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Abstract Tropical cyclones are among the most life threatening and destructive

natural phenomena on Earth. A dynamical mechanism for cyclone intensification

that has been proposed is based on the idea that patches of high vorticity associated

with individual convective systems are quickly axisymmetrized, feeding their

energy into the circular vortex. In this work, Stochastic Structural Stability Theory

(SSST) is used to achieve a comprehensive understanding of this physical mecha-

nism. According to SSST, the distribution of momentum fluxes arising from the

field of asymmetric eddies associated with a given mean vortex structure, is

obtained using a linear model of stochastic turbulence. The resulting momentum

flux distribution is then coupled with the equation governing the evolution of the

mean vortex to produce a closed set of eddy/mean vortex equations. We apply the

SSST tools to a two dimensional, non-divergent model of stochastically forced

asymmetric eddies. We show that the process intensifying a weak vortex is shearing

of asymmetric eddies with small azimuthal scale that produces upgradient fluxes.

For stochastic forcing with amplitude larger than a certain threshold, these

upgradient fluxes lead to a structural instability of the eddy/mean vortex system

and to an exponentially growing vortex.

1 Introduction

Tropical cyclones are among the most life threatening and destructive natural

phenomena on Earth. However, despite our knowledge of the climatological

conditions favoring tropical cyclogenesis, a widely accepted theory for tropical

cyclone formation and intensification does not exist. Early theoretical work

suggested that tropical depressions intensify by utilizing cooperative feedbacks
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between cumulus clouds and the large scale flow (Charney and Eliasen 1964), or

between surface heat fluxes and the surface wind (Rotunno and Emanuel 1987).

Another theory is based on the idea that patches of high vorticity associated with

individual convective systems are quickly axisymmetrized, feeding their energy

into the vortex scale flow (Montgomery and Enagonio 1998), a process that can be

described in terms of the interaction between Vortex Rossby Waves (VRW) and the

circular vortex (Montgomery and Kallenbach 1997).

The goal of this work is to provide a theory for the systematic organization of the

turbulent fluxes intensifying the vortex, based on the interaction between VRW and

the mean vortex and building on results from linear stochastic turbulence modeling

that has led to a novel framework for investigating the organization of eddy fluxes

in turbulent zonal flows called Stochastic Structural Stability Theory (SSST, Farrell

and Ioannou 2003). In the context of SSST, the forcing of VRW, that can be traced

to highly intermittent, short time scale processes (e.g. convection), is modeled

stochastically (Farrell and Ioannou 1993a, b; DelSole and Farrell 1996). Further-

more, the VRW-VRW interactions are ignored, yielding a linear stochastic model

for the VRW evolution. The resulting momentum flux distribution arising from the

VRW is coupled with the mean vortex momentum equations to obtain a closed

dynamical system for the joint evolution of the VRW statistics and the mean vortex.

The dynamics of this system that will be derived in detail in Sect. 2, will be

investigated in order to address whether axisymmetrization can lead to the trans-

formation of a small depression into a tropical cyclone of sufficient intensity,

focusing on the VRW-mean vortex dynamics leading to such intensification.

2 Evolution Equations for a Barotropic Vortex

Consider a forced non-divergent, flow in which the Coriolis parameter f is

set to a local, constant value. A streamfunction c can be defined such that:

[u,v] ¼ [�(1/r)cy,cr], where u, v are the radial, r, and azimuthal, y, components

of velocity. Since we are interested in the effect of asymmetric perturbations on

a circular vortex, we decompose the streamfunction into an axi-symmetric

component (indicated with upper case) and an asymmetric eddy component that

is typically termed as Vortex Rossby Waves (VRW) (indicated with a tilde):

cðr; y; tÞ ¼ Cðr; tÞ þ ~cðr; y; tÞ. Harmonic VRW of the form ~cðr; y; tÞ ¼ c0ðr; tÞ
eimy, where m is the azimuthal wavenumber, evolve according to:

@t þ im
V

r

� �
z0 � 1

r

dZ

dr
imD�1z0 ¼ �mz0 þ fext þ feddy (1)

where V ¼ Cr is the azimuthal averaged tangential wind, z0 ¼ Dc0 is the relative
vorticity of the VRW, Z ¼ DC is the vorticity of the mean flow, D is the Laplacian

in polar coordinates, m is the coefficient of linear dissipation, fext, is the external
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forcing and feddy is the forcing term from the eddy-eddy interactions. On the other

hand, the circular vortex is forced by the radial vorticity fluxes and evolves as:

@tV ¼ �u0z0 � mV (2)

Following previous studies of stochastic turbulence modeling (Farrell and

Ioannou 1993a, b; DelSole and Farrell 1996), we parameterize the eddy forcing

term fext + feddy as a stochastic process. We also discretize the differential operators

with finite differences on a radial channel [0,R], imposing zero boundary conditions

for the streamfunction at the boundaries. The operators then, become finite dimen-

sional matrix approximations of the continuous operators and the variables z0, V
become column vectors with elements the values of the variables at the grid points

defined by the elements of the radial vector r. In matrix notation, (1) takes the form:

dz
dt

¼ Azþ Fx (3)

where the spatial structure of the forcing is given by the columns of F and j is a

vector giving the time variation of the forcing. ½Notdefined� is the matrix form of

the linear dynamics of VRW:

A ¼ �imdiagðVÞR�1 � imR�1DZD�1 � mI (4)

where R ¼ diag(r), I is the identity matrix and diag(●) denotes the diagonal matrix

with diagonal elements the vector●. The dynamics of VRW comprise of advection

of the vorticity of VRW by the vortex, advection of the vorticity gradient DZ by

VRW and dissipation. Similarly, (2) is written as:

dV

dt
¼ M� mV ¼ �m

2
Im D�1zzy

h i
� mV (5)

whereM are the radial vorticity fluxes, { denotes the Hermitian transpose and vecd

denotes the operation of extracting the diagonal elements of a matrix. The random

vector process x has statistically independent elements and is a Gaussian white

noise in time with zero mean and unit variance: <x> ¼ 0, <xi xj> ¼ dijd(t�s),
where the angle brackets denote an ensemble average over realizations of the

forcing. The spatial localization of the excitation is dictated by the matrix F

which is chosen to have l columns and elements Fij ¼ Jm(kjri/R), where Jm is the

Bessel function of order m and kj is the jth zero of Jm. This specification leads to a

statistically homogeneous excitation with forcing that is coherent over a distance

inversely proportional to kl. Finally, the forcing is normalized to have input power e.
The system of (3), (5) describes the dynamics of a single realization of the

stochastically excited VRW interacting with the circular mean vortex. Assuming a

large number of independent realizations of the forcing and taking an ensemble
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average of the excited wave fields, we obtain a deterministic equation governing the

evolution of the ensemble average enstrophy covariance matrix C ¼ <zz{>:

dC

dt
¼ ACþ CAy þ eQ (6)

where Q ¼ FF{. Under an ergodic assumption, the ensemble average of the eddy

vorticity fluxes is equal to the azimuthal mean vorticity fluxes and the vortex

therefore evolves as:

dV

dt
¼ M� mV ¼ �m

2
Im D�1C

� �� mV (7)

Equations (6), (7) form a deterministic, autonomous, nonlinear system for the

evolution of the mean vortex under the influence of its consistent field of VRW. The

fixed points VE and CE, if they exist, define statistical equilibria in the presence of

an eddy field with covariance CE. The stability of the VRW-vortex equilibria VE

and CE can then be determined by considering the evolution of small perturbations

dV, dC about the equilibrium. Because of the operator Im in (6), we must write

separate equations for the evolution of the real, dCR, and imaginary part, dCI, of the

covariance. The resulting stability equations for the evolution of dV, dCR, dCI can

be written in the form:

d

dt

vecðdCRÞ
vecðdCIÞ

dV

2
4

3
5 ¼ L

vecðdCRÞ
vecðdCIÞ

dV

2
4

3
5 (8)

where vec is the vector representation of a matrix obtained by stacking sequentially

the columns of a matrix on top of each other. The structural stability operator L

determines the stability of the VRW-vortex equilibria.

3 Structural Instability for an Equilibrium with No

Mean Vortex

The state with VE ¼ 0 and CE ¼ eQ/2 m, is a fixed point of the system (5)–(6) and

the goal is to determine the stability of this statistical equilibrium state. It can be

readily shown that L has a large number of decaying eigenmodes with dV ¼ 0 that

do not modify the mean vortex. The remaining eigenvalues are given by:

ln ¼ � 3m
2

� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m2 þ 4s2n

q
; n ¼ 1; 2; :::;N (9)

where sn are the eigenvalues of matrix S that determines the sensitivity of the

vorticity fluxes to small changes in the vortex velocity S ¼ ∂M/∂V. As a result, the
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state with no mean vortex becomes unstable and a vortex emerges and intensifies

only if the eigenvalues of S are positive, that is only if the VRW are organized by

the vortex perturbation in such a way to yield upgradient vorticity fluxes.

The sensitivity operator can be explicitly calculated in terms ofQ, R and D and is

given as the sum of two commuting operators S ¼ Sad � Svg. The first operator, Sad,

determines the sensitivity of the fluxes to changes in the advection of the vorticity of

VRW, and the second operator, Svg, determines the sensitivity of the fluxes to

changes in the advection of the mean vorticity gradient by the VRW. The eigenvalues

of Sad, Svg were numerically calculated and were both found to be positive. Conse-

quently, advection of the eddy vorticity by the perturbed vortex yields upgradient

fluxes and is destabilizing, while advection of the perturbed mean vorticity gradient

by the VRW yields downgradient fluxes and has a stabilizing tendency. For m > 2,
the eigenvalues of Sad are larger, resulting in an overall destabilizing tendency.

Calculation of the eigenvalues ln revealed that another necessary condition for

instability, is that the input power e should be above a certain threshold, so that the

eddy forcing, as measured by sn can overcome the mean vortex dissipation. When the

two necessary conditions are met, there is an emerging vortex whose mean tangential

velocity grows exponentially. The maximum growth rate as a function of m is shown

in Fig. 1a for a given forcing and eddy dissipation and roughly saturates at a constant

value for large m, showing that small scale VRW are the most unstable. Figure 1b

shows the most unstable mean flow perturbation, form ¼ 4 andm ¼ 10. We observe

that as m increases, the core of the vortex moves away from r ¼ 0.

4 Conclusions

Axisymmetrization of VRW has been proposed as a dynamical mechanism for the

intensification of a circular vortex. The VRW-circular vortex system is examined in

this work within the framework of SSST. In the context of SSST, the average VRW
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Fig. 1 (a) Maximum growth rate as a function of azimuthal wavenumber m. (b) The tangential

velocity of the most unstable eigenfunction for m ¼ 4 (solid line) and m ¼ 12 (dashed line). For
both panels, the power input is e ¼ 10�3, m ¼ 0.1 and l ¼ 40
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field and the circular vortex form a coupled system, in which the evolution of VRW

is obtained using a linear stochastic model and the resulting vorticity fluxes force

the mean vortex. Using SSST, the structural stability of a vortex with no velocity,

subjected to homogeneous stochastic excitation was examined. The eigenvalues of

the linear operator governing the evolution of mean vortex perturbations and the

associated VRW statistics around the equilibrium state were calculated. The struc-

tural stability was found to depend on the sensitivity of the vorticity fluxes to

changes in the vortex. Calculation of the eigenvalues of the sensitivity operator

revealed two mechanisms underlying the instability: shearing of VRW by the

vortex that is destabilizing, and advection of the mean vorticity gradient by the

VRW that is stabilizing. VRW with small (large) azimuthal scales were found to be

destabilizing (stabilizing) and a threshold for the amplitude of the excitation was

found, above which an infinitesimal vortex is intensified. The maximum growth

rate saturates for small azimuthal scales. It occurs for a vortex, whose core is at a

radial distance proportional to the azimuthal wavelength of the VRW.
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