrophic pertur­
bation potential vorticity equation can be separated and 
the continuous system reduced through discretiza­
tion in the vertical to a finite dimensional system. 
The evolution of . a single harmonic: disturbance 
u;(t)eikx cos(ly), with k and l the zonal and meridional 
wavenumbers, respectively, can be put in the form 
(Farrell and loannou 1993b) 

du; ,.,// oz; dt = J{1 ;jll j + :JP ij~j' (2.1) 

where u; is the generalized velocity at the: ith grid. The 
generalized velocity u; is defined so that the perturba­
tion energy per unit area is given by E = u i u; (we 
denote complex conjugation by an asterisk, and here 
and in the sequel the summation convention will be 
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FtG. I. The nondimensional mean flow velocity and Brunt-Viiis­
alii frequency variation with height. The nondimensional shear s 
= 0.3 corresponds to a dimensional maximum zonal velocity of 35 
m s _, , and E in the troposphere corresponds to Brunt-Vaisalii fre­
quency N = 10-2 s- 1

• The tropopause is located at nondimensional 
height z = 1.5. 

used). The random forcing is taken to be a 8-correlated 
Gaussian white noise process with zero mean, 

(2.2a) 

and with second moments, 

(2.2b) 

where we denote the ensemble average operation by 
angle brackets. Such a random forcing excites inde­
pendently and with equal magnitude a each of the ver­
tical forcing distributions specified by the columns of 
the matrix .ff'. 

In nondimensional variables, the dynamical operator 
dis given by 

(2.3) 

where 

(2.4) 

and flJ is the discretized differential operator, 

ez/2 [-;_ 

[JJ = -(~ -'(-ikU - R)~ - ik~ _,Q )-
/-;_ Ye~· 

(2.5) 

where 

6. = ~ - (a2 + 52 - d5) 
8z2 

E dz ' 
(2.6) 

and where the operator ~ - t has been rendered unique 
through incorporation of the boundary conditions. 

In the above relations, h is the grid interval, a 
= ~k2 + 12 is the total horizontal wavenumber, :Y is the 
discretized first-order d I dz operator, fJJ ij = fP<0 8 ij, and 
't;j = ~ p cnE <n 8ij, with E being the stratification param­
eter defined below and with the superscript ( i) denoting 
the value of a variable at the ith grid point. 

The nondimensional zonal wind assumed to have the 
form 

1 + tanh[(z - z0 )18] 
U = sz - [sz - s(z - Zo)] 

2 

) 
1 + tanh [ (z - 2Zo)I 8] (

2
_
7

) 
+ s(z - Zo 

2 
, 

with the nondimensional shear parameter denoted by 
s. The jet maximum occurs Zo = 1.5 and has a depth 
scale 8 = 0.15. 

The nondimensional stratification parameter as­
sumed to have the form 

[ 3 
1 + tanh[(z - Zs)l8s] ]-I 

E = 1 + 
2 

(2.8) 

with Zs = Zo + 8 and 8s = 812. The mean potential 
vorticity gradient is given by 

/3 dU d 2U 
Q.v = -; + 25 dz - dz 2 ' 

and the stability parameter by 

5 = - ! (! dE - 1) . 
2 E dz 

(2.9) 

(2.10) 

A typical vertical distribution of the mean flow and the 
stratification parameter E is shown in Fig. 1. In Fig. 2 
we plot the vertical distribution of the mean potential 
vorticity gradient. 
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FIG. 2. The nondimensional mean flow potential vorticity gradient 
in the interior of the flow as a function of height. The parameters are 
the same as those in Fig. I. The equivalent {j function contribution 
at the surface arising from the surface temperature gradient is not 
shown. 
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In ( 2.5) R represents a constant linear damping in 
addition to which surface boundary-layer dissipation is 
included with Ekman damping parameter 

r - - -_ i ( v )112 a2 
0 

- H 2fo Ek' 
(2.11) 

where v is the coefficient of vertical eddy diffusion. 
In these equations time has been nondimensionalized 

by 1 I lo, vertical distance by H, and horizontal distance 
by L = HI£, where Eo = I 61 N6 is the square of the 
ratio of the Coriolis parameter lo to a characteristic 
Brunt-Vaisalii frequency N0 • The dimensional vari­
ables (denoted with a tilde) are 

~ t 
t = -

lo 

k= £k 
H 

f= £1 
H 

z=Hz 

U =loLU 

where E' = ( u i u; ) is the ensemble average energy per 
unit area and the dagger denotes the Hermitian trans­
pose. Considering only the inhomogeneous solution to 
(2.1 ), we can write 

(2.16) 

and evaluate the energy input making use of the fol­
lowing result: 

(uiffeij~j) = L ef[*U-slffetbffeij(a(s)~it))ds 
= a 2 L ef[*U-sl ffe!~ffei/)bi8(t - s )ds 

(12 

= 2 trace (ffeffet). 

Use of (2.17) reduces the energy equation to 

dE' ( * "" ""t ) c cr-w:t)· ~ = U; (<»ij + <» ij)uj +., trace(,_,11-,'#' . 

(2.17) 

(2.18) 

We consider orthonormal forcing distributions that 
need not be of full rank but that in any case satisfy 

trace (ffeffet) = ~. 

/J = lo./Zi /3 
H . 

The dimensional generalized velocity is 

( 2.12) where N1 is the number of degrees of freedom that are 
forced. Hence the total rate of energy input per unit 
area (W m-2

) is E;n = pgf~L2HN1a2, giving 

ii; = r;;;loLfflu; , 
and the random forcing is 

~; = r;;;l~Lffl~;, 
where pg is the density at the ground. 

(2.13) 

(2.14) 

Values of parameters appropriate for the midlatitude 
atmosphere at 45°N were chosen: lo = 10-4 s _, , N 
= 10-2 s- 1

, H = 7.5 km, L = 750 km, and /J = 1.6 
x 10 - 11 m- 1 s _, . These parameter values result in /3 
= 0.12, a wave with zonal wavelength of 4700 km cor­
responding to horizontal wavenumber k = I, and a unit 
of nondimensional time corresponding to 2.8 h. Unless 
otherwise stated, v = 20 m2 s -i corresponding to a 
square root vertical Ekman number 

EV2 = ~ (~)
112 

= 0.042. 

b. Determining the ensemble average energy 

We obtain from ( 2.1 ) the ensemble energy equation 

dE' ( * "" ""t ) ( * = =* *) dt = U; (<»;j + <»ij)Uj + U; .'#'ij~j + U;.'#'ij~j , 

(2.15) 

2 E;" 
a = J 2 • 

N1 pgf0 L H 
(2.19) 

Using (2.16), the nondimensional ens1emble average 
energy per unit area can be expressed in terms of the 
correlation matrix <ff': 

E' = (u(u;) 

= a2 trace ( L ed(t-sl ffe ffe t eJ11tu-slds) 

= a 2 trace(<G''). (2.20) 

It can be shown (cf. Farrell and Ioannou 1993b) that 
the correlation matrix satisfies the dynamical equation 

lM' 
- = ffeffet + .st/<(/' + <f! 1.st1t (2.21) 
dt , 

with initial condition <ff 0 = 0. Note also that when the 
orthonormal forcing distributions are of full rank in the 
space spanned by their range, the correlation matrix is 
independent of the particular forcing specification (Far­
rell and Ioannou 1993c). 

The ensemble average energy is giv1en in dimen­
sional variables by 

(2.22) 
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Combining ( 2.22) and ( 2.19), the dimensional energy 
per unit area (units: J m-2) in terms of the total rate of 
energy input per unit area is 

E' = E;n trace('i&'') . 
fo NJ 

(2.23) 

c. Determining the ensemble average energetics 

(2.29) 

where cP is the specific heat at constant pressure; 

o<f> 
v =foL­ox 

(2.30) 

is the northward eddy velocity; the eddy potential tern-
· perature is We write the energy transfer rate between the mean 

and eddies in the form ( Pedlosky 1990) 

r = pgff.,L 4fo If'' PE dU o<f> o<f> dz), 
H \ o dz ox oz 

(2.24) 

where the overbar denotes an average over a zonal 
wavelength X.: 

o<f> o<f> =!Ix o<f> o<f> dx = ~ Im(<t>* o<f>) . (2.25) 
ox oz x. 0 ox oz 2 oz 

The energy transfer relation can be expressed in terms 
of our discrete correlation quantities as 

~ p f3L4E 
T' = g 

0 0 h<r2 trace(~,/{'') 
H 

. h trace(~,/{'') 
= E;n . 

NJ 
(2.26) 

The variable </> is the streamfunction, which is re­
lated to the generalized velocity by u = .;fJ, 112</>; ~ij 
= E (il(dU(i>Jdz)8ij, and 

,/('' = ~ Im(g>§ .JJ,-112'i&''.JJ,-112g>), (2.27 ) 

where 'if' is the correlation matrix determined by 
(2.21), § is the discretized d/dz operator, and flJ;j 

= .fPW8ij. Note that the only term in (2.27) that can 
have an imaginary component is 'i&''. The heat flux and 
the conversion terms consequently arise from nonnor­
mality of the operator .s1 (when .s1 is normal 'if' is 
real). 

In dimensional variables the dissipation rate due to 
linear damping is 

. trace('i&'') 
Datm = E;nR . 

NJ 
(2.28) 

The dissipation rate at the ground due to Ekman pump­
ing, DEkman, can be most easily calculated as a residual 
from the energy equation ( 2.18) by assuming that a 
statistically steady state has been reached and that the 
total energy is stationary. 

d. Determining the ensemble average heat flux 

The ensemble average heat flux (units: W m- 1
) is 

defined as 

0 f2L2 o,1,. (} = g 0 _'I'_ 

gH oz' 
(2.31) 

where 0g is the potential temperature at the ground; 
and g is the gravitational acceleration. The ensemble 
average heat flux can then be written (cf. Farrell and 
Ioannou l 993b): 

H' = cppg0gff.,L3 IJ"° P o<f> o<f> dz) 
g \ 0 ox oz 

cp0gL . h trace(dC'') 
=--E;n . 

gH NJ 
(2.32) 

In the formulation up to this point no assumption has 
been necessary concerning the existence of a statisti­
cally steady state as t -+ oo. When the dynamical op­
erator .s1 is asymptotically stable, that is, all its eigen­
values have negative real parts, then such a state is 
reached and t -+ oo asymptotic values of the ensemble 
average energy and heat flux can be readily evaluated. 
In the following, we will consider asymptotically stable 
flows, stabilized by allowing the linear potential vor­
ticity damping, R, to assume values for which the sta­
bility of the flow is ensured. 

3. Results 

We assume random forcing concentrated in the tro­
posphere with a minimum vertical scale of 100 m. This 
limitation on the vertical scale of the forcing restricts 
the forcing to the first 30 Fourier harmonics in the tro­
posphere ( 0 ~ z ~ 1.5). Note from the definition of 
the generalized velocity forcing in ( 2.1) that it includes 
both momentum and thermal forcing. The effect of ei­
ther thermal or momentum forcing in isolation was not 
investigated because it can be shown that if the forcings 
are excited equally and define a unitary transformation 
in the space spanned by their range, then the ensemble 
average statistics are independent of the forcing distri­
bution (Farrell and Ioannou 1993c). In Farrell and 
Ioannou ( l 993b), we described a method for obtaining 
a complete set of orthogonal forcings (FOFs) ordered 
according to their contribution to the variance (this set 
is distinct from both the EOFs and the normal modes 
of the evolution operator). Convergence requires that 
the minimum scale of the forcing be adequate to resolve 
the structure of the leading forcing orthogonal func­
tions ( FOFs). For k = 2 and l = 2 a forcing distribution 
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with a minimum resolved scale of 0.5 km is necessary 
(Farrell and loannou 1993b). For longer waves this 
minimum vertical scale is larger. For example, the first 
FOF and EOF for waves with k = l and l = l are 
plotted in Figs. 3a,b, and it is evident from this figure 
that a minimum resolved scale in the forcings of ~3.5 
km is adequate. If we insist-as we will for simplic­
ity-that all resolved scales are forced equally, then 
we will overestimate the total forcing required to main­
tain the variance and associated fluxes at the largest 
scales (by a factor of 2-5). Highly resolved calcula­
tions were performed with typically 100 points in the 
troposphere and with convergence verified by doubling 
the resolution. 

The unique stochastic forcing mechanism has not 
been identified, but the forcing is thought to arise pri­
marily from two sources: diabatic heating and spectral 
scattering due to nonlinear processes. A rate of wave 
scale energy injection E;n = 0.7 W m-2 is typically 
found in energy budget analyses of the Lorenz cycle 
(Peixoto and Oort 1992), and in addition 0 ( 20 
W m-2

) (Peixoto and Oort 1992) of diabatic heating 
are available; however, most of this heating contributes 
primarily to the maintenance of the large-scale static 
stability of the midlatitude troposphere against desta­
bilization by radiative cooling. The coupling of diabatic 
heating on the cloud-scale to synoptic-scale geostroph­
ically balanced motions depends on the spatial and tem­
poral scales of the heating ( Blumen 1972), and the 
efficiency of this coupling is uncertain. If we arbitrarily 
assume an efficiency of 1 %, we would then obtain a 
forcing rate of 0(0.2 W m-2

) from this source. Such 
considerations suggest that wave-scale energy injection 
rates of 1 W m-2 are not unreasonable. 

The statistics of baroclinic waves on a subcritical 
mean state is studied in this work, and our hypothesis 
is that the midlatitude atmospheric statistics can be un­
derstood as the nonnormal response to stochastic forc­
ing of the linearized quasigeostrophic equations with 
appropriate choice of parameters. The mean atmo­
spheric state is maintained in the subcritical regime by 
parameterizing the disruption arising from wave-wave 
interactions so as to ensure stability. This role of non­
linearity in turbulence was referred to as scrambling by 
Salmon ( 1980) in his investigation of quasigeostrophic 
turbulence. The linear potential vorticity damping that 
parameterizes the scrambling effect may depend on 
wavenumber and eddy activity, as in the TFM model 
of stochastic turbulence (Herring and Kraichnan 1972; 
Leith and Kraichnan 1972; Leith 1971 ) . Nevertheless, 
in the examples to follow we obtain satisfactory results 
using a simple potential vorticity damping that does not 
vary with wavenumber. The likely reason for the suc­
cess of this simple choice of damping is that the wave 
energetics is dominated by the linear operator in this 
strongly sheared flow, while in homogeneous isotropic 
turbulence the dominance of the nonlinearity means 
that this parameterization by itself determines the re-
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Flo. 3. (a) The first FOF (the forcing distribution that gives rise 
to most of the variance), which forces 82% of the maintained ensem­
ble average energy. ( b) The first EOF of the correlation matrix, which 
accounts for 91 % of the ensemble average energy .. The case shown 
is for waves with k = 0.821, which corresponds to global wavenum­
ber 5, I = I, and a mean flow with s = 0.3, R = 0.02, and v = 20 
m2 s _,. Contours of stream function </> are shown. 

sponse. It should be noted that this assumed dominance 
of the linear operator is not expected to be valid for 
regimes characterized by sufficiently small shear. 

The most crucial parameters determining the asymp­
totic stability of the flow are the imposed potential vor­
ticity damping Rand the meridional wavenumber l. For 
the mean winter jet with a maximum zonal velocity of 
35 m s- 1 and boundary-layer vertical eddy diffusion 
coefficient v = 20 m2 s _, , baroclinic waves with me­
ridional wavenumber l = 2 are within the asymptoti­
cally stable regime for linear damping timescales R- 1 

of order 10 days. Stabilization of waves with meridi­
onal wavenumber l = l requires damping timescales 
R _, of at most 6 days. It should be noted that l ""' 1 is 
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the meridional wavenumber of the most exponentially 
unstable mode of the midlatitude atmospheric jet ( Ioan­
nou and Lindzen 1986; Lin and Pierrehumbert 1988). 
With linear damping of order 6 days the jet is subcrit­
ical but close to the stability boundary at this meridi­
onal scale. 

Robust transient growth due to nonnormality of the 
dynamical operator rather than accumulation of energy 
due to modal resonance is found to dominate the sta­
tistics at synoptic scales even for the l = 1 perturba­
tions, which are located close to the stability boundary. 
As an example of the transient growth mechanism, the 
maximal energy growth possible at different times is 
shown in Fig. 4. Perturbations with global zonal wave­
number m = 5 and 18 (dimensionless k = 0.821 and 
3, respectively) and a linear damping with e-folding 
time of approximately 6 days were chosen. The maxi­
mal energy growth at time tis given by lle""''llL where 
the subscript 2 denotes the Euclidean norm. Note that 
Fig. 4 does not trace the energy of a specific pertur­
bation as a function of time but rather the maximum 
growth of the optimal perturbation for the indicated 
time. For wavenumber 5 the global optimal growth (the 
maximal energy growth over all optimizing times) re­
quires 15 days, while for wavenumber 18 this optimal 
occurs at 9 days. 

That the midlatitude jet is maintained in proximity 
to the stability boundary can be inferred from the sharp 
peak at zonal wavenumbers m ~ 5 in the observed 
wavenumber-period spectra of the midlatitude tran­
sient geopotential variance as seen in Fig. 5 (cf. Haya­
shi and Golder 1977; Fraedrich and Bottger 1978; 
Schafer 1979; Hansen et al. 1989). Calculations of the 
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eraged over the winter seasons between 1972 and 1973 (from Fraed­
rich and Bottger 1978). 

variance as a function of wavenumber and period were 
performed for l = 1 with linear damping sufficient so 
that the atmospheric state is stable but close to the sta­
bility boundary. The frequency response (cf. Farrell 
and Ioannou 1993b) is given by 

F(w) = trace(£nt(w)Yl!(w)) = llYl!(w)ll}, (3.1) 

where the subscript F denotes the Frobenius norm and 
the resolvent Yl!(w) is given by 

Yi!(w) = (iwl - &)- 1 , (3.2) 

with I the identity and w the frequency. The resulting 
power spectrum is shown in Fig. 6. The close resem­
blance of this spectrum to the observed spectrum in Fig. 
5 suggests that an equivalent potential vorticity damp­
ing maintains the flow near neutrality. For higher dis­
sipations and/ or for short meridional wavelengths for 
which the flow is far from the stability boundary, the 
spectra do not show the observed sharp peak and dis­
persive structure; instead, the stochastic response ex­
hibits a broad maximum at synoptic time and space 
scales. 

Both the magnitude and dispersive structure of the 
power spectrum arise primarily from the nonnormality 
of the evolution operator d. In order to isolate the cru­
cial role of nonnormality from that of the more familiar 
modal resonance mechanism arising from proximity of 
the poles to the real axis, which occurs in normal sys­
tems, we calculate the power spectrum ( 3 .1 ) for the 
equivalent normal operator d'nonnai. which is defined as 
the diagonal operator with the same eigenvalues as d 
and therefore the same modal resonance behavior. For 
d nonna1' the peaks in the power spectrum occur at fre-
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an e-folding time of 8 days), and vertical diffusion coefficient v = 20 
m2 s -•. The nondimensional meridional wavenumber is I = I. 

quencies close to the poles of the resolvent, and the 
peak magnitude is inversely proportional to the square 
of the distance to the poles, as in a normal dynamical 
system. The power spectrum of d nonnai is shown in Fig. 
7. Note that although the equivalent normal response 
shows a peak for wavenumber 5 with an approximate 
period of 10 days, the magnitude is underestimated by 
nearly two orders of magnitude, and furthermore, the 
power spectrum does not exhibit the observed disper­
sive properties so well captured by the nonnormality, 
as shown in Fig. 6. 

The prominence of wavenumber 5 in the transient 
spectrum during the Southern Hemisphere summer sea­
son is confirmed by the observations of Salby ( 1982), 
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parameters = 0.3, linear damping of R = 0.02 (corresponding to an 
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• The nondimensional meridional wavenumber is I = I. The 
dotted line corresponds to the maintained variance obtained from the 
equivalent normal evolution operator. Note the sharp peak for a pe­
riod of approximately IO days. 

Schoeberl and Krueger ( 1983), and Randel and Stan­
ford ( 1985). The variation with frequency of the power 
spectrum maintained by stochastic forcing for this 
wavenumber as shown in Fig. 8 reveals that the sto­
chastic model accurately reproduces the observations 
for parameters for which the model atmosphere is near 
to the stability boundary. Note again the importance of 
the nonnormality in the response. The stochastically 
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equivalent normal evolution operator. The higher-frequency peak 
corresponds to the upper-level variance concentrated near the tro­
popause. 
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= 0.3, and energy input rate E;n = I W m-2 . The linear damping 
parameter is R = 0.02 and the coefficient of vertical diffusion is v 
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• 

maintained spectrum for m = 18 with parameters for 
which the flow is far from the stability boundary is 
shown in Fig. 9. Note the enhanced variance at high 
frequencies associated with an upper-level variance 
peak as is observed. The equivalent normal response 
does not show this upper-level peak, which results from 
the nonnormality of the operator. Incidentally, a con­
ceptually related nonnormal interpretation of the upper­
level variance has previously been discussed by Rivest 
and Farrell ( 1992) in connection with a theory for the 
origin of short waves. 

The observed average total transient energy in the 
midlatitude atmosphere is (£) ::::::: 25 x 105 J m-2 as­
sociated with a heat flux over a latitude circle of (H) 
::::::: 1-4 (Xl0 15 W) (Peixoto and Oort 1992), with 
marked seasonal variations. It is of interest to determine 
the magnitude of E;n needed to obtain observed atmo­
spheric values of ensemble average transient energy 
and heat flux. Given that ensemble average quantities 
depend linearly on the magnitude of the stochastic forc­
ing, we can calculate ensemble averages without loss 
of generality based on E;n = 1 W m-2

• The required 
E;n that matches observed atmospheric values can then 
be obtained by scaling the resulting magnitudes. 

The variation of the ensemble average energy and 
heat flux as a function of the global zonal wavenumber 
m (at 45° this wavenumber is related to the nondimen­
sional wavenumber by k = 0.821m/5) and for l = 1 
and l = 2 [corresponding to meridional confinement in 
a channel of halfwidth (in dimensional variables) Ye 
::::::: 7rLl2l::::::: 1200 and 600 km, respectively] is shown 
in Figs. 10 and 11. These calculations correspond to 
mean winter conditions for which the vertical shear has 
been taken to be s = 0.3, which for latitude <f> = 45° 
corresponds through the discrete version of the thermal 
wind relation: 

t1T8 = foT8 Um 
tl.y g H,, 

(3.3) 

to tl.T8 ::::::: 30 K, where tl.T8 (<f>) = T8 (<f> - 15°) - T8 (<f> 
+ 15°) [in ( 3. 3 ) T8 is the ground temperature, g is the 
gravitational acceleration, tl.y is the distance over 30° 
of latitude, um is the dimensional velocity at the jet 
maximum, and H, = I .SH is the tropopause height] . 
Such a meridional temperature gradient is characteristic 
of Northern Hemispheric winter conditions at <f> = 45°. 
For the l = 1 simulation both the maintained energy 
and the associated heat flux show a prominent maxi­
mum at wavenumber 5. This is characteristic of param­
eters for which the flow is near the stability boundary. 
A. Solomon performed analysis of the January average 
heat flux in both hemispheres as a function of zonal 
wavenumber using the ECWMF dataset spanning the 
period from 1979 to 1988. Her analysis, shown in Fig. 
12, reveals the sensible heat flux peak at zonal wave­
number 5 in both hemispheres. The prominence of 
wavenumber 5 is affected by linear damping. For linear 
damping with R- 1 of 5 days, the peak is reduced con­
siderably and the variance and heat flux resemble re­
sults from the l = 2 simulation, which are characteristic 
of flows far from the stability boundary for which the 
ensemble average energy and heat flux exhibit a broad 
maximum at high zonal wavenumber. 

The ensemble average energetics for the winter 
months is shown in Fig. 13. Note that the ensemble 
average perturbation energy balance is between the 
transfer of energy from the mean and dissipation 
(which for these parameters is shared equally between 
dissipation due to Ekman spindown and linear damp­
ing) rather than between forcing and dissipation. This 
is a characteristic property of stochastic excitation of 
nonnormal dynamical systems, which maintain ensem­
ble average energies and energy transfers far in excess 
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FIG. 11. Ensemble average heat flux as a function of zonal global 
wavenumber m, with meridional wavenumber I= I and I= 2; shear 
s = 0.3, and energy input rate E;n = I W m-2

• The linear damping 
parameter is R = 0.02, and the coefficient of vertical diffusion is v 
= 20 m2 s-• _ 
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of those supported by similarly damped forced-dissi­
pative normal systems. Consequently, the dissipation 
timescale 

(E) 
td=------

Datm + DEkman 
(3-4) 

can be approximated by 

(E) t ,,,,,_ 
d T , (3.5) 

a quantity that can be easily estimated from observa­
tions. Budget analyses of the Lorenz cycle for the mid­
latitude winter season give td = 6-10 days (Peixoto 
and Oort 1992; Wiin-Nielsen and Chen 1993). In this 
estimate, however, the contribution of the stationary 
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FIG. 13. Ensemble average energy transfer rate T between the mean 
and eddies, as a function of the zonal wavenumber m, with meridi­
onal wavenumber I = I and I = 2; shear s = 0.3, and energy input 
rate E;n = I W m-2

• The linear damping parameter is R = 0.02 and 
the coefficient of vertical diffusion is v = 20 m2 s -•. 
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= 20 m2 s-•. The dot curve is compiled from the values given in 
Kung ( 1988). 

and/ or standing waves is a confounding factor. It is 
best for the purpose of comparison with our calcula­
tions to calculate td based on a spectral analysis of the 
energetics. Such an analysis by Kung ( 1988) yields an 
estimate of td ""° 4.5. The dynamical timescale obtained 
from our stochastic model, which is shown as a func­
tion of global wavenumber in Fig. 14, reveals encour­
aging agreement with the timescales derived from the 
data of Kung ( 1988) [note that we did not plot the 
timescales for m ~ 3 because Kung (1988) does not 
use the method developed by Hayashi ( ll 979) to dis­
tinguish between standing and traveling waves] . 

The vertical distribution of the ensembk:: average en­
ergy revealing the observed tropospheric maximum is 
shown in Fig. 15. The vertical distribution of the heat 
flux for conditions for which the flow is close to the 
stability boundary is shown in Fig. 16. Note that the 
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negative heat flux in the stratosphere is associated with 
downgradient baroclinic transfers. The realism of the 
distribution can be assessed by comparison to observed 
fluxes plotted in Fig. 17 (see also Trenberth 1992). 
Atmospheric values of ensemble average energy and 
heat flux are produced for E;11 """ 0.5 W m-2

, linear 
damping of ( 6 d )- 1 

, and Ekman spindown based on an 
eddy viscosity v = 20 m2 s - i . An exact value of the 
random forcing is not determined because a change in 
the dissipation parameters can modulate the resulting 
ensemble averages over a range of values. What is im­
portant to note is that this theory can produce the ob­
served level of ensemble average statistics with rea­
sonable values of forcing. 

Theoretical studies (Green 1970; Stone 1972; Held 
1978) suggest that the heat flux is strongly dependent 
on the mean meridional temperature gradient. Stone 
and Miller ( 1980) found, based on the heat flux data 
of Oort and Yonder Haar ( 1976), that midlatitude at­
mospheric sensible heat fluxes (stationary and tran­
sient) are correlated at the 97% level with variation of 
the mean temperature gradient at the ground. A similar 
if somewhat lower correlation is also exhibited by the 
transient eddy fluxes alone. We have plotted in Fig. 18 
monthly averages of the atmospheric heat transports in 
both hemispheres as a function of the corresponding 
average temperature gradients 6.T8 taken from Caris­
simo et al. ( 1985) and Oort and Peixoto ( 1983). For 
comparison, the heat flux that results from stochastic 
excitation of the corresponding atmospheric flow for 
conditions far from the stability boundary and linear 
potential damping and stochastic forcing independent 
of the eddy activity is also shown in Fig. 18. We argued 
previously that the evidence of the predominance of 
wavenumber 5 suggests that the atmosphere operates 
close to the stability boundary. If R is kept constant at 
the value appropriate for winter conditions, however, 
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FIG. 17. Variation of the zonally and seasonally averaged transient 
heat flux at latitude 45°N. The graph is based on the values given by 
Oort and Peixoto (1983). DJF denotes the winter months, JJA de­
notes the summer months. 

then the heat transport is a highly nonlinear function of 
the meridional temperature gradient as summer values 
of 6.T8 are approached, in disparity with the observa­
tions, which show an approximately linear relation be­
tween the heat flux and the meridional temperature gra­
dient over the seasonal cycle. If we assume that the 
atmosphere is maintained near neutral stability over the 
seasonal cycle by the linear potential vorticity damping 
R, which parameterizes the scrambling effect of the 
wave-wave interactions, the observed nearly linear 
flux/ gradient relationship requires also changing the 
stochastic forcing, which parameterizes the nonlinear 
scattering. Enhanced eddy activity at higher meridional 
temperature gradient is expected to increase both the 
scrambling effect and the stochastic forcing. In light of 
these considerations, we could determine an operating 
regime of the atmosphere for the winter and summer 
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, and E;n = 4 W m- 2
. Curve 3 is based on the seasonally 

averaged observations of Carissimo et al. ( 1985). 

months by matching the heat flux obtained from Car­
issimo et al. ( 1985) while requiring that the atmosphere 
be always close to the stability boundary. The results 
of such a calculation are shown in Fig. 19. For the 
winter months, a damping rate of R- 1 "°" 5.5 days and 
E;n = 4 W m - 2 is required, while for the summer 
months the observations can be matched with a damp­
ing rate of R-' "°" 11 days and E,.n = 2 W m-2

• Inter­
mediate values shown in Fig. 19 could be obtained sim­
ilarly by modification of the stochastic driving and the 
damping rate so as to maintain near neutrality. While 
these considerations do not lead directly to a simple 
parameterization for transient eddy heat flux for use in 
climate models, understanding of the role played by 
nonnormal dynamics, if confirmed, should permit use­
ful extrapolations of the observed flux/ gradient relation 
to be made. 

4. Conclusions 

In this work, the calculus developed in Farrell and 
Ioannou ( 1993b) to obtain the statistical response of 
stochastically forced nonnormal dynamical systems has 
been applied to a model of the baroclinic midlatitude 
atmosphere in order to find the ensemble average en­
ergy spectrum and sensible heat flux arising from tran­
sient waves. The theory developed in this work takes 
advantage of the fact that the dominant dynamics of 
strongly sheared flow arises from the linear component 
associated with advection. This linear dominance, re­
flected in the nonnormality of the dynamical operator, 
allows the crucial but subdominant nonlinear effects to 
be parameterized. The parameterized effects of nonlin­
earity are scattering of disturbances among scales, 
which is modeled as stochastic forcing, and scrambling 

or disruption by wave-wave interaction, which is mod­
eled by enforcing an appropriate decorrelation time­
scale through the choice of dissipation parameter R. 
This linear potential vorticity damping R maintains the 
flow subcritical as is required by the finiteness of the 
observed variance. With appropriate choices of forcing 
and dissipation, the resulting statistical steady state pro­
duces magnitudes and structures of ensemble average 
energy and heat flux in agreement with midlatitude at­
mospheric observations and, in addition, produces the 
observed balance between baroclinic conversions and 
damping. When viewed from the perspective of non­
normal stochastic dynamics, the prominence of trav­
eling wavenumber 5 in the midlatitude cliimatology re­
veals that the atmosphere is operating close to the sta­
bility boundary. Given the slight subcriticality of the 
flow, the observed relation between heat flux and me­
ridional temperature gradient implies a variation of the 
effective damping rate and magnitude of stochastic 
forcing over the seasonal cycle. 

Over the spectral interval in which the energetically 
dominant traveling baroclinic waves occur (global 
wavenumbers 4 < k < 10) we find that nonnormal 
stochastic dynamics accounts for both the amplitude 
and dispersive properties of the waves. A subject of 
considerable historical interest in atmospheric dynam­
ics concerns the amplitude spectrum of waves 10 < k 
< 20, which account for relatively little total wave en­
ergy but which appear to follow an approximate k-3 

power dependence (Kao and Wendell 1970). Evidence 
from energetic analyses (Kung 1988) suggests that 
these short waves are not associated with the nonnor­
mal balance between energy gained from the zonal flow 
and dissipation but rather that these waves exhibit nor­
mal system energetics associated with a balance be­
tween forcing and dissipation. From our stochastic 
point of view, this implies that the effective damping 
at these scales is large enough so that the linear operator 
is dominated by its diagonal component proportional 
to R and is therefore effectively normal. One interpre­
tation of the dynamics of these short waves is that they 
obtain energy from advective frontogenesis and dissi­
pate this energy locally in spectral space as described 
by Andrews and Hoskins (1978). 

The large-indeed, divergent-amplitude and heat 
flux produced in a stochastically forced but subcritical 
system as neutrality is approached suggests reinterpre­
tation of theories involving adjustment to neutrality of 
unstable flows. Examples of such adjustment mecha­
nisms are found in the baroclinic adjustment theories 
of Stone (1978), Lindzen and Farrell ( 1980), and 
Lindzen ( 1993). According to theories of this kind, the 
fluxes, arising from modal instability, relax the unstable 
gradient toward a state of marginal stability. However, 
as we have seen, the response of such a system to noise 
sources is divergent near the critical operating point 
required by the adjustment theories. We therefore sug­
gest that these theories be reinterpreted in the following 



1 OCTOBER 1994 FARRELL AND IOANNOU 2697 

way: under inevitable stochastic excitation the fluxes 
rise as thermal forcing moves the system toward a sta­
bility boundary so that the divergent fluxes so produced 
prevent the system from ever crossing the stability 
boundary so that instability never occurs. 

Together with recent work on the variance arising 
from stochastic forcing (Farrell and Ioannou 1993a,b), 
this work provides a theoretical framework for inter­
preting the dynamics of the midlatitude atmosphere. In 
contrast to instability theory in which the initial per­
turbation is unimportant if nonzero, this theoretical 
point of view stresses the importance of perturbations 
that provide the required stochastic forcing. In addition, 
requirements for resolution in modeling the atmosphere 
are implied: it is necessary to resolve the structures that 
contribute substantially to producing the correlation 
matrix (FOFs) as well as to resolve the EOFs of the 
correlation matrix itself. These forcing structures can 
be found as solutions to a Lyapunov equation (Farrell 
and Ioannou l 993b) and resolving these structures re­
quires resolving up to 30 wavenumbers in the tropo­
sphere at global wavenumber 15, although at the scales 
of maximum transient energy and flux (global wave­
numbers 4-6), as few as four vertical waves appear to 
be adequate. 

Turning to the question of the sensitivity of the heat 
flux to variation of the climate system, we note that the 
primary sensitivities are to the strength of the driving 
and the dissipation, with factors such as the static sta­
bility, the tropopause height, or the latitude playing a 
relatively minor role. This result suggests that careful 
study of the physical mechanisms providing perturba­
tions to the system and determining the decorrelation 
timescale of the perturbations is necessary to gain a 
deeper understanding of the midlatitude climate. 
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