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Abstract. Current understanding of how chemical sources and sinks in the 
atmosphere interact with the physical processes of advection and diffusion to 
produce local and global distributions of constituents is based primarily on analysis 
of chemical models. One example of an application of chemical models which 
has important implications for global change is to the problem of determining 
sensitivity of chemical equilibria to changes in natural and anthropogenic sources. 
This sensitivity to perturbation is often summarized by quantities such as a mean 
lifetime of a chemical species estimated from reservoir turnover time or the decay 
rate of the least damped normal mode of the species obtained from eigenanalysis 
of the linear perturbation equations. However, the decay rate of the least damped 
normal mode or a mean lifetime does not comprehensively reveal the response of 
a system to perturbation. In this work, sensitivity to perturbations of chemical 
equilibria is assessed in a comprehensive manner through analysis of the system 
propagator. When chemical perturbations are measured using the proper linear 
norms, it is found that the greatest disturbance to chemical equilibrium is achieved 
by introducing a single chemical species at a single location, and that this optimal 
perturbation can be easily found by a single integration of the transpose of the 
dynamical system. Among other results are determination of species distributions 
produced by impulsive, constant, and stochastic forcing; release sites producing 
the greatest and least perturbation in a chosen constituent at another chosen site; 
and a critical assessment of chemical lifetime measures. These results are general 
and apply to any perturbation chemical model, including three-dimensional global 
models, provided the perturbations are su•ciently small that the perturbation 
dynamics are linear. 

1. Introduction 

Models commonly used to assess the impact of per- 
turbations to the chemical constituents of the atmos- 

phere consist of continuity equations in which the time 
derivatives of the number densities of chemical species 
at grid points are related by terms representing advec- 
tion, diffusion, sources, sinks, and reactions among the 
species. Given an initial state such a model can be 
integrated in time to obtain the species number densi- 
ties as a function of the spatial and temporal distrib- 
ution of sources. Although chemical equilibria are, in 
general, nonlinear, the response of the nonlinear equi- 
librium to sufficiently small perturbations is intrinsi- 
cally linear, and even if the expected perturbations are 
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large enough to require nonlinear terms in a comprehen- 
sive perturbation analysis, still a thorough understand- 
ing of the linear dynamics of small perturbations is a 
necessary foundation for this extension into the non- 
linear regime. Therefore we assume in this work that 
the model is linear in the perturbations or can be lin- 
earized about a representative equilibrium state. For 
a description of such models, see the work of Khalil 
and Rasmussen [1984], Chameides and Perdue [19971, 
and Prather [1996, 1997, 1998]. Prather showed that 
the evolution of chemical perturbations to stationary 
equilibrium states can be obtained by decomposing the 
perturbation into the natural modes (the eigenvectors) 
of the linear system and that the least damped natural 
mode is the pattern that eventually dominates the re- 
sponse to any initial perturbation. He also noted that 
this asymptotic response is often masked by the pres- 
ence of the other natural modes that are also excited by 
the initial perturbation and which interfere on superpo- 
sition, leading to transient excursions of chemical per- 
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turbations, a phenomenon ascribed to the "nonorthogo- 
nality" of the modes. In light of the insights proceeding 
from application of the method of modes, identification 
of the natural modes in atmospheric chemical transport 
models has been advanced as the preferred method for 
describing the complex evolution of chemical perturba- 
tions [Prather, 1998]. 

However, systematic analysis of perturbation dynam- 
ics in chemical systems immediately encounters an im- 
pediment in making precise the concept of orthogonality 
among the natural modes. The familiar dot product al- 
lows both defining an angle between vectors as well as 
associating a length to each vector, and if chemical per- 
turbations, described by the vector x, are measured by 
their euclidean length (otherwise called the L2 norm), 
then the concept of orthogonality among chemical per- 
turbations and among the normal modes of the system 
is definable and the transient growth of perturbations, 
in the L2 sense, can be related to the orthogonality of 
the modes. A perturbation imposed on a stable system 
with orthogonal eigenvectors necessarily decays as mea- 
sured in the L• norm at a rate faster than the decay rate 
of the least damped mode, and this limiting decay rate 
is approached asymptotically with time. (A system is 
stable if the real parts of its eigenvalues are negative.) 
For stable systems with nonorthogonal eigenvectors a 
perturbation measured in L• is not assured to decay at 
all times and may, in fact, increase for a period of time 
before eventually assuming its asymptotic decay rate, 
which is that of the least damped mode. 

However suggestive these L• measures may be, chem- 
ical perturbations can only be sensibly assessed with a 
measure based on the number of molecules, and while 
such linear measures (as opposed to quadratic, e.g., L• 
measures) associate length to vectors, they do not al- 
low definition of an angle between vectors. Neverthe- 
less, while the concept of orthogonality is lost in these 
measures, the concept of projection of a perturbation 
onto eigenvectors remains valid, and the evolution of 
the perturbation still can be viewed in terms of sum- 
mation over the evolving eigenvectors. 

In order to understand the implications of this dis- 
tinction between linear and quadratic measures, con- 
sider the abstract linear equation assumed to govern 
evolution of chemical constituents in a hypothetical 
chemical model: 

dx 
= Ax, (1) dt 

where A is a real matrix and x is a vector containing as 
its entries the abundance of the chemical constituents in 

the model collocated at grid points. Associated with A 
is the transpose matrix A T . There is an intimate rela- 
tion between the eigenvectors of these two matrices: the 
eigenvectors of A T arranged in rows form the projection 
matrix that determines the coefficients of projection of 
a perturbation on the eigenvectors of A. (If U are the 
eigenvectors of A arranged as columns, then the eigen- 
vectors of A T are (U-X) T A vector x can be written 

as x = U(U-Xx), where U-Xx is recognized as the co- 
efficients of projection of the vector on the eigenvectors. 
The matrix U- xT is called the bi-orthogonal matrix. If 
u is a specific eigenvector of A corresponding to a given 
column U, then its bi-orthogonal is the corresponding 
column of the bi-orthogonal matrix.) If the eigenvec- 
tors of A and A T are the same, then the two matrices 
commute; that is, AA T - AT A = 0, and the system 
matrix A is called normal, otherwise nonnormal. In 
the chemical literature, where discretization of linear 
operators usually results in a real matrix, nonnormal- 
ity of A can be expected when the 'matrix A exhibits 
asymmetry about the diagonal. (However, even for real 
matrices, nonnormality is not equivalent to asymmetry 
of the entries about the diagonal. Consider the orthog- 
onal matrices which are asymmetric but nevertheless 
have the same bi-orthogonal and eigenvector matrices.) 

Nonnormality of the system matrix A indicates that 
the eigenvalues and eigenvectors of the system may be 
illconditioned and highly sensitive to small perturba- 
tions in the parameters of the system [ Trefethen, 1991]. 
As a result, projection on the natural modes may be 
illconditioned unless the parameters of the system are 
known with great certainty. 

However, while nonnormality of the system identi- 
fies the potential for L2 growth, accurate assessment of 
growth in other measures, such as the linear measures 
appropriate in chemistry, must proceed from detailed 
calculation in the measure selected. This can be done 

by defining carefully the measure of chemical pertur- 
bations and then determining the maximum chemical 
perturbation that can be achieved at any time in this 
measure. This task is facilitated by shifting attention 
from natural modes to the propagator (introduced in 
the next paragraph), which can reveal directly the per- 
turbation dynamics of the system. 

The temporal evolution of an arbitrary system of fi- 
nite dimension can be expressed as 

x(t) - , (2) 

where •(t) is the propagator, which in the case of a 
time-independent system is the matrix exponential e At . 
(The matrix exponential cat is defined as cat = I + At 
+A2t2/2! + -... There are efficient algorithms available 
for direct evaluation of the matrix exponential that do 
not require prior eigenanalysis of A. We use a Pad• 
approximation routine with scaling and squaring de- 
scribed in chapter 11.3 of Golub and Van Loan [1996].) 

We wish to determine the initial perturbation pro- 
ducing the greatest perturbation growth over a speci- 
fied interval of time (this perturbation is called the op- 
timal perturbation). This initial perturbation can be 
obtained directly from analysis of the propagator, and 
it does not, in general, coincide with a particular mode 
of the system. 

The optimal growth over time t is given by the norm 
of the propagator II•(t)11, which is defined to be the 
maximum measure of x(t) over all initial unit pertur- 
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bations x(0) (the measures used at the initial and final 
times need not be the same). In the meteorological liter- 
ature a systematic theory has been developed for iden- 
tifying optimal perturbations in the L2 norm [_Farrell, 
1988; Farrell and Ioannou, 1996a,b], but a comparable 
theory has not been advanced for chemical perturba- 
tions. As discussed above, the theory developed in me- 
teorology can not be carried over directly to chemistry, 
because of the inherent distinction between the measure 

of perturbations in dynamical systems (the energy of 
perturbations), which is quadratic and associated with 
an L2 norm, and the measure in chemical systems (the 
number of molecules), which is linear. (There is a no- 
table exception: if we choose to measure the final per- 
turbations only at a specific location, then the linear 
measure gives the same values as are obtained with the 
L2 norm. In these cases the results available for analy- 
sis of nonnormal systems with L2 norms [Farrell and 
Ioannou, 1996a] are directly applicable.) It turns out, 
however, that the linearity of the appropriate measure 
in chemical systems is, in fact, an advantage that leads 
to a particularly efficient method for obtaining optimal 
initial conditions. In the sequel the appropriate mea- 
sure of chemical perturbations is introduced, and the 
theory for obtaining optimal perturbations to chemical 
systems is developed. 

In order to streamline the development we will limit 
the analysis to time-independent systems, for which the 
propagator is the matrix exponential (I)(t) = e At. The 
analysis can be carried over, with minor modifications, 
to time-dependent systems.( The system propagator for 
a time-dependent system can be obtained by forward 
integration of the identity matrix. We note that eige- 
nanalysis is not defined for time-dependent systems, so 
that methods of analysis based on eigenmodes can not 
be extended to apply to time-dependent systems.) 

A simple atmospheric chemical system consisting of 
the advection, diffusion, loss, and interaction of CHaBr 
and Bry in a one-dimensional atmospheric column is 
taken as an example (the example is based on the B1 
model of Prather [1977]). We apply to this system 
the methods of nonnormal analysis and obtain general 
properties of the solution including the response of the 
system to forcing applied impulsively, continuously, and 
stochastically distributed in space and time: the pertur- 
bations most effective in disturbing the chemical equi- 
librium and appropriate measures of timescale for this 
system. Before presenting the theory we describe the 
example chemical system. 

2. CHaBr/Bry Perturbation Dynamics 
The mixing ratios of a species, denoted Xi, satisfy 

the advection equation [Brasscur and Solomon, 1986; 
Andrews et al., 1987]: 

+ •.VXi = S, (3) 
ot 

where fi is the velocity field and $ denotes the net 
sources. Consider a model of the ascending branch of 
the Hadley circulation at the equator. Zonal homogene- 
ity and symmetry about the equator imply that the 
horizontal derivatives vanish. The advection equation 
that governs evolution of mixing ratios of the chemical 
constituents with height and time reduces under these 
assumptions to 

OXi 
Ot + w(z) Oz : S. (4) 

Using (4), evolution of number densities in the coupled 
CHaBr/Bry system satisfies the following equations: 

d 

dnCH3Br ---- -- w(z)N(z) •zz [nCH3Br/N(Z)] q- dt 

d { K(z)N(z) d } q- •ZZ •ZZ [ • C H 3 B r / N ( Z ) ] -- 
- + PCer, 

dnBr• _ d 
at -- - w(z)N(z) • [•Bry/N(z)] + 

+ •i(Z)•CH3Br- •2(Z) •Bry + 

+ • K(z)N(z) • [•Bry/N(Z)] ß (5b) 
Here z is the height, ni is the number density ( m -3) 
of species i, and N(z) is the atmospheric number den- 
sity (m-3). The source of CH3Br is PCHaBr (m -3 s-•), 
which may vary both in space and in time. The chem- 
istry is as in the Prather [1997] B1 model. The CHaBr 
is destroyed at a rate m•(z) by reacting with OH in 
the troposphere (z < 10 km) and by photolysis in the 
stratosphere. The bromine species, collectively denoted 
by Bry, are formed from the destruction of CH3Br and 
rained out at a rate m2(z) in the troposphere. The ver- 
tical distribution of m• (z) and m2(z) is shown in Figure 
la. The eddy diffusion coefficient is denoted by K. The 
first term on the right hand side of (5a) and (5b) repre- 
sents vertical advection by the mass-conserving velocity 
field. The distributions with height of the vertical veloc- 
ity w(z) and of the diffusion coefficient K(z) are shown 
in Figure lb. 

The continuity equations for the number density ten- 
dencies (equations (5a) and (5b)) are collocated at 
equally spaced levels in z, and the spatial differential 
operators are approximated with second-order differ- 
ence operators. The number of collocation points N 
is chosen such that the solutions are converged to the 
continuous system (typically 60 levels are adequate). 

Equations (5a) and (5b) are written in matrix form' 
dn 

: An + p, (6) 
dt 

where n is the column vector of the number densities in 

which the first N elements are the number densities of 

CH3Br in sequence from the ground to the top of the 
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Figure la. (left) Chemical loss rate of CH3Br as a function of height. The loss rate is constant 
in the troposphere at 2.166 x 10 -s s-•; above 10 km it increases with height as 6 x 10 -6 p-2, 
where p - 1000 x 10-z/•6 mbars is the pressure at height z (kilometers), and it is constant 
above p - i mbar. (right) Chemical loss rate of Bry: 2.315 x 10 -6 below 10 km owing to rain 
out, and zero elsewhere. Values are as in the work of Prather [1997]. 
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Figure lb. (left) Vertical velocity (m d -1) as a function of height (km). For z < 5, w - 60z, 
for 5 < z < 10, w - 300-54(z-5), and for z_> 10, w - 3011-(z-10)/42]. (right) 
Diffusion coefficient as a function of height: K'= 30 m 2 s -• for z < 12, K - 0.3 m 2 s -1 at 
z - 14 kin, and K increases as p14/p above 14 kin, where p is the atmospheric pressure and P14 
is its value at 14 km (as in the work of Prather [1997]). 
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stratosphere (taken at 52 km), and the last N elements 
are the corresponding Bry number densities. The source 
vector p is [P, 0] T, as no source of Bry is included. The 
matrix A has the form 

(All A12 ) A - A21 A22 ' (7) 
where all the submatrices are N x N; A11 is the matrix 
of the discretized differential operator 

d 1 

All -- - w(z)N(z) dz N(z) - Trix (Z) q- 

d (K(z)N(z)d 1 ) + ' (8) 
operating on nCHaBr; A12 is zero; A21 is the diagonal 
matrix with the values of ral(Z); and finally A22 is 

d 1 

- - - + 

d (K(z)N(z)d 1 ) +•zz dz N(z) ' (9) 
operating on nBr•. 

The state vector of the number densities at time t is 

given by 

n(t) -- e At n(0) + e A(t-s) p(s)ds, (10) 

where n(0) is the initial distribution of the chemical 
species. When all the eigenvalues of A,are stable, i.e., 
have negative real part, a well-defined steady state ex- 
ists which is independent of the initial distribution n(0). 
For the simple case in which the source is independent 
of time this steady state is 

fi -- - A -lp, (11) 

which can be converted into mixing ratios by multiply- 
ing n by the 2N diagonal matrix M with the following 
elements' 

•ij/Z(zi ) Mij - •ij/Z(zi-n) i,j-1,...,N (12) i,j -- N + 1,...,2N. 

The time development of perturbations about this mean 
state is determined by the free solution in (10). Be- 
cause A is time independent, the propagator (see equa- 
tion (2)) has the form of the matrix exponential, i.e., 
•(t) = e A•. 

3. Measures of Chemical Abundance 

In order to proceed with the study of perturbation 
growth, it is necessary to adopt a measure to quantify 
species abundances in the initial state and a measure to 
quantify species abundances at a later time. These two 
measures need not be the same. 

In many dynamical applications the appropriate mea- 
sure is the euclidean or L2 norm 

1/2 

n 2 n 2 Ilnll2 - Z /kz [ CH3Br(Z/)-} - Bru (Z/)] , 
i=l 

(13) 
which is arms measure: for chemical systems it is the 
euclidean length of the vector of species abundances at 
grid levels. Stability theory for nonnormal dynamical 
systems in the L2 norm is well developed [cf. Farrell 
and Ioannou, 1996a,b]. 

However, the L2 norm is not well suited for addressing 
questions arising in chemistry. For chemistry problems, 
physically appropriate perturbation measures are usu- 
ally linear in the number density or mixing ratios of the 
constituents. One such measure is what we will call the 

integral measure: 

N 

AzlZ WlinCH3Br(Zi)+ w2inBr.•,(zi)l , (14) 
i--1 

with w as a weighting factor. This measure is a weighted 
column abundance of the species. The weights can be 
chosen so that the abundances of chosen species at cho- 
sen locations contribute to the measure. An example 
application of (14) is to the measurement of pertur- 
bations in Br• mixing ratio at specified locations in 
the stratosphere which may be of interest for assess- 
ing ozone depletion potential. For this example, Wli 
are taken as zero and W2i are taken as nonzero only 
at the levels of interest for the assessment. Note that 

the integral measure is not a norm, because there exist 
nonzero perturbations for which the integral measure 
is zero. (A vector norm is a function f from R n to R 
that satisfies the following requirements: f(x) > 0 and 
f (x) : 0 if and only if x = 0, f (x + y) < f (x) + f (y), 
and f(c•x) = ]lf(x) for all vectors x, y, and all scalars 
c•.) 

It is convenient to introduce a weighting matrix W 
to define the most general linear integral measure of 
chemical perturbations: 

[n]w - Az I•-• y•wijnil, (15) 
i=1 j=l 

where W is the species measurement weighting matrix 
and N, is the total dimension of the system (in the 
example above N, - 2N and W is diagonal with ele- 
ments along the diagonal equal to the w values in (14)). 
When all species abundances contribute equally to the 
measure, W - I (where I is the identity) and the in- 
tegral measure will be denoted [hi, without reference to 
the weighting matrix. (Note that the identity integral 
measure of the vector Wn is equal to the W integral 

measure of n, i.e., [Wn] - [n]w. Asaresult, only 
the identity integral measure is needed: when a state n 
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is to be measured with weighting matrix W, it suffices 
to calculate the identity integral measure of Wn.) 

The linear measure with weighting matrix W is used 
to quantify abundances at a time t after the introduc- 
tion of the initial perturbation. While the final state is 
measured with the integral measure, which need not be 
a norm, it is not sensible to measure the initial state 
in the same manner. The reason is that the integral 
measure can assign zero measure to nonzero perturba- 
tions, because initial perturbations of both signs can 
be introduced which have zero integral measure. It is 
necessary to measure the initial perturbations with a 
norm, i.e., with a measure that will give positive mag- 
nitude to all nonzero perturbations. We will employ a 
norm consisting of a weighted sum of the absolute val- 
ues of mixing ratios (or number densities depending on 
context) defined as 

Ns Ns 

i--1 

which is the L1 norm of the weighted vector Wn. (The 
L1 norm of a vector is equal to the sum of the absolute 
value of its entries, i.e., I Inlll = Y•41 nil') 

It is common in chemistry problems for the solution 
fields to be of one sign for initial perturbations of one 
sign (which requires that the propagator matrix •(t) 
have all its elements of one sign). In these cases the 
integral measure given in (15) is equivalent to the L1 
norm, as negative perturbations can not arise if not 
introduced initially, so that the absolute value is redun- 
dant in (15). For example, the CH3Br/Bry system has 
a propagator with all positive elements for which the 
L1 norm is appropriate. 

4. Determining Optimal Growth 

Having fixed the measures with which to quantify 
chemical perturbations, we consider the initial pertur- 
bation that produces the greatest net change at time t 
(the proofs and details of the methods can be found in 
appendix A). The ratio of the abundances at time t to 
the initial abundance will be called the growth at time t. 
The maximization problem we consider is to determine 
the initial state n(0) of unit norm, i.e., IIn(0)lll - 1, 
producing the state of maximum norm at time t, i.e., 

max [n(t)] : max [wf •I' (t)n(0)l Iln(O)lll=l WS 11n(O)111=1 

: I wx(t)11 , (17) 

where W f is a measuring weighting matrix of the final 
state (FSW). The optimal growth in this case is denoted 
IIW½)11 in order to indicate that it depends on the 
propagator at the optimization time t and on the final 
weighting matrix W •. 

We may want to treat a more general optimization 
problem in which there is weighting imposed also on the 

initial states in order, for example, to emphasize certain 
chemical constituents more than others, or to emphasize 
initial perturbations in selected regions. This can be 
done by formulating the maximization problem of deter- 
mining the initial perturbation n(0) of unit norm that 
maximizes [Wf•(t)Win(0)], where W i is a weighting 
matrix of the initial state (ISW). By this means we con- 
sider all initial perturbations and transfer the biases in 
their relative importance to the weighting matrix W i. 
For example, in the CH3Br/Bry system we can allow 
initial perturbations only in CH3Br, in which case W i 
is the diagonal matrix WaiSij ( a = 1, 2), with Wli = 1, 
i=l, ... N, andw2i=0foralli. 

The initial perturbation producing the maximum per- 
turbation at time t, called the optimization time, is 
called the optimal perturbation, and the associated 
maximum response resulting at time t is called the 
evolved optimal, and its measure is called the optimal 
growth. The optimal growth at time t is defined as 

- max [WY •I, (t)Win(0)l (18) IIW(t)w11 iin(0)111= 1 ' 
where the notation maxlln(0)111= 1 denotes maximization 
over initial perturbations n(0) of unit norm and the op- 
timal growth is denoted as I I wy •(t) Will to indicate 
that it depends on the propagator at the optimization 
time t and on the final and initial state weighting ma- 
trices W f and W i. 

Remarkably, the optimal perturbation so defined con- 
sists of excitation of a single species at the level cor- 
responding to ,the column of greatest absolute sum of 
W y •(t) W i, and the optimal growth is this sum (ap- 
pendix A). In the continuous limit the optimal pertur- 
bation approaches a delta function of a single species at 
a specific level. This delta function subsequently evolves 
with time as the Green's function of the operator. A 
similar result is obtained if the final state is measured 

in the L1 norm, except in this case the optimal pertur- 
bation consists of excitation of a single species at the 
level corresponding to the column of W y •(t) W i with 
the greatest sum of the absolute values of its elements, 
and the optimal growth is this sum. 

The same magnitude of perturbation growth is ob- 
tained for the positive and the negative delta functions: 
in the first case we have identified the perturbation with 
growth of greatest positive measure, while in the second 
case we have identified the perturbation with growth of 
greatest negative measure. In general, the initial per- 
turbation producing the final perturbation of minimum 
magnitude in the integral measure is not a spatial delta 
function of a single species. However, the minimum 
growth in magnitude in the L1 norm is a delta function 
of a single species at the single location corresponding 
to the column of W f •I,(t) W i with minimum sum of 
the absolute value of its elements. We can exploit this 
simple result when minimum impact is sought in the 
integral measure even in cases when positivity of the 
unrestricted propagator is not assured, because it is of- 
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ten possible to choose an appropriate FSW to ensure 
positivity and allow the minimum to be identified with 
a delta function initial perturbation as the integral mea- 
sure then becomes the L1 norm. 

It is a remarkable property that if the propagator is 
known, then we can determine the optimal perturbation 
in the integral measure by determining the column of 
the propagator with the maximum absolute sum. While 
for small-dimensional examples, obtaining the propaga- 
tor with matrix manipulations is certainly possible, this 
is impossible in large global chemical models. The prop- 
agator could be obtained in that case by integrating for- 
ward the identity matrix, which requires a number of 
integrations equal to the dimensionality of the system. 
However, this is a numerically expensive procedure. In 
meteorology where L2 optimal perturbations are ob- 
tained routinely in the course of operational forecast- 
ing, this problem is solved by singular value decompo- 
sition using iterative techniques based on forward time 
integration of the model, followed by backward integra- 
tion of the adjoint model until a subset of optimaIs and 
evolved optimaIs has been found. Because of the linear- 
ity of the measure in chemical models, a great simplifi- 
cation occurs, and chemical optimal perturbations can 
be determined by a single integration of the transposed 
dynamical system. 

This result follows immediately from the observa- 
tion that the transposed dynamical system, with dy- 
namical operator A T, has as its propagator •(t) T, 
as (•gAt)T __• •gATt. Consider the initial condition 
n(0) = [1, 1,..., 1] T. This initial condition will evolve 
to 

fi(t) = •(t)Tn(0) , (19) 
which is a vector with entries the sums of the columns of 

ß (t). The entry of fi(t) with the maximum value deter- 
mines the optimal growth at time t. If this maximum 
value occurs at the kth entry of fi(t), then the opti- 
mal perturbation is the unit vector riop•, with entries 
(riop•)i = •iu. The evolved optimal is then obtained 
by forward integration to time t of the system with ini- 
tial condition riop•. Therefore, without obtaining the 
propagator we can determine the optimal perturbation 
with a single adjoint integration and the evolved opti- 
mal with one more integration of the system. 

If, now, we want to determine the perturbation that 
leads to the optimal growth IIW Wll, we con- 
sider the initial condition 

n(0) : (Wf) T [1,1,-..,1] T , (20) 

which we integrate forward by the transpose system A T 
to obtain 

fi(t) = •I,(t)•n(0) . (21) 

The maximum entry of (wi)Tfi(t) is the optimal growth. 
If the maximum occurs at the kth entry of (wi)Tfi(t), 
then the optimal perturbation is the unit vector riopt, 
with entries (nopt)i : 5ik. The evolved optimal is then 

obtained by forward integration to time t of the system 
with initial condition riopt. 

In the asymptotic limit t -• oc, all initial perturba- 
tions assume the structure of the least damped mode 
and decay at a rate given by the real part of the least 
damped mode eigenvalue. This suggests the problem 
of determining the initial perturbation which optimally 
excites the least damped mode and consequently pro- 
duces the greatest disturbance to the system as t 
In the integral measure it turns out that the initial per- 
turbation that optimally excites the least damped mode 
is a delta function of a single species located at the 
level corresponding to the maximum amplitude not of 
the mode itself but of its quite distinct bi-orthogonal 
(see section 1). The proof of this theorem is given in 
appendix B. The structure of the bi-orthogonal differs 
from that of the mode in nonnormal systems. The bi- 
orthogonal can be obtained either by inverting the ma- 
trix of the eigenvectors or by eigenanalysis of the trans- 
pose operator A T . 

Often it is required to maximize the integrated con- 
centration of a species at a chosen location after a pulsed 
emission. For example, the ozone depletion potential is 
given by the time integral of Bry concentration in the 
stratosphere [Prather, 1996, 1997]. It is thus required 
to obtain 

(/0 [ wf ½Aldt will- [I-WfA-lwill, (22) 

for some initial weighting W i and final weighting W f. 
The solution to this problem is to locate the pulse at 
a level corresponding to the column of W y A -1 W i 
with the maximum absolute sum. 

5. Example 

As an example, consider the CH3Br/Bry system. The 
eigenmodes of this system can be separated into two 
classes: modes that involve only Bry perturbations (the 
Br modes) and those that involve both CH3Br and Bry 
perturbations (the CH3Br modes) [Prather, 1997]. The 
least damped CH3Br mode with only diffusion (no ad- 
vection) is shown as curve 1 in Figure 2; it has a decay 
time of 2.1 years. Its bi-orthogonal (for calculation of 
the bi-orthogonal see section 1) consists of only CH3Br 
perturbation and is also shown in Figure 2 (curve 2). 
Optimal excitation in the integral measure of this least 
damped CH3Br mode is obtained by placing a CH3Br 
perturbation in number density at 19.4 km, where the 
bi-orthogonal reaches its maximum, which results in ap- 
proximately a twofold increase in amplitude of the mode 
over introduction of the mode itself as an initial pertur- 
bation. Advection reduces the decay times and shifts 
the maximum amplitude of the mode to higher altitudes 
while its bi-orthogonal is shifted toward the ground as 
can be shown in Figure 3 for the case of maximum ad- 
vection w - 300 m d -• in the midtroposphere and 
w = 30 m d -• in the stratosphere (see Figure lb). 
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Figure 2. (left) CH3Br number density. (right) Bry number density. Curve I shows the vertical 
structure of the least damped CH3Br mode for zero advection (decay time 2.1 years). Curve 
2 shows the bi-orthogonal of this mode which comprises only a CH3Br perturbation. Optimal 
excitation of the mode in the integral measure is achieved by placing unit CH3Br perturbation 
at 19.4 km where the bi-orthogonal has its maxi]num. The modes have been normalized to unity 
in L2. 

For this case the least damped CH3Br mode (curve 
1) has a decay time of 1.48 year. Its bi-orthogonal 
(curve 2) is again a perturbation in CH3Br alone. The 
optimal excitation is impulsive introduction of CH3Br 
at the ground, which leads to a factor 1.6 increase in 
the amplitude of the mode compared with the ampli- 
tude that would have been obtained if the mode itself 

were introduced initially. Examination of the structure 
of the bi-orthogonals in Figures 2 and 3 reveals that 
the least damped mode can be effectively excited by 
CH3Br perturbations in the stratosphere in the example 
with diffusion only (Figure 2) while inclusion of advec- 
tion in the dynamics renders CH3Br perturbations in 
the stratosphere totally ineffective in exciting the least 
damped mode (Figure 3). 

As an example of optimal excitation, we consider 
the problem of finding the initial perturbations with 
the greatest ozone depletion potential which requires a 
FSW that identifies the mixing ratio concentrations of 
Bry in the lower stratosphere. For that purpose a suit- 
able final state weighting is W y = P M, where M is 
the matrix (equation (12)) that converts number densi- 
ties into mixing ratios and P projects the final state to 
the Bry species at 20 km; that is, Pk! - 5l•5k! (no sum- 
mation), where c• is the index of Bry at the level of 20 
kin. We allow initial number density perturbations only 
in CH3Br, so the initial state weighting is W• l - 5kl for 
the CH3Br entries (k, 1 _• N) and zero otherwise. We 
normalize the initial CH3Br to correspond to the num- 
ber density that would result in a mixing ratio of 1 parts 

per trillion (ppt) over the first 2 km above the ground. 
The optimal growth at time t is given by the integral 
measure of the propagator IlWYeAtWill (see equation 
(18)), which because of positivity of the propagator is 
the same as its L1 norm which equals the greatest ab- 
solute column sum of the matrix WYeAtW i. 

The optimal mixing ratio of Bry at 20 km and the 
location of the initial CH3Br perturbation as a func- 
tion of time are shown in Figure 4 for the case in which 
both advection and diffusion are present. The evolu- 
tion of two optimal initial conditions is also shown: the 
optimal for 6 years and the optimal for 2 months. For 
large times (in this model for t > 5.5 years), optimal 
mixing ratios of Bry are obtained by placing the CH3Br 
perturbation at the ground. For intermediate times it 
is best to place the CH3Br perturbation at the top of 
the stratosphere, while for the shortest times the opti- 
mal is near the target level. The level of injection that 
would result in the least CH3Br response is also shown 
in figure 4. The maximum possible growth is called the 
global optimal, and it occurs at a time which will be 
referred to as a global optimal time. For the chosen 
parameters this is 1 year. Consequently, at least for a 
year following the introduction of a perturbation, decay 
time estimates based on the inverse of the decay rate of 
the least damped mode are not valid. In fact, for the 
chosen parameters the least damped mode decay rate 
(decay time of 1.48 years) is not obtained until 4 years 
after an impulsive excitation. 

The global optimal time decreases with increasing ad- 
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Figure 3. (left) CH3Br number density. (right) Bry number density. Curve 1 shows the vertical 
structure of the least damped CH3Br mode with advection. The decay time of the mode is 1.48 
years. Curve 2 shows the bi-orthogonal of this mode which comprises only a CH3Br perturba- 
tion. Optimal excitation of the mode in the integral measure is achieved by placing unit CH3Br 
perturbation at the ground where the bi-orthogonal has its maximum. The modes have been 
normalized to unity in L2. 
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Figure 4. (left) Optimal growth of Bry mixing ratio (parts per trillion (ppt)) at 20 km as a 
function of optimization time. Optimization time is defined as the time selected to calculate 
the maximum possible growth (the optimal growth) in the system as quantified by the selected 
measure of chemical perturbations, which is here the mixing ratio of Bru at 20 km. Only CHaBr 
initial perturbations are considered. The amount released at the ground over a grid interval Az 
is equivalent to 1 ppt over the first 2 km (4.8 x 1016 m-2). Both advection and diffusion are 
included. Dashed curve 1 shows the time evolution of the 2 month optimal perturbation. Dashed 
curve 2 shows the time evolution of the 6 year optimal perturbation, which is initially at the 
ground. (right) Height (kilometers) of the optimal CH3Br perturbation is shown as a function of 
optimization time (curve 1). Height (kilometers) of the initial perturbation in CH3Br that leads 
to the least response in Bry mixing ratio at 20 km is shown as a function of optimization time 
(curve 2). 
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Figure 5. (left) Optimal growth of Bry mixing ratio (ppt) at 20 km as a function of optimization 
time. Optimization time is defined as the time selected to calculate the maximum possible growth 
(the optimal growth) in the system as quantified by the selected measure of chemical perturbations 
which is here the mixing ratio of Bry at 20 km. Only CH3Br initial perturbations are considered. 
The amount released at the ground over a grid interval Az is equivalent to 1 ppt over the first 
2 km (4.8 x 1016 m-2). Only diffusion is included (no advection). (right) Height (kilometers) of 
the optimal CH3Br perturbation is shown as a function of optimization time (curve 1). Height 
(kilometers) of the initial perturbation in CHaBr that leads to the least response in Bry mixing 
ratio at 20 km is shown as a function of optimization time (curve 2). 

vection, while the qualitative features of the optimal 
excitation remain. The optimal growth and levels of 
optimal excitation for different optimizing times with 
no advection are shown in Figure 5. The optimal level 
for CH3Br perturbations is always aloft, while perturba- 
tions at the ground produce the minimal response. The 
global optimal time is about 2 years and the asymptotic 
decay time of 2.1 years is obtained after 5 years. Again, 
estimates of species lifetime based on the asymptotic 
decay of the least damped mode of the system are valid 
only after the transient buildup phase has ended, which 
in our example requires 4 years. 

6. Lifetimes 

Traditional methods for analyzing response of chemi- 
cal equilibria to perturbation proceed from the concept 
of a representative lifetime. If a chemical equilibrium 
concentration n(t) were governed by a scalar differential 
equation of the form 

dn 
: -an + p , (23) dt 

then an initial perturbation n(0) would decay back to- 
ward the equilibrium concentration p/o• as 

- P-, 

and a decay timescale rct = 1/a characterizing the 
return of the system to equilibrium is well founded. 
Also, the reservoir turnover time given by the steady 
state abundance n(oc) - p/c• divided by the forcing 
P, •-r : n(oc)/p: 1/c•, is equal to Td and is also well 
founded. However, if the system is multidimensional, 
then there are as many such timescales as the dimen- 
sion of the system, because each mode has an associated 
timescale given by the reciprocal of its damping rate. 

To further examine the concept of a representative 
lifetime, we first obtain a reservoir turnover time for 
our nonnormal system by solving the forced equation 

dn 
: An + p(t) , (25) dt 

for a time-varying forcing p(t) with mean p. The mean 
state forced response (appendix D) is 

fi -- -- A -1 • ß (26) 

If the forcing is confined to CH3Br at the ground level 
and the amplitude of the forcing is chosen to produce 10 
ppt at the ground at equilibrium, the resulting profile is 
as shown in Figure 6. The reservoir timescale is found 
by taking the ratio of the total abundance (m -3) to the 
input rate (m -3 s-1): 
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Figure 6. Mixing ratio maintained by a fluctuating source of CH3Br at the ground. The source 
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I111 (27> 

This timescale is sensitive to the location of the forcing 
and to the nonnormality of A (for an explanation, see 
appendix D). The result of moving the forcing is shown 
in Figure 7. The reservoir timescale does not accurately 
reflect either the decay rate of transient perturbations 
at short time or the asymptotic decay rate at long times. 

An alternative timescale is the relaxation timescale 
obtained after removal of the steady forcing maintain- 
ing the equilibrium state. This produces a continual 
variation of decay rates, implying decay times varying 
as 

dt , (28) 

finally approaching the decay time of the least damped 
mode. This timescale depends on time elapsed since re- 

of both species in the presence of advection are domi- 
nated by nonnormality while the number density evolu- 
tion of CH3Br in the diffusive case is essentially that of 
a normal system. The degree of nonnormality depends 
on the variable we choose to study. As an example, the 
relaxation timescales for mixing ratios in the purely dif- 
fusive case are compared in Figure 9 to the relaxation 
times for number density. It is clear that the timescales 
depend on the choice of variable and also that the dy- 
namics of mixing ratios have a greater degree of nonnor- 
mality than do the dynamics of number densities. The 
relaxation of CH3Br is determined by a highly nonnor- 
mal operator when the variable is mixing ratio while 
when the variable is number density the governing op- 
erator is essentially normal. As a result, the decay times 
for mixing ratio are initially greatly increased compared 
with the decay times for number density. However, if 
one waits long enough for the asymptotic regime to be 
obtained, then the relaxation timescale becomes the de- 
cay time of the least damped mode which is sometimes 

moval of the forcing, on the location of the forcing, and thought to be the sole fundamental timescale of the sys- 
on the nonnormality of the evolution operator through 
the condition number of A-1. An example for forcing of 
CH3Br at the ground is shown in Figure 8. Relaxation 
from the equilibrium state of a normal system proceeds 
with the instantaneous decay times monotonically in- 
creasing and asymptotically approaching the decay time 
of the least damped mode. Examination of Figure 9 re- 
veals that this is not the case for the evolution of either 

CH3Br or Bry in the advecting case and is true only for 

tom. 

A third timescale is obtained from observing the size 
of fluctuations in the system. The fluctuation vari- 
ance maintained by forcing CH3Br stochastically at the 
ground is shown in Figure 6 (appendix C). In analogy 
with a scalar equation, 

d• 
= -cm + 7•t, (29) 

relaxation of CH3Br in the purely diffusive case. This with •t as a white noise forcing with zero mean and unit 
reveals that the dynamics of number density evolution variance. The maintained variance is 
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Figure 8. Timescales for relaxation from the equilibrium produced by a constant CH3Br source 
at the ground. (left) Instantaneous decay rate of CH3Br expressed as a timescale as a function 
of time from removal of the source. Curve I shows relaxation timescales with only diffusion 
included. Curve 2 shows relaxation timescales with both advection and diffusion included. (right) 
Instantaneous decay rate of Bry expressed as a timescale as a function of time from removal of 
the source. Curve 1 shows instantaneous decay rates with only diffusion included. Curve 2 shows 
instantaneous decay rates with both advection and diffusion included. In all cases the decay time 
approaches that of the least damped mode for large t, but for an interval of time of approximately 
5 years after removal of the source, the decay time differs substantially from that of the least 
damped mode. 
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contrast between two cases. Curve 1 shows the instantaneous decay time of number density as 
a function of time from removal of the source. (left) CH3Br. (right) Bry. Curve 2 shows the 
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<•2> - 23' (30) 
from which the timescale 

ry -- .),2 (31) 
can be estimated. For our example the mean mixing 
ratio variance in the troposphere together with the forc- 
ing at the ground yield from (31) a timescale of 25 
days. This estimated timescale is short because white 
noise forcing projects substantially on modes which are 
damped more rapidly than the modes primarily excited 
by the zero-frequency mean forcing. This frequency de- 
pendence of the timescale can be examined further by 
Fourier analysis of the perturbation version of (25)' 

dn t 
= An' + p'(/), (32) dt 

where p'(/) - p(/) - •; with transformed variable 

I nt(t)e_i•td t (33) oo ' 
the response at frequency co for the transformed forc- 
ings, 

I p'(t)e •(co) - • oo - dr, (34) 
weighted by W i can be expressed as 

- w (35) 

in terms of the resolvent: 

R = (icoI- A) -• , (36) 

where I is the identity. In analogy with (21) we can 
define a damping time as a function of frequency to be 
the ratio of the total abundance (m -3) to the input rate 
(m -3 s-1). For sinusoidal forcing at frequency co this 
timescale is 

l] a()II1 (37) 

At zero frequency this damping time is identical to the 
reservoir turnover time, but the damping time dramat- 
ically decreases with increasing frequency as shown in 
Figure 10. Consequently, timescales based on reservoir 
turnover time overestimate the persistence of perturba- 
tions associated with small temporal scale which have 
high frequency components in their Fourier representa- 
tion. 

When all frequencies are excited equally as would be 
the case for uncorrelated white noise forcing of unit vari- 

ance, i.e., < 13i(co•) /3j(co2) > - (•ij (•(col- co2)/27r, 
the mean ensemble response variance weighted by W y , 
fi = Wfn, is 

1 F(co) dco (38) 

in which the power spectrum is given by 

F(co) = trace (W f R W i W iT R f wfT), (39) 
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Figure 10. The damping time of troposphere-averaged CH3Br number density (years) as a 
function of the frequency of the forcing of CH3Br at the ground (cycles per year). Dashed curve 
shows damping time with only diffusion included. Continuous curve shows damping time with 
both advection and diffusion included. 

where I denotes the hermitian transpose and • ifil2 • 
denotes the stationary ensemble variance. For forcing 
at the ground the power spectrum of mean CH3Br mix- 
ing ratio variance over the troposphere (0- 10 km) is 
shown in Figure 11 for forcing fluctuations with stan- 
dard deviation 1 ppt per 12 min, as was used in the 
example shown in Figure 6. 

7. Conclusions 

A central problem in chemical dynamics is to de- 
termine the response of chemical equilibria to pertur- 
bation. This problem arises, for instance, in connec- 
tion with assessing the impact of natural or anthro- 
pogenic sources. Traditional methods for addressing 
this problem include estimation of lifetimes from reser- 
voir turnover times at equilibrium and calculation of 
modal decay rates. However, these methods may not 
be adequate to comprehensively analyze the response of 
chemical equilibria to perturbation particularly in cases 
in which these systems are nonnormal. Properties of the 
solutions of nonnormal systems are most effectively re- 
vealed by analysis of the system propagator. Methods 
based on the system propagator generalize directly to 
time-dependent problems while methods based on eige- 
nanalysis do not generalize, because eigenmodes are not 
defined for time-varying systems. Among the general 
properties obtained using the methods of nonnormal 
system analysis which were illustrated using a model 
system in this work are bounds on optimal growth in 

the L• norm (sum of the absolute values of concentra- 
tions) and integral measure (absolute value of the sum 
of concentrations), the resulting growth as a function of 
time, the perturbation producing the optimal growth, 
the time period after which asymptotic decay rates are 
obtained, the response of the system to stochastic forc- 
ing applied impulsively and continually, and measures 
of timescales. 

Because the perturbation chemical equilibrium sys- 
tem is linear and the appropriate measures are also lin- 
ear, the optimal perturbation is a delta function cor- 
responding to the introduction of a disturbance in the 
concentration of a single species at a single spatial lo- 
cation. At least conceptually, this greatly simplifies the 
problem of determining the optimal, because only a 
number of points equal to the dimension of the sys- 
tem are candidate optimaIs, while to determine the op- 
timal in the L2 norm, which is nonzero at all levels, 
it is. necessary to search all vectors n in R N satisfying 
[[n[12 = 1, where N is the dimension of the system, 
which is a far wider space of candidate optimaIs. Re- 
markably, in the linear measures appropriate for chem- 
istry a far greater simplification is possible: the optimal 
can be determined by inspection of the components of 
a single vector obtained from integration of the trans- 
posed system matrix. 

The optimal excitation of a mode was found to be a 
delta function at the location corresponding to the max- 
imum absolute value of the bi-orthogonal of the mode 
rather than of the mode itself. If the mode excited is 
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Figure 11. Power spectrum of CHaBr mixing ratio variance averaged over the troposphere 
(0- 10 km) resulting from white noise forcing of CHaBr at the ground. The frequencies shown 
correspond to periods longer than a day. The peak response occurs for stationary forcing, and 
the response falls off rapidly with increasing frequency. Vertical advection is included. 

the least damped mode, this corresponds to excitation 
of the most persistent perturbation. The excitation of 
the mode by placing a delta function initial concentra- 
tion at the location where the absolute value of the bi- 
orthogonal is maximum leads to excitation of the mode 
at an amplitude which may far exceed the magnitude 
that would have been obtained if the mode itself were 
introduced initially (in the simple CH3/Bry example 
this led to a twofold increase of the amplitude of the 
least damped mode). 

A single timescale for perturbations to a chemical 
equilibrium system with more than one degree of free- 
dom does not exist, and only in the case that a single 
mode is excited is a single timescale obtained, and the 
timescale associated with the decay rate of the least 
damped mode is appropriate only in the asymptotic 
limit, assuming that a spectrum of modes is excited. 
Timescales based on reservoir turnover times and on re- 
laxation from equilibrium depend on the spatial distri- 
bution of the species at equilibrium and the nonnormal- 
ity of the system matrix. Moreover, reservoir timescales 
and timescales based on relaxation from equilibrium de- 
pend on the nonnormality of the operator, which in turn 
depends on the variable chosen and the measure used. 
Timescales obtained from observations of fluctuation 
variance require knowledge of the spatial distribution 
of the forcing and are, in general, short compared to 
the reservoir and relaxation from equilibrium timescales 
due to the excitation of highly damped high-frequency 
perturbations. 

Appendix A' Optimal Growth and 
Optimal Perturbations in the 
Integral Measure 

Consider the N x N propagator matrix •(t) and a 
vector of number densities n = E/N--1 'Yi e i where 
e i is the canonical basis column vector with elements 

i __ •ij and Ei=I ]"/i[ •- I so that ]ln]11 -- I We ej • ß 
have 

N N 

i--1 j--1 

N N 

j--1 i--1 

max Z •)ij (t) , (A1) 
J i--1 

where the last inequality follows from the fact that each 
[ffi[ •_ 1 and the maximum sum over j corresponds to 
the column of •(t) with maximum absolute sum. The 

maximum value of [(I)(t)n] over all unit vectors n is 
attained for the canonical basis vector n = eJ, where j 
is the column of (I)(t) with the maximum absolute sum. 
We have proven that the optimal growth in the inte- 
gral measure of the propagator, I[•(t)[[, is the largest 
absolute column sum of (I)(t) and that the optimal vec- 
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tor producing this growth is the canonical basis vector 
corresponding to this column. 

Similar results hold if instead of the integral mea- 
sure, we consider the L1 norm. The maximum value 
of [[(I)(t)n[[1 over vectors n of unit norm is attained for 
the canonical basis vector n - e j, where j is the col- 
umn of (I)(t) with the maximum sum of the absolute 
values of its elements. Additionally, the perturbation 
producing the minimal disturbance in L1 (although not 
necessarily in integral measure) is a canonical basis vec- 
tor corresponding to the minimum column sum of the 
absolute values of the propagator. 

This theorem permits a rapid search for the optimal 
growth and its optimal excitation. It is only required to 
determine the column of the propagator with maximum 
absolute sum. The optimal perturbation will be a unit 
perturbation at the corresponding level. 

Although linear measures are often most appropriate 
for measuring chemical perturbations, in order to fix 
ideas it is useful first to consider the case in which the 

chosen perturbation measure is the L2 norm. Then the 
optimal growth at time t is the norm of the weighted 
propagator initial perturbations of unit euclidean mag- 
nitude: 

IlWf w11. - max IlWf . (A2) 

Optimal growth at • in the L2 norm is found by singular- 
value decomposition of the propagator wfcAtw i, and 
by this means a complete set of orthogonal perturba- 
tions is obtained, which can be ordered according to 
growth [Farrell and Ioannou, 1996a]. Analysis of tran- 
sient growth in the integral measure appropriate for 
chemistry is less complete than that based on the L2 
norm, because this measure is not derived from an in- 
ner product, and consequently there is no associated 
concept of orthogonality by which to separate pertur- 
bations so that the perturbations can be ordered in con- 
tribution to the vector norm. 

The results on the optimal perturbation in the inte- 
gral norm can be illustrated and related to the familiar 
properties of the L•. norm by considering the action on 
unit vectors of the model 2 x 2 propagator: 

(I)(•) - ( -1 -2) (A3) 4 4 ' 

In the L•. norm the locus of the initial vectors of unit 
norm [[n[[•. = 1 is a unit circle in the (nx,n2) plane 
which is distorted into an ellipse by the action of the 
propagator matrix as illustrated in Figure 12. The 
length of the major semi-axis of this ellipse OB / gives 
the optimal growth, and the vector OB that is mapped 
to it is the optimal vector producing this growth. For 
this specific example the L2 norm of the matrix is 6.05. 

Consider now the unit vectors in the L x norm. The 

locus of initial vectors of unit norm [In[Ix - 1 is the 
inscribed square which intersects the unit circle at the 
coordinate axes. This square is distorted into a paral- 

I 

-2 0 2 4 

Figure 12. The result of applying the model 2 x 2 
propagator (equation (A3)) to unit vectors in L2 (the 
circle) and to unit vectors in L1 (inscribed square). 
The optimal vector in L2 is OB, which is mapped to 
the evolved optimal coincident with the semimajor axis 
OB • of length 6.05, leading to I1•11• = 6.05. The 
optimal vector in L1 is OC, and the L1 norm of the 
evolved optimal, OC', is IIlll - 6. The optimal vec- 
tor in integral measure is OA, and it is mapped to the 
evolved optimal OA' with integral measure [•] = 3. 

lelogram inscribed in the ellipse by the action of the 
propagator. We know from the above theorem that 
the optimal perturbation is located at one of the ver- 
tices of the inscribed square. A check of the vertices of 
the inscribed square reveals that the vertex C, which 
is mapped to C •, is the optimal perturbation in the 
L1 norm, and the optimal growth is the L1 norm of 
OC', which is IIOC'111 = 6. The maximum growth in 
the integral measure is also achieved at one of the ver- 
tices, and a check of the vertices of the inscribed square 
reveals that this optimal perturbation is A, which is 
mapped to A'. The optimal growth is the integral mea- 
sure of OA', which is [OA'] -- 3. Because the elements 
of the propagator (I) have mixed signs the maximum 
absolute sum of the columns (the integral measure) dif- 
fers from the sum of the absolute values of the columns 

(the L1 norm). Note that in the L1 norm and in the 
integral measure a vertex of the unit simplex is the op- 
timal perturbation, and in the L1 norm a vertex is also 
the perturbation resulting in minimal growth at time t. 
However, this property that the perturbation of mini- 
mal growth is at a vertex is not shared by the integral 
measure in which because of cancelation that may occur 
if the propagator has entries of both signs, a perturba- 
tion with zero growth can exist which is not associated 
with a vertex of the unit simplex. 
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Appendix B: Optimal Lx Excitations 
in the Asymptotic Limits 

Consider first the t -• c• limit. We amicipate that 
every perturbation will assume the structure of the least 
damped mode in this limit. A similarity transformation 
diagonalizes the propagator: e At = U D U -1, where 
U is the column matrix of the eigenvectors ordered ac- 
cording to Re(A), where A is the eigenvalue of the cor- 
responding eigenvector, and D is the diagonal matrix 
with elements e xt . For large time the first diagonal el- 
ement of D will exponentially dominate, so that with 
exponential accuracy we obtain 

N 

[]•At[[_ •Re(A1)t •.•X [[ (U-1)lj [] IZ (B1) 
i 

where X• is the eigenvalue of the least damped mode, 
Ui• denotes an element of the eigenvector of the least 
damped mode which we wish to optimally excite, and 

[(U-X) T] are the elements of its hi-orthogonal. The jl 

optimal excitation is seen to occur for a delta function at 
the location of the maximum absolute amplitude of the 
hi-orthogonal rather than at the maximum of the mode 
itself as might have been anticipated. This result con- 
trasts with the optimal excitation of the least damped 
mode in the L2 norm. In that case the hi-orthogonal 
of the least damped mode itself optimally excites the 
mode [Farrell and Ioannou, 1996a]. If eigenanalysis of 
A is not feasible, the optimal excitation of the least 
damped mode can be identified as the dominant vector 
in the limit t -• c• in the transposed system, which is 
the hi-orthogonal of the least damped mode. 

In the t -• 0 limit the appropriate problem is to de- 
termine the initial perturbation, n, of unit L• norm 
that leads to maximum instantaneous growth rate in 
the integral measure. This is given by 

g = lim IleAtll- 1 = lim IlI+ Atll - 1 (B2) 
t•O t t•O t 

the second equality is obtained by Taylor expanding the 
propagator. The maximum growth rate is, in general, 
the maximum absolute sum obtained by a column of A, 
and the perturbation that produces it is the canonical 
basis vector at the column of A corresponding to this 
maximum column sum (note that this is different from 
]lAlll, which is the maximum obtained by a sum of 
absolute values of the columns of A). 

We may also obtain the perturbation that instanta- 
neously grows most rapidly in the L1 norm. An analysis 
similar to that above leads to the result that this max- 

imum growth rate is the maximum sum of the columns 
of the matrix with elements 

cij - { IAjl i •: j (B3) Aij i - j, 

and the perturbation that produces it is the canonical 

basis vector that corresponds to the column of C with 
the maximum column sum (note that this is again dif- 
ferent from IIAII•, unless all elements of A are positive). 
In the L• norm we can also determine the perturbation 
that leads to the minimum instantaneous growth rate: 
this perturbation is corresponding to the column of C 
with minimum column sum of absolute values. 

Appendix C' Mean and Variance 
of the Statistical Steady State 

C1. Continual Stochastic Forcing 

Consider the response to continual stochastic forcing. 
Assuming hi(O) -- 0, the forced response at time t is 

hi(t) = •A(t-s) Wjk pk(s) ds (C1) 

where the propagator is e At, W is the structure matrix 
of the forcing, and the vector forcings are considered to 
be white noise in space and time, i.e., < p•(t)pt(s) 
5•5(t- s). The central limit theorem implies that the 
distribution of the evolved vector hi(t) approaches nor- 
mal with mean at time t: 

Q•ot -A(t-s) Wjk d$ ) Pk , (C2) hi(t) - 

which as t -• c• becomes 

- - (ca) 
The variance of ni (t) at each level can be obtained from 
the matrix 

C t = e A(t-s) W i W iT e Ar(t-s) ds, (C4) 

which satisfies the Lyapunov equation [Farrell and Ioan- 
non, 1996a] 

AC • + C •Ar = -W iw •r , (C5) 

asymptotically as t -+ 
is Ci•. Knowing the mean and the variance of ni per- 
mits calculation of all statistical moments. An equiva- 
lent alternative view proceeds from Fourier analysis of 

the dynamical system to obtain the stochastic frequency 
response [Farrell and Ioannou, 1996a]. 

C2. Response to Impulsive Introduction 
of an Ensemble of Initial Perturbations 

Consider now the expected growth of an ensemble 
of initial perturbations, n(0). The central limit theo- 
rem implies that the distribution of the evolved vector 

hi(t) - Y•.7= • •ij(t) nj(O) approaches normal with 
mean: 

N 

- (c6) 
j=l 

where •j(0) is the mean of the ensemble of the initial 
perturbations at the jth grid and •(t) is the propagator 
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at time t. The variance at each level i is given by 

N 

2 2 2 

(T i -- • •ij(t) < nj(0) >, (C7) 
j=l 

2 

where < nj (0) > are the variances of the initial pertur- 
bations. Knowing the mean and the variance of hi(t) 
permits calculation of the expected value of < Ini(t)l > 
in closed form: 

2a/2 + 

( •i(t) ) (C8) + •i(t) erf x/•cri ' 
and consequently the expected growth of an ensemble 
of initial conditions is given in the L1 norm by 

N 

< IIn(t)11 > - < Ini(t)l > ß (C9) 
i=1 

Appendix D: Effect of Nonnormality 
on Reservoir Turnover Time 

We show that the turnover time defined in (21) de- 
pends on the nonnormality of A. Consider the simple 
2 x 2 system matrix: 

A(t)- (-0.1 10 ) (D1) 0 -0.2 ' 

representing in a schematic form the processes of advec- 
tion and dissipation. This matrix is nonnormal and the 
reservoir turnover time for a source at the first grid is 
easily found to be 10, i.e., II-A-[1, 0lll -- 10, while 
for a source at the second grid the reservoir turnover 
time is 505, i.e., II- A-l[ 0, 1]rll - 505. The corre- 
sponding turnover times for the diagonal normal matrix 
with the same eigenvalues are 10 and 5. So two systems 
with the same decay rates of their natural modes pos- 
sesses vastly different reservoir turnover times. This 
demonstrates that the reservoir turnover times can be 

importantly affected by the nonnormality of A. 
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