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ABSTRACT 

An extension of classical stability theory to address the stability of perturbations to time-dependent systems 
is described. Nonnormality is found to play a central role in determining the stability of systems ~ovemed by 
nonautonomous operators associated with time-dependent systems. This pivotal role of nonnormahty provides 
a conceptual bridge by which the generalized stability theory developed for analysis of autonomous operators 
can be extended naturally to nonautonomous operators. It has been shown that nonnormality leads to transi~nt 
growth in autonomous systems, and this result can be extended to show further that time-depende~t non??rmah~y 
of nonautonomous operators is capable of sustaining this transient growth leading to asymptotic mstab1hty. This 
general destabilizing effect associated with the time dependence of the .operator is explored by analyzing para­
metric instability in periodic and aperiodic time-dependent operators. Simple dynamica~ systems are used as 
examples including the parametrically destabilized harmonic oscillator, growth of errors m the ~ore~z system, 
and the asymptotic destabilization of the quasigeostrophic three-layer model by stochastic vac1llat10n of the 
zonal wind. 

1. Introduction 

The first part of this study addressed the growth of 
perturbations to time-independent systems in which 
there was a source of energy such as the baroclinic­
barotropic available energy of atmospheric shear flows. 
In such time-independent flows availability of back­
ground flow energy for perturbation growth can be de­
termined by linearizing the equations of motion about 
the fixed background flow and searching for growing 
perturbations. Systematic application of this program 
in the asymptotic limits of short and long time, as well 
as in the physically most relevant intermediate times, 
led to the generalized stability theory of autonomous 
operators described in Part I. It was found that the sta­
bility analysis of time-independent flows understood in 
this generalized sense provides a comprehensive con­
ceptual framework for analyzing the growth of pertur­
bations on timescales relevant to the rapid deepening 
phase of cyclogenesis, as well as to the analysis of fore­
cast error growth on the synoptic cyclone timescales of 
12 to 48 hours. In addition, stochastic forcing of an 
autonomous operator modeling the background flow 
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was found to provide a mechanistic theory for the sta­
tistically stationary state of the fully turbulent flow. In 
summary, generalized stability theory applied with an 
appropriate choice of time-independent flow, which 
models either a stationary or a mean background state, 
addresses a wide variety of phenomena related to sta­
tistical as well as deterministic flow dynamics (Farrell 
1989; Borges and Hartmann 1992; Farrell and Ioannou 
1993a,b,c, 1994a,b, 1995; DelSole and Farrell 1995; 
Buizza and Palmer 1995; Reddy and Henningson 1993; 
Trefethen et al. 1993). However, there remain a set of 
issues involving the t-> oo growth of errors along time­
dependent trajectories and the development of finite 
perturbations in time-dependent flows for which inclu­
sion of temporal variability in the underlying dynami­
cal system is essential. The advantage of generalized 
stability theory in addressing this set of problems is 
persuasive in that modal instability has no counterpart 
in such nonautonomous systems, while the Lyapunov 
vectors and their associated optimal excitations in non­
autonomous systems are natural extensions of the sin­
gular vectors associated with optimal modes and the 
structures into which they evolve in the autonomous 
version of generalized stability theory (Lorenz 1965; 
Lacarra and Talagrand 1988; Farrell 1990; Moore and 
Farrell 1993; Palmer 1993; Yoden and Nomura 1993). 

The results of Lyapunov ( 1907) and Oseledec 
( 1968) ensure that associated with the asymptotic error 
growth rate there is a unique Lyapunov vector and a 
unique optimal excitation for this Lyapunov vector, 
both of which can be identified at each point of the 
solution trajectory of a nonlinear system. The form of 
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these asymptotic structures and the manner in which 
the asymptotic regime is approached as t -+ oo are im­
portant questions because as the time interval of a fore­
cast initially increases from zero the mean spatial wave­
number of the optimal perturbation increases, suggest­
ing potentially severe resolution requirements ori NWP 
models for forecasting in the intermediate range 
(Buizza and Palmer 1995; Hartmann et al. 1995). Ul­
timately, however, the optimal perturbation must ap­
proach that of the optimal excitation of the first Lya­
punov vector and the spatial scale of the optimal must 
therefore converge to a statistical limit. It is of interest 
to determine at each forecast interval the spatial scales 
that must be included in order to resolve the optimal 
perturbations over that forecast interval and the limit of 
these as they converge to the first Lyapunov excitation. 

It has not been established that divergence of solu­
tion trajectories on a chaotic attractor correctly models 
error growth in the atmosphere at space scales and 
timescales appropriate for synoptic forecasting. Growth 
of errors, even very great growth of errors, can arise in 
asymptotically stable systems. Such systems when sub­
jected to inevitable external noise sources become un­
predictable without the necessary existence of an as­
ymptotic instability especially so when the system is 
nonnormal and supports large transient amplification of 
a subspace of perturbations. Even if a positive Lyapu­
nov exponent exists in a time-dependent system, this 
asymptotic instability may arise from externally forced 
time dependence of the solution trajectory rather than 
from intrinsic time dependence associated with the tra­
jectory on its chaotic attractor. Moreover, in cases with 
asymptotic instability arising from time dependence 
this asymptotic instability may be very weak and dom­
inant only in the limit of irrelevantly long time as far 
as practical forecast is concerned. The prediction prob- . 
lem would then tum on analysis of intermediate time 
optimals and the projection of error sources on these 
optimals. Regardless of which of these scenarios ob­
tains in the atmosphere at any given time, the appro­
priate method of analysis is generalized stability theory 
extended to nonautonomous operators. 

It is sometimes assumed that existence of a positive 
Lyapunov exponent, which is indicative of sensitive 
dependence on initial conditions in the asymptotic limit 
t -+ oo, arises in fluid systems because of the specific 
nature of the nonlinearity associated with advection. 
We demonstrate that the source and particular config­
uration of time dependence in a nonautonomous oper­
ator is to a great extent irrelevant to determining its 
asymptotic stability, that destabilization by time depen­
dence is a generic property of nonnormal dynamical 
systems, and that the underlying cause of this universal 
destab~lization of time-dependent systems is the insti­
gation of growth processes associated with nonnor­
mality in such systems. 

The existence of a positive Lyapunov exponent and 
its magnitude in a damped time-dependent system de-

pends on the relative magnitude of the ·destabilizing 
effects of nonnormality of the mean operator and both 
nonnormality and variance of the perturbation operator 
on the one hand and the stabilizing effect of d2mping 
on the other. We show using a three-layer quasigeo­
strophic baroclinic model with stochastic variation of 
the zonal wind that there is for physically realistic 
damping rates a necessary level of variance needed to 
support a positive Lyapunov exponent and associated 
asymptotic error growth. 

In what follows we review some relevant theoretical 
results on time-dependent operators and use these re­
sults to develop the stability theory of nonautonomous 
systems, making illustrative applications to model 
problems. 

2. Stability theory for nonautonomous dynamical 
systems 

The linear time-dependent dynamical system 

du dt = A(t)u 

has the solution 

u(t) = Cl>ct.roJu(to). 

(1) 

(2) 

The propagator Cl>ci.toJ maps the state of the sy:;tem at 
time t0 to its state at time t. It is given by the following 
time-ordered exponential (Coddington and L~~vinson 
1955): 

Cl>[t.tol = I + r A(s)ds 
to 

+ r A(r)dr r A(s)ds + (3) 
to to 

which is equivalent in the limit to the ordered product 
of infinitesimal propagators 

n 

Cl> = lim TI eA<tjJ6t [t,t0J , (4) 
6t-O j=I 

for tj lying in the mesh t0 + (j - 1 )& < tj < lo +jot 
with t = t 0 + nbt. The propagator obeys the semigroup 
property Cl>ct.sJCl>cs,tol = Cl>Ct,tol and solves 

dCl>[t.toJ = A(t)CI> 
dt [t.toJ with Cl> uo.toJ = I . (5) 

Analysis of the stability properties of this dynamical 
system differs from analysis of the stability of auton­
omous operators in that system ( 5) has asymptotic be­
havior that cannot be determined by examining the be­
havior of the temporal eigenmodes of A(t), which are 
not defined. However, the optimal perturbation:; retain 
their meaning and provide the required description of 
the stability of the system for all time. In fact, it remains 
possible to uniquely define an asymptotic exponential 
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rate of growth or decay for time-dependent operators, 
which is the first Lyapunov exponent (Lyapunov 
1907) , defined as 1 

1
. ln(llCl>(t)ll) 

">.. = im sup . 
f-t-00 t 

(6) 

The first Lyapunov exponent assumes the role played 
by the spectral abscissa in autonomous systems and 
reduces to the spectral abscissa (the most rapidly grow­
ing mode) in the limit that the system becomes inde­
pendent of time. It follows that any dynamical system 
with ">.. > 0 is asymptotically unstable. 

We have shown that for autonomous systems the op­
timal initial perturbation that maximizes large time 
growth is the biorthogonal of the least damped mode. 
A slight modification of this argument establishes in 
the asymptotic limit the existence of a unique optimal 
perturbation producing maximum excitation of the time 
dependent first Lyapunov vector associated with the 
limiting operation in ( 6). The singular value decom­
position ( SVD) of the propagator at sufficiently large 
t is given with exponential accuracy by 

(7) 

with Sc1,101 a null matrix save for its first entry, 8 11 , 

being nonzero and equal to e ~(r-roJ, where X. is the first 
Lyapunov exponent and the time dependence of the 
unitary matrices U, V has been included to indicate that 
this decomposition depends on both the initial time t 0 

and the final time t. We show that optimal excitation 
(by the first column of V) of the first Lyapunov vector 
(the first column of U) is asymptotically independent 
oft and depends only on the initial time t 0 and that the 
first Lyapunov vector asymptotically becomes indepen­
dent of the initial time t 0 and depends only on t. 

The asymptotic form of Sc1.101 in which only the 8 11 

entry survives implies that Cl>c1.101 is a matrix of rank 1, 
which requires for s > t that the propagator Cl>cs,roJ be 
also of rank 1 (because of the semigroup property 
Cl>rs.101 = Cl>c ... tJCl>c,,101 ). Consequently, Cl>cs.101 and Cl>c 1.,01 are 
of the same rank and share the same null space. The 
vector that leads to the maximum norm of the propa­
gator at s is the constant vector orthogonal to this 
unique null space, which depends only on t 0 • This 
proves that at each point on the trajectory a unique 
vector can be defined that optimally excites the asymp­
totically maximally growing Lyapunov vector. Pertur­
bations that lie in the subspace perpendicular to the 
vector that optimally excites the first Lyapunov vector 

1 The superior limit has been used, with the notation "lim sup" 
and defined as the supremum of the limit points, because the usual 
limit may not exist as, for example, in the case of the one-dimensional 
propagator <1>1,,01 = e'sint. The existence of the Lyapunov exponents 
defined as in ( 6) is guaranteed for linear differential systems with 
continuous and bounded coefficients. 

will necessarily grow at a rate bounded by the second 
Lyapunov exponent. The above argument can then be 
repeated on this perpendicular subspace to obtain the 
optimal excitation of the second Lyapunov exponent, 
and by induction it can be shown that all the columns 
of V are associated with Lyapunov exponents and de­
pend asymptotically only on t 0 • 

The inverse operator Cl>cio.tJ = Cl> f;:;~/ interchanges the 
roles of V and U, and it follows by applying the above 
inductive argument to the inverse operator that the first 
Lyapunov vector depends only on t and is independent 
of the initial time t0 and that this is true for the whole 
ofU. 

In practice, in order to verify convergence to the 
Lyapunov vector at a given time t, it is necessary to 
show that integration of the tangent linear system yields 
a Lyapunov vector that is independent of the initial time 
in the past at which the integration was started. Con­
versely, it can be seen from (7) that convergence to the 
optimal excitation of the Lyapunov vector at t0 requires 
forward integration until the determined optimal per­
turbation becomes independent of time. Although con­
vergence to the value of the Lyapunov exponent is slow 
in practice, we have found that convergence to the Lya­
punov vector and its optimal excitation is usually rapid. 

If we assume that the time-dependent operator is 
comprised of a sum of a time-independent mean op­
erator and a stochastic operator, then an extension of 
the Lyapunov results of Oseledec (1968) establishes 
the existence of unique Lyapunov exponents almost 
surely in probability. All the properties established for 
deterministic operators carry over to the stochastic 
case, with the exception that the first Lyapunov vector 
and its optimal excitation depend on the specific time 
realization, while the associated first Lyapunov expo­
nent is independent of the particular realization (Ar­
nold and Kliemann 1983). 

3. Example: The Lorenz equation 

The Lorenz system of differential equations provides 
a convenient model for demonstrating perturbation dy­
namics of nonautonomous systems. The standard form 
of these equations, 

with parameters b = 8/3, a = 10, r = 28, produces a 
time-dependent chaotic trajectory in state variables 
[x(t), y(t), z(t)]. From any starting point the trajec­
tory rapidly converges to the familiar butterfly-shaped 
strange attractor shown in Fig. 1. At each point along 
the trajectory there is associated the tangent linear sys­
tem: 
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where the linearization has been performed about the 
time-varying solution. 

The Lyapunov exponents for these parameter values 
are approximately A.1 = 0.88, A.2 = 0, A.3 = -14.SS. 
Convergence to these values requires extensive inte­
gration of the tangent linear system because the con­
vergence is slow, as can be seen from the example 
shown in Fig. 2. 

The uniqueness of the first Lyapunov vector (the 
state vector associated with the largest Lyapunov ex­
ponent) and of the optimal excitation of the first Lya­
punov vector permits identification of these vectors at 
each point along the trajectory. As was previously re­
marked, convergence to these vectors is rapid, typically 
requiring integration over a time interval not longer 
than ten units. In addition to the Lyapunov vector and 
the optimal excitation vector, the directions of the nu­
merical abscissa [the eigenvector associated with the 
largest eigenvalue of A + At in which A is the tangent 
linear operator in ( 9)] and of the trajectory itself can 
be distinguished. An interesting additional diagnostic 
is provided by the eigenvector of A at each point along 
the trajectory where the eigenanalysis is performed by 
fixing the values of the components of A at each time 
t. In Figs. 3a,b the relation among these quantities is 
displayed for a typical segment of the solution trajec­
tory by plotting as a function of time the instantaneous 
growth rate of a vector lying in the direction of the 
numerical abscissa (the maximum possible rate of 

Lorenz system : r "" 28 ; sigma = 10 ; b = 813 
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FIG. I. A trajectory of the Lorenz system with b = 8/3, a = 10, 
and r = 28. Tht: trajectory rapidly converges to the familiar butterfiy­
shaped attractor. 

LORENZ SYSTEM : r =28; p= 10; b = 8/3 
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FIG. 2. Convergence of the Lyapunov exponents for the Lorenz 
system with b = 8/3, a = 10, and r = 28. The first two e:xponents 
are shown in the graph. The first Lyapunov exponent has value A.1 

= 0.88, the second, characterized by perturbations along the trajec­
tory, has the value A.2 = 0, and the third, characterized by perturba­
tions off the attractor, has the value A.3 = -14.55. Note that the sum 
of the Lyapunov exponents gives the rate of volume contraction in 
configuration space, which is -(a + 1 + b). 

growth), the instantaneous growth rate of a perturba-
. tion vector lying in the direction of the solution trajec­
tory, the instantaneous growth rate of the Lyapunov 
vector, the instantaneous growth rate of the optimal ex­
citation of the Lyapunov vector, and the maximum of 
the real parts of the eigenvalues of A. While the Lya­
punov exponent associated with the direction of the 
trajectory necessarily vanishes in the mean, this zero­
average growth rate results from cancellation of large 
and rapid local variations in growth rate, which at times 
nearly equal the maximum possible growth rate given 
by the numerical abscissa. It is remarkable that the nu­
merical abscissa itself exhibits frequent excur:;ions of 
negative growth rate, indicating a temporary decrease 
in all deviations from the solution trajectory (cf. Ahlqu­
ist and Sivillo 199S). 

The average of the numerical abscissa is ~4.2 (cf. 
Fig. 4a), which is considerably greater than the first 
Lyapunov exponent, which is ~0.88 (cf. Fig. 4b). The 
optimal excitation of the Lyapunov vector has an in­
termediate average growth rate of 2. 7 (cf. Fig. 4c). The 
statistics of the average growth of perturbations tangent 
to the trajectory is shown in Fig. 4d. 

The Lyapunov vector and the vector in the direction 
of the trajectory both necessarily lie in the plane of the 
attractor, while the vector in the direction of the nu­
merical abscissa and the vector of the optimal excita­
tion of the Lyapunov vector are not so com.trained. 
Indeed it can be seen from Figs. Sa and Sb that the 
angle between the attractor plane and these vectors may 
be as large as 18°. Nevertheless, the strong convergence 
to the attractor in the Lorenz system indicated by the 
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Fro. 3. (a) An interval along the trajectory of the Lorenz system 
with parameters b = 8/3, a = 10, and r = 28, showing the numerical 
abscissa (solid), the growth rate of the Lyapunov vector (dashed), 
and the growth rate of the vector in the direction of the trajectory 
(dotted). The numerical abscissa bounds all instantaneous growth 
rates. Remarkably, both the trajectory and the Lyapunov vector epi­
sodically grow at rates practically indistinguishable from this theo­
retical maximum, and all three growth rates are episodically negative, 
indicating convergence of all perturbation trajectories. (b) An interval 
along the trajectory of the Lorenz system with parameters b = 8{3, 
a = 10, and r = 28, showing the numerical abscissa (solid), the 
maximum growth rate of the eigenvector (dashed), and the growth 
rate of the vector in the direction of the optimal excitation of the 
Lyapunov vector (dotted). The numerical abscissa bounds all instan­
taneous growth rates, but both the maximum growth rate eigenvector 
and the optimal excitation of the Lyapunov vector episodically grow 
at rates practically indistinguishable from this theoretical maximum, 
and all three growth rates are episodically negative. 

large negative third Lyapunov exponent ()1.3 = -14.SS) 
leads to small average deviations of these vectors from 
the attractor, as can be seen from Figs. Sa and Sb. This 
example demonstrates that the perturbation of maxi­
mum instantaneous growth and the perturbation giving 
rise to maximum asymptotic growth do not necessarily 
lie on the attractor; it can also be seen from examples 

not shown that perturbations producing optimal growth 
at intermediate times do not in general lie on the at­
tractor. This observation has implications for proce­
dures used in the assimilation of data into forecast mod­
els in which the initial conditions are constrained to lie 
on the attractor. Exogenous forcing (e.g., from latent 
heat release) may produce perturbations of high growth 
rate that do not lie on the attractor. 

Eigenanalysis of the instantaneous matrix A re­
veals instantaneous eigenvalues with large maximum 
real part excursions (cf. Fig. 4e). This maximum real 
part indicates the asymptotic growth that would be 
attained by perturbations to the system if the system 
were maintained in the instantaneous state that oc­
curs at time t. 

The role played in time-independent systems by the 
most unstable eigenvector of A as the asymptotic re­
sponse of the system to perturbation is replaced in time­
dependent systems by the Lyapunov vector. Just as is 
the case in time-independent systems, much of the 
physically relevant perturbation dynamics in time-de­
pendent systems occurs on timescales shorter than 
would be required for achieving t ~ oo asymptotics, so 
that the intermediate timescale of generalized stability 
theory is most often appropriate. An important advan­
tage of generalized stability theory is that transient 
growth and its t ~ 0 and t ~ oo asymptotics have ob­
vious generalizations from time-independent to time 
dependent systems through SYD analysis of the prop­
agator. Modal instability theory has no such extension 
to time-dependent dynamics because the normal modes 
do not exist when the system is inhomogeneous in time, 
except in the special case of simple harmonic time de­
pendence for which Floquet analysis can be applied. 

The Lorenz system is useful as a model for pertur­
bation dynamics because its attractor is embedded in 
three-dimensional space and as a result can be easily 
visualized. However, the analogy between the Lorenz 
system and the dynamics of the atmosphere should be 
pursued with caution. While the mean state of the Lo­
renz system (x, j, z) = (0.llS, 0.114, 23.7) supports 
exponential instability (with growth rate A = 2.4S) and 
instantaneous realizations often are unstable (with 
mean growth rate A = 1.6, cf. Fig. 4e), the atmosphere 
is not significantly unstable at synoptic or planetary 
scales and forecast error growth in the limit of long 
time must be understood to arise from the time depen­
dence of the atmospheric system. 

4. Parametric instability is a consequence of the 
nonnormality of the operator 

We obtain a bound on the Lyapunov exponent by 
considering the evolution of r(t) = llu(t)ll 2

, which is 
easily seen to obey 

dr 
dt = ut(A(t) + At(t))u, (10) 
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implying 

f' ( r(t)) f' 2 
0 

X.mi0 (s)ds :s; ln r(O) :s; 2 
0 

X.max(s)ds, (11) 

where X.max and X.min are the maximum and minimum 
eigenvalues of the Hermitian operator (A(t) + At(t))/ 
2. This leads to the following bound for the Lyapunov 
exponent: 

I: X.m;n(s)ds J: X.max(s)ds 

lim sup :s; X. :s; lim sup -----
t 

(12) 

For autonomous dynamical systems the 'right in­
equality leads to the energy bound of Joseph ( 1976), 
which is ty]pically indicative only of perturbation 
growth for very small times. It is possible for time­
dependent operators to sustain the instantaneous 
growth rate predicted by the numerical abscissa lead­
ing in the asymptotic limit to instability, despite hav­
ing stable eigenvalues at each instant of time. This 
destabilization is referred to in the literature as para­
metric instability and is exemplified by the Mathieu 
equation commonly associated with destabilization 
of the harmonic oscillator by sinusoidal perturbations 
of its restoring force. An atmospheric example of 
harmonic parametric destabilization is the generation 
of gravity waves by the time-dependent Brunt-Vais­
alli frequency ( Orlanski 1973). Despite its at most 
neutral stability at each time instant, the time-depen­
dent operator associated with the perturbed harmonic 
oscillator is unstable for specific intervals of ampli­
tude and frequency of restoring force perturbation. It 
is immediate from ( 12) that nonnormality of the evo­
lution operator is a necessary condition for paramet­
ric asymptotic instability of such systems with stable 
eigenvalues since if the operator were at each instant 
asymptotically stable and normal it would necessar­
ily also have negative Lyapunov exponents. 

As an example of the role of nonnormality in para­
metric instability, consider the harmonic oscillator with 
time-dependent restoring force: 

The operator in ( 13 ) has commutator 

AAt -AtA 

( 
1 - w4(t) 

- 2y(l + w 2 (t)) 
-2y(l + w 2

(t))) 

1 - w4 (t) ' 
(14) 

indicating that A is nonnormal unless both y = 0 
and w constant and equal to unity. If the frequency 
is constant and y = 0, we are at liberty to rescale 
time by 1 I u) to make w = 1 and render the operator 
formally normal in the L 2 norm, which for this seal-

ing coincides with the energy norm. This rescaling 
is equivalent to the coordinate transformation x 
= x, v = vlw. But such a transformation with. con­
stant w cannot succeed in making the operator uni­
formly normal when the operator is time dependent, 
leaving open the possibility of a positive Lya­
punov exponent according to (12), given that 
the maximum eigenvalue of (At + A)/2 is X.max 
= -y + h 2 + (1 - w2

)
2 /4 > 0. It can be shown 

that not only does this destabilization occur for 
time-dependent w but that it persists even when y 
> 0, in which case the operator is stable at each time 
instant. 

This synergism of nonnormality and time depen­
dence leading to asymptotic instability can be suc­
cinctly demonstrated by considering a discominuous 
change in w between w1 and w2 every T units of time. 
With y = 0, the propagator after a full period takes the 
form 

[ 
sin(w;T)J 

Cl>2r = ;!°!z I cos(w;T) + A; W; , (15) 

with I the identity matrix and 

A;=( 02 ol)· 
-w; 

(16) 

The first Lyapunov exponent can be readily calculated 
from 

X. = lim ln ( ll<1>2r II) , 
. n-->00 2nT 

(17) 

where n is the number of periods, and it can be ver­
ified that positive Lyapunov exponents are obtained 
as shown in Fig. 6. The reason for the instability is 
that transient growth instigated at the starting time is 
continued with further growth when the switch to the 
second operator takes place, forestalling the decay 
that would occur in the autonomous case. This syn­
ergism fails when the switchover takes place near an 
integer multiple of one-half the natural period of one 
of the oscillations. It is important to realize that a 
finite pulsing period Tis necessary for destabilization 
of this oscillator. As T ~ 0, the Lyapunov exponent 
vanishes. 

It is natural to inquire whether this support of para­
metric instability by nonnormal systems with periodic 
parameter modulation leads also to asymptotic insta­
bility for parameter modulations of more general form. 
One extreme limit of parametric modulation is sto­
chastic modulation of the system's parameters, and it 
is remarkable that under the broadest assumptions sto­
chastic modulation leads to asymptotic instability (Car­
rier 1970; Has'minskii 1980; Arnold and Kliemann 
1983; Arnold et al. 1986; Colonius and Kliemann 
1993 ). 
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This universal instability of nonautonomous dy­
namical systems can be most easily understood by a 
modification for our purpose of an example origi­
nally due to Zeldovich et al. ( 1984), which served 
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FIG. 4. Histograms of instantaneous growth rates along the 
trajectory of the Lorenz system with parameters b = 8/3, a 
= 10, and r = 28. (a) Numerical abscissa. The mean is 4.24 
and the standard deviation is 3.22. (b) Lyapunov vector. The 
mean is 0.88 and the standard deviation is 4.22. (c) Optimal 
excitation of the Lyapunov vector. The mean is 2.67 and the 
standard deviation is 2.89. (d) Along the trajectory. The mean 
is 0.0 and the standard deviation is 4.31. (e) Maximally grow­
ing eigenvector. The mean is 1.59 and the standard deviation 
is 3.06. 

15 

15 

as an illustration of a theorem on the product of ran­
dom matrices by Fus ten berg ( 1963). We consider a 
dynamical system governed by a nonnormal 2 X 2 
matrix constructed to have zero trace and imaginary 
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eigenvalues }.. = ( i, -i) but with column eigenvector 
matrix: 

E==Rq,(1 
y J 0 

cose) 
sine ' 

(18a) 

with 

( cos<Pj Rq, = 
1 sin<Pj 

-sin<Pj) , 
cos<f>j 

(18b) 

corresponding to rotation 2 by an angle <f>j. The eigen­
vectors themselves subtend an angle e so that these 
eigenvectors are nonorthogonal for e * rr /2. A dynam­
ical matrix with these properties is easily constructed: 

A= E(i 
y y 0 

0 ) -I ( i E = Rq,. 
-i J J 0 

-2i cote) t 
. Rq,r 

-1 

(19) 

It is immediate that Aj is neutrally stable for any ori­
entation <f>j and any nonnormality e. However, if <f>j is 
a random variable uniformly distributed on [0, rr/2] 
and sampled at an interval of time 8t, then the resulting 
dynamical system will be shown below to be asymp­
totically unstable if it is nonnormal ( e * rr /2), despite 
the stability of Aj at each tj. 

The propagator of the system at time tn = n8t is 

n 

G)[ln.01 = TI Tj, 
j~I 

(20a) 

which results from application of n random Tj, each of 
the form 

-cote(e;& - e-;6
')) t 

e-ior Rq,r 

(20b) 

Each Tj has det(Tj) = 1 and the SVD decomposition 
of Tj = UIVt has singular values (a, 1 I a) with a ""' 1 
+ 2 cote& for small 8t. If the unitary column vectors 
of V, v1,2 are used as a basis at time tj, the system 
advances this basis over the succeeding time interval 
8t according to 

(21) 

with u1,2 the orthogonal column vectors of U. There­
fore, a normalized state vector at time tj, denoted by xj 
and at an angle <Pj to the first singular vector of Th 

(22) 

2 Rotation matrices are unitary, that is, R.p
1
Ri; = I, with dagger 

denoting the hermitian transpose. 
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FIG. 5. For the Lorenz system with b = 8/3, a = 10, an:! r = 28 
the (a) histogram of the instantaneous angle between the local plane 
of the attractor and the eigenvector associated with the numerical 
abscissa. The mean is 2.91 degrees, and the standard deviation is 2.44 
degrees. (b) Histogram of the instantaneous angle between the local 
plane of the attractor and the vector associated with optimal excita­
tion of the Lyapunov vector. The mean is 4.49 degrees, and the stan-
dard deviation is 3.92 degrees. · 

is advanced over the succeeding interval 8t to Xj+I 
= Tjxj, with incremental magnification 

G = llXj+1ll = ( a2 cos2<f>j + sina22</>j )112' (23) 
1 

llxjll 

with Gj > 1 for 

(24) 

Because our nonnormal system is chosen to have a > 1, 
(24) is satisfied with probability greater than 0.5 for uni­
formly distributed <f>j, and we conclude that the state 
vector grows more often than it decays under transfor-
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FIG. 6. Lyapunov exponent for the switched oscillator example as 
a function of the period of the switch T nondimensionalized by rr/w2 

for w 1 = 0.5 and w2 = 3. Although instantaneously neutral at all times, 
the oscillator is destabilized except in the neighborhood of integer 
values of the switching period. 

mation by randomly oriented Tis. But in order to establish 
exponential growth in the mean, we must calculate the 
expectation of the incremental magnifications over all 
possible angles <Pi for each e. This is because the Lya­
punov exponent can be found as the asymptotic rate of 
expansion of an initial unit vector Xo in terms of its nor­
malized vectors xi after j mappings according to 

A= lim ln(ll<l>r1",01Xoll) 
n--+oo n8t 

n 

~ InG1 . ln(llTnXn-ill · · · llT1Xoll) __ li·mi=l = hm ·---
n--+oo n8t n--+oo n8t 

(25) 

From which A. is seen to be the mean of In ( G) I 8t de­
noted by (In( Gi) )I 8t, where the average is taken over 
all uniformly distributed angles <Pi· The resulting Lya­
punov exponent as a function of e is shown in Fig. 7. 
It is clear from this figure that the composite action of 
random matrices with unit determinant is to lead to 
exponential expansion of an initial unit vector. 

In the limit 8t-+ 0, the Lyapunov exponent calculated 
according to ( 25) vanishes, as was also the case for the 
deterministic pulsed harmonic oscillator. This result 
can be seen from a Taylor expansion of the propagator 
( 20b) to be a consequence of the fact that by construc­
tion trace (Ai) = 0. The Lyapunov exponent as 8t--+ 0 
is given for any unit vector x by 

A. = _(l_nl_I (_I +_A~18_t )_xi_!) 
8t 

I At+ A ) 
= \ xt 1 

2 
1 x + 0(8t), (26) 

where I is the identity. Because trace (Ai) = 0 the ex­
pected value: (xt(AJ + AJ)x) vanishes and the contri­
bution to the Lyapunov exponent comes only from the 
0(8t) term in (26), which itself vanishes in the limit 
8t--+ 0. While this example illustrates the origin in non­
normality of the destabilization of stochastic dynamical 
systems, stochastic destabilization in the continuous 
limit 8t -+ 0 requires, as we will show below, fur­
ther assumptions about the noise process in the limit 
8t ...... 0. 

5. Generalized parametric instability of atmospheric 
flows 

The tangent linear system that governs evolution of 
small initial perturbations to a solution trajectory of the 
generally nonlinear equations of motion of a dynamical 
system can be cast as a nonautonomous linear system 
of form ( 1 ) . We can decompose this nonautonomous 
operator as A(t) = A + A' (t), where A is the time­
mean operator which is assumed to exist, and A' ( t) is 
the temporal variation of the operator arising from ex­
ternally and internally produced deviations from the 
mean state. We will model the time-dependent operator 
using a noise process 

du -
- =Au+ EI,~; (t)B;u, (27) 
dt i 

where E is therms magnitude of the fluctuations, B; are 
time-independent noise matrices, and the noise pro-

10' 
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10"'0L--i10--2~0--3~0----'40--s~o--G~o----'ro--oo.L..---::'90 
angle between eigenvectors 

FIG. 7. Lyapunov exponent of the illustrative simple 2 x 2 dynam­
ical system produced by random neutrally stable matrices with trace 
0, as a function of the angle () subtended by the eigenvectors. Al­
though each individual matrix produces dynamics with 0 spectral 
abscissa, the nonautonomous dynamical system produced by sam­
pling these neutrally stable matrices every unit interval of time has a 
positive Lyapunov exponent. It is seen in this figure that the Lya­
punov exponent is an increasing function of B, which is a measure 
of the nonnormality of the operator (it is only 0 when () = 0 and the 
system is normal). 
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cesses ~i (t) are identically distributed and delta cor­
related with zero mean: 

(~;(t)~:/s)) = 15;/)(t - s), (28) 

where ( · ) denotes an ensemble average. 
In order to address sensitivity to initial conditions, 

we must first decide on the definition of stability to be 
used (cf. Has' minskii 1980). Two candidate measures 
are sample asymptotic stability, which is equivalent in 
a stochastic system to the almost sure existence of a 
negative Lyapunov exponent A. [cf. ( 6)); and mean 
square stability, which is equivalent to a negative Lya­
punov exponent associated with the second moment, 
that is, 

. In (l/4>(t)u(O )1/2) 0 (29) 
µ1 == ~ sup . t < . 

In deterministic systems these two measures are equiv­
alent but this equivalence is lost in purely stochastic 
systems for which it is only necessary that µ2 ~ 2A. 
(Arnold 1984). It follows that in order to establish 
sample instability, it is necessary to demonstrate the 
existence of a positive Lyapunov exponent directly be­
cause the often more easily established instability of 
the second moment need not imply a positive Lyapu­
nov exponent. 

A physical dynamical system of the form ( 27) has 
necessarily a positive Lyapunov exponent for noise of 
sufficient magnitude E, provided the dimensionality of 
the system is greater or equal to 2 and the noise matri­
ces, B;, are neither skew-symmetric nor commute with 
the deterministic operator, A (Has'minskii 1980; Co­
lonius and Kliemann 1993; for Hamiltonian systems 
refer to Fustenberg 1963). This universal stochastic in­
stability resulting from the nonnormality of the dynam­
ical operator underlies the asymptotic increase in sep­
aration of initially adjacent trajectories in atmospheric 
flows. Moreover, it can be verified that increasing the 
degree of nonnorma!!ty of the deterministic back­
ground state operator A reduces the noise amplitude, E, 

required for asymptotically unstable perturbation 
growth. 

Stochastic dynamical systems with multiplicative 
noise require careful physically informed analysis to 
properly account for the degree of correlation between 
the state of the system and the noise process at each 
time instant. White noise is a mathematical idealization 
that can be interpreted either as associated with a non­
vanishing correlation between the state and the noise 
process or with these processes being independent. The 
former results in the physically appropriate continuous 
limit of a discrete process and is referred to as the Stra­
tonovich interpretation, the latter is appropriate to dis­
crete Markov processes and is referred to as the Ito 
interpretation (Arnold 1992). 

Multiplicative noise in the physically appropriate 
continuous system implies correlation between the 
noise process and the state: 

(~;U) * 0. (30) 

Physical linear stochastic systems like ( 27) can be 
transformed to equivalent Markov systems in which 
there is assumed to be no correlation between the white 
noise and the state vector by constructing the equiva­
lent stochastic dynamical system with the augmented 
deterministic operator 

(31) 

with ( ~; u) = 0 (this is the Ito correction; Arnold 1992). 
In a numerical solution of stochastic differential 

equations the correlation between the multiplicative 
noise process and the state vector at each instant is 
reflected in the discretization; in addition, the correla­
tion of the noise processes themselves is also refiected 
in the discretization. Therefore, in order that the solu­
tion of the model system in the limit 8t --> 0 approach, 
the physical solution care must be taken in the d.iscret­
ization process ( Kloeden and Platen 1992). We have 
found that the propagator for physical linear stochastic 
systems (27) can be cast in the computationally ad­
vantageous form 

4>c1,1ol = lim TI exp [(A 
bf---i>O 

a 

~ ~i (ta + 8t) + ~i (ta) e) 8t] (32) 
+ E .L,, 2 ( {jf) 1/2 I ' 

I 

with ta equally spaced on the interval between 
the initial and final time and ~; normally distributed 
as N(O, 1). This formulation preserves the physi­
cally appropriate Stratonovich interpretation of 
( 27) and the delta correlation of the noise process 
and is the generalization of the deterministic prop­
agator ( 4). 

The continuous limit is obtained as 8t --> 0 because 
dividing the discrete noise variables ~(ta) by (8t) 112 

preserves in the limit the delta function correlation of 
the noise processes [cf. ( 28)] . It is this scaling of the 
noise processes that enables traceless dynamical sys­
tems to exhibit stochastic parametric destabilization in 
the limit 8t--> 0, while examples in the previous section 
resulted in vanishing Lyapunov exponents in this limit. 
Consider the example of the stochastically perturbed 
damped simple harmonic oscillator, which in the no­
tation of ( 27) has mean operator 

- ( 0 A= 
-1 

(33) 

where y is the coefficient of damping, and noise ma­
trix 

(34) 
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where E is the rms amplitude of the noise. The noise matrix 
satisfies 8 2 = 0 so that in this case the Ito correction ( 31 ) 
vanishes and there is no correlation between the noise and 
state vectors. We proceed as in ( 26) to obtain the small 8t 
limit of the Lyapunov exponent, making use of the ex­
pression for the stochastic propagator as in ( 32): 

( ln 11 [I + (A + ~(ta ~(~;) ~2 ~(ta) B) 6t J xi I) 
A = ~~~~~~~~~~~~~~~~~~-

& 

(35) 

In contrast to the limiting behavior of the Lyapunov 
exponent of the piecewise continuous random dy­
namical system shown in (26), the llfft scaling of 
the noise process maintains the non-normality of the 
infinitesimal propagators in ( 35), preserving asymp­
totic instability in the limit /5t --> 0, as shown in 
Fig. 8. 

Stochastic parametric destabilization in an atmospheric 
context can be demonstrated using the three-layer model 

of the baroclinic rnidlatitude atmospheric jet. The three­
layer model is chosen because the tangent linear system 
associated with the two-layer model results in a 1!9ise ma­
trix B; , which commutes with the mean operator A. When 
A and B; commute, multiplicative noise cannot alter the 
stability properties of the mean operator because a chan~ 
to normal coordinates simultaneous diagonalizes both A 
and B; and such a normal system cannot be destabilized 
by noise. This result explains the lack of noise induced 
instability in the canonical two-layer and Eady neutral 
mode models, the latter of which was studied by Hart 
(1971 ) ( Ioannou 1996, unpublished manuscript). 

In the three-layer model the geostrophic streamfunc­
tion is assumed to be of harmonic form in three vertical 
layers, l/J; (t)eikx+ily, with x the zonal and y the merid­
ional directions. The dynamical equation for the three 
components of the streamfunction is 

(36) 

with 

(-(U, + U,A'Ja') U1A2/a2 
0 ) A= U2A 2/a 2 -(U2 + (U1 + U3)A2/a 2) U2A 2fa 2 

0 U2A 2/a 2 -( U3 + U2A 2/a 2) 

A2/a2 
p = A1/a2 

(-(! + A'fo') 
-(1 + A2/a2) A1fa2 0 ) (37) 

0 

and I the identity matrix (Staley 1986). 
The top layer is indexed first and each layer ve­

locity is considered to be of the form U; = U; 
+ E~; ( t), with ~; being an independent white noise 
process as in ( 28). The mean velocities ( m s -i) have 
been expressed in terms of the mean shear over each 
layer, b..U, as U; = 10 + (3 - i)b..U (i = 1, 2, 3). 
The total horizontal wavenumber is a = (k2 + 12) 112 ; 
the meridional wavelength l = 7r !Ye corresponds to 
the gravest mode in a channel of meridional extent 
Ye = 4000 km. The Rossby deformation wavenumber 
is A =fol (a 112Dp) with fo = 10-4 s- 1 and (3 = 1.65 
x 1 O - 11 m- 1 s -I, the midlatitude value of Coriolis 
parameter and its northward derivative, respectively, 
and a = 2 x 10-6 Pa - 2 s -z m-2 the stratification pa­
rameter typical of the troposphere. Equally spaced 
pressure surfaces have been taken with 8p = 10 5 /3 
Pa. The coefficient of potential vorticity damping is 
denoted by r. Equations ( 36) and ( 37) are presented 
in nondimensional form. Time has been nondimen­
sionalized by Td = 1 day; horizontal lengths by Lx, 

A1/a2 -(l+A2/a2) 

the length of the latitude circle at 45°; and velocities 
by LxfTd. 

The first Lyapunov exponent as a function of shear 
b..U and rms noise variance E for global wavenumber 
11 and nondimensional potential vorticity damping r 
= 0.2 corresponding to a damping time of 5 days is 
shown in Fig. 9. Note the destabilization of this system 
as noise increases. The threshold noise required to de­
stabilize the system is seen to gradually decrease as the 
nonnormality of the mean operator, indicated by the 
shear, increases. A typical midlatitude jet shear corre­
sponds in this three-layer model to b.. U = 10 m s - i . 

This simplified model of the midlatitude atmosphere 
suggests existence of a positive Lyapunov exponent for 
rms temporal fluctuations of the order of 10%, while 
for 30% fluctuations a Lyapunov exponent of the order 
of l/5 day~ 1 is expected. 

One implication of this result is that the atmosphere 
maintained at sufficiently low variability would have 
negative Lyapunov exponents, corresponding to a de­
crease rather than increase of asymptotic errors. Nev-
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FIG. 8. Lyapunov exponent of the simple harmonic oscillator with 
randomly modulated pe1turbative restoring force as a function of 
the damping coefficient y and therms level of the random pertur­
bation E. 

ertheless, the high degree of nonnormality of the mean 
flow would still result in rapid error growth on the fore­
cast timescale; however, under conditions of low tem­
poral variability these perturbations would after a pe­
riod of transient growth eventually decay. Another 
facet of this result concerns the interplay among damp­
ing, nonnormality, and temporal variability in deter­
mining asymptotic error growth. Damping of sufficient 
magnitude is able to asymptotically stabilize the Lya­
punov exponents, even with high temporal variability, 
and an increase in the nonnormality of the background 
flow, corresponding to an increase in baroclinic shear 
in this model, is found to greatly reduce the temporal 
variability required to destabilize asymptotic error 
growth. 

6. Conclusions 

The stability theory of autonomous operators plays 
a central role in fluid dynamics. Generalized to include 
transient growth processes, the stability theory of au­
tonomous operators addresses diverse phenomena in­
cluding formation of cyclones, the growth of errors on 
synoptic forecast timescales, and, with the inclusion of 
additive noise, the statistically steady state of fully tur­
bulent shear flow. There is, however, a class of physical 
phenomena the stability analysis of which requires in­
clusion of time dependence. One such problem is that 
of the asymptotic divergence of initially adjacent tra­
jectories in a turbulent dynamical system. In this work 
the generalized stability theory of autonomous opera­
tors has been extended to address the stability of time­
dependent operators arising in this and similar prob­
lems. 

We find that most dynamical systems are destabi­
lized by temporal variation of their underlying Ciynam­
ical operators and that this destabilization requires pro­
gressively less variation of the operator the greater the 
nonnormality of the underlying mean operator and the 
less the system is damped. While certain forms of time 
dependence can be contrived that do not produce de­
stabilization and special spatial correlations of the noise 
process can be formed that defeat the destabilization, 
it is quite generic to find that multiplicative white noise 
effectively destabilizes a dynamical system. 

The short and intermediate time perturbation growth 
rates that are of greatest physical significance in auton­
omous systems are also found to typically exceed as­
ymptotic growth rates in nonautonomous systems, sug­
gesting that the asymptotic exponential growth of the 
Lyapunov vector is determinative of trajectory diver­
gence only at timescales long compared to that of fea­
sible deterministic forecast. This timescale for emer­
gence of the Lyapunov vector as the dominant error 
growth structure depends on the degree of nonnormal­
ity of the underlying operator and the magnitude of the 
variance of the operator relative to dissipation. An es­
timate of l/5 day- 1 for this growth rate made above 
implies timescales of the order of one month for as­
ymptotic emergence of the Lyapunov vector in atmo­
spheric error dynamics. 

Lyapunov exponent ( 1 /d ) 

0.9 

0.8 

0.7 

t 

0.4 \ 
\ 
\ 

0.3 I 
\ 0.2 
I 

0.2 
\ 

\ 
0.1 

0 
0 

--- -------------- --+-
10 15 20 5 

LiU 

FIG. 9. The Lyapunov exponent for the baroclinic three-layer 
model as a function of shear !:i.u and strength of the multiplicative 
noise forcing c The global zonal wavenumber is 11, the meridional 
wavenumber is l = Kl4, and dissipation corresponding to r = 0.2 has 
been included. A.finite magnitude of both shear and parametric forc­
ing is required to produce a positive Lyapunov exponent. The Lya­
punov exponent increases with both the shear and the magnitude of 
multiplicative noise forcing. 
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The universal destabilization of dynamical systems 
by multiplicative noise analyzed in this work and dem­
onstrated with the example of the three-layer model of 
the midlatitude jet has wide implications for the growth 
and maintenance of variance in randomly forced and 
turbulent systems. While coherent parametric modu­
lation such as envisioned in the harmonic variation of 
the restoring force in the harmonic oscillator leading to 
instability in the Mathieu equation is specialized and of 
restricted application to physical problems, incoherent 
variation of parameters is characteristic of turbulent dy­
namics and the associated instabilities are correspond­
ingly more likely to be of importance in physical prob­
lems. 
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