Approximating Optimal State Estimation

Brian F. Farrell and Petros J. loannou

Harvard University
Cambridge MA 02138, U.S.A
farrell@deas.harvard.edu, pji@cc.uoa.gr

ABSTRACT

Minimizing forecast error requires accurately specifythg initial state from which the forecast is made by optigall
using available observing resources to obtain the mostratxpossible analysis. The Kalman filter accomplishes this
for linear systems and experience shows that the extendiedaldilter also performs well in nonlinear systems. Un-
fortunately, the Kalman filter and the extended Kalman filtguire computation of the time dependent error covariance
matrix which presents a daunting computational burden. ¢¥ew the dynamically relevant dimension of the forecast
error system is generally far smaller than the full stateetision of the forecast model which suggests the use of rdduce
order error models to obtain near optimal state estimat@rgethod is described and illustrated for implementing a
Kalman filter on a reduced order approximation of the foreea®r system. This reduced order system is obtained by
balanced truncation of the Hankel operator representafitime full error system. As an example application a reduced
order Kalman filter is constructed for a time-dependent iggasstrophic storm track model. The accuracy of the state
identification by the reduced order Kalman filter is assesseticomparison made to the state estimate obtained by the
full Kalman filter and to the estimate obtained using an axipnation to 4D-Var. The accuracy assessment is facilitated
by formulating the state estimation methods as observégsgs A practical approximation to the reduced order Kalman
filter that utilizes 4D-Var algorithms is examined.

1 Introduction

An important component of forecast error is error in the analysis of titialistate from which the forecast
is made. Analysis error can be reduced by taking more observationskibg taore accurate observations,
by taking observations at locations chosen to better constrain the fhraaddy extracting more information
from the observations that are available. The last of these, obtaining tienoma amount of information
from observations, is attractive because it makes existing observatiors/aloable and because, at least for
linear systems, there is a solution to the problem of extracting the maximum infomfiadio a given set of
observations: under appropriate assumptions the problem of extraaimgetimum amount of information
from a set of observations of a linear system in order to minimize the undgriainthe state estimate is
solved by the Kalman filter (KF) (Kalman, 1960; Ghil and Malanotte-Rizzol§1t9Vunch, 1996; Ide et al,
1997; Lermusiaux and Robinson, 1999). Moreover, application of gédeKn filter to the local tangent error
eqguations of a nonlinear system provides a first order approximation tuptiveal data assimilation method
which is valid in the limit of sufficiently small errors. This nonlinear extensiothefKF is referred to as the
extended Kalman filter (EKF) (Ghil et al, 1981; Miller et al, 1994; Ide & GhB97, Ghil, 1997).

Unfortunately, the Kalman filter and the extended Kalman filter require statiskisalription of the forecast
error in the form of the error covariance and obtaining the requireat envariance involves integrating a
system with dimension equal to the square of the dimension of the foresstrsyDirect integration of a
system of such high dimension is not feasible. Attempts to circumvent this tiffisee review of Ghil,
1997) have involved various approximations to the error covariancéd@Bist al, 2001; Tippett et al, 2000)
and approximate integration methods (Evensen, 1994; Dee,1995; FukamngoMalanotte-Rizzoli, 1995;
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Cohn and Todling, 1996; Verlaan and Heemink, 1997; Houtekamer anthéllité 998; Hamill, 2005; Kalnay
et al 2005).

While the formal dimension of the forecast error system obtained by linegrihe forecast model about a
base trajectory is the same as that of the forecast system itself, themaaoas to believe that the effective
dimension is far lower. The trajectory of the system state in a high dimensipmaidcal system typically lies
on a small dimensional subspace of the entire phase space. In chatgimsydl initial conditions approach
this attractor which can be embedded in a space of dimension at thest, 2vhered is the attractor dimension
(Takens, 1981). An estimate of the attractor dimension can be made fromrttieenof positive Lyapunov ex-
ponents (the Kaplan-Yorke dimension; Kaplan & Yorke, 1979) but ayythie attractor dimension is bounded
above by the number of Lyapunov exponents associated with positiveneatowth along the system trajec-
tory in phase space (lllyashenko, 1983). While this is useful conciypfoabounding the dimension of the
embedding space, identifying the subspace itself is more difficult in the ¢amlinear and time dependent
systems. However, in the case of stochastically forced linear normahsygite analogous subspace to which
the solution is primarily confined can be easily found by eigenanalysis ofatfariance matrix of the system
forced white in space and time. The resulting EOF spectrum typically fallepily in physical models. The
eigenvectors may be identified with the modes of the normal operator andrilesmanding eigenvalues are
the variance accounted for by the modes (North, 1984; Farrell amthéag 1996, (henceforth FI96)). The fact
that a restricted number of EOF’s account for nearly all of the variangermal systems shows that the effec-
tive dynamical dimension of these systems is small compared with the dimensiagirgbltase space. This
notion of quantifying the effective dimension of normal linear systems caxtemded to bound the effective
dimension of non-normal systems (Farrell and loannou, 2001a (foetic€101)).

In the case of the tangent linear forecast error system the spectroptimfal perturbations of the error prop-

agator over the forecast interval typically comprises a few hundrediggostructures (Buizza and Palmer,

1995) and Lyapunov spectra for error growth have shown similar ntgrigositive exponents (Palmer et al,
1998) which suggests from the above considerations that the effeatinsion of the error system for scales
resolved by forecast models i @°).

The problem of reducing the order of a linear dynamical system candbenaghematically as that of finding a
finite dimensional representation of the dynamical system so that the Extamtidt-Mirsky (ESM) theorem
(Stewart and Sun, 1990) can be applied to obtain an approximate trusgatech with quantifiable error. The
ESM theorem states that the optirkarder truncation of an dimensional matrix in the euclidean or Frobenius
norm is the matrix formed by truncating the singular value decomposition of théxrtaits first k singular
vectors and singular values. A method for exploiting the ESM theorem to abtaituced order approximation
to a dynamical system was developed in the context of controlling lumpethpgeaengineering systems and
is called balanced truncation (Moore, 1981; Glover, 1984; Zhou andeD®998). Balanced truncation was
applied to the set of ordinary differential equations approximating the pdiffierential equations governing
perturbation growth in time independent atmospheric flows by FIO1.

We first review the method of balanced truncation and then illustrate it with a sitmgiiex example. Then
we apply it to a storm track model (cf Farrell and loannou, 2001b). \Wa tkview some salient aspects of
optimal state estimation using analysis based on an observer model of the dissirsjlatem and discuss the
structure of the gain matrix in the presence of model error and the asympbtwibr of the assimilation error
as the number of observations increases. We finally construct a cedraer Kalman filter based on balanced
truncation and apply it to a time dependent Lyapunov unstable quasi-giglmstmodel of a forecast tangent
linear error system with which we examine the approach of an approximatiba tiptimal observer based on
4D-Var.
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2 The storm track model

Consider an idealized model of the midlatitude storm track consisting of a Beggsatmosphere with con-
stant stratification and constant shear in thermal wind balanceplane channel with periodic boundary
conditions in the zonal, direction; solid walls located at two latitudes in the meridioyaklirection and a
solid lid at heightz = H, simulating the tropopause. The observed zonal localization of a midlatituahe sto
track is simulated in the model by terminating the channel with a linear damping modélérgjorm track
exit region. The stability properties of such a storm track model are diedus FI96.

Zonal and meridional lengths are nondimensionalizedd 5y1200 kny vertical scales by = fL/N = 10 km
velocity byU, = 50 m/s; and time byT =L /U, so that a time unit is approximatelyh. The Brunt-Vaisala
frequency isN = 102 s~1, and the Coriolis parameter fs= 10~4 s~1. The corresponding non-dimensional
value of the planetary vorticity gradientfis= 0.46.

The non-dimensional linearized equation which governs evolution ofrsfueetion perturbations is:

0%y
ot

2
- _U@zDDy - (B _ déjzgz)>mp ~ Py 1)

in which the perturbation is assumed to be in the fapbx, z t) €Y, wherel is the meridional wavenumber;
2y is the perturbation potential vorticity, witd? = 92/9x? + 02/9z% — 12; andD = d/dx. The perturbation
potential vorticity damping rate(x) is taken to vary smoothly in the zonal direction with form:

r(x) :% [Z—tanh(x_anM) + tanh<iﬂ/2>], 2)

o

in which parameters controlling the maximum damping rate and the width of the danggjiogp have been
chosen to bet =5 andd = 1.5, respectively. The mean velocity profileUgz) = 0.2+ z The zonal extent
of the re-entrant channel is€9 x < 4, latitudinal walls are located gt= 0 andy = 1, and the ground and
tropopause boundaries are located-at0 andz= 1, respectively. In the following we consider perturbations
with | = 1. A cross section of the idealized storm track at a given latitude is showig it FEonservation of
potential temperature at the ground and tropopause provides the Ibpgodditions:

%y oy ; oy 2_ 2 _
M_—U(O)DE+U(O)D(,U—r(x) az—rg(D —19)y atz= 0, 3
e oy / oy _
or —U(l)DEJrU(l)DLp—r(x)E atz=1, 4

whereU’(0) andU’(1) denote the velocity shear at= 0 andz = 1 respectively. The coefficient of Ekman
dampingly = Uﬂo \/ 27 is given the valué; = 0.0632 corresponding to a vertical eddy momentum diffusion

coefficientv = 20?/sin the boundary layer .

The waves evolve with nearly zero damping in the middle third of the chanhehéh of 21 ~ 7500 Km)
which models the core of the storm track. Because in this model absoluteilitietllo not exist with
everywhere westerly flow, the storm track is asymptotically stable for all noaddiwavenumbers because all
perturbations are eventually absorbed on entering the highly dissipptinges (FI96).

Two scenarios are investigated. In the first a transiently growing distaebexcited near the western boundary
of the storm track is modelled using the reduced order system, the purgiogedillustrate the accuracy of the
reduced order model approximation of the autonomous dynamics. In thiedsdone dependence is added to
produce a Lyapunov unstable model of a tangent linear forecastsgsiem, the time mean operator remaining
stable, with the purpose of evaluating the accuracy of the Kalman filter odthjntéhe reduced order model in

3
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Figure 1: The cross section of the storm tack. Also shownteesponge layers.

an unstable time dependent system. Such an unstable time dependent sgstdas@an even more stringent
test of the state estimator than does the time independent stable and unstablernsodgstems studied by
Todling & Ghil (1994), Ghil & Todling (1996) and Cohn and Todling (1996

The perturbation dynamics of the time mean storm track are governed by:

dy
where:
A= (0" (-(0242D0% - BD — r(x) ?) , 6)

in which the Helmholtz operatof}?, has been made invertible by incorporating the boundary conditions

The dynamical operator is approximated spectrally in the zonal directiowihdinite differences in the
vertical. With 40 zonal harmonics and 10 levels in the vertical the resultingrdigal system hall = 400
degrees of freedom.

3 Reducing the model order by balanced truncation

Although this storm track model is of small enough dimension for direct nuadesidution, we are interested
in using it to explore the accuracy of approximate solutions obtained uginged order models that could be
implemented in far larger systems such as arise in numerical forecast.

Before proceeding with the order reduction we must first choose the tiwat will be used to measure the
accuracy of the approximation. The accuracy is measured by the nattme eficlidean length of the errors
incurred in a chosen variable. This norm is the square root of the eaolidaer product in this variable. If an-
other norm is selected to measure the accuracy of the approximation thenghdimact method of accounting

IFor waves with a constant meridional wavenumbéhe operatof? is invertible even for homogeneous boundary conditions.
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for this choice is to transform the variable used to represent the state ®fdtean so that the euclidean inner
product in the transformed variable corresponds to the new norm. @heed order approximate system re-
sulting from balanced transformation will in general depend on the noaserh As discussed in FIO1, optimal
order reduction of dissipative stable normal systems is immediate: it is Galadjecfion of the dynamics
onto the least damped modes. Difficulties in the reduction process arisetihsystem is non-normal in the
variable corresponding to the chosen norm. Then Galerkin projectioredeabt damped modes is suboptimal
and the reduction must proceed by including in the retained subspace tihetdisbspaces of the preferred
excitations and preferred responses of the system. Throughout fl@sywa have chosen streamfunction as the
error variable, the rms of which is to be minimized in the construction of the madet ceduction. However,
we find that the results do not change qualitatively if the energy norm sechiastead.

The preferred structures of response of a general non-norretmsyare revealed by stochastically forcing
the system with spatially and temporally uncorrelated unitary forcing andlatitoyithe eigenfunctions of the
resulting mean covariance matix=< @' > (the brackets denote an ensemble average, and t the hermitian
transpose of a vector or a matrix). The covariance matrix under sucindds given by:

P = / ettt )
0
and this integral is readily calculated by solving the Lyapunov equatior6jFI9
AP+ PAT =—1, (8)

which P satisfies, as can be easily verified. The hermitian and positive definite rRattvaracterizes the
response of the system and its orthogonal eigenvectors, orderedreadimg magnitude of their eigenvalue,
are the empirical orthogonal functions (EOF’s) of the system unddiafipaand temporally uncorrelated
forcing.

In control literature the covariance matxis called the controllability gramian and is given an alternative
interpretation as a measure of the efficiency by which forcings place sitersyn a given state. This alternative
deterministic interpretation of the covariance is very useful in predictabilitysé@ms from the observation

that if we force the system

dy
=AU, ©

fromt = —oo tot = 0, with initial conditiony/(—) = 0 then all the states that can appear-at0 with square
integrable forcings satisfying

0
/ fifdt <1, (10)

are exactly
P2y (11)

with ||g|| < 1 (for a proof see Dullerud & Paganini (2000) or Farrell & loann®dd5)). For example, let the
eigenfunctions oP with eigenvalues\; ordered in descending order in their magnitude, thatis A, > ---.
Then the top eigenfunction,, in which as we have see most of the response of the system is conairigate
also the state that can be most easily forced in the sense that given $oofingit amplitude then the largest
state that can result at= 0 is \/)Tlvl. In this way the eigenfunctions of the covariance matrix split the state
space into an orthonormal basis that identifies the likelihood of occurdrecgiven state. This is the reason
that in predictability studies in which the impact of uncertain initial conditions isstigated, the initial states
are conditioned by the covariance or Mahalanobis metric(Palmer et al):1998

WG =y'Pty. (12)
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A geometric interpretation of these states is offered by the controllability ellipsoid
PP ly=1 (13)
which has semimajor axes in the directionsofvith length /A,

The preferred structures of excitation of the system are determinedffi@stochastic optimal matrix:
Q= / At gt | (14)
0

the orthogonal eigenvectors of which when ordered in decreasingitndgof their eigenvalue rank the forc-
ing structures according to their effectiveness in producing the statistioaliytained variance (for a deter-
ministic interpretation of) see FIO1). The eigenvectors Qf are called the stochastic optimals (SO’s) and
because of the non-normality of the system are distinct from the EOF's. sidthastic optimal matriQ
satisfies the back Lyapunov equation:

ATQ+ QA =—1. (15)

The stochastic optimal matri® is called the observability gramian in control literature and is a given an
alternative deterministic interpretation. Let the system

dy
t = 0 be at statg)),. The states of the system
wt) =y, (17)

produced by this initial condition have square integral norm:

/ “WTOwt)dt= gloy, . (18)

The eigenvectors dD, u; when ordered in decreasing magnitude of their eigenvaiuank the initial condi-
tions in effectiveness in producing square integrable output, and tkeevaldity ellipsoid

p'Qly=1 (19)

which has semimajor axes in the directionsipith length, /[z;, identifies the initial conditions that produce
maximum square integrable output, or equivalently, orders the initial state® idetjree that they can be
identified from observations of the systep(t).

Lyapunov equationsgj and (L5) have unique positive definite solutioRsandQ if A is stable. If the operator
A is not stableP andQ can be obtained by stabilizing the operator by adding Rayleigh friction. Astiety,
finite time horizonP andQ matrices can be used to obtain a reduced order system that best appesxinea
dynamics over a finite time interval. In any case the covariance mRaterd stochastic optimal matri@
or an approximation to these matrices need to be determined or approximaterirtaproceed with order
reduction by balanced truncation.

For general non-normal systems the observability and controllability ellipsw@distinct. A successful order
reduction must accurately approximate the dynamics by including in the trundatith the directions of
the system’s response (the dominant eigenfunctior) dfut also the directions in which when the system
is forced, it most effectively responds (the dominant eigenfunction@)of The fact that the observability
and the controllability ellipsoid are distinct is an indication that the directions e&tgst response of the
system are different from the directions in which it is most effectivelgdar If we can identify a coordinate

6
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transformation in which the controllability and observability ellipsoids are the s#mea in these balanced
coordinates, reduction of the order of the system can proceed byingtdire dominant directions of the
common ellipsoid. The semi-major axes of this common ellipsoid in the balancedeapxdon are the Hankel
singular vectors and the lengths of the semi-major axes are the Hankebsinglues which turn out to be
the square root of the eigenvalues of the product of the covariantetachastic matrixPQ. The balanced
truncation thus transforms the internal coordinates of the system so thaatiséormed covariance matrix
P and stochastic optimal matri@ become identical and diagonal (while preserving the inner product of the
physical variables). The dynamical system is then truncated in theséotraesl balanced coordinates. The
balanced truncation retains a leading subset of empirical orthogoraidna (EOF’s) and stochastic optimals
(SO) of the dynamical system and preserves the norm. Balanced trunpeggerves the stability of the full
system and provides an approximation with known error bounds whichinglfim practice to be nearly optimal
(Moore, 1981; Glover, 1984; FI01) as will now be shown.

A successful order reduction must accurately approximate the dynafihes £ystem which can be expressed
as the mapping of all past (square integrable) forcings to all futur@nsggs. This linear mapping of inputs
to outputs is called the Hankel operator. Application of the ESM theorem to ainé&dHl operator provides the

optimal low order truncation of the dynamics. Remarkably, because of gagat@on between past forcings

and future responses in the Hankel operator representation of thendysithis operator has finite rank equal
to the order of the system; and its singular values, denotdd fayn out to be the lengths of the semi-major
axes of the balanced controllability-observability ellipsoid.

The procedure used to implement balanced truncation is now briefly radie@ensider a gener&l order
truncation of theN dimensional systen®d:
dg,

T A, , (20)

whereA, is the reduced x k dynamical matrix, wittk < N, and{, the associated reduced oréedimensional
state vector which is related to the full state vector by the transformgtioa X{,. Similarly, the reduced
state vector], is related to the full state vector b, = Y1{ (the dagger denotes the hermitian transpose of
a matrix), which implies thay X = I, wherel, is thek-order identity matrix. Matrice¥ andX determine
the transformation from the full system to the reduced system. The mgtrgoverning the dynamics ir20),
is:

A, = YTAX. (21)

Details of the construction on the biorthogonal matrigesndY are given in Farrell & loannou (2001b).

A measure of the accuracy of the truncation is the maximum difference thaiccar between the full system
responsey(t), and the reduced order system resporjge). This measure is thid,, norm of the error system:

A = Ayllo = SngR(w)_ﬁ(w)Hza (22)

in which the resolvent of the full systerR(w), is defined aRk(w) = (iwl — A)~! and the resolvent of the
full order projection of the reduced systemR$w) = X (iwl, — A,)"1Y. Itis to be recalled that the,
norm of a matrix, denoted af ||,, is equal to its largest singular value.

Assuming the Hankel singular values have been ordered decreasingyimtuaie, it can be shown that the
error in theH,, norm 22) of the balanced approximation of the full system by &myder systenh, satisfies
the inequality:
N
her S A = Alle <2 hy (23)
i—k3-1

whereh, _, is the first neglected Hankel singular value (Zhou and Doyle, 1998)oaghh,  , is only a lower
bound on the error, we have found in examples that this lower bound ity aéi@ined.

7
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Figure 2: The norm of the propagatoje™|| as a function of time for the various order 2 approximatiohs o
the dynamics. Curve 1: the optimal growth of the originategs@4). The circles are the optimal growth of
the order 2 system obtained with balanced truncation. Ténsiced system captures accurately the optimal
growth of the full3 x 3 system. Curve 2: the optimal growth obtained frorf :a 2 truncation obtained

by Galerkin projection on the two optimal vectors assodatéth the two largest singular values of the
propagator for time t= 5. The order2 x 2 operator that results is unstable. Curve 3: same as 2 but the
optimal vectors are obtained for time=t 3. Curve 4: the optimal growth obtained froPnx 2 truncations
obtained by Galerkin projections on the two eigenvectospamted with the two largest eigenvalues of the
covariance matriX or the matrixQ (both truncations give identical growths). Curve 5: theioyatl growth
obtained from & x 2 truncation obtained by a Galerkin projection on the two led@mped eigenmodes of
the matrixA. The performance of all the truncated systems, except thelmained, by balanced truncation
iS very poor.

3.1 A simple example of balanced truncation

Consider the X 3 dynamical system:

dy
with
—-0.1 100 0
A= 0 -02 O . (25)

0 0 -001

This system is stable but highly non-normal in the first coordinates whilstii$ ¢oordinate, which when
excited decays the slowest, does not interact with the other coordin&ieson-normality of the system leads
to substantial optimal growth as revealed by the norm of the propagjafdy|, which measures the maximum
state norm that can be produced at timby initial states of unit norm. The optimal growth as a function of
time is shown in Fig2. We wish to obtain a Z 2 system that best approximates the dynamics of the original
system.

We first obtain a 2< 2 order reduction by Galerkin projection on the two least damped eigennepdesof
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A. This is achieved as follows: form thex3 matrix

E=le.e)], (26)

and the 2< 2 diagonal matribD, with diagonal elements the first two least damped eigenvaluis ©he 2x 2
reduced order matrix in coordinates that preserve the original stateisorm

Apm=M Y2p,m-1/2, (27)

whereM = E'E. The performance of the norm of the propagator of the modally redysters as a function
of time is shown in Fig.2 (curve 5), and clearly this truncation provides a very poor repreentaf the
dynamics.

We obtain next a 2 2 order reduction by Galerkin projection on the top two singular vectorsegbtbpagator
at timet = 5 when the global optimal growth is achieved. This reduction is achievedllag/é: form the
matrix

V= [vy,V,], (28)

wherevy, v, are the singular vectors, and then the ma#ix= VAV, which is the matrix representation in
the coordinateg, in which ¢y = Ug. Then the 2< 2 reduction in this basis is the top<22 submatrix ofA;.
Because the basis vectors are orthonormal the square norm of tHernaess statesp is equal to the square
norm of the original states. This procedure can be followed to obtairr oedection by Galerkin projection
on any set of orthonormal vectors. The performance of the redysters in this basis is poor, as shown in
Fig. 2 (curve 2). Note that the reduced order system is unstable. Selectingaassahe singular vectors for
timet = 3 leads to even worse performance (curve 3 in B)g.The same results would have been obtained if
we had used as a basis the corresponding evolved optimals (the left swentlars). In general it is found that
if the singular vectors are used for order reduction it is best to use thelaimvectors or the evolved optimals
for a sufficiently long time. Short time optimals can be very suboptimal as a lmadrsification, because these
vectors are often associated with directions of rapid growth that dogzensist.

We reduce the order of the system by Galerkin projection on the top twoveigens of the covariance matrix
P. The performance is very poor (see Rigcurve 4). The same poor performance is obtained if we use the
top two eigenvectors of the covariance matgix The reason for the failure is that the controllability ellipsoid
x"P~1x = 1 is elongated in the direction qf = [1,1073,0]" with semi-major axis of about 900. The second
largest direction is the normal directiapn = [0,0,1]T with semi-major axis length of about 7. This second
direction is the normal direction, which because of the relatively slow dpessists for a long time when it
is excited. The observability ellipsoid Q~1x = 1 is elongated in the direction @f = [2x 1073,1,0]T with
semi-major axis of about 900. The second largest direction is again theahdirectionys = [0,0,1]T with
semi-major axis length of about 7. It is thus clear that retaining the two domitiraations of either th® or
the Q matrix doesn't retain the two dominant directions of bothBre:nd theQ matrix that are both necessary
for a good description of the dynamics.

The transformation

~156 -156 0
X=| -002 004 0], (29)
0 0 1

and its associated biorthogonal
—-0.04 -0.020 O
Y=| -156 155 O |, (30)
0 0 1

renders both the covariance matfix= YT P Y and the stochastic optimal mamé( = X' Q X diagonal and
equal to each other. This associated common ellipsoid &Fig.the balanced coordinates has semi-major axes

9
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Figure 3: The two ellipsoids associated with the covariantrix P and the stochastic optimal matr@@.
The ellipsoids are respectively P~1x = 1 (the controllability ellipsoid) an&™ Q~1x = 1 (the observability
ellipsoid) and have semi-major axes proportional to theasguoots of the eigenvalues of the matriées
andQ. The ellipsoids are like needles. The elongated directfdheP ellipsoid indicates that the dominant
response of the system is in that direction, while the el@aydirection of theQ ellipsoid identifies the
forcing directions in which the system responds most rgadihese two directions are different. A good
reduction of the order of the dynamics must include bothedétdirections. This is systematically achieved
with balanced truncation.

equal to the square roots of the Hankel singular values, namely apptekinegual to 54, 21, 7. Balanced
order reduction proceeds in this coordinate system by retaining the twatidire that are associated with the
two top Hankel singular values, which are to a very good approximationrsteafid second direction. In this
way the reduced order:22 balanced system includes the dominant directions of both the controllabitity an
observability ellipsoids and is expected to be a near optimal reduction of. oftiés is shown in Fig.2 in
which the circles that give the optimal growth of the propagator of the bathsystem reproduces exactly the
optimal growth of the original system. However, the accuracy of the emtlagstem can be best examined by
considering the difference of the exact and reduced systems by &ngltlee norm of the difference of the
resolvents of the two systems as a function of frequencyhis difference is plotted as a function of frequency
in Fig. 5. The maximum of this difference over all frequencies definedHheorm of the error which has
been shown to satisfy inequalitgX), which in this case becomes:

50 < [|A — Ayl <100, (31)

given that the neglected Hankel singular valuéjs= 50. The error system is found in this way to perform
worst atw = 0 when forced with the structure of the neglected persistent rfip@gl]".

4 Applying balanced truncation to the mean storm track perturbation modd

In order to obtain a balanced truncation of the storm track model govdmeaxgberator §) we first obtain
the covariance matriX®, and the stochastic optimal matri, by solving Lyapunov equation8) and (L5)
respectively. The eigenfunction Bfassociated with the largest eigenvalue is the first EOF of the perturbation

10
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y

Figure 4: The ellipsoid of th® and Q matrices in the balanced coordinates. These coordinatesan-
structed so that the transformed covariance and the optimtrix ellipsoids become identical. In these
coordinates the system can be most effectively truncateduse the directions of the system’s dominant
response coincide with the directions in which the systemoist easily forced . The length of the semi-major
axes of this ellipsoid are the square roots of the Hankeldamgvalues.

field, and the eigenfunction d associated with the largest eigenvalue is the first SO of the perturbation
field. The structure of the first EOF, which accounts for 23 % of the sti@action perturbation variance, is
concentrated in the exit region of the storm track as can be seen i {ap left panel). By contrast, the first
SO, which is responsible for generating 19.7 % of the streamfunction patioin variance, is concentrated
at the entrance region of the storm track and is nearly orthogonal to sh&@F as can be also seen in Fig.
6 (bottom left panel). This near orthogonality between the EOF structutkS@nstructures remains even at
order 30. Balanced truncation accomplishes an accurate represenfatiendynamics by retaining both the
structure of the dominant EOF’s and of the SO's. It is clear from Bithat truncations based on projections
on the leading EOF’s will be very suboptimal as the leading EOF’s span wigllperturbations concentrated
in the exit region of the storm track, leaving the dynamically important entipmnegf the storm track, where
perturbations have greatest potential growth , virtually without suppaneiispan of the retained basis.

Although the error in the frequency response of a balanced truncafi¢dl)) is bounded above by twice the
sum of the neglected Hankel singular values and below by the first hedldankel singular value, experience
shows balanced truncation of tangent linear forecast error systeuitsri@ truncation errors close to the lower
bound. The Hankel singular values and the eigenvalu®saofd theQ for the storm track model are shown in
Fig. 7.

Note that the decrease with mode number of the eigenvaluBsamid of Q is more rapid than that of the
Hankel singular values. But this more rapid decrease with mode numbeg efghnvalues dP andQ does
not indicate the order required for an accurate approximation; this is chdetarmined by the first neglected
Hankel singular value which falls more slowly with mode number.

Itis often assumed that a system can be well approximated by Galerkiciwojento a subspace of its EOF’s;
with the effectiveness of the truncation being judged from the magnitudeeditfenvalues of the neglected
EOF’s. This is valid only for normal systems and we see here that fonoomal systems the decrease with
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error = ||A—A2||w= supm||R(m)—R2(w)|| =100
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Figure 5: The norm of|R(w) — R,(w)|| as a function of real frequency] (w), whereR,(w) = X(iwl, —
A,)~1YT is the resolvent of the x 2 system obtained from balanced truncation. This maximurhisfiorm
over all frequencies defines the,Hhorm of the error system, which provides the greatest effiat tan be
produced in the truncated system when it is forced by mowatdtic sinusoidal forcing. The two horizontal
lines indicate the bounds that the balanced truncationremast satisfy in this measure. The lower dotted line
is the first neglected Hankel singular valug 4 50, the top is2h;. The H, norm of the error assumes the
upper bound of inequality3{). This error is realized when the system is forced at zemguigacy (o = 0) with

the structure of the most persistent mode of the syfeinl]|".
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Figure 6: For the stable time mean storm track model. Top fgriEhe streamfunction of the first and the 30th
EOF. The first EOF accounts for 23 % of the maintained variatise 30th EOF accounts for 0.35 % of the
variance. Bottom panels: The structure of the streamfonatif the first and 30th Stochastic Optimal. The first

SO is responsible for producing 19.7 % of the maintainedarare; the 30th SO is responsible for producing
0.48 % of the maintained variance.
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Figure 7: The Hankel singular values (stars) compared toeigenvalues of the covariance matRXcircles), and
the eigenvalues of the stochastic optimal mafikcrosses). The Hankel singular values are the square rddtseo
eigenvalues of the produBXQ. Note that the EOF’s (the eigenvaluesR)fand the SO'’s (the eigenvaluesQ@j fall
much more rapidly with mode number than do the Hankel singidhues.
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Figure 8: For the stable time mean storm track model. Topdeftel: the streamfunction of the first basis vector of
the expansion for the balanced truncation of the systens dhien by the first column &. Top right panel: the
streamfunction of the tenth basis vector of the expansioth&obalanced truncation of the system. It is given by
the tenth column oX. Bottom left panel: the streamfunction of the biorthogaofahe first basis vector. It is given

by the first column o¥. Bottom right panel: the streamfunction of the tenth basister. It is given by the tenth
column ofY.

mode number of the eigenvalues of the covariance matrix is misleading andigeoetimistic even as an
estimate of the order of the system required for an accurate approximation.

A subset of the columns &f is retained in the balanced truncation. This non-orthogonal basis andritsdgje
onal, the columns of, are constructed so as to capture the structures supporting the dynareteffiontly,
simultaneously accounting for the preferred responses (EOF’s) amidferred excitations (SO’s) of the dy-

namics. The first and the tenth structure retained in the dynamics (the firdtatenth column oK) and their
biorthogonal structures (the first and tenth columiy paire shown in Fig8.

The storm track model and its reduced order approximate have veryetiffeigenvalue spectra. The eigen-
value spectrum of the reduced order approximate is such that the figguesponse of the approximate system
is as close as possible to that of the original system, which is shown i®.FIgnis results both from a decrease

in the stability of the reduced system compared to that of the full system amdtfre increase in growth due
to the non-normality in the reduced system.

The accuracy of the approximation is measured byHberorm of the error dynamical systefi\ — Ago||o,
which, as discussed in the previous section, lies between the lower bawemdby the first neglected Hankel
singular valuehg, = 13.8, and the upper bound:32%; h; = 1.8 x 10%. The largest singular value of the error
system resolvent as a function of frequency is shown in Big. where it can be seen thgA — Ayl =
28.5, which shows that the balanced truncation error in this example is onlpxipmately twice its lower
bound. The error is nearly white for the span of frequencies thag¢spond to the frequencies of the system
eigenmodes. For comparison, the error incurred in an order 60 Galadgiection of the dynamics onto the
first 60 EOF’s and the error incurred in an order 60 Galerkin projedidn the first 60 least damped modes,
are also shown in FidLO. It can be seen that the EOF projection performs appreciably worséthaalanced
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Figure 9: The maximum singular value of the resolv@ftw) = (iwl —A)~! of the full systend as a function of
the real frequencyJ(w). The maximum of this curves as a functiorwof the H, norm ofA which is found here
to be 198.1. Also plotted is the maximum singular value ofékelvent associate withg,, which is the operator
obtained from an order 60 balanced truncationfof The maximum of this curves is the Horm ofAg, which is
found to be 196.2.

truncation, while the modal truncation at this order is useless.

The optimal growtf as a function of optimizing time attained by the full system and by the following: the
order 60 balanced truncation; the order 60 system obtained by Galedjetiion on the first 60 EOF’s; the
order 60 system obtained by Galerkin projection on the first 60 SO’stlandrder 60 system obtained by
Galerkin projection on the first 60 least damped modes are all shown inIHig.Note that the balanced
truncation performs very well, reproducing the optimal growth nearlygodlsf up tot = 5, corresponding to
about 2 days. By comparison the EOF and SO truncations performcgipiseworse and the modal truncation
gives even poorer results.

The structure of the initial perturbation that leads to greatest squarenftmeztion growth at = 10 in the full
system, together with the resulting structure, is shown in E&yfor comparison these structures as obtained
by the truncated system are also shown. The structures are well ahpjuttee order 60 reduced system.

We have demonstrated how to obtain balanced truncation of a stable time iddapeystem but the method
of balanced truncation can be extended to unstable systems (Sznai@08aland to time dependent systems
in which balancing is performed sequentially over finite time intervals (Van @gd&000).

In forecast applications we seek an accurate reduction of the dynafrtivzs ttime dependent tangent linear
operator calculated on the system trajectory over a limited time interval (24 bodi&). One choice is to
balance on the time mean operator over this interval. Another choice is to batanihie time dependent
version of the tangent linear operator over this or an extended intdsual ¢he assimilation time, obtaining
approximation of thé® and Q matrices on this interval. Both procedures have been tested using the time
dependent version of our storm track model and found to produagatectruncations. We examine below

2 The optimal growth at time, is defined as the maximum perturbation growth that can occur overttiffier an autonomous
system, governed b, the optimal growth at is given by the largest singular value &t or by|\eAt\|2.
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Figure 10: For the stable time mean storm track model: theimarn singular value of the error systelin— A,

as a function of real frequency](w). The system is an order 60 approximation obtained frofby balanced
truncation. The maximum of this curves is thg étror of the order 60 balanced truncation which is found heere
be 28.5. Also indicated with a straight line is the theor@timinimum error of an order 60 truncation, which equals
the first neglected Hankel singular vallig, = 13.8. The balanced truncation is seen to be nearly optimal.
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Figure 11: Optimal growth||€*t||, as a function of time for the Eady model in a channel with gedayers and
meridional wavenumberz 1. Shown is the optimal growth for the full system with 400 degyf freedom and the
optimal growth produced by an order 60 approximate systetained by balanced truncation of the full system.
Shown also for comparison is the optimal growth attainechgydrder 60 approximate system obtained by Galerkin
projection on the first 60 EOF’s, the first 60 SO’s and the fitéast damped modes.
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Figure 12: For the stable time mean storm track model. Thacstire of the streamfunction of the optimal perturba-
tion that leads to the greatest energy growth at 10 (left panels), and the evolved optimal streamfunctionctvhi
is the structure that these optimals evolve into at the dptirg time t= 10 (right panels). The top panels are for
the full system while the bottom panels are for the order @ared truncation.

results obtained from a reduced order Kalman filter in which the truncation d& roa the time dependent
tangent linear operator over 48 hours centered on the assimilation time.

The time mean tangent linear operator (the mean being calculated over aaljrigegenerally asymptotically
stable. This is because realistic states of the atmosphere support primaglyilitiss with positive group
velocities and do not support absolute instabilities (unstable modes withrzeneelocity)(Farrell, 1982; Lin
and Pierrehumbert, 1993; DelSole and Farrell, 1994). The asymptotibilitgtaf the tangent linear system
arises primarily from the continual instigation of transient growth which oetunon periodic time dependent
systems in the same way that the Mathieu instability arises in time periodic systemsm@a¢hisnism is
discussed in Farrell and loannou (1999) and has been verified imthext of a forecast system by Reynolds
and Errico (1999) and Gelaro et al (2000). The stability of the mearatgreallows balancing to be performed
on a stable operator although the error system itself is nonautonomousyangtatically unstable. However,
it is not necessary to balance on the mean operator, and as remarkecabarable results can be obtained

by balancing on the time dependent tangent linear operator over ampajppednterval; experiment suggests
approximately 48 hours.

5 Assimilation as an observer system

Consider assimilating data taken from truth, The forecast errog; = x; — x; obeys the equation:

de;

dt

in which A is the unstable tangent linear operaftis the model error covariance, ang, is assumed to be a
vector of temporally uncorrelated noise processes.

= Ae; + QY 2w, (32)
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Introducen observationsy,,, obtained from truttx; as:
Yoo =Hxt + RY2wo , (33)

whereH is the observation matriR is the observational error covariance anglis ann vector of white noise
processes.

Assimilate these observations to obtain an analygiswith analysis erroe, = X5 — X; satisfying the Luen-
berger observer system:

de
d—ta = Aea+K(Y,,— Hxa) +QY2wn
= (A—KH)es+KR l/ZWo + Ql/ZWm . (34)

The gain,K, is chosen to minimize the analysis error variance {racael >). Unlike the forecast error
system, a Luenberger observer system is asymptotically stable. Anykgdimat stabilizes the tangent linear
operator results in an observer with bounded error, this error bemgddoy a combination of model error

Q and observational errdr (cf 34). Good gains do not just stabilize the operator but simultaneously reduce
the non-normality of the tangent linear operator so that the minimum of(kagg! >) is maintained by the
combination of observational and model error.

Just as generalized stability of the tangent linear forecast systentsréveaotential for forecast failures due to
transient growth of initialization error or unresolved forcings distributegt the forecast interval, so also does
generalized stability analysis of the observer system reveal how madebad initialization error contribute
to analysis failures.

5.1 The case of an optimal observer

The gairK that minimizes the statistical steady analysis error variance(t<|:a£i::3s(=.§1:1 >) is the Kalman gain. For
simplicity of presentation we take as our example an opefatbat is time independent and observations taken
continuously in time. A stationary error system with continuous observatiattsoisen for heuristic reasons
although in forecast systems the tangent linear operator is time dependentbservations are introduced at
discrete intervals. However, the statistical properties of optimal state estinaméogeneral and results are
gualitatively similar across observer systems.

The asymptotic Kalman gain resulting from continual assimilation of observatithbservation matrixd
is:

K=PH'R™?, (35)
with P the stabilizing solution of the algebraic Ricatti equation:
AP +PAT—PH'RIHP+Q =0. (36)

It is a property of the Kalman filter that the matfxobtained as a solution of the algebraic Riccati equation is
also the asymptotic error covariance of the observer sysidn (

5.2 4D-Var as an observer system

4D-Var data assimilation with assimilation winddwcan be viewed as a special case of an observer in which
a climatological background error covariarBds advanced foil units of time. In our autonomous model
system the error covariance is advanced according to:

P—ATBer'T , (37)
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from which we obtain the gain:
Kap_var = PHT(HPHT+R)~ 1. (38)

This gain produces a stabilized observer if enough observations age mad

The asymptotic error in the observ@dj is obtained by calculating the covarianBethat solves the equation:

+
(A o K4D—VarH) P+P (A - K4D—VarH) + K4D—VarRK:rlD—Var +Q=0. (39)

6 Effect of the number of observations on the performance of the assimilain

Consider convergence of the assimilated state to truth as more observatitsisam in the presence of model
error. To fix ideas assume that repeated independent observatonsmee at each of the grid points of our
model.

If the state of the assimilation system has dimengiband n observations are taken at each grid point the
observation matrix for theseobservationsi,, is annN x N matrix:

Ho=1yXe (40)

wherel is the identityN? dimensional matrix® denotes the Kronecker product aeds the unit column
e=[1,---,1]" of dimensiom.

Consider an observation error covariance meRix rly @ I, wherel, is then? dimensional identity matrix
and letK ; be the Kalman gain that results from thesgbservations. The Kalman gain is:

1
Kn=PHIR = FF>n(|N®eT), (41)

with P, the stabilizing solution of the algebraic Ricatti equation:
AP, +PpAT - PHIRIH P, +Q =0, (42)

whereQ is the model error covariance. On substitution of the specific expresaimve for the observation
matrix H, and the observational error covariance majx{42) assumes the simplified form:

n
APy +PrAT— 2P +Q =0, (43)

from which we conclude that the analysis error in the observer systauitirgy from assimilation of obser-
vations at each grid point with each observation having observatiomalh\&riance is equal to the analysis
error that results from observing the same system with a single isolatetvatise with observational error
variancer /n. It remains to determine how the error covariaRgscales with.

In the absence of model errd® (= 0) the answer is immediate:
Pn = (44)

whereP is the assimilation error covariance associated with a single observation sdiisfies the algebraic
Ricatti equation:

AP+PAT—%P2:O. (45)

So in the absence of model error the assimilation square error tends taszerare observations are taken at
the expected rate of 1.
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Consider now the case in which model error exists. In that case we map@Rpin an asymptotic series:

Pn:&+%+-~. (46)

VN

The leading term in this expansion is given by:

po=TQY?, (47)

and consequently the asymptotic error covariance in the presence of enatdas the leading behavior:

_ T A12
Pn_\/;Q . (48)

We conclude that in the presence of model error the assimilation squareoéthe Kalman filter in our
example tends to zero at rate!/? as more observations are made.

Itis instructive to compare this to the behavior of analysis error in a 4Dd&t assimilation as the number of
observations increases. In the absence of model error the 4D-&lgsesquare error also tends to zero at rate
n~L, but in the presence of model error if the background covari@nisenot rescaled as more observations
are taken the analysis error asymptotes to a non zero constant value.

In order to understand this behavior consider the asymptotic error-aso in the unstable stochastically
forced scalar system with growth raae

3—? —ae+qY%w. (49)

The associated algebraic Ricatti equation is:

2ap— P2+ =0, (50)

_al 2(M\ 4 g"
po=a-+y/@ () +ar . (51)

This stabilizing solution is also the error in the observer system after assimitdtioobservations. Note that
in the absence of model error and for il

with stabilizing solution:

pn:% if q=0, (52)
and that the Kalman gain is
2
Kn = Fa[lvla"'alal]a (53)

and that the weight given each in the assimilation is:
KnHn=2a, (54)

indicating that the weight given to observations is proportional to the growth rate and is independent of

the number of observations.
ro.
pur /% if g0, (55)

q
Kn=~,/—[11---,11 56
n rn[77 77]7 ( )

With model error and as — oo:

and the Kalman gain is:
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Figure 13: Error in the scalar optimal observer system andcalar system with an equivalent 4D-Var observer
as a function of the number of observations. The gain in thienah observer is the asymptotic Kalman gain. The
growth rate is a= 1/2 d 1, the observational error i$#0m. The model error variance is-g 58 m? d ! resulting in

a model induced error af0 m after a day. With g 0 the error in both the observer system with the Kalman filter
and the 4D-Var falls as /2. With g+ 0 the error in the 4D-Var observer asymptotes to a constanieathile in
the observer with the Kalman filter falls asH*.
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so that the weight given to observations is:

n
KnHn = Tqy (57)

independent of error growth rate and indicating that as the number eh@tions tends to infinity in the
presence of model error the model is increasingly discounted and teevabiens accepted. A comparison of
the error as a function of the number of observation in the scalar systdmovissn Fig.13.

Regardless of the model error, the error in the optimal observer varfdmough observations are assimilated
a result that holds in higher dimensions, as we have seen.

7 Approach of 4D-Var to the Kalman filter as the assimilation interval in-
creases

In the absence of model error 4D-Var is equivalent to the extended Kdlifter if the assimilation window
is extended to infinity. Present implementations of 4D-Var employ assimilation wsadb 12 hours and it
may appear that these implementations must be suboptimal and that the assimilatibbheconproved by
lengthening the assimilation window.

Consider the asymptotic gain arising from a single observation in the time indiepiestorm track model with
and without model error. The asymptotic gain is shown in E(top panel). It is evident that in the absence
of model error the gain is not localized: the gain identifies the unstable stegabdi the forecast model and
provides loadings designed to destroy these structures which haveataeten of a global mode. As shown
in Fig. 14 (bottom panel) in the presence of model error the gain becomes localizedrsighborhood of the
observation because the model error that is distributed in the systemcpsothiicoherent responses far from
the observation location that cancel when the ensemble average regptims system is taken so that the gain
in the presence of model error is localized.

Because 4D-Var calculates the gains without model error the gain asxbwaith a 4D-Var assimilation as the
assimilation window is increased extends into the far field. This evolution ofatmeagsociated with an initial

climatological backgroun® in a 4D-Var assimilation is shown in Fig.5. With time the climatological gain

associated with the background error covariance assumes a gloloalisru

In the absence of model error the gain as the assimilation interval inctagg@@mches the structure of the gain
of the Kalman filter and the analysis error of 4D-Var asymptotes to the analysisobtained by a Kalman
filter. The convergence of 4D-Var assimilation error to that of the Kalmam fdtshown for the time dependent
version of the storm track model in Fig6.

However, the perfect model assumption is physically unrealistic, and théad Bssimilation scheme produces
gains that have global structure as the assimilation window is increasednd\ia iur model storm track that

4D-Var performs best with an assimilation window that is large enough to allewgdin to be affected by the

flow but short enough so that far-field loadings do not have time to formex@ample of 4D-Var analysis error

as a function of the assimilation interval is shown in Fig. In this example the optimal assimilation interval
is 36 hours.

We conclude that neglect of model error in the formulation of 4D-Var mdk®4/ar operate best for rather
short assimilation intervals. Model error must be introduced to make 4@+Vaptimal observer. In the sequel
we propose a method for introducing model error into 4D-Var.
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Figure 14: The asymptotic Kalman gain for observation atd¢kater of the channel in the storm track model. Top
panel the gain for the case of no model error. Bottom panebtier for the case with model error. The model error
g produces an r.m.s. model error 5im in a day. The r.m.s. observational errorli® m. The asymptotic Kalman
gain has been calculated for the time mean flow. Note that tieetrerror leads to localization of the gain in the
neighborhood of the observations.
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Figure 15: Evolution of the gain associated with the obséoramarked with a star in 4D-Var as a function of the
assimilation interval in the unstable time mean storm tragior model. The backgroun8 matrix is the identity.
As the assimilation interval increases 4D-Var gains extianal the far field.
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Figure 16: Error in 4D-Var assimilations in the time depentistorm track model with no model error as a func-
tion of assimilation interval. Also shown is the error obtadl with sequential application of a Kalman filter. 16
observations are assimilated with r.m.s. observationaebreof 10 m. As the assimilation interval tends to infinity
the 4D-Var error approaches that of the Kalman filter.
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Figure 17: R.m.s. error in 4D-Var assimilations in the timepgndent storm track model with model error as a
function of assimilation interval. The best 4D-Var perfamae is achieved in this example for assimilation over the
interval 36 h. Also shown is the error obtained with the Kalman filter. 4@ervations are assimilated with r.m.s.
observational error ofl0O m; the model error variance is g 12 n? d—1, so that a model error & m accumulates

in one day.
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8 Reduced order error covariance estimate

We now formulate the observer system in which the error covariance &nadd in the truncated space to
obtain a reduced order Kalman gain. The resulting observer systemucadoordinates is:

d
d—etk = (A=K Hy) g+ KR 2w — Q) 2w (58)

where the reduced analysisgs= Y'e, for k << N and the reducek x k operator is:
A, = YTAX. (59)
Then observationsy,,, are assimilated in the reduced space according to:
Yoo = HiX + RY2Wo, (60)
where the reduced order observation matrix is:
H, = HX. (61)

The error system in the reduced space is used to obtain the Kalmak gaird to propagate the error covari-
ance,
Py =<eex > . (62)

The error covariance of the full system is then approximated from th&eateduced covariandg by:
P=XPX". (63)

This error covariance is used in our 4D-Var model. By introducing thisugaxce in 4D-Var we evolve the
error covariance and simultaneously also introduce model error. Irttiodh of this reduced order covariance
in 4D-Var makes the 12 hour 4D-Var perform nearly optimally. Analysis eferformance of this filter is
shown in Fig.18. Using the reduced order covariance obtained without model erros teadiegradation of
the 4D-Var assimilation due to unrealistic far field loadings in the gains.

9 Conclusions

A data assimilation system combines observations and dynamics expressgghthnumerical forecast model
to obtain an estimate of the state of the atmosphere. An optimal data assimilation sgatéines observa-
tions and dynamics to obtain the statistically best state estimate. Statistical optimalitgsdgtormation
about the observation error and about the error in the numericalafstrechis latter is difficult to obtain be-
cause of the high dimension of the error system so that approximations tordoast error have to be made
to implement practical applications of optimal state estimation. A promising methodfainong an approx-
imation to forecast error is to advance the error covariance in a state spaeduced dimension compared
with that of the full forecast error system. The error covariance ine¢heced space can then be used in an
approximate optimal state estimation method such as 4D-Var or the extended KatenaBuch a reduction
is possible because the significantly unstable subspace of the erron systiemuch lower dimension than the
complete state dimension.

Assimilation systems can be usefully modelled as observer systems in whichiamgajrix that stabilizes the
analysis error system is an observer and the gain that results in minimursiareahpr is the optimal observer.
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16 obs; Nk=40 ;g=12 m?dt
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Figure 18: Error in a simulation of the time dependent storatk model with model error. Panel (a): comparison
of the errors in al2 h and24 h 4D-Var with the error in the full Kalman filter. Panel (b): ngarison of the error in

a 24 h 4D-Var with the error in &2 h 4D-Var in which the isotropic statiB has been preconditioned with the error
covariance obtained from a reduced rank Kalman filter wittelaed truncation. The reduced rank Kalman filter
has been obtained with model error. In the truncated systérdof have been retained out of the 400 dof of the
system. The isotropB introduced to the reduced rank covariance has amplitudekmpthe smallest eigenvalue of
the reduced rank covariance. Also shown is the error resglifiom the Kalman filter. Th&2h 4D-Var performance

is nearly optimal. Panel (c): comparison of the error ir2d h 4D-Var with the error in &4 h 4D-Var in which the
isotropic staticB has been preconditioned with the error covariance obtaiftech the reduced Kalman filter. The
24 h 4D-Var preconditioned with the covariance from the redukalman filter propagates the covariance without
model error longer and its performance is worse than thahefd¢orresponding2 h 4D-Var. Panel (d): r.m.s. error
in 4D-Var assimilations in the time dependent storm tracldehavith model error as a function of assimilation
interval. Also shown is the error obtained with sequentjgblication of a Kalman filter and the error from tHe2 h
4D-Var which was preconditioned with the reduced rank ctaraze. 16 observations are assimilated with r.m.s.

observational error ofl0m. The model error variance coefficient is=cl2 m? d—1, so that a model error &6 m
accumulates after a day.
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This perspective on assimilation provides insight by allowing generalizbdistanalysis of the observer sys-
tem to be performed revealing for instance the distributed error souraesetve to most effectively degrade
the analysis (Farrell and loannou, 2003).

Analysis of the observer system modelling 4D-Var and the Kalman filter Ieteat as the number of obser-

vations assimilated increases the analysis error asymptotes to a finite valuarablapo observational error

and independent of the number of observations unless the forecast@variance is systematically adjusted
to account for the increase of observations. One way this adjustmefitecaccomplished is by advancing
the forecast error covariance in the dynamically relevant reducest sydtem that supports the growing error
structures.

The result from using this accurate forecast covariance is that asithbean of observations increases the
associated Kalman filter obtains assimilation eon—1/#) (with model error present) while the 4D-Var sim-
ulation fails to systematically reduce the estimation error. Assuming that redey@d& observation in the
restricted subspace of significantly growing error structures hasarr will be available it is important to
systematize the error covariance calculation in order to take advantagesefdhservations.

The gain under the assumption of a perfect model develops far field ot degrade the assimilation
because the model error is in fact non-vanishing. The error cowariabtained by introducing model error
into the reduced system suppresses these far field loadings. Theevesiance calculated in the reduced
system provides a method for introducing model error into 4D-Var thuscied the deleterious effects of the
perfect model assumption and allowing accurate equivalent gains talimeceon short assimilation intervals.
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