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It has recently been recognized that the non-normality of the dynamical operator obtained by the
linearization of the equations of motion about the strongly sheared background flow plays a central
role in the dynamics of both fully developed turbulence and laminar/turbulent transition. This
advance has led to the development of a deterministic theory for the role of coherent structures in
shear turbulence as well as a stochastic theory for the maintenance of the turbulent state.
In this work the theory of stochastically forced non-normal dynamical systems is extended to
explore the possibility of controlling the transition process and of suppressing fully developed shear
turbulence. Modeling turbulence as a stochastically forced non-normal dynamical system allows a
great variety of control strategies to be explored and their physical mechanism understood. Two
distinct active control mechanisms have been found to produce suppression of turbulent energy by
up to 70%. A physical explanation of these effective control mechanisms is given and possible
applications are discussed. ©1996 American Institute of Physics.@S1070-6631~96!00405-2#

I. INTRODUCTION

Preventing the transition to turbulence of a laminar flow
and suppressing the variance of a turbulent flow, perhaps
with the ultimate goal of inducing relaminarization, are in
themselves problems of great theoretical and practical impor-
tance. In addition, understanding the physical mechanism of
turbulence and turbulent transition should lead either to
methods of control or to an explanation of why such control
is not possible; from this perspective the control problem is
seen as a test of physical theory. From the viewpoint of
practical engineering, a comprehensive theory of the transi-
tion process and of the maintenance of fully developed tur-
bulence that both implied new control mechanisms and pro-
vided a means of testing proposed mechanisms would be of
great utility, even if the result were to discourage the search
for, e.g., a passive compliant membrane that relaminarized
the turbulent boundary layer. Extensive attempts to reduce
drag in turbulent boundary layer flow by imposing a variety
of active and passive control measures have shown that in
the absence of applicable theory it is very unlikely that an
optimal method can be identified.1

The control problem is made more difficult by the fact
that there are no results available on the structure of the
domain of attraction of the laminar flow for subcritical Rey-
nolds numbers in shear flow~at least for Reynolds numbers
in excess of those for which the laminar solutions are uni-
versally attracting, i.e.R520.7 for Couette flow,R549.6 for
plane Poiseuille!. However, there is ample experimental evi-
dence that sufficiently small perturbations fail to induce tran-
sition, at least forR,105. This observation suggests that a
control strategy that adequately suppresses the perturbation
variance will succeed in maintaining the laminar flow. Un-
fortunately the exact degree of perturbation suppression

needed to keep the flow laminar is not known theoretically
~as such knowledge would be tantamount to knowing the
structure of the domain of attraction!. Because of this limi-
tation in our knowledge, proposed strategies can only be
verified by actual experiment or by direct numerical simula-
tion.

A widely accepted theory of transition envision expo-
nentially unstable two dimensional T–S waves growing as
exponential instabilities until falling victim to secondary
three-dimensional instabilities, which, in turn, give way to a
cascade of further instabilities with the ensemble of these
exponential instabilities supporting the turbulent state.2 Con-
trol strategies proceeding from this paradigm include at-
tempts to lower the growth rate of the primary unstable T–S
wave by using suction to change the velocity profile3 and by
altering the viscosity of the flow through heating or cooling
the surface,4 in addition to attempts to depress growth rates
using compliant boundaries1,5,6and direct active cancellation
of the T–S waves by introduction of antiphase
perturbations.7

The assumption that modal instabilities leading to tran-
sition are necessarily two dimensional apparently follows
from Squire’s theorem,8 which requires the maximally grow-
ing inviscid modal instability to be two dimensional and is
commonly interpreted to imply a similar restriction in vis-
cous flow. However, observation reveals an important role
for three-dimensional disturbances in transition and the per-
turbations exhibiting greatest growth can be shown to be
both nonmodal and three dimensional.9,10

While exponential instability theory provides a plausible
explanation for transition in which the unstable T–S waves
grow initially as modal waves and in which these unstable
waves can be addressed for the purposes of control by can-
cellation or by intervention to reduce their growth rates,
modal instability theory provides much less guidance toward
affecting control of fully developed turbulence for which a
useful correspondence between unstable modes and observed
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coherent structures has not been found. For this reason at-
tempts to effect control based on exponential instability
theory have been confined to delaying transition by suppress-
ing T–S waves in nonbypass transition.

Recently, an alternative theory has been advanced based
on the great potential of a subset of perturbations to increase
in energy by transient growth processes unrelated to the ex-
istence of exponential instabilities.9–15Moreover, this theory
of transient growth in non-normal dynamical systems has
recently been extended to provide a theory for the mainte-
nance of the turbulent state in which the growing subset of
perturbations that are replenished by spectral transfer in the
fully nonlinear system,16 are instead replenished by a param-
etrized stochastic forcing in the model.17,18

The problem of inhibiting transition is necessarily linear
if free-stream perturbations are constrained to be sufficiently
small, and in this limit the linear non-normal transient
growth mechanism necessarily underlies transition in flows
without robust exponential instabilities, including the canoni-
cal Couette, pipe Poiseuille, plane Poiseuille~below Rey-
nolds number 5772!, and exponentially stable boundary layer
flows—all of which exhibit bypass transition. In the case of
plane Poiseuille flow and Blasius flow at Reynolds numbers
for which unstable T–S waves exist, the growth rate of the
exponential instability is small compared with that of the
subset of rapidly growing three-dimensional perturbations,
so that even in these cases the unstable growth of T–S waves
is unlikely to be important, except under carefully controlled
experimental conditions designed to forestall bypass transi-
tion.

From the theoretical perspective of transient develop-
ment in non-normal dynamical systems, suppressing transi-
tion requires inhibiting the development of nonmodal pertur-
bations with the potential for growth. It is obvious that if the
entire perturbation field were observed and that if the control
were able to address the entire field, then complete cancella-
tion would be possible. It is not so obvious that observation
of a single variable at a cross-stream plane coupled with
control of a single variable at the surface would be sufficient
to suppress the growth of perturbations throughout the
boundary layer.

As is the case for inhibiting transition to turbulence, re-
ducing the variance in fully developed turbulence also re-
quires intervention to suppress the growing subset of coher-
ent structures. Again, it is not immediate that observation
and control, in which each is confined to a single variable at
a single cross-stream level, can be effective. The method that
will be used to study this problem is to construct a param-
etrized model of the turbulent flow by stochastically forcing
the associated non-normal dynamical system linearized
about the background shear flow followed by imposition of
control in this model. Because the coherent structures domi-
nating, the energetics of the turbulent state can be identified
with the dominant optimal perturbations arising from the
non-normal dynamical operator10,19 it follows that suppres-
sion of these variance producing structures in the linear pa-
rametrized turbulence model should at least provide guid-
ance in the choice of control strategies for fully turbulent
flow.

The stochastic model of turbulence we are using fails to
reproduce the full complexity of turbulence observed in
shear flow. This model cannot substitute for direct numerical
simulation of a turbulent flow, which can be expected to
provide a more realistic model of turbulence. However, for
the purposes of evaluating control strategies a turbulence
model need only provide an adequate approximation to the
development of the coherent structures primarily responsible
for the energetic interaction between the mean flow and the
perturbation field. Because the non-normal operator includes
this interaction while retaining the simplicity of a linear op-
erator it is the least complex turbulence model retaining the
essential physics underlying the maintenance of perturbation
variance.

Some advantages of the method of analyzing turbulence
control strategies outlined here are that it facilitates testing a
wide variety of mechanisms and provides physical insight
into their method of operation. Of great interest are simple
local reactive controls that do not require identification of a
wave and subsequent cancellation at a downstream point but
rather require only a rule specifying the local response in
some variable to an observation of another or perhaps the
same variable. Such controls could potentially be imple-
mented using a simple local feedback loop.

An example of such a feedback control in a fully non-
linear turbulent flow simulation has been described by Choi
et al.20 These authors observed the cross-stream normal ve-
locity at various distances from the wall and imposed an
equal normal velocity control at the wall. For an observing
distance measured in wall units ofy1510, they obtained a
30% suppression of mean drag, and in some instances suc-
ceeded in relaminarizing the flow. However, for other ob-
serving distances increases of variance were found. Compari-
son will be made between the results of Choiet al.20 and
predictions based on the control theory developed in this
work.

II. FORMULATION OF THE CONTROL PROBLEM

A. Implementing active boundary control in
the dynamical operator

Consider the evolution of small perturbations imposed
on a steady channel flow with streamwise (x) background
velocityU(y) varying only in the cross-stream direction (y).
Harmonic perturbations with streamwise wave numberk and
spanwise (z) wave numberl obey the linear equation:

df

dt
5Bf, ~1!

where the state variable isf5[ v̂,ĥ] T, in which v̂ is the
cross-stream perturbation velocity, andĥ5 i l û2 ikŵ is the
cross-stream perturbation vorticity~û,ŵ are the perturbation
streamwise and spanwise velocities, respectively!. The dy-
namical operator in~1! is obtained from the linearized
Navier–Stokes equations by eliminating the pressure field
using the continuity equation.21 The operator is given by

B5FL
C

0
S

G , ~2!
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with

L5D21~2 ikUD1 ikU91DD/R!, ~3a!

S 52 ikU1D/R, ~3b!

C52 i lU 8, ~3c!

in which the Laplacian operator is given byD[d2/dy22K2,
with K being the total horizontal wave number:K25k21 l 2.
Cross-stream derivatives of the mean fields are denoted with
a dash. The equations have been rendered nondimensional
with the maximum background velocity in the channel,U0,
and the channel half-width,L, so that the Reynolds number
is R[U0L/n; n denoting the kinematic viscosity. A well-
posed inversion of the Laplacian in~3a! requires incorporat-
ing the boundary conditions at the channel wallsy561.

The components of the dynamical operator~2! are the
Orr–Sommerfeld operator,L, the coupling operator be-
tween cross-stream velocity and vorticity,C , which corre-
sponds physically to the generation of cross-stream vorticity
by tilting of the mean spanwise vorticity; and the advection-
diffusion Squire operator,S . In the numerical calculations
that follow all continuous operators are approximated by fi-
nite differences, rendering the continuous dynamical system
finite dimensional. Accuracy is checked by doubling the
resolution of the discretization.

We choose to impose symmetric control at the channel
walls y561 in reaction to observations of a field variable at
Y1
ob5211Y0 and atY2

ob512Y0. By cross-stream velocity
control we mean that observations of the cross-stream veloc-
ity at Y1

ob,Y2
ob are used to impose a cross-stream velocity at

y561 according to

v̂~21!5Cv̂~Y1
ob!,

~4!
v̂~1!5Cv̂~Y2

ob!,

whereC is a complex control constant. Clearly, alternative
controls can be imposed in a similar manner.

The remaining boundary conditions for the case of active
specification of the cross-stream (v̂) velocity at the bound-
aries are the vanishing of the streamwise (û) and spanwise
velocity (ŵ) components, which requires at the walls

û52
i

K2 S l ĥ2k
dv̂
dyD50,

~5!

ŵ5
i

K2 S kĥ1 l
dv̂
dyD50.

Consequently, at the channel wall we have the following
boundary conditions:

dv̂
dyU

y561

50,
~6!

ĥ~61!50.

Note that the perturbation evolution equation~1! to-
gether with boundary conditions~4! and ~6! form a linear
system with homogeneous boundary conditions and that im-
position of feedback control constitutes a change in the
boundary conditions of the flow. Therefore the control action

cannot be understood using arguments about cancellation or
reinforcement of perturbations that exist in the unmanipu-
lated flow. Instead, suppression of turbulence occurs because
control parameters alter the boundary conditions so as to
constrain the perturbations to exhibit reduced growth com-
pared to that found with the standard boundary conditions in
the unmanipulated flow.

As an aid to interpreting the control action, we form the
perturbation energy equation,

dE

dt
5E

21

1

dySU duv
dy

2
1

R
~u Du1v Dv1w Dw! D

2pvuy511pvuy521 , ~7!

where the overbar denotes integration over a single period in
the horizontal (x,z) plane. The Reynolds stress is related to
the Fourier amplitudes byuv 5 1/2 Re(ûv̂* ), and the pertur-
bation kinetic energy is given by

E5
1

2 E
21

1

dy u21v21w2. ~8!

The first term on the rhs of~7! can be interpreted in the
integral sense as the rate of change of energy arising from
the local acceleration of the mean flow by divergence of the
perturbation Reynolds stress, the second term is the dissipa-
tion due to viscous diffusion, and the two boundary terms
represent energy injection at the boundaries, which may be
nonzero when a control action is applied. The pressure at the
wall is given by

p̂~61!5
ik

K2 U8~61!v̂~61!1
1

RK2
d3v̂
dy3U

y561

. ~9!

We will determine the magnitude and phase of the con-
trol C and the observation levelY0 that reduces the growth
of perturbations. Plane Poiseuille flow withU512y2 and a
Reynolds–Tiederman boundary layer flow are used for the
examples.

B. Estimating the growth of perturbations under
active boundary control

In order to proceed it is necessary to have a measure of
perturbation growth. We choose the perturbation energy
given in operator form by

E5f†Mf. ~10!

In ~10! f† is the Hermitian transpose off and the energy
metric is defined, for a cross-stream griddy, by

M5
dy

8K2 F2D 0

0 I G , ~11!

whereI is the identity andD is the finite difference approxi-
mation of the corresponding continuous operator, which has
been rendered invertible by incorporation of the boundary
conditions.

We transform ~1! into generalized velocity variables
c5M1/2 f so that the usualL2 norm corresponds to the
square root of the mean energy. Under this transformation a
perturbationc0 at t50 evolves to timet according to
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c t5eAtc0 , ~12!

in which the dynamical operator has been transformed to the
similarA5M1/2BM21/2.

The energy att is given byEt 5 c0
†eA

†teAtc0. The op-
timal perturbation9,11giving the maximum possible growth at
t is the eigenvector that corresponds to the greatest eigen-
value of eA

†teAt. Equivalently,14,15 this optimal growth is
given by the square of the spectral norm ofieAti , which is
equal to the maximum singular value ofeAt. This energy
growth is due to the non-normality of the evolution operator
~i.e.,AA†ÞA†A!, and has been recently demonstrated9–15

to obtain valuesO(R2). The transiently growing optimal per-
turbations can be identified with the characteristic coherent
structures~streaks near the wall, double rollers farther from
the wall!, which are responsible both for bypass transition
and for maintenance of the variance in turbulent flow.10,19

An alternative measure of growth at timet is the square
of the Frobenius norm ofeAt. This quadratic measure is
equal to the sum of the squares of the singular values of
eAt. This measure is proportional to the growth over an in-
terval t of the mean perturbation when all perturbations are
forced equally initially. The time integral of this measure is
proportional to the perturbation variance maintained in the
channel flow under white noise forcing, i.e. the accumulated
variance over an intervalt for unit forcing of each degree of
freedom is given by

^Et&5traceS E
0

t

eAteA
†t dtD , ~13!

where the brackets denote ensemble averaging. The steady-
state maintained variancêE`& is given for asymptotically
stable systems as the limit of~13! as t→`.

Due to the non-normality of the evolution operator, the
variance cannot be obtained by summing the responses of the
individual modes, as in a normal system, and indeed for all
stable non-normal dynamical systems,22

^E`&.(
i51

N
1

2~l i1l i* !
, ~14!

whereli are the eigenvalues ofA andN is the dimension of
the system. The sum on the rhs of~14! is the variance that
would result if the operatorA were a normal operator with
the same spectrum asA, in which case the maintained vari-
ance for unit forcing of each degree of freedom is well
known to be the sum of the inverse of twice the decay rates
of the individual modes.23

The maintained variance for asymptotically stable flows
is found by solving the Lyapunov equation for the correla-
tion matrix17 V`:

AV`1V`A†52I , ~15!

with Vi j
00 5 ^c ic j* & andI the identity matrix corresponding to

unitary forcing. The asymptotic variance can be identified
with the trace of the correlation matrix,̂E`&5trace~V`!.
Moreover, eigenalysis of the Hermitian and positive definite
correlation matrixV` yields the Empirical Orthogonal Func-
tions~EOF! decomposition of the variance. The first EOF for

the unmanipulated flow is shown in Fig. 1. Note that the
streaks are centered at a distance of approximatelyy50.5
from the walls.

The variance maintained by unbiased forcing in an un-
manipulated Poiseuille flow peaks at the roll axis~k50! and
has forR52000 a broad maximum atK5O(1), asshown in
Fig. 2. For large Reynolds number~R.1000!, the peak wave
number increases linearly with Reynolds number. Oblique
harmonic perturbations also build energetic streaks and
maintain substantial variance.17,18 Consequently, in our in-
vestigation of optimal control parameters we include oblique
perturbations.

FIG. 1. Contours of the streamwise velocity distribution in they2z plane
for the first EOF accounting for 63% of the total eddy energy. The pertur-
bations are rolls~k50! with total wave numberK5 l51. The mean flow is
Poiseuille and the Reynolds number isR52000. There is no control applied.
The plotted vectors are the projection of the velocity vector on they2z
plane. Note that the streaks are located aty50.5 ~in fully turbulent flows the
corresponding streaks are located at a distance of 20–30 wall units from the
boundaries!.

FIG. 2. Ensemble average energy^E& for roll perturbations~k50! as a
function of total wave numberK5 l .
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The stochastic theory of turbulence outlined above has
recently been applied to obtain the energy containing struc-
tures of turbulent boundary layers, and particularly to re-
cover the leading EOF of the turbulent boundary layer,
which consists of streaks near the walls with peak stream-
wise velocity at approximately 25 wall units and spanwise
spacing of 100 wall units. The same theory also reproduced
the observed frequency–wave number spectra. Because of
the universality of the dynamics producing coherent struc-
tures in shear flows, we expect that control strategies will
display a similar generality in fully turbulent flows.

Effective controls,C, are those that minimize

^EC
`&

^E0
`&
, ~16!

in the complexC plane, wherêE0
`& is the variance main-

tained under stochastic forcing with no control applied~C
50!. We investigate the magnitude of the variance suppres-
sion as a function of the amplitudeuCu and phaseQ of the
control for roll and oblique perturbations and for observation
at various distances from the wall,Y0. An effective control
must lead to robust suppression of both roll and oblique per-
turbations.

III. IN PHASE AND OUT OF PHASE CONTROL

We first constrain the control parameter to be real. The
variance suppression for in phase~C.0! and out of phase
control ~C,0! is shown in Figs. 3~a! and 3~b! for roll and a

FIG. 3. ~a! Suppression of variance of roll perturbations~k50, u590°! as a
function of the magnitude of the cross-stream velocity control at the walls
for various observation distancesY0 from the wall. Positive control values
correspond to in phase control, negative control values correspond to out of
phase control. The total wave number isK5 l51 and the Reynolds number
is R52000. ~b! Suppression of the variance of oblique perturbations@with
u560°, recallk5K cos(u)] as a function of the magnitude of the cross-
stream velocity control imposed at the walls for various observation dis-
tancesY0 from the wall. Positive control values correspond to in phase
control, negative control values correspond to out of phase control. The total
wave number isK5 l51 and the Reynolds number isR52000. The con-
tinuous line is for observation atY050.1, the dot–dashed line forY050.2,
and the dashed line forY050.3.

FIG. 4. ~a! The structure of the cross-stream velocity~real part continuous
line, imaginary part dashed line! for the most unstable mode~growth rate
0.015! with R5500, and for a perturbation withu50° and total wave num-
berK5k51. The control is out of phase and has unit amplitude. The ob-
servations are atY050.5. ~b! The associated energy conversions. The con-

tinuous line isUdu v/dy and the dashed line is the dissipation. The
boundary energy source is destabilizing and contribute to approximately half
of the energy delivered by the Reynolds stress.
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typical oblique perturbation.
As expected, in phase control leads for small control

amplitudes to increased variance, and in the vicinity ofC51
the flow becomes unstable. Remarkably, for higher ampli-
tudes and with observation levels sufficiently near the wall
robust variance suppression is found. This mechanism will
be referred to as overdriving suppression.

The instability in the vicinity ofuCu51 arises from the
diffusion term and the boundary conditiondv̂/dy50 at the
wall. This instability occurs in the absence of flow, as can be
readily checked by calculating the spectrum of the Orr–
Sommerfeld operator~3a! with U50, so that only the diffu-
sion term is present. Unlike shear instabilities, which are
stabilized for sufficiently small Reynolds numbers, this dif-
fusive instability can be shown by a scaling argument to
persist for all nonzero Reynolds numbers. For the fourth-
order Orr–Sommerfeld operator the diffusive instability van-
ishes for sufficiently large control amplitude. For second-
order diffusion operators, such as that govern heat
conduction, the instability can be shown to persist for all
control amplitudes larger than the threshold. It can be shown
that in phase control of these diffusive operators result in an
enhancement of variance in the parameter range in which
they are are asymptotically stable.

In contrast to the enhancement of variance resulting
from in phase control of the Orr–Sommerfeld operator with
U50, the presence of shear can lead to suppression of vari-
ance for this operator at sufficiently large Reynolds numbers
and large control amplitudes. This overdriving suppression is
a consequence of the non-normality of the advection term in
the Orr–Sommerfeld operator and cannot be understood as
arising from the diffusive term.

It can be seen from Figs. 3~a! and 3~b! that in phase
overdriving at an amplitudeC'2 leads to variance suppres-
sion of the order of 60%–70% when observations are made
at Y050.2 from the wall. This control robustly suppresses
the variance of both roll and oblique perturbations.

Out of phase control of roll perturbations leads to robust
reduction of variance with the suppression becoming more
effective the farther the observation level is located from the
controlled boundary~at least forY0,0.5!. Maximum sup-
pression requires amplitudesuCu.4. Greater observing dis-
tancesY0, not shown in Fig. 3~a!, lead to a minimum asso-
ciated with a 90% variance suppression for control
amplitudes uCu'1. Unfortunately, this promising control
strategy does not generalize to oblique perturbations, as is
evident in Fig. 3~b!, which shows the variance for a pertur-
bation with phase lines at an angleu560° to the spanwise
direction @k5K cos(u), l5K sin(u)]. For Y0.0.2 and with
out of phase control of amplitudeuCu'1, oblique perturba-
tions become unstable, leading to variance increase. This in-
stability appears at low Reynolds numbers@typically
R5O(500)# and analysis of the energetics of the instability
reveals that the control injects only a small amount of energy
while the predominant energy source is the down-gradient
Reynolds stress term. The most unstable perturbations occur
at u50, in agreement with predictions of Squire’s theorem.
The analysis of the most unstable 2-D perturbation~u50! at
R5500 with unit out of phase control amplitude and obser-
vation atY050.5 is shown in Fig. 4~a! and analysis of the
energetics is shown in Fig. 4~b!.

The direct numerical simulation experiments of Choi
et al.20 showed that out of phase control of unit amplitude
~C521! leads to drag reduction for observations at locations
less than 20 wall units and to drag increase for observations
at greater distances from the wall. The cause of this drag
increase is presumably inception of the instability described
above. To check this a stability calculation was performed on
the symmetric mean velocity profile proposed by Reynolds
and Tiederman:24

U~y!5E
21

y

dy
Ry

11nE~y!
, for yP@21,1#, ~17!

in which the variable eddy viscosity is given by

nE~y!5
$11@~1/3!kR~12y2!~112y2!~12e2~12uyu!R/A!#2%1/221

2
, ~18!

in terms of a von Ka´rmán constantk and a boundary thick-
ness parameterA that characterizes the thickness of the wall
region velocity variation in Van Driest’s wall law. This pro-
file reproduces the mean velocity of turbulent channel flows
for a wide range of Reynolds numbers. The Reynolds–
Tiederman velocity profile fork50.525,A537, and for a
Reynolds number~based now in the friction velocity! of
R5180 is shown in Fig. 5. The results of the stability analy-
sis of the Orr–Sommerfeld operator for this profile~shown in
Fig. 6! indicates that inception of the instability occurs for
observations located at 30 wall units~for this Reynolds num-
ber a wall unit is related to the nondimensional length by
y15180y so 30 wall units corresponds toy50.17!.

The calculations reported here and the experiments of
Choi et al.20 were carried out in a channel flow so that the
possibility remains that the instability occurring in the vicin-
ity of out of phase control~Q5180! would not occur in
boundary layer flows. To check this, a stability analysis was
performed on the one-sided Reynolds–Tiederman profile.
Although the instability occurs at a higher value of observa-
tion locations~for observations located at 40 wall units from
the boundary! it is qualitatively similar to that found in chan-
nel flow. The possibility of maintaining stability at higher
observation levels in boundary layer flows suggests that
greater suppression of turbulence could be achieved by out
of phase control in the boundary layer.
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IV. CONTROL OF ROLL PERTURBATIONS

We first consider control actions in which the boundary
response is in quadrature with the observation~Q5690°!.
For roll perturbations~u590°!, a robust suppression of vari-
ance as a function of the control amplitude is found for vari-
ous observation levelsY0,0.4 @Fig. 7~a!#. For Y050.4 the
variance suppression can reach 70%–80% for control ampli-
tudes uCu'4. For observation levelsY0.0.5 roll perturba-
tions show an increase in variance foru590° @Fig. 7~b!#.

Note the symmetry of response forQ590° andQ5270°.
Symmetry aboutQ5180° can be shown to be a general
property of roll perturbation control because the absence of
advection in the evolution equations leads to identical energy
growth for conjugate controls. Consequently, investigation
of control phases 0,Q,180° exhausts the possibilities.

Despite robust suppression of variance atQ590°, it can
be seen in Figs. 8~a! and 8~b! that the greatest suppression
for roll perturbations occurs atQ5180°, corresponding to
exactly out of phase control. Unfortunately, as we have seen,
this out of phase control fails to similarly suppress oblique
perturbations because of the existence of an unstable mode.
We show in the sequel thatQ'90° provides the best com-
promise.

FIG. 5. The Reynolds–Tiederman profile. The Reynolds number based on
the friction velocity isR5180.

FIG. 6. Growth rate of the most unstable wave as a function of streamwise
wave number for various observation distancesY0 from the wall for out of
phase control of unit magnitude~uCu51, Q5180°!. The mean flow is
Reynolds–Tiederman withR5180. The dashed line is for observations a
distance 20 wall units from the boundary~y50.11!, the continuous line is
for a distance of 30 wall units~y50.167!, and the dash–dotted line for
observation at 40 wall units~y50.22!. Growth rates are here nondimension-
alized byL/Ut , whereUt is the friction velocity.

FIG. 7. ~a! Suppression of variance for roll perturbations~k50, u590°! as
a function of the magnitude of the cross-stream velocity control at the walls
and for various observation distancesY0 from the wall. Positive controls
correspond to controls with phaseQ590°, negative controls correspond to
controls with phaseQ5270°. The total wave number isK5 l51 and
R52000.~b! Increase in variance for roll perturbations~k50, u590°! as a
function of the magnitude of the wall normal velocity control for various
observation distancesY050.7, 0.8, 0.9 from the wall. The bottom curve
corresponds toY050.7 and the top toY050.9. The phase of the control is
Q590°. The total wave number isK5 l51 andR52000.
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Understanding the response of roll perturbations to
boundary control turns out to be particularly simple. Con-
sider the initial development of a velocity field, which att50
is confined to a wall normal velocity perturbation
[0,v0(x,y,z),0], with v0(x,y,z) satisfying the boundary con-
ditions consistent with the control specified by~4!. The in-
viscid evolution, which provides a good initial approxima-
tion to the dynamics, satisfies the equations

]Dv
]t

50, ~19a!

]u

]t
52U8v, ~19b!

]h

]t
52U8

]v
]y

, ~19c!

which can be immediately integrated to give

v~x,y,z,t !5v0~x,y,z!, ~20a!

u~x,y,z,t !52v0~x,y,z!U8t. ~20b!

h~x,y,z,t !52
]v0~x,y,z!

]y
U8t. ~20c!

The fixed structure and linear growth in time of the
streamwise streaks is revealed by~20b!. The solution does
not translate in space and, consequently, control actions for
roll perturbations cannot induce superposition and a resulting
cancellation of the developing streak. Such superposition
cancellation can occur for oblique perturbations leading to
enhanced variance suppression. For pure roll disturbances
the problem of suppression becomes that of identifying the
control parameters that constrain the initial fieldv0(x,y,z) in
such a way that energy growth is reduced compared to that
obtained in the unmanipulated flow. The perturbation energy
growth at timet for harmonic perturbations is easily calcu-
lated from~20! to be

E~ t !

E~0!
511t2

*21
1 dy U82@dv̂0~y!/dy#2

*21
1 dy$K2v̂0

21@dv̂0~y!/dy#2%
. ~21!

The optimal control strategy obtained for controls specified
by C,Y0 is the the one that solves the variational problem:

MIN ~C! MAX ~g! S *21
1 dy U82~dg/dy!2

*21
1 dy@K2g21~dg/dy!2#

D , ~22!

for all adequately differentiable functionsg that satisfy
boundary conditions~4! and ~6!. Solution of this variational
problem by standard methods reproduces the variance sup-
pression curves shown in Figs. 8~a! and 8~b!

The first EOF for control amplitudeuCu54 and phase
Q590° and with observations at a distanceY050.4 from the
walls is shown in Fig. 9. It is evident that the constraint
imposed by the control leads to the development of a much
weaker doublet of opposing streaks.

FIG. 8. Suppression of variance for roll perturbations~k50, u590°!. Shown
are contours of̂ Ec

`&/^E0
`& as a function of the magnitude (uCu) and the

phase~Q! of the control. The total wave number isK5 l51 andR52000.
~a! For observations a distanceY050.4 from the walls;~b! for observations
a distanceY050.7 from the walls.

FIG. 9. Contours of streamwise velocity distribution in they2z plane for
the first EOF, which accounts for 52% of the total eddy energy. The pertur-
bations are rolls~k50! with total wave numberK5 l51. The control has
magnitudeuCu54 and phaseQ590°. The variance suppression is 80%. The
mean flow is Poiseuille and the Reynolds number isR52000. The plotted
vectors are proportional to the projection of the velocity vector on they2z
plane.
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V. CONTROL OF OBLIQUE PERTURBATIONS

We turn now to variance suppression for oblique pertur-
bations. A contour plot of the suppression of ensemble-
average perturbation energy as a function of the magnitude
and phase of the control is shown in Fig. 10~a! for observa-
tions located atY050.4 from the wall and in Fig. 10~b! for
observations located atY050.7 from the wall. Note that in
both cases robust suppression of the order of 60%–70% oc-
curs atQ590°. The out of phase and in phase controls are
not included in these graphs because they have already been
presented in Sec. III. We also have limited our investigation
to region 0,Q,180°, although now the advection operator
breaks the symmetry aboutQ5180°, because the instability
of oblique perturbations already evident atQ5180° extends
to higher values ofQ.

We have already seen that out of phase control sup-
presses variance optimally for streamwise roll perturbations.
However, even slightly oblique perturbations may become

unstable for out of phase controls, as can be seen from Fig.
11. Consequently, the most robust strategy is a compromise
with control phases in the neighborhood ofQ590°. We now
examine this control strategy in detail.

The suppression of variance forQ590° control for a
variety of oblique perturbations with observation atY050.4
is shown in Fig. 12. Note that oblique perturbations, unlike
their roll counterparts, exhibit a sharp suppression of vari-
ance as the control magnitude increases from zero. In order
to understand this behavior consider the stochastic frequency
response of the flow. This is obtained by solving for theFIG. 10. Suppression of variance as a function of the magnitude (uCu) and

phase~Q! of the control for oblique perturbations withu560° @k5uKu cos
~u!#. Shown are contours of^Ec

`&/^E0
`&. The total wave number isK51 and

the Reynolds number isR52000. ~a! For observations a distanceY050.4
from the walls;~b! for observations a distanceY050.7 from the walls.

FIG. 11. Suppression of variance as a function of the phase of the control
for uCu52 andY050.4 for various perturbations of increasing obliqueness.
The continuous curve is for roll perturbations~u50!. The dashed curve is
for an oblique perturbation withu580°. The dotted curve is for an oblique
perturbation withu560°. The dot–dashed curve is for an oblique perturba-
tion with u50°. The total wave number isuKu51 andR52000.

FIG. 12. Suppression of variance as a function of control magnitude for
control phaseQ590° andY050.4 for various perturbations of increasing
obliqueness:u590°, 60°, 45°. The total wave number isK51 andR52000.

1265Phys. Fluids, Vol. 8, No. 5, May 1996 B. F. Farrell and P. J. Ioannou

Downloaded¬05¬Oct¬2001¬to¬128.103.60.202.¬Redistribution¬subject¬to¬AIP¬license¬or¬copyright,¬see¬http://ojps.aip.org/phf/phfcr.jsp



frequency response of the evolution equation forced by white
noise.18 The ensemble-average energy is given by

^E`&5E
2`

`

dv trace@R†~v!R~v!#, ~23!

where the dagger denotes the Hermitian transpose and the
resolvent is defined as

R~v!5~ ivI2A!21. ~24!

The frequency response foru560° perturbations is shown in
Fig. 13 for the unmanipulated flow, and for controls with
uCu52 and control phasesQ50, 90. Also plotted is the
equivalent normal response calculated as the summation of
the residue of the poles of the resolvent, which would give
the variance for a normal operator with the same spectrum.
Note the profound effect of non-normality in maintaining
variance far in excess of what would be anticipated from the
rate of dissipation of the modes~this result can be shown to
be a necessary consequence of the non-normality of the
operator22!.

It is evident from Fig. 13 that the variance of the con-
trolled flow peaks at higher frequencies corresponding to a
shift of the streaks to the interior of the flow where the shear
is smaller.

Physically the variance reducing control action inhibits
the formation of streaks in the vicinity of the wall where high
shear would lead to substantial buildup of streak amplitude.
The evolution of the optimal perturbation that grows maxi-
mally in ten time units is shown in Figs. 14~a! and 14~b! for
the controlled and unmanipulated flow. The control bound-
ary condition induces a time varying cross-stream velocity
near the boundaries that inhibits the formation of the ener-
getic near wall streaks. We remark in passing that the most
effective cancellation of the near wall streaks by this mecha-
nism would have occurred for out of phase control if there
were no instabilities.

Analysis of energetics confirms that the energy growth
arising from the Reynolds stress is reduced in the controlled
flow @Figs. 15~a! and 15~b!#.

An implication of these results is that the rms amplitude
of the streamwise and cross-stream velocities in controlled
flows peak at greater distance from the wall. This can also be
seen to be the case in the numerical simulations presented by
Choi et al.20

VI. DISCUSSION AND CONCLUSIONS

In this work methods for controlling transition to turbu-
lence and suppressing fully developed turbulence have been
explored, making use of the theory of stochastically forced
non-normal systems. The parametrized turbulent state pro-
duced by stochastic forcing of the highly non-normal opera-
tor resulting from linearization about the background shear
provides a convenient model for testing control strategies. A
number of active controls were explored using this model
and physical mechanisms by which these controls operate
were identified.

This parametrized turbulence accurately models the co-
herent structures and the energetic interaction of the coherent
structures with the mean flow, which sustains the turbulent
state. In the form presented in this work this model does not
directly provide a theory for the dynamics of the inertial
subrange nor for the dynamics of the dissipation range and
we defer to extensive previous work under the rubric of iso-
tropic homogeneous turbulence theory that addresses the lat-
ter two dynamical regimes. We note in defense of this limi-
tation of our inquiry to the energy bearing scales that the
injection of energy mediated by coherent structures is neces-
sary in shear turbulence to supply energy to inertial subrange
and ultimately to the dissipation scales.

In the examples examined, the cross-stream velocity was
observed at a boundary parallel plane in the interior of the
flow, and the surface normal velocity was imposed as a con-
trol. Diagnosis of the energy input at the boundary reveals
that successful control requires input of energy into the fluid
implying that implementation of active control is necessary
to obtain turbulence suppression by the mechanisms exam-
ined. Examination of Reynolds stress distribution reveals
that successful controls reduce the net down-gradient mo-
mentum flux by the growing structures sufficiently, to not
only compensate for the energy input due to boundary forc-
ing but also to reduce the overall variance. Two mechanisms
by which reduction of Reynolds stress is accomplished were
identified. One effective means of suppressing perturbations
was referred to as overdriving because the effective normal
velocity was found to be of large amplitude and in phase
with the perturbation normal velocity. This in phase forcing
produced the expected destabilization at low driving ampli-
tude, but as the amplitude of the driving was increased the
phase of the perturbation was altered to produce decay and
suppression of as much as 70% of variance for observations
near the wall. The most effective general control resulted
from a higher amplitude normal velocity advanced in phase
by approximatelyQ590° compared to the perturbation
phase and for observations located near the center of the
streak location of the unmanipulated flow. This control also

FIG. 13. The energy spectrum produced by white noise forcing as a function
of phase speed. Curve 1 corresponds to the response of the unmanipulated
flow and the dotted curve is the equivalent normal response. Curve 2 cor-
responds to an in phase control~Q50! of magnitudeuCu52. Curve 3 cor-
responds to controluCu52 at a phase ofQ590° and the dot–dashed curve is
the equivalent normal response. The total wave number isK51 and
R52000.
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worked by altering the structure of the perturbation so that
the down-gradient Reynolds stress was reduced. Out of
phase control~Q5180°! was effective in reducing the vari-
ance of almost all perturbations. Unfortunately this promis-
ing control gives rise to an instability caused by the bound-
ary control. This instability that occurs for observations
0.3,Y0,0.7 limits the practical utility of this control.

Active control has sometimes been referred to as wave
cancellation, but this may be misleading because the control,
in fact, puts energy into the wave, but in such a way as to
modify its structure so that interaction with the mean flow
reduces the down-gradient Reynolds stress and in turn re-
duces the perturbation variance. A more insightful viewpoint
is to see the control as an alteration of the boundary condi-
tion that more tightly constrains the system and by this
means produces a reduction of variance.

Perhaps the most straightforward control to implement
would consist in observing the wall pressure and controlling

the wall normal velocity. Unfortunately, analysis of the ex-
pression for perturbation pressure fluctuations at the wall
@Eq. ~9!# reveals that the perturbation pressure itself is deter-
mined primarily by the wall normal velocity when the mean
shear is nonzero at the boundary@first rhs term of~9!#. It
follows that perturbation wall pressure in the presence of a
mean shear and a wall normal velocity cannot provide an
independent observation of disturbances in the interior. It
may be possible, however, to offset the observation of pres-
sure from the control either in space or in time to avoid this
difficulty.

Reduction of variance by as much as 70% is found for
boundary normal velocity control. Prior to transition from
laminar flow to turbulence the perturbation field can gener-
ally be accurately modeled by the linearized equations be-
cause of the smallness of the perturbations, so that the equa-
tions used in this work are justifieda priori. However, in the
case of fully developed turbulence, where the rms velocity is

FIG. 14. Evolution of the optimal oblique perturbation withu560° that leads to maximal energy growth in ten units of time for the controlled flow, with
uCu52, Q590°, andY050.3 and the unmanipulated flow. Compared to the unmanipulated flow there is a 60% variance suppression.~a! Contours of the
cross-stream velocity att50 for the unmanipulated flow.~b! Contours of the cross-stream velocity att510 for the unmanipulated flow.~c! Contours of the
cross-stream velocity att50 for the controlled flow.~d! Contours of the cross-stream velocity att510 for the controlled flow. The total wave number isK51
andR52000.
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of the order of 10% of the mean, linearization entails some
loss of accuracy. Nevertheless, we believe that the domi-
nance of the non-normal operator in determining the re-
sponse of a turbulent flow to both externally and internally
generated perturbations justifies the turbulence parametriza-
tion used in this work. Efforts are in progress to implement
these control strategies in a nonlinear numerical turbulence
simulation.
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