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ABSTRACT 

Classical stability theory is extended to include transient growth processes. The central role of the nonnor­
mality of the linearized dynamical system in the stability problem is emphasized, and a generalized stability 
theory is constructed that is applicable to the transient as well as the asymptotic stability of time-independent 
flows. Simple dynamical systems are used as examples including an illustrative nonnormal two-dimensional 
operator, the Eady model of baroclinic instability, and a model of convective instability in baroclinic flow. 

1. Introduction 

A central goal of high Reynolds number fluid dynam­
ics in general and of theoretical meteorology in partic­
ular is to gain a comprehensive understanding of the 
origin and growth of perturbations in background flows 
characterized by available energy either baroclinic or 
barotropic. In barotropic flows the straining field of ve­
locity provides the source of energy, while in baroclinic 
flows it is the potential energy of the geostrophically 
balanced jet that is tapped by growing perturbations. In 
all cases including mixed baroclinic-barotropic flows, 
the availability of energy for perturbation growth can be 
determined by linearizing the equations of motion about 
the appropriate background flow and searching for 
growing perturbations. If all possible perturbations are 
examined and only decaying ones are found, then it is 
certain that the background flow will persist when sub­
jected to a sufficiently small disturbance. However, de­
termining the potential for growth of all possible per­
turbations has not been the historical course of inquiry 
in stability theory. Rather, traditional stability theory, as 
exemplified by the baroclinic instability theories of Eady 
(1949) and Charney (1947), adopted the program of 
Rayleigh ( 1880) according to which instability is traced 
to the existence of exponentially growing modes of the 
linearized dynamic equations: The classical application 
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of the normal-mode paradigm envisions unstable modes 
growing exponentially from infinitesimal beginnings 
over a large number of e-foldings so that the exponential 
mode of greatest growth eventually emerges as a finite­
amplitude wave. This assumption of undisturbed growth 
is necessary to ensure the asymptotic dominance of the 
most rapidly growing normal mode, which in turn per­
mits the theory to make predictions concerning the struc­
ture of observed waves of finite amplitude. In addition 
to applications of modal theory to the origin and struc­
ture of developing cyclones, attempts were made to ex­
tend normal-mode theory into the nonlinear regime by 
life cycle modeling (Simmons and Hoskins 1978) and 
to construct parameterizations of nonlinear equilibration 
processes founded on modal instability theory (Green 
1970; Held 1978; Stone 1978). 

Despite the wide acceptance accorded the normal 
mode theory of instability in all branches of high Reyn­
olds number fluid dynamics, there remained difficulties 
of correspondence between the observed temporal vari­
ation and spatial structure of growing perturbations and 
the time independent structure of the normal modes 
(Petterssen 1955; Eliassen 1956). Such discrepancies 
and lingering theoretical questions involving the need 
to complete the normal modes in the case of linear in­
viscid dynamics by inclusion of a continuous spectrum 
of singular neutral modes led to reexamination of the 
results of Kelvin ( 1887) and Orr ( 1907) on the stability 
of the continuous spectrum by Case ( 1960) and Ped­
losky (1964). These inquires showed that the contin­
uous spectrum is stable in the sense that it fails to pro­
duce unbounded growth in the limit t --+ oo and this 
negative result was generally interpreted as a proof as­
suring that the stability of a flow could be determined 
solely from inspection of its modal spectrum for ex­
ponential instabilities. However, it is now more widely 
appreciated that the modal spectrum only determines 
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stability in the t ~ oo limit and that a more general 
analysis is necessary to determine the stability prop­
erties at finite time. Given that all experiments are con­
ducted in finite time and that the timescale for cyclo­
genesis is typically 12-48 hours (Roebber 1984), fi­
nite-time stability analysis would seem to be the more 
appropriate, and indeed inquiry shows that in the qua­
sigeostrophic system there are nonmodal transient dis­
turbances at synoptic scale with large growth rates on 
timescales of a day or two (Farrell 1982a, 1984, 1985, 
1989a; Montgomery and Farrell 1992). In addition, 
transient disturbances that develop on the planetary 
scale have been identified (Farrell 1988a; Borges and 
Hartman 1992; Chang and Mak 1995; Buizza and Pal­
mer 1995). The most rapidly growing of these distur­
bances exhibit transient structural evolution during de­
velopment that characterizes observed midlatitude cy­
clogenesis and planetary scale disturbance growth. 

Recognition that a large subset of perturbations dis­
tinct from exponential modes grow by exploiting both 
the barotropic and baroclinic energy of the mean flow, 
including the energy associated with downstream vari­
ation of jets in diffluence and confluence (Farrell 
1989b), allows the great variety of observed transient 
development processes to be subsumed under a single 
generalized stability theory. Freed of concentrating on 
the t ~ oo asymptotic, this generalized stability theory 
allows a much closer correspondence to be made with 
observed strnctures that are highly variable both tem­
porally and strncturally. 

Another problem of central importance to meteorol­
ogy but traditionally distinct from the problems of syn­
optic-scale cyclogenesis and planetary-scale distur­
bance amplification is that of forecast accuracy and the 
predictability of atmospheric flows. The study of pre­
dictability is naturally posed as an initial value problem 
with the small error in the observations serving as the 
perturbation. Understanding of error growth based on 
modal instability was recently challenged by the ob­
servation that the observed predictability of flow re­
gimes is unrelated to the modal instability of the flow 
(Palmer 1988). This and related evidence subsequently 
led to a reexamination of the basis of predictability the­
ory in modal instability theory and increasing recog­
nition that nonmodal processes dominate error growth 
in the linear regime (Lorenz 1965; Lacarra and Tala­
grand 1988; Farrell 1990; Moore and Farrell 1992; 
Molteni and Palmer 1993; Mureau et al. 1993; Vuki­
cevic 1993; Ehrendorfer and Errico 1995). 

In addition, the existence of a subspace of growing 
disturbances also suggests a mechanism by which the 
aggregated growth of individual structures supports the 
statistically steady variance of the fully turbulent flow. 
It can be shown that the net source of energy to the 
perturbation field attrib1,1table to nonlinear interactions 
among waves vanishes, and it follows that extraction 
of energy from the forced background flow by the sub­
space of growing disturbances, which is fully described 

by linear dynamics, must be responsible for m2.intain­
ing eddy energy in the fully developed turbulent state 
(Joseph 1976; Henningson and Reddy 1994). This ob­
servation suggests a mechanistic model for the turbu­
lent state in which the mean flow is subjected to con­
tinuous perturbative forcing (Farrell and Ioannou 
1993c, 1994a, 1995; DelSole and Farrell 1995). The 
appropriate method of analysis for such a turbulence 
model is the stochastic dynamics of nonnorma1 linear 
systems. 

While generalized stability theory was being devel­
oped in a meteorological context (Farrell 1988a, 1989a; 
Farrell and Ioannou 1993b, 1993f, 1994b, 1995; Ioannou 
1995), a parallel development occurred in the study of 
transition to turbulence in laboratory shear flow5 where 
the nonnormality of the operator has been associated 
with the mechanism of by-pass transition (Farrell 1988b; 
Boberg and Brosa 1988; Gustavsson 1991; Butler and 
Farrell 1992; Reddy et al. 1993; Trefethen et al. 1993; 
Reddy and Henningson 1993; Farrell and Ioannou 
1993c, 1993d, 1993e, 1994a; Breuer and Kuraishi 1994; 
Gebhardt and Grossmann 1994; Baggett et al. 1995). 
Because of the fundamental role of stability theory in 
dynamics we expect that generalized stability theory will 
be widely applicable, and indeed some novel applica­
tions have recently been identified including imtability 
of stratified flows (Farrell and Ioannou 1993f), insta­
bility of ocean currents (Farrell and Moore 1992; Moore 
and Farrell 1993), coupled ocean-atmosphere system 
stability (Blumenthal 1991; Penland and Sarde5hmukh 
1995; Moore and Kleeman 1996, manuscript submitted 
to Quart. J. Roy. Meteor. Soc.; Kleeman and Moore 
1996, manuscript submitted to J. Atmos. Sci. ) , granular 
flow (Schmid and Kytomaa 1994), magnetohydrody­
namics (Farrell and Ioannou 1996, manuscript submit­
ted to Geophys. Astrophys. Fluid Dyn. ) , and control of 
shear turbulence in laboratory flows (Farrell and Ioan­
nou 1996). 

The elements of generalized stability theory are ex­
amined below using simple dynamical systems as 
model problems. We begin in part I with asymptotic 
and finite-time stability analysis and progress to the sto­
chastic dynamics of fully turbulent flow. 

2. Response of nonnormal dynamical systems to 
impulsive excitation 

The equation governing first-order perturbation dy­
namics in the atmosphere is a special case of the general 
linear dynamical system: 

du 
-=Au dt , (1) 

in which u ( t) is the state function representing the sys­
tem at time t and A is the linearized dynamical operator. 

In all problems involving the Navier-Stokes equations 
in bounded domains the spectrum of the operator A is 
discrete ( Drazin and Reid 1981 ) . N onnormal growth pro-
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cesses can be analyzed in terms of interaction among two 
or more of these discrete nonorthogonal modes. The exact 
number of modes involved in a particular instance of non­
modal growth will vary with the example and is not of 
fundamental significance. Fundamental significance at­
taches rather to the distinction between the modal growth 
of a single exponentially unstable eigenmode and non­
modal growth resulting from the interaction of two or 
more nonorthogonal eigenmodes. 1 

In the following it is assumed that ( 1 ) has been dis­
cretized so that u ( t) is a state vector and A is the as­
sociated linearized dynamical matrix operator.2 If the 
background state is steady so that A is not a function 
of time, then the dynamical system ( 1 ) is autonomous 
and the solution is explicit: 

u(t) = eA'u(O). (2) 

In any case, there is a propagator matrix <I>[,,o1 that ad­
vances the system in time: 

u(t) = <I>u.o 1u(O). (3) 

Only the existence of a propagator is required for the 
following development, and stationarity is assumed for 
convenience only. 

The central distinguishing attribute of A that deter­
mines its transient dynamics is its normality, that is, 

1 Some confusion has arisen in the literature in connection with 
the continuous spectrum of inviscid and zonally homogeneous model 
problems, especially in relation to the Couette and Eady problems. 
The real number continuum of singular neutral modes in these prob­
lems cannot be placed in correspondence with the discrete spectrum 
of modes in their counterpart viscous or zonally inhomogeneous 
problems no matter how small the viscosity or zonal inhomogeneity. 
It follows that the inviscid and homogeneous modeling assumptions 
are singular perturbations to the physical problem and correspon­
dence between the physical problem and these model problems must 
be made with care. This issue of correspondence was addressed by 
Lin (1961) as it relates to the Euler equation. Discrete approximations 
to the nonnormal continuous spectrum of the Couette, Eady, and 
similar problems are found to produce through interaction among the 
nonorthogonal approximations to the singular spectrum components 
propagators convergent with those produced by interactions among 
the nonorthogonal approximations to the analytic discrete modes in 
the nonsingular counterparts to these problems in which viscosity 
and/or zonal inhomogeneity has been taken into account. As men­
tioned previously, no correspondence is possible between the ap­
proximations to the singular modes and the approximation to the 
analytic modes themselves. Familiarity and analytical simplicity are 
advantages of the Couette- and Eady-type problems, but if in doubt 
one can confirm results obtained with the continuum spectrum of 
singular neutral modes by appealing to the corresponding physically 
correct problem with discrete analytic modes. 

2 The approximation of continuous functions and operators by their 
discrete counterparts is universal in practice but poses some serious 
analytical questions. There is reason to believe that continuous dy­
namical systems are convergent with their discrete approximations 
on bounded domains in space and time (Ince 1926). Asymptotic va­
lidity in time is not assured and there exist nonphysical examples in 
which the temporal asymptote of a finite-dimensional system does 
not converge as a function of resolution to the same asymptote as 
does its continuous counterpart (Zabczyk 1975). 

whether or not AAt = AtA. If A commutes with its 
Hermitian transpose, here indicated by the superscript 
dagger, then A is normal and has a complete set of 
orthogonal eigenvectors. Perturbation growth rate for a 
normal A is bounded above by the member of the ei­
genspectrum of A [denoted by A(A)] with maximum 
real part. This maximum growth rate for normal oper­
ator is indicated by X.!ax (A) = max { Re [A( A)] } and 
is referred to as the spectral abscissa of A. In the case 
of a normal A, the spectral norm of the propagator is 
given by l\eA'll = e11.:i,ax<AJr, where 11-11 indicates the spec­
tral norm of a matrix that is defined to be the maximum 
singular value of the matrix. The stability of a normal 
dynamical system is determined for all time by its ei­
genspectrum. One example of a normal dynamical sys­
tem in hydrodynamics arises in the analysis of the onset 
of convection in motionless background flows (the 
Rayleigh-Benard problem). In contrast to the lack of 
correspondence between observations and predictions 
based on normal-mode instability mentioned above in 
connection with nonnormal shear flow stability prob­
lems, observations have extensively verified exponen­
tial instability theory in normal dynamical systems such 
as the Rayleigh-Benard onset of convection problem 
( Drazin and Reid 1981; Henningson and Reddy 1994). 

Because the finite-time perturbation dynamics of a 
nonnormal operator cannot be ascertained from the 
spectrum of the operator, it is necessary to generalize 
ideas of perturbation growth by considering the growth, 
a, of an arbitrary perturbation u(O) over time t: 

2 (u(t), u(t)) 
a = 

(u(O), u(O)) 

(eA'u(O), eA'u(O)) 

(u(O), u(O)) 

(eAtr eA'u(O), u(O)) 

(u(O), u(O)) 
(4) 

In the last equation of ( 4), the definition of the adjoint 
( Courant and Hilbert 1962) for the inner product ( · , ·) 
that generates the Euclidean norm for the vector space: 
II· II = ( ·, ·) 112 has been used. It follows from ( 4) that 
a complete set of orthogonal perturbations u(O) can be 
ordered in growth over time t by eigenanalysis of the 
matrix: eAtr eA'. In particular, the greatest growth over 
time t as measured by the square of the Euclidean norm 
is given by the maximum eigenvalue of eAtr eA' indi­
cated by X.maxCeAtr eA'), which is also equal to l\eA'll 2 as 
can be also seen immediately from the singular-value 
decomposition of eA' given in (5) below. 

In the Euclidean norm the adjoint is the Hermitian 
transpose, but applications often require use of a norm 
other than the Euclidean. If the inner product is defined 
through the positive definite Hermitian form M, that is, 
( u, u) = u tMu then the associated vector norm is 
!lull= (utMu) 112

• We can choose new variables v = M1'2u 
so that the dynamical system in v is governed by the 
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new dynamical operator D = M112AM- 1
'
2 and (1) be­

comes dv I dt = Dv with I/vi/ = ( v tv) 112 = llu II. It follows 
that we can always assume that analysis proceeds in the 
Euclidean norm. The choice of a norm should be made 
on physical grounds; ordinarily the energy norm is cho­
sen although for a particular purpose a norm involving, 
for example, geopotential height may be more appro­
priate, and it is always possible to find a (usually un­
physical) norm that renders the operator normal (cf. 
appendix in Farrell and Ioannou l 993c). 

A singular-value decomposition ( SVD) of the prop­
agator (Noble and Daniel 1988; Golub and Van Loan 
1989) reveals its complete set of unitary initial (col­
umns of V) and final (columns of U) states, as well as 
the growth cri (along the diagonal of :E) realized by 
each initial state as it is transformed under the action 
of the propagator into its associated final state: 

(5) 

The singular value decomposition can be visualized as 
the simultaneous formation of a particular orthogonal 
basis in the domain and range space of a matrix such 
that each unit orthogonal basis vector in the domain 
space Vi is mapped to a corresponding orthogonal basis 
vector Ui in the range space. The magnitude of each 
range vector under the transformation is given by the 
corresponding element of the diagonal matrix :E. 

The particular vectors V; are ordered by growth. The 
initial condition that gives the maximum growth at a 
given time is referred to as the optimal perturbation at 
that time, and, by extension, the ordered columns of V, 
each V; of which is optimal subject to the constraint of 
orthogonality with the preceding i - 1 vectors, are re­
ferred to as the optimal basis. The maximum growth 
that occurs when all time intervals are examined is 
called the global optimal. 

It is easy to show that the maximum growth that can 
be attained over a given time, t, is greater or equal to 
that attained by the fastest growing mode during the 
same time and similarly the minimum growth attained 
is at most equal to that due to the least-growing mode, 
that is, 

(6) 

where A; ranges over all the eigenvalues of A. 
The most effective excitation of a given eigen­

mode of an N dimensional operator A with simple 
eigenvalues can also be determined by application of 
the singular value decomposition. The most effective 
excitation of a given eigenvector is defined to be the 
unit vector with largest projection on that eigenvec­
tor. As we show below, the most effective excitation 
of the eigenvector associated with the spectral ab­
scissa A.!ax (A) is also the optimal excitation in the 
limit t-> oo. In the case of a normal operator it follows 
from the orthogonality of the eigenvectors that this 
unit vector of maximal projection coincides with the 

mode itself. However, this is not the case for non­
normal operators, the eigenvectors of which are not 
orthogonal. In two dimensions it is easy to see geo­
metriCally that for nonorthogonal real basis vectors 
(corresponding to eigenvectors of a nonnorrnal op­
erator) the unit vector giving maximal projection on 
one basis vector is the orthogonal to the other basis 
vector, that is, the vector of maximal projection is 
the biorthogonal of the eigenvector we want to excite 
(see Fig. 1). It can be seen from Fig. 1 that the pro­
jection is larger when the angle between the two basis 
vectors is smaller. This argument can be generalized 
to higher-dimensional spaces with complex eigen­
vectors by use of the projector operator on the mode 
we wish to optimally excite. 

There are two asymptotic limits of interest [n con­
nection with the excitation of the propagator. In the 
limit t --> oo, maximum growth is obtained by the ei­
genfunction associated with the eigenvalue with max­
imum real part, just as normal-mode theory would sug­
gest. To see this, consider the matrix E constm~ted by 
arranging the eigenvectors of A as columns in order of 
growth rate together with the diagonal matrix, a' of 
the associated modal growth factors, from which the 
following similarity transformation of the propagator 
can be constructed: 

(7) 

In the limit t --> oo, the first column of E and the first 
row of e- 1 exponentially dominate with amplification 
factor e Real«~" il': 

lim e!h = Ea1e~ 11 'E;-J. (8) 
1~00 

It can be seen by appeal to Schwartz's inequality that the 
initial condition of unit norm producing maximum 
growth over time t is the complex conjugate of E ;-J , 

0..=--L><--3*--A- - - - - - - - - - - -- --~o 
I 
I 

I I 
' I 

c 
Fm. 1. Geometrical demonstration in two dimensions of the ar­

gument that the optimal excitation of a given eigenvector (OA) is its 
biorthogonal (OC) that can be identified with its associated adjoint 
eigenvector. Consider two eigenvectors OA, OB (solid arrows) sub­
tending an angle 0. The unit vector OC (dotted arrow) maximally 
projecting on the eigenvector aligned with the x-axis (OA) is that 
perpendicular to the other eigenvector OB. This unit optimal (OC) is 
seen to produce on projection on OA the vector OD with magnitude 
csc(l:I) I OA I. 
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which is the conjugate of the biorthogonal of the leading 
eigenvector rather than the leading eigenvector itself: 

lime!~ (E!J)* = Ea1e~"'. (9) 
r~oo 

Modal theory correctly predicts that in the limit t --> oo, 

the eigenvector that has associated eigenvalue with 
maximum real part dominates. Not so obvious is the 
fact that the optimal initial condition with which to ex­
cite that mode is the conjugate of the biorthogonal of 
the dominant mode rather than the mode itself. In 
highly nonnormal systems such as the atmosphere, a 
mode and its biorthogonal differ greatly and the per­
turbation that optimally excites a mode bears little re­
semblance to the mode itself (Farrell 1988a, 1989a). 3 

Given the observed mean timescale for cyclogenesis 
of 24 hours ( Roebber 1984), the t --> oo asymptotic is 
not likely to provide a realistic precursor for the cyclo­
genesis process on the forecast timescale. Of greater 
utility for this purpose is analysis of the t --> 0 limit of 
( 4), which controls the initial growth of perturbations. 
Analysis of this limit provides the maximum possible 
instantaneous growth rate and the structure that pro­
duces this maximum growth rate, in addition to sup­
plying other information such as the rate of expansion 
of the error ellipse in the short time forecast limit and 
those structures that contribute most to the short time 
error growth. The maximum instantaneous growth rate 
and the perturbation of maximum instantaneous growth 
itself also provides a constructive nonlinearly valid 
bound on the potential for perturbation growth in the 
flow (Joseph 1976). 

The limit as t --> 0 is easily obtained by Taylor ex­
pansion of the matrix eA t, eA' in ( 4): 

eAtreA' ::::J (I+ Att)(I +At) 

(10) 

where I is the identity matrix. It follows that a tight 
upper bound on instantaneous growth rate, designated 
as a(A) and referred to as the numerical abscissa of A, 
and the structure producing this maximum instanta­
neous growth rate can be found by eigenanalysis of the 
matrix A+ At. The maximum eigenvalue of (A+ At)/ 
2 and its associated eigenvector provide the required 
growth rate and structure. Eigenanalysis of A+ At typ­
ically reveals that high growth rates over short times 
can be realized in baroclinic flows even though all nor­
mal modes of A are damped. 

3 While the biorthogonal vector is the associated adjoint vector it 
may happen that boundary conditions on the adjoint of an operator 
do not coincide with boundary conditions imposed on the operator 
itself requiring slight modification of the adjoint vector (biorthogonal 
vector) in the vicinity of the boundary to meet the physical boundary 
conditions required by an initial perturbation. In any case optimal 
initial conditions obtained from S.V.D. of the propagator (5) neces­
sarily satisfy physical boundary conditions. 

The most relevant timescales for development in the 
atmosphere lie between the asymptotic limits t --> 0 and 
t --> oo and for these intermediate timescales the initial 
and final structures are found most easily from the SYD 
analysis of the propagator ( 5). Given that both asymp­
totic limits are subsumed, it is appropriate to refer to 
this analysis as the generalized stability analysis of the 
system ( 1 ). 

3. Response of nonnormal dynamical systems to 
continuous excitation 

a. Frequency domain analysis of continuously 
excited nonnormal forced systems 

Asymptotically stable nonnormal dynamical systems 
exhibiting large transient response to impulsive forcing 
also exhibit enhanced asymptotic response to steady 
and harmonic forcing. An important problem in large­
scale dynamics is determining the response of the at­
mosphere to steady forcing as is most commonly as­
sociated with the excitation of planetary waves by ther­
mal and topographic inhomogeneities. Nonnormality 
of linearized planetary wave dynamics arises from the 
baroclinic-barotropic energy source associated with 
the midlatitude jet and this nonnormality produces 
greatly enhanced response to steady forcing, compared 
to the response of an equivalent normal system such as 
would be associated with solid-body rotation. The anal­
ysis presented in the previous section can be extended 
to the frequency domain to obtain the optimal response 
to harmonic forcing at any frequency including the spe­
cial case of stationary forcing (Branstator 1985; Na­
varra 1993). 

Consider the forced dynamical system 

du dt =Au+ f(t). 

With the aid of the Fourier transform pair 

u(t) = J:oo u(w)eiwtdw, 

, 1 Joo . u(w) == - u(t)e-•wtdt, 
27r -00 

the response at frequency w can be expressed as 

u(w) = R(w)f(w), 

in terms of the resolvent 

R(w) = (iwl - A)- 1
, 

where I is the identity. 

(11) 

(12) 

(13) 

(14) 

(15) 

In the case of normal systems, the largest response 
llR ( w) II at a given frequency is obtained for a forcing 
with spatial structure corresponding to the eigenfunc­
tion with eigenvalue least removed from the forcing 
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frequency w. The amplitude of this response is given 
by 

1 
llR(w)ll = dist(iw, A(A)) ' (1 6 ) 

where dist denotes the shortest distance of w from the 
spectrum of .A., A(A). This is the familiar modal res­
onance in which the maximal response is obtained at 
the forcing frequency corresponding to the least stable 
eigenmode of the system and the square response is 
inversely proportional to the square of the damping 
rate. 

For nonnormal systems, the previous conclusions 
have to be modified. In order to maximize 

llfi(w)ll 2 = f(w)Rt(w)R(w)f(w), (17) 

we must select the optimal forcing to be the eigen­
vector associated with the maximum eigenvalue of 
Rt(w)R(w). Equivalently, SVD decomposition of the 
resolvent, R = UI::Vt, allows identification of the op­
timal forcing with the column of V associated with the 
maximal singular value and identification of the re­
sulting optimal response at w with the corresponding 
column vector of U. In particular, at w = 0 the V and 
U correspond respectively to the optimal forcing dis­
tribution and the EOF for forcing at zero frequency, as 
would be appropriate for the optimal excitation of 
waves by stationary distributions of thermal and topo­
graphic forcing. It is not the case, however, that the 
maximum response occurs at the frequency corre­
sponding to the least-damped mode, as was the case for 
normal systems. Moreover, the response to harmonic 
forcing of systems exhibiting robust transient growth 
can be orders of magnitude greater than the response 
expected from traditional resonance arguments based 
on normal-system dynamics .. This is of particular im­
portance in the atmosphere where neglect of nonnor­
mality results in a lack of correspondence between the­
ory and observations of the frequency spectrum of the 
atmosphere, a discrepancy that is resolved by appro­
priate incorporation of the nonnormality of the midlat­
itude jet dynamics (Farrell and loannou 1994b, 1995). 

To obtain an estimate for the optimal response, note 
that 

(i'"'-'' - A)- 1 = E(iwl - .. ::~r 1 E- 1 , (18) 

with a the diagonal eigenvalue matrix and Ethe matrix 
formed by the corresponding eigenvectors arranged in 
columns. The following bound can be obtained on the 
optimal response in .terms of the spectral condition 
number K(E) = llEll llE- 1

11 and the distance of the fore-. 
ing frequency w to the spectrum of A (Kato 1976; Tre­
fethen 1996, personal communication): 

K(E) 
llR(w)ll:;;; dist(iw, A(A) ' (19 ) 

indicating the possibility of greatly enhanced frequency 
response in nonnormal systems with nearly parallel ei-

genvectors resulting in eigenvector matrices with large 
spectral condition numbers, K( E). This result is most 
simply obtained in the context of pseudospectral anal­
ysis, which provides a systematic basis for am.lyzing 
the nonnormality of matrices and continuous op1erators 
(Trefethen 1991; Reddy et al. 1993; Reddy 1993; Tre­
fethen et al. 1993 ) . 

When all frequencies are excited equally, as 
would be the case for componentwise uncon-elated 
white noise forcing of unit variance, that is, 

A A* 
(f;(wi)fj (w2)) = 8u8(w 1 - w2)121f, the em.emble 
response variance is given by 

1 f"° (u 2
) = 

2
7f _

00 

F(w)dw, (20) 

where 

F(w) = trace(Rt(w)R(w)), (21) 

and ( u 2) denotes the stationary ensemble variance. 
The eigenvalues of the resolvent R are ( iw -- X.; )- 1 

in which X.; are the eigenvalues of A. It can be shown 
that 

N 1 
F(w) ~ L 1 · - x..12, 

i=l lW 1 

(22) 

with equality only when A is normal (loannou 1995). 
This inequality has the important implication that the 
variance as a function of frequency produced by spa­
tially uncorrelated white noise forcing of a nonnormal 
dynamical system nearly always exceeds the variance 
obtained as a summation of the contributions from the 
poles of the resolvent, as is appropriate for the case of 
a normal operator. Interaction among the modes en­
hances the variance by drawing on the energy available 
from the background flow and an example of this phe­
nomenon is the stochastic response of the midlatitude 
jet that greatly exceeds that anticipated solely from the 
damping of the system (Farrell and Ioannou 1994b; 
1995). 

It is important to appreciate the role of the eigen­
modes in the maintenance of this large variance. In 
highly approximated model systems spanned solely by 
a continuum of singular modes, as is the case for con­
stant shear flows in the Euler equation, only a modest 
increase of variance can be achieved by stochastic forc­
ing of the system (Kraichnan 1976; Shepard 1985; Far­
rell and Ioannou 1993a). This is because non normal 
growth achieved in such systems by energetic interac­
tion with the background flow is as quickly lost to the 
reverse process in the absence of a long-lived reposi­
tory for perturbation energy in the form of discrete 
modes. The discrete spectrum of damped modes pro­
vides the requisite repository for the accumulation of 
nonnormal energy growth leading to the maintenance 
of enhanced levels of variance (Farrell and loannou 
1993a, 1993b, 1994a; loannou 1995). The end result 
in marginally stable systems is a response close in fre-
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quency to that of the least-damped mode, but with am­
plitude greatly exceeding that expected from normal 
resonance arguments. 

b. Time domain analysis of nonnormal stochastic 
systems 

Transient growth of disturbances in shear flow can 
be traced to a substantial subspace of perturbations that 
extract energy from the background flow. In section 2, 
analysis of these growing perturbations was framed as 
an initial value problem involving as a parameter the 
physically relevant interval in time over which growth 
occurs. Error growth in the predictability problem 
arises from the ensemble of growing perturbations that 
are excited by projection of the initial error on this 
growing subspace. By extension, growth of the sub­
space of perturbations that we have analyzed in con­
nection with the cyclogenesis and predictability prob­
lems is also able to support a time-mean variance if the 
excitation mechanism operates continuously, as must 
be the case for a system with stationary statistics. The 
appropriate method of analysis for studying the main­
tenance of time-mean variance by continuous incoher­
ent forcing is the stochastic dynamics of the associated 
nonnormal system. 

The stochastically forced linear dynamical system 
can be written in the form 

du dt =Au+ F11(t), (23) 

in which 11(t) is a temporally Gaussian white-noise 
forcing componentwise 8 correlated with zero ensem­
ble mean and unit ensemble covariance: 

(11;(t1)11tU2)) = 8u8(t, - t1). (24) 

The spatial distribution of the forcings is provided by 
the matrix F, and if it is chosen to be unitary, the re­
sulting statistics become independent of the particular 
choice of F. 

To obtain the stochastic growth of perturbations we 
first write the forced solution of ( 23) as 

u(t) =I: eAU-slf11(s)ds. (25) 

The variance maintained by this stochastic forcing is 
given in the Euclidean norm by 

=\I: ds I: ds'11t(s)FteAt(t-s)eA(t-s'lf11(s') J 

=ft( I: eAt(t-s)eA(t-s)ds) F 

= FtBF, (26) 

revealing that the hermitian operator 

B' = f' eAts eAs ds 
• 0 

(27) 

accumulates the perturbation growth when all pertur­
bations are stochastically excited. This operator should 
be compared with the operator eAt, ~', eigenanalysis of 
which reveals the optimal perturbation growth as we 
have seen in the previous section. An alternative and 
computationally preferable method for calculating the 
stochastic dynamical operator B' results from differ­
entiating ( 27) with respect to time to obtain 

dB' 
- =I+ AtB' + B'A (28) dt , 

in which I is the identity matrix. 
In direct analogy with the analysis of optimal growth 

in the previous section, a complete set of orthogonal 
forcings forming the columns of a unitary F can be 
found for the stochastic variance at time t in ( 26) by 
eigenanalysis of the positive definite hermitian B'. If 
the operator A is asymptotically stable, a stationary so­
lution is obtained in which the eigenfunctions of 8 00 are 
ordered according to their contribution to the variance 
of the statistically steady state. The forcings ordered in 
this way will be referred to as stochastic optimals. 

The stochastic optimals most effectively excite the 
stationary variance and should be contrasted with the 
orthogonal structures that most effectively span the 
maintained variance, which are commonly referred 
to as the EOFs of the dynamical system. The sto­
chastic optimals bear a relationship to the EOFs in 
the stochastic analysis analogous to that between the 
optimal excitation and the optimal response in the 
SVD analysis of the propagator of the initial value 
problem. To obtain the EOFs we need first to form 
the correlation matrix 

c;j = (u;(t)ui*(t)) 

( L eA(t-slFft eAt(t-s)ds) ij, (29) 

which satisfies 

dC' dt = Fft +AC'+ C'At. (30) 

Each eigenvalue of the positive-definite hermitian op­
erator C' equals the variance accounted for, under un­
biased forcing and at time t, by the pattern of its cor­
responding eigenvector, and the pattern that corre­
sponds to the largest eigenvalue contributes most to the 
perturbation variance at t. 

If A is normal and the forcing unitary ( FFt = I), 
then A, B', C' commute and the stochastic optimals, 
the EOFs, and the modes of the dynamical system co­
incide. For such a system eigenanalysis of A suffices 
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for understanding the statistics of the perturbations in 
the linear limit. In contrast, for nonnormal systems the 
stochastic optimals, the EOFs and the modes of the 
dynamical operator are all distinct (Farrell and Ioannou 
1993b, 1993c, 1995). 

If A is asymptotically stable, the system approaches 
a statistically steady state as t increases, in which 8 00 

and C00 satisfy the Lyapunov equations: 

AC'" + C00At = -fft 

AtB00 + B00A = -1. (31) 

The Lyapunov equations in ( 31) are readily solved for 
8 00 and C00 given the asymptotically stable operator A 
and the forcing correlation matrix F. 

4. Examples 

a. A simple 2 X 2 system 

Consider generalized stability analysis of the dynam­
ical system governed by 

A= (
-1 

0 
-cote) 
-2 . (32) 

This matrix has associated matrix of column eigenvec­
tors 

E = (~ cosB) 
sine ' 

(33) 

and has stable eigenvalues ( -1, -2) so that the follow­
ing similarity transformation can be made: 

0 )E-i 
-2 . (34) 

The nonnormality of the operator is revealed by cal­
culation of the commutator: 

AA1 - AtA = cote(coltB 1 ) 
-cote ' 

(35) 

which is seen to vanish only for 8 = n 12, in which case 
( 32) is normal. 

This is an asymptotically stable system with spectral 
absdssa }\!a, (A) = -1 but with a potential for non­
normal growth that can be estimated from the numer­
ical abscissa a(A), which as we have seen is the max­
imum instantaneous growth rate limi-+0lleA'll given by 
the maximum eigenvalue of (A + At)/2. This maxi­
mum instantaneous growth rate is easily seen to be 

A 
-3 + cscB 

a( ) =----
2 

for 0 < e < 7r /2, (36) 

which indicates the existence of an instantaneously grow­
ing perturbation fore< n/9.244. This unit norm pertur­
bation of maximum instantaneous growth rate can be 

shown by eigenanalysis of (A + At)/2 to be the unit 
vector subtending an angle 8 a = arctan ( sinB - I I cos 8) 
with the x axis. As has been remarked, the choice 8 = n I 
2 renders the system normal, 1n which case it is imme­
diate that the numerical abscissa coincides with the least 
decaying eigenvector that is oriented along the x axis with 
Ba = 0. Nonnormality increases as 8--> 0 with the vector 
of maximal instantaneous growth tending in this limit to 
the angle 8 a = - n I 4. In addition there is also the direc­
tion of the maximally contracting vector that lies perpen­
dicular to the direction of the maximally growing vector. 
These maximally growing and contracting diredions are 
marked fore= n/100 in the phase plane diagram shown 
in Fig. 2. Subsequent evolution of a perturbation that 
starts in the direction of maximal instantaneous growth is 
shown in Fig. 3. Substantial excursion from the equilib­
rium position is seen to occur before ultimate asymptotic 
decay sets in. This transient excursion is analogous in an 
atmospheric context to a cyclogenesis event, resulting 
from the chance conjunction of upper- and lower-level 
potential vorticity anomalies. The dynamics of this tran­
sient phase would have been altogether missed if analysis 
had been limited to the decaying eigenspectrum of the 
operator. 

To obtain the stability properties of the operator at 
times intermediate between the t-> 0 asymptotic con­
trolled by the numerical abscissa and the t -• oo as­
ymptotic controlled by the spectral abscissa, we must 
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FIG. 2. Phase plane portrait of the vector field near the origin pro­
duced by the simple 2 X 2 non-normal matrix example wilh () = n/ 
100. The unit eigenvector associated with the largest eigenvalue of 
(A+ A)t/2, the numerical abscissa, marked as a continuous line, and 
the least growing eigenvector of (A + A//2 as the dashed line. The 
intersection of the former with the unit circle is the instantaneously 
most rapidly growing unit vector which will be integrated forward in 
the example. 
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FIG. 3. Phase plane portrait of trajectories of the simple 2 X 2 
nonriormal matrix example with() = 11"!100. Shown are the trajectory 
with initial condition of the eigenvector with the maximum instan­
taneous growth rate (at the tips of the continuous diameter of the unit 
circle) and the trajectory with initial condition of the eigenvector that 
produces maximum growth (at the tips of the dashed diameter of the 
unit circle). Both initial conditions result in large transient growth 
before their ultimate decay at the rate of the spectral abscissa ( -1). 
As expected. the global optimal initial condition produces consider­
ably more growth than does the vector associated with the numerical 
abscissa. 

examine the optimal growth as a function of time t. 
This optimal growth is given by the spectral norm 
II eA'll, which is the maximum singular value of eA'. 
The global optimal is defined as the initial pertur­
bation of unit norm that achieves maximum growth 
over all optimizing times. The phase plane trajectory 
of the global optimal is shown in Fig. 3 for () = rr I 
100. The global optimal for this case turns out to be 
very close to the biorthogonal of the least damped 
eigenvector. This biorthogonal is easily seen to lie 
along the direction (sin(), -cos()). We have seen in 
the previous section that the biorthogonal is the op­
timal excitation of the least-damped mode and that a 
csc() amplitude magnification of the least-damped 
mode arises from initially introducing the biortho­
gonal rather than the mode itself. It is instructive to 
confirm this argument though a direct calculation in 
this simple example. 

The expression for the propagator at t is given by 

cot()( e - 21 - e _,)) 

e-21 ' 
(37) 

which in the limit t --> oo becomes 

from which 

lim eA'""" (
eo-t -cotee-') 

0 ' /-'00 

eA' = csc()e _, , 
( 

sin() ) ( 1) 
-cos() 0 

(38) 

(39) 

verifying the optimal excitation of the mode by its biorth­
ogonal and the csc() magnitude of the magnification. 

The growth produced by the global optimal is plotted 
as a function of time in Fig. 4 for representative values 
of e. A bound on nonnormal growth can be obtained 
in terms of the spectral condition number of the eigen­
vector matrix of the operator K(E) = llEll llE- 1

11 by con­
sidering the similarity transformation by the matrix of 
column eigenvectors of A as in ( 19): 

lleA'll ~ K(E)lleAlll = cot(()/2)e"A"'•x'. (40) 

It can be seen from Fig. 4 that the bound ( 40) is not 
attained for this operator. 

The frequency response for () = n I 10 and n I 100 is 
shown in Fig. 5. Also shown is the frequency response 
expected from traditional resonance arguments in 
which the response is obtained by summation of the 
contributions from the poles of the resolvent ( 16) as 
would be the case if the eigenvectors were orthogonal 
(which we have seen in this example occurs for () = 7r I 
2). As expected from the large nonnormal growth in 
this system, this equivalent normal response which ne­
glects nonnormal amplification is orders of magnitude 
smaller than the actual response of the system and the 
variance calculated as the area under the nonnormal 
response curves greatly exceeds the equivalent normal 
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FIG. 4. The optimal growth in the simple 2 X 2 nonnormal matrix 
example with()= 71"/100 (solid line) and()= 71"!10 (dash-dot line) as 
a function of the interval of time over which the growth talces place. 
In addition, for the case of() = 7r/100, the bound provided by (40) is 
plotted as the upper dashed line. 
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Fm. 5. The frequency response of the simple 2 x 2 nonnormal 
example showing the response to white noise forcing of unit ampli­
tude with (} = m'lOO (upper solid line) and with (} = n/10. The re­
sponse of a normal matrix with the same spectrum corresponding to 
(} = 0 is also shown (lower dot curve). 

variance obtained as the area under the equivalent nor­
mal curve as is consistent with inequality ( 22). 

Asymptotic stability ensures existence of stationary 
statistics, and the stochastic dynamic operator B00 for 
this system is easily computed: 

Boo= Joo eAtteA'dt = ~ ( 1 , - c~tB ) 
o 2 _ cotB ~ + cot2B 

3 2 6 

(41) 

With unitary forcing ( FFt = I), the correlation matrix 
is 

(42) 

The operators B00 and C00 clearly differ except for the 
case when A is normal (i.e., B = 7r Ii). The maintained 
variance given by the trace of either ( 41 ) or ( 42) is 

(11011 2
) =-~ + c~~B, (43) 

in which the 3/4 can be identified as the equivalent nor­
mal response. Equation ( 43) illustrates the fact that the 
variance maintained by nonnormal systems is neces­
sarily greater than the equivalent normal variance based 
on traditional resonance arguments. 

The stochastic optimal is the leading eigenvector of 
B"" and the first EOF is the leading eigenvector of C"". 
Only for normal A do these coincide with the least 

damped mode of the system. As nonnormality in­
creases for B -+ 0, the stochastic optimal, the leading 
EOF, the least-damped mode, and the eigenvector as­
sociated with the numerical abscissa obtain limiting 
orientations. These are shown in Figs. 6a and 5b, in 
which these unit vectors are plotted for B = 7r I 10 and 
B = 7r/100. Note that as nonnormality increases, the 
stochastic optimal approaches the biorthogonal and the 
leading EOF approaches the mode itself because of the 
large nonnormal growth of the biorthogonal, in contrast 
to what obtains at moderate values of nonnormality 
( B = 7r I 10) for which although there is no trnnsient 
growth the nonnormality still forces all the vectors to 
be distinct. 

b. A baroclinically unstable system 

Traditional instability theory for synoptic- and plan­
etary-scale dynamics is based on the work of Charney 
(1947) and Eady (1949), according to which the ex­
istence of an eigenvalue of the linearized baroclinic 
operator with positive real part determines the stability 
of perturbations. Because the baroclinic operator is 
nonnormal, eigenanalysis of the operator direci:ly ad­
dresses only the t-+ oo asymptotic. To obtain a descrip­
tion of baroclinic waves for all times, it is neces:;;ary to 
apply generalized stability analysis to the operator. 

Consider for example the Eady model of baroclinic 
instability in which the background velocity profile varies 
linearly with height, stratification in the troposphere is 
assumed constant, variation of the Coriolis paran1eter is 
ignored, the Boussinesq approximation is made, and the 
sharp increase of stratification at tropopause level is mod­
eled by imposition of a solid upper boundary. Conser­
vation of perturbation potential vorticity defines a dynam­
ical system (Gill 1982) of the general form (1 ) : 

8
<P = (\72

)-
1 [-ikz\72</J- r(x)\7 2</J], (44) 

8t . 

with boundary conditions expressing the conservation 
of potential temperature along the solid surface11 at the 
ground and tropopause: 

8 2</J . 8<P . 8<P 
8

t
8
z = -lkZ 

8
z + lkcp- r(x) oz at z = 0, 1. (45) 

The perturbation geostrophic streamfunction has 
been assumed here to be of harmonic form in the 
zonal (x) and meridional (y) direction, </J(z, 
t) e ikx+ily. Time has been nondimensionalized by NI 
JS, with N the Brunt-VaisaHifrequency frequency, 
f the Coriolis parameter, and S the shear. Vertical 
distance has been nondimensionalized by the height 
of the tropopause, H, and horizontal distances 
by NH/f. 

The nondimensional potential vorticity operator is of 
the form \72 = 8 2 /8z 2 

- k2 
- 12 and imposition of the 

b~mndary conditions ( 45) renders this operator invert-
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FIG. 6. Phase plane portrait of the least damped eigenvector (solid line), the first EOF (dash line), the numerical abscissa (dot line), and 
the stochastic optimal (dash-dot line) for the simple 2 X 2 nonnormal matrix example. The case of(} "" n/10 is shown in (a), the case of(} 
= 7r/100 in (b). For a normal matrix all these eigenvectors would be identical. 

ible. Zonally varying potential vorticity and thermal 
damping with coefficient r( x) is allowed for but these 
dampings are taken zonally constant for this example. 

The energy norm is defined as ( </> t M<f>) 112
, where for a 

vertical discretization of grid size oz the metric is given by 

0.45 

0.4 

0.35 

~ 0.3 

t0.25 
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oz [ d
2 J M = 4 - dz2 + (kz + z2)I ' (46) 

Eady model : I • pi/5 
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FIG. 7. The real part of the eigenspectrum of the undamped Eady 
model with meridional wavenumber l = n/5 is plotted as a function 
of zonal wavenumber (dotted line). In addition, the numerical ab­
scissa is plotted as a solid line. Both the modal and nonmodal growth 
rates vanish in the limit k --> 0, but there is no counterpart to the 
modal shortwave cutoff in the numerical abscissa. 

with I the identity. In order to assess the growth of 
perturbations in the energy norm, we define a gener­
alized velocity u = M 112</> and proceed with the gen­
eralized stability analysis as described earlier. 

The numerical abscissa (the instantaneous growth 
rate) and the spectral abscissa (the asymptotic growth 
rate) for the case r(x) = 0 are plotted in Fig. 7 as a 
function of the horizontal wavenumber k for l = 7r I 5 
(the results are generic and do not depend sensitively 
on the choice of the parameters) . 

Consider a zonal scale k = 2.5, which is on the stable 
side of the modal instability shortwave cutoff for the 
undamped Eady model that occurs at k = 2.39. Assume 
further a coefficient of thermal and potential vorticity 
damping of r = 0.1, which corresponds with a 40 m s - 1 

jet and a Ross by radius of deformation NH If = 1000 
km to an e-folding time of 2.9 days. Perturbations will 
asymptotically decay at the rate of the dissipation, but 
for intermediate times, calculation of the optimal en­
ergy growth as a function of optimizing time t dem­
onstrates the existence of robust energy growth with a 
global optimal increase in energy by a factor of about 
100 for an optimizing time of 4 days (Fig. 8). The two 
asymptotic growth rates in energy, the t-+ 0 asymptotic 
growth rate given by twice the numerical abscissa and 
the t -+ oo asymptotic growth rate given by twice the 
spectral abscissa, are also shown in Fig. 8. 

Modal instability typically occurs over a restricted 
range of wavenumbers. This band of instability is 
bounded by a longest unstable wave (which may be 
infinite) and by a shortest unstable wave. The numer­
ical abscissa, the global optimal, and the spectral ab-
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FIG. 8. The generalized stability portrait of the damped (r = 0.1) 
Eady model with meridional wavenumber l = 11:15 and zonal wave­
number k = 2.5. The dashed line on the left indicates the initial energy 
growth rate and has slope twice the numerical abscissa. The dashed 
line on the right indicates the asymptotic energy decay rate and has 
slope twice the spectral abscissa. The solid line in between these 
asymptotes indicates the energy growth possible for an optimally 
configured initial perturbation; this growth is the square of the spec­
tral norm of the Eady propagator at the indicated time. 

scissa all vanish as k ~ 0, so we may conclude that 
baroclinic conversion vanishes in this model for suffi­
ciently long waves. On the other hand, as can be seen 
from Fig. 7, baroclinic conversions in the absence of 
strong dissipation continue for wavenumbers consid­
erably in excess of the shortwave cutoff of modal in­
stability (Farrell 1984, 1985; Joly 1995). Moreover, 
examination of Fig. 7 shows clearly that arguments 
based on energetics (such as extensions of the parcel 
argument for the existence of a wedge of instability), 
implying the necessity of a shortwave cutoff and a peak 
in growth rate at the modal instability maximum, can­
not be valid. 

We continue to consider zonal and meridional wave­
numbers k = 2.5, l = 7r/5, respectively, and a coeffi­
cient of thennal and potential vorticity damping of r 
= 0.1, which corresponds to an e-folding time of 
2.9 days and renders the dynamical operator in ( 44) 
asymptotically stable. Despite this strong perturbation 
damping, stochastic excitation of the zonal flow re­
sults in substantial accumulation of perturbation en­
ergy. The distribution of the stochastically maintained 
energy as a function of phase speed ( c = w I k): F ( w) 
= trace[R(u.1)Rt(w)] [cf. (21)] is shown in Fig. 9. 
The equivalent normal response, which is the response 
of the operator with the same eigenvalues but with 
orthogonal eigenvectors, is also shown in Fig. 9 by 
the dashed line. Note the great disparity between the 
two curves and the enhanced variance sustained by 
the nonnormality of the operator. The two peaks that 
are discernible in the nonnormal response, but are 

barely noticeable in the equivalent normal response, 
correspond to the phase speeds of the upper and lower 
stable modes of the neutral Eady problem. The energy 
accumulated in these stable modes has been extracted 
by nonnormal interaction with the mean flow. 

We calculate the stochastic operator in (27) 1300 and 
correlation matrix C00 by solving the Lyapunov equa­
tions in ( 31). The eigenfunctions of 8 00 ordered by the 
magnitude of their eigenvalues are the stochastic opti­
mals in the order of their contribution to the mean en­
ergy of the statistically steady state. Similarly, the ei­
genvalues of C00 give the EOFs of the steady state. The 
geopotential height field of the first stochastic optimal 
which accounts for 32% of the maintained perturbation 
energy, and the first EOF, which accounts for 69% of 
the variance, are shown in Figs. lOa and lOb, respec­
tively. 

Climate theories based on baroclinic wave transport 
have traditionally associated heat flux with exponential 
instability. This example demonstrates that the damped 
modes of the stochastically forced Eady problem are 
capable of substantial heat flux. For the parameters 
given above, the total northward heat flux at 30° lati­
tude can be calculated following Farrell and Ioannou 
( l 994b). It is found that for each W m-2 of stochastic 
forcing a heat flux of "'='0.5 PW is induced; and that the 
vertical distribution of this heat flux &as the realistic 
structure shown in Fig. 11. 

c. Example of convective instability 

Modal instability is commonly found in idealized 
model examples that fail to account for the dissipation 

EADY PROBLEM ;k•2.5; l•pi/5 ;r•0.1 
10•~----~--~--~--~--~--~ 

101~-~~-~--~--~--~--~-~ 
-0.2 0 0.2 0.4 0.6 0.8 1.2 

Phase speed 

FIG. 9. The distribution of the stochastically maintained energy as 
a function of nondimensional phase speed in the Eady problem. The 
nondimensional zonal wavenumber is k = 2.5, the meridional wave­
number is l = 11:15, and the thermal and potential vorticity damping 
coefficient is r = 0.1. Also shown (dashed line) is the response of a 
normal system with the same eigenspectrum. The peaks in the non­
normal response correspond to the phase speeds of the upper and 
lower stable modes of the neutral Eady problem. 
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FIG. 10. The perturbation geopotential as a function of height (z) and zonal distance (x) for the stochastic optimal (a) and the first EOF (b) 
for the Eady problem with k = 2.5, I = n/5, and r = 0.1. When forced white in time the stochastic optimal pattern maintains 32% of the 
mean perturbation energy. The first EOF is the geopotential height pattern accounting for 69% of the mean perturbation energy. 

and zonal confinement of the region of substantial baro­
clinicity in the midlatitude atmosphere. When proper 
account is taken of the limited extent of the baroclinic 
region (but not of realistic dissipation), only instabil­
ities that we will refer to as convective are retained (Lin 
and Pierrehumbert 1993). Global stability analysis of 
such a problem will reveal no unstable modes and a 
comprehensive method of analyzing perturbation 
growth in the absence of local or global instability must 
be based on the underlying nonnormality of the nee-

HEAT FLUX for Elna 1 W/m"2; k = 2.5; I a pi/S; r = 0.1 

0.9 

0.8 

0.7 

0.6 

N0.5 

0.4 

0.3 

0.2 

0.1 

~ ~ ~ ~ ~ ~ U ~ M ~ M 
HEAT FLUX In mis K 

FIG. 11. The distribution of heat flux with height (m s- 1 K) pro­
duced by waves with zonal and meridional wavenumber k = 2.5, l 
= n/5, respectively, when the Eady problem with damping coefficient 
r = 0.1 is stochastically forced with power of 1 W m-2

. The inte­
grated heat flux over a latitude circle at 30° latitude is approximately 
0.5PW. 

essarily asymptotically stable operator. However, tra­
ditional normal-mode-based analysis of convective in­
stability relies on the assumption of asymptotic domi­
nance of the approximate eigenmode of the associated 
zonally homogeneous problem (Merkine 1977; Sim­
mons and Hoskins 1979; Farrell 1982b; Pierrehumbert 
1984; DelSole and Farrell 1994). This approximation 
requires for its validity that the t --+ oo asymptotic be 
obtained, a requirement unlikely to be satisfied in prac­
tice. 

As an example of nonnormal analysis of a convec­
tive instability, consider the Eady model [Eqs. ( 44) and 
( 45)] in a periodic channel of length Xm bounded by 
zonally localized regions of dissipation: 

1 + cos(nx/2) 
r 2 if x :s; 2 

1 + cos[n(x - Xm)/2] 
r 2 r(x) = (47) 

if x ~ Xm - 2. 

We select Xm = 20 and r = 100 to ensure that no wave 
of significant amplitude tunnels through the region of 
dissipation. Under these circumstances, the eigenspec­
trum of the operator in ( 44) reveals only decaying 
modes. On the other hand there is robust perturbation 
growth that can be readily analyzed by determining the 
disturbance of optimal growth. For example, in Figs. 
12a and 12b we plot the geostrophic streamfunction of 
the optimally growing perturbation over a period of 2 
days at the initial and optimization time. The pertur­
bation energy increases by a factor of nearly 112 over 
this time interval. 
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FIG. 12. The Eady model with meridional wavenumber l = 11:/5 
and surface zonal velocity U(O) = 0.15. A localized region of high 
(10 day- 1

) damping has been included within two nondimensional 
units corresponding to ( ± 1000 km) on each end of the reentrant zonal 
boundary to prevent recirculation of waves. This model is absolutely 
stable, that is, an eigenanalysis shows no unstable modes. The po­
tential for growth in this asymptotically stable system is expressed 
through the nonnormality of the Eady operator and this example 
shows (a) the two-day optimal initial perturbation and (b) this per­
turbation after two days, during which time perturbation energy has 
increased by a factor of 11 1.6. 

5. Conclusions 

Stability theory has traditionally been a foundation 
of physical understanding of dynamical systems in gen­
eral and of atmospheric dynamics in particular. Tradi­
tionally stability theory has been based on the paradigm 
of Rayleigh (1880) and Kelvin (1887), in which the 
spectrum of the linearized dynamical system operator 
is analyzed for exponentially growing modes. In modal 
stability theory the possible nonorthogonality of the ei­
genvectors plays no role. It has been known since the 
time of Kelvin ( 1887) and Orr ( 1907) that this modal 

description is at best incomplete and that robust per­
turbation growth can occur without modal instabilities. 
Nevertheless, a full appreciation of the role of non­
modal growth in stability analysis is a recent develop­
ment. In this work we have collected and organized 
recent advances into a systematic stability theory that 
comprises both the traditional t -+ oo asymptotic results 
of modal theory and the. transient growth phenomena 
at finite time that depend in an essential way on the 
nonnormality of the operator and the nonorthogonality 
of the eigenvectors. 

The initial value problem for nonnormal operators is 
appropriate for analysis of cyclogenesis, episodic plan­
etary wave amplifying events, and predictability on the 
forecast timescale. The timescale for such event:> is typ­
ically a small number of shear advection periods for 
the dominant wavenumbers that appropriately nondi­
mensionalizes time for shear flow problems. The struc­
tural evolution of these synoptic- and planetaiy-scale 
disturbances during development is characteristic of the 
finite-time growth stage addressed by generalized sta­
bility theory. 

In addition to phenomena such as cyclone formation 
and error growth that are appropriately addressed as 
initial value problems, there is another class of prob­
lems in which the nonnormality of the linearized op­
erator is centrally involved, that being the dynamics of 
turbulence and particularly mechanisms maintaining 
the fully turbulent state. The model of turbulence based 
on nonnormal stochastic dynamics accounts directly 
for the transfer of energy from the background flow to 
the perturbations while parameterizing the role of non­
linearity both in forcing perturbations and in di~.rupting 
perturbation growth. This theory provides a physically 
based mechanistic picture of the turbulent 1;tate in 
which nonnormal growth rather than modal irn;tability 
plays the central role. It is to be contrasted with the 
traditional theories of turbulence based on multiple in­
stability transitions and the formation of internal unsta­
ble inflectional modes (Landau 1944). 

The role of the parameterized nonlinear feedback in 
nonnormal turbulence theory has been illuminated by 
recent experiments with highly simplified nonnormal 
systems (Gebhardt and Grossman 1994; Baggett et al. 
1995). Diagnosis from observations of the parameter­
ization of nonlinearities in turbulence has recently been 
pursued using the fluctuation-dissipation relation 
(DelSole 1996). 

In summary, reappraisal of linear theory in light of 
recent advances in understanding the deterministic and 
statistical dynamics of nonnormal systems has reinvig­
orated stability analysis and extended its scope of ap­
plication; both as a calculational tool in areas such as 
predictability studies and as a mechanistic model in 
areas such as turbulence studies. 
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