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Emergence of Nonzonal Coherent Structures
N I K O L A O S A . B A K A S A N D P E T R O S J . I O A N N O U

27.1 INTRODUCTION

Atmospheric and oceanic turbulence is commonly observed to
be organized into spatially and temporally coherent structures
such as zonal jets and coherent vortices. A simple model that
retains the relevant dynamics is a barotropic flow on a β-plane
with turbulence sustained by random stirring. Numerical sim-
ulations of the stochastically forced barotropic vorticity equa-
tion on the surface of a rotating sphere or on a β-plane have
shown the coexistence of robust zonal jets and of large-scale
westward-propagating coherent structures that are referred to as
satellite modes (Danilov and Gurarie, 2004) or zonons (Suko-
riansky et al., 2008; Galperin et al., 2010). The emergence
of these coherent structures in barotropic turbulence also has
another feature. As the energy input of the stochastic forcing is
increased or dissipation is decreased, there is a sudden onset
of coherent zonal flows (Srinivasan and Young, 2012; Con-
stantinou et al., 2014a) and nonzonal coherent structures (Bakas
and Ioannou, 2013a). This argues that the emergence of coher-
ent structures in a homogeneous background of turbulence is a
bifurcation phenomenon.

An advantageous method to study such a phenomenon is
to adopt the perspective of statistical state dynamics of the
flow, rather than look into the dynamics of sample realiza-
tions of direct numerical simulations. This amounts to studying
the dynamics and stability of the statistical equilibria arising
in the turbulent flow, which are fixed points of the equations
governing the evolution of the flow statistics. This approach
is followed in the Stochastic Structural Stability Theory (S3T)
(Farrell and Ioannou, 2003) or second-order cumulant expan-
sion (CE2) (Marston et al., 2008). This theory is based on two
building blocks. The first is to do a Reynolds decomposition
of the dynamical variables into the sum of a mean value that
represents the coherent flow and fluctuations that represent the
turbulent eddies and then form the cumulants containing the
information on the mean values (first cumulant) and on the eddy
statistics (higher-order cumulants). The second building block
is to truncate the equations governing the evolution of the cumu-
lants at second order by either parameterizing the terms involv-
ing the third cumulant (Farrell and Ioannou, 1993a,b; DelSole
and Farrell, 1996; DelSole, 2004b) or setting the third cumu-
lant to zero (Marston et al., 2008; Tobias et al., 2011; Srini-
vasan and Young, 2012). Restriction of the dynamics to the
first two cumulants is equivalent to neglecting the eddy–eddy
interactions in the fully nonlinear dynamics and retaining only
the interaction between the eddies and the instantaneous mean

flow. While such a second-order closure might seem crude at
first sight, there is strong evidence to support it (Bouchet et al.,
2013).

Previous studies employing S3T have already addressed the
bifurcation from a homogeneous turbulent regime to a jet-
forming regime in barotropic β-plane turbulence and identi-
fied the emerging jet structures both numerically (Farrell and
Ioannou, 2007) and analytically (Bakas and Ioannou, 2011;
Srinivasan and Young, 2012) as linearly unstable modes to
the homogeneous turbulent state equilibrium. It has also been
shown that the resulting dynamical system for the evolu-
tion of the first two cumulants linearized around the homo-
geneous equilibrium possesses the mathematical structure of
the dynamical system of pattern formation (Parker and Krom-
mes, 2013). Comparison of the results of the stability anal-
ysis with direct numerical simulations have shown that the
structure of zonal flows that emerge in the nonlinear simula-
tions can be predicted by S3T (Srinivasan and Young, 2012;
Constantinou et al., 2014a). However, these research efforts
have assumed that the ensemble average employed in S3T
is equivalent to a zonal average, a simplification that treats
the nonzonal structures as incoherent and cannot address their
emergence and effect on the jet dynamics. In addition, the
eddy–mean flow dynamics underlying the S3T instability even
in the jet formation case that involve only the interactions of
small-scale waves with the large-scale coherent structures are
not clear.

So, the goals in this chapter are the following. The first is to
adopt a more general interpretation of the ensemble average, in
order to address the emergence of coherent nonzonal structures.
We adopt the more general interpretation that the ensemble
average is a Reynolds average over the fast turbulent motions
(Bernstein, 2009; Bernstein and Farrell, 2010). With this def-
inition of the ensemble mean, we obtain the statistical dyna-
mics of the interaction of the coarse-grained ensemble average
field, which can be zonal or nonzonal coherent structures repre-
sented by their vorticity, with the fine-grained incoherent field
represented by the vorticity second cumulant, and we revisit the
structural stability of the homogeneous equilibrium under this
assumption. The second goal is to study in detail the eddy–mean
flow dynamics underlying the S3T instability, focusing on the
example of jet formation. The third goal is to compare the char-
acteristics of the structures that emerge in S3T against nonlinear
simulations, even in highly nonlinear regimes that at first glance
present a challenging test for the restricted nonlinear dynamics
of S3T.
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27.2 FORMULATION OF S3T UNDER A
GENERALIZED AVERAGE

Consider a nondivergent barotropic flow on a β-plane with
cartesian coordinates x = (x, y). The velocity field, u = (u, v),
is given by (u, v) = (−∂yψ, ∂xψ), where ψ is the stream func-
tion. The relative vorticity ζ (x, y, t) = Δψ, evolves according to
the nonlinear (NL) equation

(∂t + u · ∇) ζ + βv = −rζ − νΔ2ζ + f e, (27.1)

where Δ = ∂2
xx + ∂

2
yy is the horizontal Laplacian, β is the gra-

dient of planetary vorticity, r is the coefficient of linear dis-
sipation that typically parameterizes Ekman drag in planetary
atmospheres and ν is the coefficient of hyperdiffusion that dissi-
pates enstrophy flowing into unresolved scales. The exogenous
forcing term f e, parameterizes processes such as small-scale
convection or baroclinic instability that are missing from the
barotropic dynamics, and is necessary to sustain turbulence.
We assume that f e is a temporally delta-correlated and spa-
tially homogeneous random stirring, injecting energy at a rate
ε and having a two-point, two-time correlation function of the
form〈

f e(x1, y1, t1) f e(x2, y2, t2)
〉
= δ(t2 − t1)Ξ(x1, x2, y1, y2),

(27.2)

where the brackets denote an ensemble average over the differ-
ent realizations of the forcing.

S3T describes the statistical dynamics of the first two same-
time cumulants of (27.1). The equations governing the evolu-
tion of the first two cumulants are obtained as follows. We
decompose the vorticity field into the averaged field, Z = T [ζ],
defined as a time average over an intermediate timescale and
deviations from the mean or eddies, ζ ′ = ζ − Z . The inter-
mediate timescale is larger than the timescale of the turbu-
lent motions but smaller than the timescale of the large-scale
motions. With this decomposition, we rewrite (27.1) as

(∂t + U · ∇) Z + βV = −∇ · T [u′ζ ′] − r Z − νΔ2 Z , (27.3)

where U = [U , V ] = [−∂yΨ, ∂xΨ] and u′ = [u′, v′] =
[−∂yψ ′, ∂xψ ′] are the mean and the eddy velocity fields respec-
tively. The mean vorticity is therefore forced by the divergence
of the mean vorticity fluxes. The eddy vorticity ζ ′ evolves
according to

(∂t + U · ∇) ζ ′ + (β + ∂yZ )v′ + u′∂xZ =

= −rζ ′ − νΔ2ζ ′ + f e + T [u′ · ∇ζ ′] − u′ · ∇ζ ′︸######################︷︷######################︸
f NL

, (27.4)

where f NL is the term involving the nonlinear interactions
among the turbulent eddies. A closed system for the statisti-
cal state dynamics is obtained by first neglecting the eddy–eddy
term f NL to obtain the quasi-linear system:

(∂t + U · ∇) Z + βV = −∇ · T [u′ζ ′] − r Z − νΔ2 Z , (27.5)

(∂t + U · ∇) ζ ′ + (β + ∂yZ )v′ + u′∂xZ = −rζ ′ − νΔ2ζ ′ + f e.
(27.6)

In order to obtain the statistical dynamics of the quasi-linear
system of (27.5) and (27.6) we adopt the general interpretation

that the ensemble average over the forcing realizations is equal
to the time average over the intermediate timescale (Bernstein,
2009; Bernstein and Farrell, 2010). Under this assumption, the
slowly varying mean flow Z is also the first cumulant of the
vorticity Z = 〈ζ〉, where the brackets denote the ensemble aver-
age. The time mean of the vorticity flux is equal to the ensemble
mean of the flux, T [u′ζ ′] = 〈u′ζ ′〉. The fluxes can be related
to the second cumulant C(x1, x2, t) ≡ 〈ζ ′(x1)ζ ′(x2)〉, which is
the correlation function of the eddy vorticity between the two
points xi = (xi , yi ), i = 1, 2. We hereafter indicate the dynamic
variables that are functions of points xi with the subscript i,
that is, ζ ′i ≡ ζ

′(xi ). By making the identification that the fluxes
at point x are equal to the value of the two-variable function〈
u′1ζ ′2
〉

evaluated at the same point x = x1 = x2, we write the
fluxes as〈u′ζ ′〉 = 〈u′1ζ ′2〉x1=x2

. (27.7)

Expressing the velocities in terms of the vorticity [u′, v′] =
[−∂yΔ−1, ∂xΔ−1]ζ ′, where Δ−1 is the integral operator that
inverts vorticity into the stream function field, we obtain the
vorticity fluxes as a function of the second cumulant in the fol-
lowing manner:〈u′ζ ′〉 = [〈

u′1ζ
′
2

〉
x1=x2

,
〈
v′1ζ

′
2

〉
x1=x2

]
=

[
−
〈
∂y1Δ

−1
1 ζ ′1ζ

′
2

〉
x1=x2

,
〈
∂x1Δ

−1
1 ζ ′1ζ

′
2

〉
x1=x2

]
=

[
−
(
∂y1Δ

−1
1 C
)

x1=x2
,
(
∂x1Δ

−1
1 C
)

x1=x2

]
. (27.8)

Consequently, the first cumulant evolves according to

∂t Z +U Zx + V (β + Zy ) + r Z + νΔ2 Z =

= ∂x
(
∂y1Δ

−1
1 C
)

x1=x2
− ∂y

(
∂x1Δ

−1
1 C
)

x1=x2
. (27.9)

Multiplying (27.6) for ∂t ζ ′1 by ζ ′2 and (27.6) for ∂t ζ ′2 by
ζ ′1, adding the two equations and taking the ensemble average
yields the equation for the second cumulant C:

∂tC − (A1 + A2)C =
〈

f e
1 ζ
′
2 + f e

2 ζ
′
1

〉
, (27.10)

where

Ai = −Ui ·∇i−(β+∂yi Z )∂xiΔ
−1
i +∂xi Z∂yiΔ

−1
i −r−νΔ2

i (27.11)

governs the dynamics of linear perturbations about the instan-
taneous mean flow U. The right-hand side of (27.10) is the
correlation of the external forcing with vorticity, which for
delta-correlated stochastic forcing is independent of the state
of the flow and is equal at all times to the prescribed forcing
covariance:

〈
f e
1 ζ
′
2 + f e

2 ζ
′
1

〉
=
〈

f e
1 f e

2

〉
= Ξ. Therefore, the sec-

ond cumulant evolves according to

∂tC = (A1 + A2)C + Ξ, (27.12)

and forms with Eq. (27.9) the closed autonomous system of
S3T theory that determines the statistical dynamics of the flow
approximated at second order.

The S3T system has bounded solutions (see Appendix 27.A)
and the fixed points ZE and CE, if they exist, define statis-
tical equilibria of the coherent structures with vorticity ZE

in the presence of an eddy field with second-order cumulant
or covariance CE. The structural stability of these statistical
equilibria addresses the parameters in the physical system that
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can lead to abrupt reorganization of the turbulent flow. Specif-
ically, when an equilibrium of the S3T equations becomes
unstable as a physical parameter changes, the turbulent flow
bifurcates to a different attractor. In this work, we show that
coherent structures emerge as unstable modes of the S3T sys-
tem and equilibrate at finite amplitude. The predictions of S3T
regarding the emergence and characteristics of the coherent
structures are then compared to the nonlinear simulations of the
stochastically forced barotropic flow.

27.3 S3T INSTABILITY AND EMERGENCE OF
FINITE-AMPLITUDE LARGE-SCALE
STRUCTURE

The homogeneous equilibrium with no mean flow,

ZE = 0, CE =
Ξ

2r
, (27.13)

is a fixed point of the S3T system (27.9) and (27.12) in the
absence of hyperdiffusion (see Appendix 27.B). The linear sta-
bility of the homogeneous equilibrium can be addressed by per-
forming an eigenanalysis of the S3T system linearized about
this equilibrium. The eigenfunctions in this case have the plane-
wave form

δZ = Znmen·xeσt , δC = Cnm(x̃)ein·xeσt , (27.14)

where x̃ = x1 − x2, x = (x1 + x2)/2, n = (n, m) is the wavevec-
tor of the eigenfunction and σ = σr + iσi is the eigenvalue with
σr = Re(σ), σi = Im(σ) being the growth rate and frequency
of the mode, respectively. The eigenvalue σ satisfies the nondi-
mensional equation

ε̃

2πr3L2
f

∫ ∞

−∞

∫ ∞

−∞
dk̃dl̃ (1 − Ñ2/K̃2)Ξ̂(k̃, l̃)×

×
(m̃k̃ − ñl̃)

[
ñm̃(k̃2

+ − l̃2
+) + (m̃2 − ñ2) k̃+ l̃+

]
i β̃
(
k̃ K̃2

s − (k̃ + ñ)K̃2
)
+ (σ̃ + 2)K̃2K̃2

s

=

= (σ̃ + 1)Ñ2 − iñ β̃, (27.15)

where Lf is a characteristic length scale, σ̃ = σ/r and (ñ, m̃) =
Lf (n, m) are the nondimensional eigenvalue and wavenumbers
respectively, ε̃ = ε/(r3L2

f ) is the nondimensional energy injec-
tion rate of the forcing, β̃ = βLf/r is the nondimensional plan-
etary vorticity gradient,

Ξ̂(k, l) =
1

2π

∫ ∞

−∞

∫ ∞

−∞
Ξ( x̃, ỹ)e−ik x̃−ilỹdx̃dỹ (27.16)

is the Fourier transform of the forcing covariance, K̃2 = k̃2+ l̃2,
K̃2
s = (k̃ + ñ)2 + (l̃ + m̃)2, Ñ2 = ñ2 + m̃2, k̃+ = k̃ + ñ/2

and l̃+ = l̃ + m̃/2 (see Appendix 27.B). For a forcing with the
mirror symmetry Ξ̂(k,−l) = Ξ̂(k, l) in wavenumber space and
for ñ � 0, the eigenvalues satisfy the relations:

σ̃(−ñ,m̃) = σ̃
∗
(ñm̃) , and σ̃(ñ,−m̃) = σ̃(ñ,m̃) , (27.17)

implying that the growth rates depend on |ñ| and |m̃ |. As a
result, the plane wave δZ = cos(nx+my) and an array of local-
ized vortices δZ = cos(nx) cos(my) have the same growth rate,

Figure 27.1 The critical zonostrophy parameter Rβ = 0.7(ε̃cβ̃
2)1/20

for structural instability (thick line) and the corresponding critical
parameter for structural instability of zonal jets (thin line) as a
function of β̃. The shaded region denotes the zonostrophic regime for
which both the inequalities Rβ ≥ 2.5 and kβ/Kf ≤ 1/4 are satisfied.
The thin dotted vertical line β̃ = β̃min separates the unstable region:
for β̃ < β̃min zonal structures grow the most, whereas for β̃ > β̃min
nonzonal structures grow the most. The stars denote the position of the
Earth’s atmosphere and ocean as well as the Jovian atmosphere in the
Rβ , β̃ parameter space.

despite their different structure. For zonally symmetric pertur-
bations with ñ = 0, only the second relation in (27.17) holds and
(27.15) reduces to the stability equation derived by Srinivasan
and Young (2012) for the emergence of jets in a barotropic β-
plane.

We consider the case of a ring forcing that injects energy at
rate ε at the total wavenumber Kf :

Ξ̂(k, l) = 2εKfδ(
√

k2 + l2 − Kf ), (27.18)

and obtain the eigenvalues σ̃ by numerically solving (27.15).1

For small values of the energy input rate, σ̃r < 0 for all
wavenumbers and the homogeneous equilibrium is stable. At
a critical ε̃c the homogeneous flow becomes S3T unstable and
exponentially growing coherent structures emerge. The crit-
ical value, ε̃c, is calculated by first determining the energy
input rate ε̃t (ñ, m̃) that renders wavenumbers (ñ, m̃) neutral(
σ̃r(ñ,m̃) = 0

)
, and then by finding the minimum energy input

rate over all wavenumbers: ε̃c = min(ñ,m̃) ε̃t . In Fig. 27.1 we
show the corresponding critical zonostrophy parameter Rβ =
0.7(ε̃c β̃

2)1/20 which was used in previous studies to charac-
terize the emergence and structure of zonal jets in planetary
turbulence (Galperin et al., 2010), as a function of β̃. The
absolute minimum energy input rate required is ε̃c = 67 and
occurs at β̃min = 3.5, while the minimum zonostrophy parame-
ter required for the emergence of coherent flows is Rmin

β = 0.82
and occurs for β̃ → 0. The asymptotic approach toward Rmin

β as

β → 0 means that the critical input rate increases as ε̃c ∼ β̃−2

for β̃ → 0 and therefore the homogeneous equilibrium is struc-
turally stable for all excitation amplitudes when β̃ = 0. How-

1 The characteristic length scale in this case is taken to be the length
scale of the forcing, Lf = 1/Kf .
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ever, the structural stability for β̃ = 0 is an artifact of the
assumed isotropy of the excitation and the assumption of a
barotropic flow. In the presence of even the slightest anisotropy
(Bakas and Ioannou, 2011, 2013b), or in the case of a strati-
fied flow (see Chapter 26), zonal jets are S3T unstable and are
expected to emerge even in the absence of β. For β̃ ≤ β̃min,
the structures that first become marginally stable are zonal jets
(with n = 0), while for β̃ > β̃min the marginally stable struc-
tures are nonzonal and the critical Rβ grows as Rβ ∼ β̃1/8 for
β̃ → ∞. Since the critical Rβ for the emergence of zonal jets
(also shown in Fig. 27.1), increases as Rβ ∼ β̃1/4 for β̃ → ∞,
for large values of β̃ nonzonal structures first emerge and only
at significantly higher ε̃ are zonal jets expected to appear. Inves-
tigation of these results with other forcing distributions revealed
that the results for β̃ � 1 are independent of the structure of the
forcing (Bakas et al., 2015).

The parameter regime of S3T instability is now related to the
results of previous studies and to geophysical flows. Previous
studies have identified a parameter regime which is distin-
guished by robust, slowly varying zonal jets as well as propa-
gating, nondispersive, nonzonal coherent structures (Galperin
et al., 2010). This regime, termed zonostrophic, is in a region
in parameter space in which the zonostrophy parameter is large
(Rβ ≥ 2.5) and the scale kβ = 0.5(β3/ε)1/5 in which aniso-
tropization of the turbulent spectrum occurs is sufficiently larger
than the forcing scale (kβ/Kf ≤ 1/4). This regime is shown in
Fig. 27.1 to be highly supercritical for all β̃. In addition, Bakas
and Ioannou (2014) calculated indicative order-of-magnitude
values of β̃ and ε̃ for the Earth’s atmosphere and ocean as well
as for the Jovian atmosphere. From these values we calculated
the relevant zonostrophy parameter Rβ and indicated the three
geophysical flows in Fig. 27.1. We can see that all three cases
are supercritical: the Jovian atmosphere is highly supercritical
and is well within the zonostrophic regime, while the Earth’s
atmosphere and ocean are slightly supercritical (at least within
the context of the simplified barotropic model).

We now examine the growth rate and dispersion properties
of the unstable modes for ε̃ > ε̃c and consider first the case
β̃ = 1, with ε̃ = 2ε̃c. The growth rate of the maximally grow-
ing eigenvalue, σ̃r, and its associated frequency of the mode,
σ̃i, are plotted in Fig. 27.2(a) as a function of |ñ| and |m̃ |. We
observe that the region in wavenumber space defined roughly
by 0 < |ñ| < 1/2 and 1/2 < |m̃ | < 1 is unstable, with the
maximum growth rate occurring for zonal structures (ñ = 0)
with |m̃ | � 0.8. The frequency of the unstable modes is zero
for zonal jet perturbations (ñ = 0) and non-negative for all
other wavenumbers (ñ � 0). Using the symmetries (27.17), this
implies that unstable mean flow perturbations δZ propagate in
the retrograde direction if ñ � 0 and are stationary when ñ = 0.
As ε̃ increases the instability region expands and roughly covers
the sector 1/2 < |Ñ | < 1, with zonal structures having a larger
growth rate compared to nonzonal structures, a result that holds
for any ε̃ when β̃ < β̃min.

For β̃ > β̃min the nonzonal structures always have larger
growth rate. This is illustrated in Fig. 27.2(b), showing the
growth rates and frequencies of the unstable modes for β̃ = 10.
For larger β̃ values there is a tendency for the frequency of the
unstable modes to conform to the corresponding Rossby wave

Figure 27.2 Dispersion relation of the unstable modes for β̃ = 1 (a)
and β̃ = 10 (b). The contours show the growth rate σ̃r and the shading
shows the frequency σ̃i of the unstable modes. For β̃ O(1) stationary
zonal jets are more unstable, and for β̃ � 1 westward-propagating
nonzonal structures are more unstable. For both panels, the energy
input rate is ε̃ = 2ε̃c. Adapted from Bakas and Ioannou (2014). ©
Cambridge University Press. Reprinted with permission.

frequency

σ̃R =
β̃ñ

ñ2 + m̃2 , (27.19)

a tendency that does not occur for smaller β̃. A comparison
between the frequency of the unstable modes and the Rossby
wave frequency is shown in Fig. 27.3 in a plot of σ̃i/σ̃R. For
slightly supercritical ε̃ the ratio is close to one and the unstable
modes satisfy the Rossby wave dispersion relation. At higher
supercriticalities, though, σ̃i departs from the Rossby wave fre-
quency – by as much as 40% for the case of ε̃ = 50ε̃c shown in
Fig. 27.3(b).

27.4 ANALYSIS OF THE EDDY–MEAN FLOW
DYNAMICS UNDERLYING JET FORMATION

It is interesting to investigate the eddy–mean flow dynamics
underlying the structure-forming S3T instability. These dyna-
mics should have the property of directly channeling energy
from the turbulent motions to the coherent flow without the
presence of a turbulent cascade. The dynamics underlying the
formation of nonzonal structures were investigated by Bakas
et al. (2015), who showed that for β̃ � 1 the nonzonal struc-
tures emerge due to resonant and near-resonant interactions of
the nonzonal structure with wavenumber n with a stochastically
forced eddy with wavenumber k satisfying the resonant condi-
tion ωn+k = ωn + ωk with ω the Rossby wave frequency. In
the case of a monochromatic deterministic forcing, this mech-
anism is referred to as modulational instability (Connaughton
et al., 2010b) and, as shown by Bakas et al. (2015) and Chap-
ter 26 of this volume, the S3T instability is a generalization
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Figure 27.3 Ratio of the frequency of the unstable modes σ̃i over the
corresponding frequency of a Rossby wave with the same
wavenumbers σ̃R at (a) ε̃ = 2ε̃c and (b) ε̃ = 50ε̃c when β̃ = 100.
Values of 1 denote an exact match with the Rossby wave frequency.
Adapted from Bakas and Ioannou (2014). © Cambridge University
Press. Reprinted with permission.

of modulational instability in a stochastic framework. In this
section we focus on the dynamics underlying zonal jet for-
mation that were also shown by Bakas et al. (2015) to gov-
ern the emergence of nonzonal structures when β̃ = O(1)
and β̃ � 1.

Previous studies have identified such mechanisms for the
maintenance of zonal jets. Huang and Robinson (1998) showed
that shear straining of the turbulent field by the jet produced up-
gradient momentum fluxes that maintained the jet against dissi-
pation. A simple case that clearly illustrates the physical picture
for the mechanism of shear straining is to consider the evolution
of eddies in a planar, inviscid constant-shear flow. The eddies
are sheared by the mean flow into thinner elliptical shapes,
while their vorticity is conserved. For an elongated eddy this
implies that the eddy velocities decrease and the eddy energy
is transferred to the mean flow through up-gradient momentum
fluxes. This mechanism can operate when the time required for
the eddies to shear over is much shorter than the dissipation
timescale. The reason is that in this limit even the eddies with
stream function leaning against the shear, which initially widen
significantly and gain momentum, have the necessary time to
shear over, elongate and surrender their momentum to the mean
flow. Given that for an emerging jet the characteristic shear
timescale is necessarily infinitely longer than the dissipation
timescale, it needs to be shown that shear straining can produce
up-gradient momentum fluxes in this case as well. In addition,
previous studies have shown that shearing of isotropic eddies on
an infinite domain does not produce any net momentum fluxes
(Shepherd, 1985; Farrell, 1987; Holloway, 2010) and should
have no effect on the S3T instability (Srinivasan and Young,
2012). Therefore, another mechanism should be responsible for
producing the up-gradient fluxes in the case of an isotropic
forcing.

In order to investigate the eddy–mean flow dynamics under-
lying the S3T instability, we calculate the vorticity flux diver-
gence that is induced when the statistical equilibrium (27.13)
is perturbed by an infinitesimal coherent structure δZ . For an
S3T unstable structure, the induced flux divergence tends to
enhance the coherent structure δZ , producing the positive feed-
back required for instability. So the goal of this section is to illu-
minate the eddy–mean flow dynamics leading to this positive
feedback and to understand qualitatively why the homogeneous
equilibrium is more stable for small and large values of β̃.

For zonal mean flows, (27.9) and (27.12) are respectively
simplified to

∂tU = −∂y
〈
u′v′
〉 − rU = ∂y

(
∂2
y2x1Δ

−1
1 C
)

x1=x2
− rU (27.20)

and

∂tC = (A1 + A2)C + Ξ, (27.21)

where

Ai = −Ui∂xi − (β − ∂2
yiyi

U)Δ−1
i ∂xi − r , (27.22)

As a result, the zonal mean flow is driven by the momentum flux
divergence of the eddies. The perturbation in vorticity covari-
ance δC that is induced by the mean flow perturbation δU can
be estimated immediately by assuming that the system (27.20)–
(27.21) is very close to the stability boundary, so that the growth
rate is small. In this case the mean flow evolves slowly enough
that it remains in equilibrium with the eddy covariance, that
is, dδC/dt � 0. Bakas and Ioannou (2013b) showed that the
ensemble mean momentum flux induced by an infinitesimal
sinusoidal mean flow perturbation δU = ε sin(my), where
ε � 1 – i.e. the eigenfunction of (27.B.4) – is equal in this
case to the integral over time and over all zonal wavenumbers
of the responses to all point excitations in the y direction:

δ
〈
u′v′
〉
=

1
2π

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

0
u′v′(t)dtdξdk, (27.23)

where u′v′(t) is the momentum flux at time t produced by

G(k, y − ξ) = B(k)h(y − ξ)eikx+il0 (y−ξ ) . (27.24)

The Green’s function G has the form of a wavepacket with an
amplitude B(k) and a carrier wave with wavenumbers (k, l0)
that is modulated in the y direction by the wavepacket envelope
h(y). The characteristics of the amplitude, the wavenumber and
the envelope depend on the forcing characteristics, but in any
case the calculation of the ensemble mean momentum fluxes
is reduced to calculating the momentum fluxes u′v′(t) over the
life cycle of wavepackets that are initially at different latitudes
ξ and then adding their relative contributions.

As the wavepacket propagates in the latitudinal direction, its
meridional wavenumber and frequency change due to shearing
by the mean flow and due to the change of the mean vorticity
gradient β − Uyy . The resulting time-variable momentum flux
u′v′(t) can be calculated using ray tracing. According to stan-
dard ray-tracing arguments, the wave action is conserved along
a ray (in the absence of dissipation), leading to the momentum
flux

u′v′(t) = −|B |2 AM(t)e−2rt |h(y − η(t)) |2, (27.25)
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where AM(t) = klt/(k2 + l2
t )2 is the momentum flux of the

carrier wave that determines the amplitude of the fluxes of
the wavepacket and lt , η(t) are the time-dependent merid-
ional wavenumber and position of the wavepacket, respectively
(Andrews et al., 1987). Because of the small amplitude of
the mean flow perturbation δU , the wavenumber and posi-
tion of the packet vary slowly on a timescale O(εt) compared
to the dissipation timescale 1/r , and the dominant contri-
bution to the time integral in (27.23) comes from small
times. We can therefore seek asymptotic solutions of the
form

lt = l0 + ε l1(t) + · · · , η(t) = ξ + c0t + εη1(t) + · · · , (27.26)

where c0 = 2βkl0/(k2+l2
0)2 is the group velocity in the absence

of a mean flow, and calculate the integral of u′v′(t) over time
from the leading-order terms. Substituting (27.26) in (27.25),
we obtain

u′v′(t) = −|B |2 AM(0)e−2rt |h(y − ξ − c0t) |2︸#######################################︷︷#######################################︸
u′v′R

−

−ε |B |2
(
dAM
dlt

)
l0

l1(t)e−2rt |h(y − ξ − c0t) |2︸####################################################︷︷####################################################︸
u′v′S

− ε |B |2 AM(0)η1(t)e−2rt d
dy
|h(y − ξ − c0t) |2︸##################################################︷︷##################################################︸

u′v′β

.

(27.27)

The first term, u′v′R, arises from the momentum flux pro-
duced by a wavepacket in the absence of a mean flow. Because
AM(0) = kl0/(k2+l2

0)2 is odd with respect to wavenumbers, this
term does not contribute to the ensemble-averaged momentum
flux when integrated over all wavenumbers and will hereafter be
ignored. The second term, u′v′S, arises from the small change
in the amplitude of the flux AM over a dissipation timescale.
The third term, u′v′β , arises from the small change in the posi-
tion of the packet η compared to a propagating packet in the
absence of a mean flow. To summarize, the infinitesimal mean
flow refracts the wavepacket due to shearing and due to the
change of the mean vorticity gradient, and slightly changes the
amplitude of the fluxes as well as slightly speeds up or slows
down the wavepacket. The sum of these two effects will pro-
duce the induced momentum fluxes.

27.4.1 The Limit of Small-Scale Wavepackets with a Short
Propagation Range

In order to clearly illustrate the behavior of the eddy fluxes,
we consider the limit of β̃ = βLf/r � 1, where Lf is the
scale of the wavepackets, and in addition we assume that the
scale of the mean flow, 1/m, is much larger than the scale of
the wavepackets mLf � 1. In this limit, the wavepackets are
dissipated before propagating far from the initial position, and
the effect of the change in the mean vorticity gradient is higher
order. As a result, Bakas and Ioannou (2013b) showed that l1
and η1 decrease monotonically with time with rates indepen-
dent of δUyy and proportional to the shear δUy (ξ) at the initial
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Figure 27.4 Amplitude of the momentum fluxes, AM(t), of
wavepackets as a function of the angle θt = arctan(lt/k) between the
phase lines of the central wave and the y-axis. The inset shows the
possible phase line orientations θt = arctan(lt/k) in a polar plot and
the regions with |θt | < π/6 (II and III) and |θt | > π/6 (I and IV).

position ξ:

l1(t) = −δUy (ξ)kt, η1(t) = −βδUy (ξ)

(
dAM
dlt

)
l0

kt2. (27.28)

That is, the amplitude of the flux AM and the group velocity of
the packets change only due to the shearing of the carrier wave
by the local shear.

Consider in this limit the first term, u′v′S, arising from the
small amplitude change. For β̃ � 1 the wavepacket is dissi-
pated before it propagates away and we can ignore to first-order
propagation:

u′v′S = − ε |B |2
(
dAM
dlt

)
l0

l1(t)e−2rt |h(y − ξ − c0t) |2

�|B |2δUy (ξ)kt

(
dAM
dlt

)
l0

e−2rt |h(y − ξ) |2, (27.29)

so that the packet grows/decays in situ. Since the wave packet is
rapidly dissipated, the integrated momentum flux over its life-
time will be given to a good approximation by the instanta-
neous change in the flux2 that is proportional to (dAM/dlt )l0 .
Figure 27.4 illustrates the amplitude of the momentum flux as
a function of the angle θt = arctan(lt/k) of the phase lines of
the carrier wave of the packet with the y-axis. It is shown that
the derivative of AM of a wavepacket with |θ0 | < π/6 (that is,
with phase lines close to the meridional direction) excited in
regions II or III is positive. This leads to increased fluxes com-
pared to an unsheared wavepacket, as shown in Fig. 27.5(a),
and to up-gradient momentum flux as shown in Fig. 27.6(a).
The opposite occurs for waves excited in regions I and IV (with
|θ0 | > π/6) that produce down-gradient flux, as their momen-
tum flux decreases.

We now consider the second term, u′v′β , arising from the
effect of propagation on the momentum flux. The group velocity
of the wavepacket is given by cg = 2βAM, and is shown in

2 The change in flux occurs over the dissipation timescale 1/r , which is
incremental in shear time units.



Emergence of Nonzonal Coherent Structures 425

-3 -2 -1 0 1 2 3

-0.2

-0.1

0

0.1

0.2 III

II

-3 -2 -1 0 1 2 3
-0.2

-0.1

0

0.1

0.2

II

III

Figure 27.5 (a) Comparison of the momentum fluxes of an unsheared
wavepacket excited in regions II (thick solid line) and III (solid line) to
the momentum fluxes of a sheared wavepacket shown by the
corresponding dashed lines, when only the change in amplitude is
taken into account. A snapshot of the fluxes at t = 0.25/r is shown.
The arrows show the increase in the fluxes. The wavenumber is√
k2 + l20 = 1, h(y) = e−y

2/2, |θ0 | = 16◦, |B | = 1 and the shear

δUy = r for illustration purposes. (b) Comparison of the momentum
fluxes of an unsheared wavepacket excited in regions II (thick solid
line) and III (solid line) to the momentum fluxes of a sheared
wavepacket shown by the corresponding dashed lines, when only the
change in propagation is taken into account. The arrows show the
change in position compared to an unsheared packet. β = 4 for
illustration purposes, and the rest of the parameters are as in (a).
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Figure 27.6 (a) The difference in momentum fluxes between a
sheared and an unsheared wavepacket u′v′S calculated over their life
cycle when only the change in amplitude is taken into account. The

wavenumber is
√
k2 + l20 = 1, h(y) = e−y

2/2, |θ0 | = 16◦, |B | = 1,

δUy = 10−3 and r = 0.1. (b) The difference in momentum fluxes
between a sheared and an unsheared wavepacket u′v′β calculated over
their life cycle when only the change in propagation is taken into
account. β = 0.1 and the rest of the parameters are as in (a).

Fig. 27.4 as a function of θt . A wavepacket starting in region II
will propagate toward the north (see Fig. 27.4) but as shear-
ing slows down the waves (η1 ∼ −(dAM/dlt )), the wavepacket
will flux its momentum from southern latitudes compared to
when it moved in the absence of the shear flow. This is shown
in Fig. 27.5(b), illustrating the distribution of momentum flux
of an unsheared and a sheared packet whose amplitudes are
constant. Figure 27.6(b) plots this difference, u′v′β , and shows
that the flux is downgradient in this case. The same happens for
waves excited in region III, while the waves excited in regions I
and IV produce up-gradient flux.

The net momentum fluxes produced by an ensemble of
wavepackets will therefore depend on the spectral character-
istics of the forcing that determine the regions I–IV in which
the forcing has significant power. Bakas and Ioannou (2013b)
showed that for the isotropic forcing (27.18),

δ
〈
u′v′
〉
=

=
1

2π

∫ ∞

−∞

∫ ∞

−∞
u′v′Sdξdk +

1
2π

∫ ∞

−∞

∫ ∞

−∞
u′v′βdξdk

� 0 − 3ε̃ β̃2r

32πK4
f

d3δU

dy3 . (27.30)

The first integral is zero, because the gain in momentum occur-
ring for |θ0 | < π/6 (waves excited in regions II and III) is fully
compensated by the loss in momentum for |θ0 | > π/6 (waves
excited in regions I and IV), since for the isotropic forcing all
possible wave orientations are equally excited. The net momen-
tum fluxes are therefore produced by the u′v′β term and are up-
gradient, because the loss in momentum occurring for |θ0 | <
π/6, is over-compensated by the gain in momentum for |θ0 | >
π/6. The momentum fluxes are also proportional to the third
derivative of δU , yielding a hyperdiffusive momentum flux
divergence that tends to reinforce the mean flow and is therefore
destabilizing. These destabilizing fluxes are proportional to β̃2,
and as a result the energy input rate required to form zonal jets
increases as 1/ β̃2 in this limit. It is worth noting that the first
term integrates to zero only for the special case of the isotropic
forcing, as even the slightest anisotropy yields a nonzero contri-
bution from u′v′S. For example, consider the forcing covariance
Ξ(x1, x2, y1, y2) = cos (k (x1 − x2)) e−(y1−y2)2/δ2

that mimics
the forcing of the barotropic flow by the most unstable baro-
clinic wave, which has zero meridional wavenumber. In this
case, the forcing that is centered at l0 = 0 in wavenumber space
injects significant power in a band of waves in regions II and III,
and therefore u′v′S yields up-gradient fluxes.

27.4.2 The Effects of the Change in the Mean Vorticity
Gradient and the Finite Propagation Range

In order to take into account the effect of the change in the
vorticity gradient, we retain higher-order terms with respect to
mLf � 1 in l1 and η1. In this case it can be shown that l1
decreases with time at a rate proportional to Uy (ξ) + Uyyy (ξ)
(Bakas and Ioannou, 2013b). Since the local shear and the
local change in the vorticity gradient have different signs,
the wavepacket is “sheared less,” and as a result we expect
reduced momentum fluxes compared to the limit discussed in
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Section 27.4.1. Indeed, for the isotropic forcing,

δ
〈
u′v′
〉 � − 3ε̃ β̃2r

32πK4
f

��d3δU

dy3 −
1

4K2
f

d5δU

dy5
�� . (27.31)

That is, the change in the mean vorticity gradient has a stabiliz-
ing effect.

We finally relax the assumption that β̃ � 1. In this case,
l1 and η1 are affected by an integral shear and mean vortic-
ity gradient over the region of propagation. For larger β̃, the
wavepacket will encounter regions of both positive and negative
shear, and as a result the momentum fluxes that are qualitatively
proportional to the integral shear over the propagation region
will be reduced. In the limit β̃ � 1, the region of propagation is
the whole sinusoidal flow with consecutive regions of positive
and negative shear, and the integral shear along with the fluxes
will asymptotically tend to zero. As a result, the energy input
rate required for structural instability of zonal jets increases
with β̃ in this limit.

27.5 EQUILIBRATION OF THE
STRUCTURE-FORMING INSTABILITY AND
SECONDARY INSTABILITIES AT FINITE
AMPLITUDE

We now investigate the equilibration of the structure-forming
instability by studying the S3T system of (27.9) and (27.12)
discretized in a doubly periodic channel of size 2π × 2π. We
approximate the monochromatic forcing (27.18) by considering
the narrow-band forcing

Ξ̂(k, l) =
Kf
ΔKf

⎧⎪⎨⎪⎩ 1 for |
√

k2 + l2 − Kf | ≤ ΔKf ,
0 for |

√
k2 + l2 − Kf | > ΔKf ,

(27.32)

where k, l assume integer values, which injects energy at rate
ε in a narrow ring in wavenumber space with radius Kf and
width ΔKf . We consider the set of parameter values β = 10,
r = 0.01, ν = 1.19 × 10−6, Kf = 10 and ΔKf = 1, for which
β̃ = 100. The integration is therefore in the parameter region
of Fig. 27.1 in which the nonzonal structures are more unstable
than the zonal jets. The growth rates of the coherent structures
for integer values of the wavenumbers n and m are calculated
from the discrete version of (27.15) obtained by substituting
the integrals with sums over integer values of the wavenumbers
(Bakas and Ioannou, 2013a).

We investigate the equilibration of the instability by study-
ing the evolution of the S3T system as we increase the energy
input rate ε̃. Consider first the supercritical energy input rate
ε̃ = 4ε̃c. For these parameters only nonzonal modes are
unstable, with the perturbation with (n, m) = (1, 5) grow-
ing the most. At t = 0, we introduce a small random per-
turbation, whose stream function is shown in Fig. 27.7(a).
After a few e-folding times, a harmonic structure of the form
Z = cos(x) cos(5y) dominates the large-scale flow. The energy
of this large-scale structure, shown in Fig. 27.7(b), increases
rapidly and eventually saturates. At this point the large-scale
flow gets attracted to a traveling wave finite-amplitude equilib-
rium structure – see Fig. 27.7(c) – close in form to the har-
monic Z = cos(x) cos(5y) that propagates westward. This is

Figure 27.7 Equilibration of the S3T instabilities. (a) Stream function
of the initial perturbation. (b) Energy evolution of the initial
perturbation shown in panel (a) as obtained from the integration of the
S3T equations (27.9) and (27.12) (dashed line) and from the
integration of the ensemble quasi-linear (EQL) system (27.4)–(27.3)
with Nens = 10 (solid line) and Nens = 100 (dash-dotted line)
ensemble members that is discussed in Section 27.6. (c) Snapshot of
the stream function Ψeq of the traveling wave structure and
(d) Hovmöller diagram of Ψeq(x, y = π/4, t) for the finite equilibrated
traveling wave. The thick dashed line shows the phase speed obtained
from the stability equation, (27.15). The energy input rate is ε̃ = 4ε̃c
and β̃ = 100. Adapted from Bakas and Ioannou (2014). © Cambridge
University Press. Reprinted with permission.

illustrated in the Hovmöller diagram of ψ(x, y = π/4, t) shown
in 27.7(d). The sloping dashed line in the diagram corresponds
to the phase speed of the traveling wave, which is found to be
approximately the phase speed of the unstable (n, m) = (1, 5)
eigenmode.

Consider now the energy input rate ε̃ = 10ε̃c. While the
maximum growth rate still occurs for the ( |n|, |m |) = (1, 5)
nonzonal structure, zonal jet perturbations are unstable as well
(ε̃cz = 5.2εc). If the S3T dynamics are restricted to account
only for the interaction between zonal flows and turbulence
by employing a zonal mean rather than an ensemble mean, an
infinitesimal jet perturbation will grow and equilibrate at finite
amplitude. To illustrate this we integrate the S3T dynamical sys-
tem (27.20)–(27.21) restricted to zonal flow coherent structures.
The energy of the small zonal jet perturbation δZ = 0.1 cos(4y)
is shown in Fig. 27.8 to grow and saturate at a constant value,
and the stream function of the equilibrated jet is shown in the
left inset of Fig. 27.8. However, in the context of the general-
ized S3T analysis that takes into account the dynamics of the
interaction between coherent nonzonal structures and jets, we
find that these S3T jet equilibria are saddles: stable to zonal
jet perturbations but unstable to nonzonal perturbations. To
show this, we consider the evolution of the same jet pertur-
bation δZ = 0.1 cos(4y) under the generalized S3T dynamics
(27.9) and (27.12), and find that the flow follows the zonally
restricted S3T dynamics and equilibrates to the same finite-
amplitude zonal jet (Fig. 27.8). At this point we insert a small
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Figure 27.8 Energy evolution of an initial jet perturbation
δZ = 0.1 cos(4y) for the zonally restricted S3T dynamics
(27.20)–(27.21) (dashed line) and the generalized S3T dynamics
(27.9) and (27.12) (thin line). The insets show a snapshot of the mean
flow stream function at t = 700 (left) and the stream function of the
equilibrated structure at t = 3500 (right) under the generalized S3T
dynamics. The parameters are ε̃ = 10ε̃c and β̃ = 100.

random perturbation to the equilibrated flow. Soon after, non-
zonal undulations grow and the flow transitions to the stable
Z = cos(x) cos(5y) traveling wave state that is also shown in
Fig. 27.8. As a result, the finite equilibrium zonal jet struc-
ture is S3T unstable to coherent nonzonal perturbations and
is not expected to appear in nonlinear simulations despite the
fact that the zero flow equilibrium is unstable to zonal jet per-
turbations. A thorough investigation of this S3T instability of
zonal jet equilibria at finite amplitude can be found in Con-
stantinou et al. (2016). It was found that the large-scale waves
with n � 0 exist as damped external Rossby wave modes of
the linear dynamics operator Ae(Ue) around the zonal jet equi-
librium with velocity Ue. These external modes have a struc-
ture so as to extract energy from the mean jet, but the energy
extraction is not sufficient to overcome dissipation and these
modes are stable in the absence of turbulence. The S3T insta-
bility occurs in this case as there is a slight change in the wave
structure mediated by the Reynolds stress feedback, through
which the waves are able to tap more energy from the mean
jet and become S3T unstable. This mechanism is distinct from
the eddy–mean flow dynamics of the jet-forming instability dis-
cussed in the previous section. In the latter case, the infinitesi-
mal jet interacts with the turbulent eddies and is able to extract
energy from the turbulence through the Reynolds stress feed-
back. In this case, the turbulent eddies merely mediate the
change in the nonzonal wave structure and the wave is able to
extract more energy from the mean flow and not from the tur-
bulence.

Finally, consider the case ε̃ = 30ε̃c. At this energy input rate,
the finite-amplitude nonzonal traveling wave equilibria become
S3T unstable. To show this, we consider the nonzonal travel-
ing wave equilibrium obtained by the evolution of the small
nonzonal perturbation δZ = 0.01 cos(x) cos(5y) to the homo-
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Figure 27.9 Zonal energy evolution of a random zonal perturbation
imposed on the nonzonal traveling wave equilibrium shown in the left
inset. The stream function of the equilibrated structure is shown in the
right inset. The energy input rate is ε̃ = 30ε̃c and β̃ = 100.

geneous state that is shown in the left inset of Fig. 27.9 and
impose a small random zonal perturbation. The evolution of

the zonal energy Ez = (1/2)U
2
, where the overbar denotes a

zonal average, is shown in Fig. 27.9. After an initial transition
period, the zonal perturbations grow exponentially and the flow
transitions to the jet equilibrium state shown in the right inset
of Fig. 27.9. Note, however, that the jet equilibrium structure
is not zonally symmetric. This is a new type of S3T equilib-
rium: it is a mix between a zonal jet and a nonzonal traveling
wave with the same meridional scale. These mixed equilib-
ria appear to be the attractors for larger energy input rates as
well. This is illustrated in Fig. 27.10, showing the structure of
the mixed equilibrium at ε = 50εc. The equilibrium structure
consists of a large-amplitude zonally symmetric jet with larger
scale compared to the mixed state in Fig. 27.9. Embedded in it
are nonzonal vortices with the same meridional scale and with
about 14% the energy of the zonal jet. These vortices, shown in
Fig. 27.10(b), have approximately the compact support struc-
ture Ψ = cos(x) cos(4y) and propagate westward, as shown in
the Hovmöller diagram in Fig. 27.10(c). This instability of the
finite-amplitude traveling wave states was numerically found to
occur for ε̃ > ε̃NL = 15ε̃c. To summarize, for slightly super-
critical energy input rates, the S3T system is attracted to finite-
amplitude propagating wave states that have the characteristics
of the nonzonal unstable modes of the homogeneous equilib-
rium. For energy input rates ε̃NL > ε̃ > ε̃cz, for which the
homogeneous equilibrium is unstable to both zonal and non-
zonal structures, the S3T dynamics are still attracted to the trav-
eling wave states, as the finite-amplitude zonal jet equilibria are
unstable to non-zonal mean flow perturbations. For ε̃ > ε̃NL
the traveling wave state equilibria are unstable to zonal flow
perturbations and the S3T system is attracted to mixed states
with small-amplitude traveling waves embedded within large-
amplitude zonal jets.
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Figure 27.10 Mixed zonal jet–traveling wave S3T equilibrium for
ε̃ = 50ε̃c and β̃ = 100. (a) Snapshot of the stream function Ψeq of the
equilibrium state. (b) Contour plot of the nonzonal component
Ψeq − Ψeq of the equilibrium structure, where the overline denotes a
zonal average. (c) Hovmöller diagram of Ψeq(x, y = π/4, t) for the
equilibrated structure.

27.6 COMPARISON WITH ENSEMBLE MEAN
QUASI-LINEAR AND NONLINEAR
SIMULATIONS

27.6.1 Comparison with an Ensemble of Quasi-Linear
Simulations

Within the context of the second-order cumulant closure, the
S3T formulation allows the identification of statistical turbulent
equilibria in the infinite ensemble limit, in which the fluctua-
tions induced by the stochastic forcing are averaged to zero.
However, these S3T equilibria and their stability properties
manifest even in single realizations of the turbulent system. For
example, previous studies using S3T obtained zonal jet equi-
libria in barotropic, shallow-water and baroclinic flows in close
correspondence with observed jets in planetary flows (Farrell
and Ioannou, 2007, 2008, 2009a,c). In addition, previous stud-
ies of S3T dynamics restricted to the interaction between zonal
flows and turbulence in a β-plane channel showed that when
the energy input rate is such that the zero mean flow equilib-
rium is unstable, zonal jets also appear in the nonlinear simula-
tions with the structure (scale and amplitude) predicted by S3T
(Srinivasan and Young, 2012; Constantinou et al., 2014a).

A very useful intermediate model that retains the wave–mean
flow dynamics of the S3T system while relaxing the infi-
nite ensemble approximation is the quasi-linear system (27.5)–
(27.6). Under the ergodic assumption, this can be interpreted
as an ensemble of quasi-linear equations (EQL) in which
the ensemble mean can be calculated from a finite number
of ensemble members. Its integration is done as follows. A
pseudo-spectral code with 128 × 128 resolution and a fourth-
order Runge–Kutta scheme for time-stepping is used to inte-
grate (27.5)–(27.6) forward. At each time step, Nens separate
integrations of (27.6) are performed with the eddies evolv-

Figure 27.11 The zmf and nzmf indices defined in (27.33)
and (27.35), respectively, as functions of energy input rate ε/εc and
the zonostrophy parameter Rβ for the nonlinear (NL) integrations and
an ensemble of quasi-linear (EQL) integrations (dashed line) with
Nens = 10 ensemble members as described in the text. The critical
value εc = 8.4 × 10−6 is the energy input rate at which the S3T
predicts structural instability of the homogeneous turbulent state.
Zonal jets emerge for ε > εnl, with εnl = 15εc. The parameters are
β = 10, r = 0.01 and ν = 1.19 × 10−6, and the forcing is an isotropic
ring in wavenumber space with radius Kf = 10 and width ΔKf = 1.

ing according to the instantaneous flow. Then, the ensemble
average vorticity flux divergence is calculated as the average
over the Nens simulations and (27.5) is stepped forward in time
according to those fluxes. The EQL system reaches a statistical
equilibrium at timescales of the order of teq ∼ O(1/r), and the
integration was carried on until t = 100teq in order to collect
accurate statistics.

We choose the same parameter values as in the S3T integra-
tions in Section 27.5 (β = 10, r = 0.01, ν = 1.19 × 10−6,
Kf = 10 and ΔKf = 1). For these parameters (and β̃ = 100),
S3T predicts the emergence of propagating nonzonal structures
when the energy input rate exceeds the critical threshold ε̃c, and
the emergence of mixed zonal jet–traveling wave states when
the finite-amplitude traveling wave states become structurally
unstable to zonal jet perturbations. In order to examine whether
the same bifurcations occur in the EQL system, we consider
two indices that measure the power concentrated at scales larger
than the scales forced. The first is the zonal mean flow index
defined, as in Srinivasan and Young (2012), as the ratio of the
energy of zonal jets with scales larger than the scale of the forc-
ing over the total energy,

zmf =

∑
l:l<Kf−ΔKf Ê(k = 0, l)∑

kl Ê(k, l)
, (27.33)

where

Ê(k, l) =
1

2T

∫ T

0

(〈
| ζ̂ ′ |2

k2 + l2

〉
+
| Ẑ |2

k2 + l2

)
dt (27.34)

is the time-averaged total energy power spectrum of the flow
at wavenumbers (k, l). The second is the nonzonal mean flow
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Figure 27.12 Snapshot of the mean stream function Ψ at statistical
equilibrium obtained from the ensemble mean quasi-linear simulations
with Nens = 10 members for ε = 4εc (a) and ε = 50εc (b). The
parameters are as in Fig. 27.11.

index defined as the ratio of the energy of the nonzonal modes
with scales larger than the scale of the forcing over the total
energy:

nzmf =

∑
kl:K<Kf−ΔKf Ê(k, l)∑

kl Ê(k, l)
− zmf. (27.35)

If the structures that emerge are coherent, then the nzmf and
the zmf indices quantify the amplitude of the nonzonal and
the zonal coherent structures, respectively. Figure 27.11 shows
both indices as a function of the energy input rate ε and as a
function of the corresponding values of the zonostrophy index
Rβ for EQL simulations with Nens = 10 members. The rapid
increase of the nzmf index for ε > εc (corresponding to
Rβ > 1.55) illustrates that this regime transition in the flow
predicted by S3T with the emergence of nonzonal structures
manifests in the quasi-linear dynamics as well. We now con-
sider the case ε = 4εc in detail, with the traveling wave struc-
ture Z = cos(x) cos(5y) maintained in the S3T integrations.
We observe that the S3T equilibria manifest in the EQL sim-
ulations with the addition of some “thermal noise” due to the
stochasticity of the forcing that is retained in this system. This
is illustrated in Fig. 27.7(b), showing the energy growth of the
coherent structure for Nens = 10 and Nens = 100. The energy of
the coherent structure in the EQL integrations fluctuates around
the values predicted by the S3T system, with the fluctuations
decreasing as 1/

√
Nens. However, even with only 10 ensemble

members we get an estimate that is very close to the theoreti-
cal estimate of the infinite ensemble members obtained from the
S3T integration. The structure of the traveling wave equilibrium
in the quasi-linear simulations shown in Fig. 27.12(a) and its
phase speed (not shown) are also in very good agreement with
the corresponding structure and phase speed obtained from the
S3T integration.

As discussed in the previous section, the flow stays on the
attractor of the nonzonal traveling wave states for ε ≤ εnl.
When ε > εnl the nonzonal traveling wave equilibria become
S3T unstable, while at these parameter values the S3T system
has mixed zonal jet–traveling wave equilibria that are stable (cf.
Fig. 27.10). The rapid increase in the zmf index with the con-
comitant rapid decrease in the nzmf index shown in Fig. 27.11
illustrates that this regime transition manifests in the EQL sys-
tem as well with similar mixed zonal–traveling wave states
appearing. The structure of the mixed zonal jet–traveling wave
equilibrium for ε = 50εc is shown in Fig. 27.12(b) and, similar
to the S3T equilibrium in Fig. 27.10, it consists mainly of four

zonal jets and the compact support vortices Z ∼ cos(x) cos(4y)
embedded in the jets. We therefore conclude that the EQL
system accurately captures the characteristics of the emerg-
ing structures and presents a useful model, not only because
it includes the thermal effect of the finite number of ensemble
members but also because it provides a computationally effi-
cient model of the S3T dynamics in comparison with the S3T
dynamical system, which for an M × M resolution requires the
algebraic manipulation of the M4 covariance matrix C.

27.6.2 Comparison with Nonlinear Simulations

In order to compare the predictions of S3T with nonlinear sim-
ulations, we solve (27.1) with the narrow-band forcing (27.32)
on a doubly periodic channel of size 2π × 2π using the same
pseudo-spectral code as in the EQL simulations and the same
parameter values. Figure 27.11 shows the nzmf and zmf indices
as a function of the energy input rate ε for the NL simulations.
The rapid increase in the nzmf index for ε > εc shows that
the nonlinear dynamics share the same bifurcation structure as
the S3T statistical dynamics. In addition, the stable S3T equi-
libria are, in principle, viable repositories of energy in the tur-
bulent flow, and the nonlinear system is expected to visit their
attractors for finite time intervals. Indeed, for ε = 4εc the pro-
nounced peak at (|k |, |l |) = (1, 5) of the time-averaged power
spectrum shown in Fig. 27.13(a) illustrates that the traveling
wave equilibrium with (|k |, |l |) = (1, 5) that emerges in the
S3T integrations is the dominant structure in the NL simula-
tions. Comparison of the energy spectra obtained from the EQL
and the NL simulations (not shown) reveals that the amplitude
of this structure in the quasi-linear and in the nonlinear dyna-
mics almost matches. Remarkably, the phase speed of the S3T
traveling wave matches the corresponding phase speed of the
(|k |, |l |) = (1, 5) structure observed in the NL simulations, as
can be seen in the Hovmöller diagram in Fig. 27.13(b). Such
an agreement in the characteristics of the emerging structures
between the EQL and NL simulations occurs for a wide range
of energy input rates, as can be seen by comparing the nzmf
indices in Fig. 27.11. As a result, S3T predicts the dominant
nonzonal propagating structures in the nonlinear simulations,
as well as their amplitude and phase speed.

We now focus on the second regime transition with the emer-
gence of zonal jets. The increase in the zmf index in the NL
simulations for ε > εnl that is shown in Fig. 27.11 indicates the
emergence of jets roughly at the bifurcation point of the S3T
and EQL simulations. However, the energy input rate threshold
for the emergence of jets is larger in the NL simulations com-
pared to the corresponding EQL threshold. This discrepancy
possibly occurs due to the fact that the exchange of instabilities
between the mixed jet–traveling wave equilibria and the pure
traveling wave equilibria depends on the equilibrium structure
[ZE, CE]. Small changes, for example, in CE that might be
caused by the eddy–eddy terms neglected in S3T can cause the
exchange of instabilities to occur at slightly different energy
input rates. It was shown in a recent study that when the effect
of the eddy–eddy terms is taken into account by obtaining CE

directly from the nonlinear simulations, the S3T stability anal-
ysis performed on the corrected equilibrium states accurately
predicts the energy input rate for the emergence of jets in the
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Figure 27.13 Time-averaged energy power spectra, log(Ê (k, l)),
obtained from the nonlinear simulation of (27.1) at ε/εc = 4 (a) and
ε/εc = 50 (c). Also shown are Hovmöller diagrams of
ψ(x, y = π/4, t) at ε/εc = 4 (b) and ε/εc = 50 (d). The thick dashed
lines correspond to the phase speed obtained from the eigenvalue
relation (27.15). Adapted from Bakas and Ioannou (2014). ©
Cambridge University Press. Reprinted with permission.

nonlinear simulations (Constantinou et al., 2014a). The power
spectrum obtained from the NL simulations for ε = 50εc shows
an energy peak at (k, |l |) = (0, 4), with secondary power peaks
at (|k |, |l |) = (1, 4) and (|k |, |l |) = (1, 5) of approximately 12%
of the energy in the zonal jet each. The Hovmöller diagram
of the stream function shown in Fig. 27.13(d) reveals that the
dominant nonzonal structures in the NL simulations propagate
in the retrograde direction. As a result, the mixed S3T equi-
librium of Fig. 27.10 manifests in the NL simulations. Note,
however, that the phase speed calculated from the diagram is
different from the phase speed of the (|k |, |l |) = (1, 4) struc-
ture in Fig. 27.10. At larger energy input rates the zonal jets
have typically larger scales due to jet merging, and coexist
with energetically significant westward-propagating nonzonal
structures having an energy of 10%–50% of the jet energy and
scales (|k |, |l |) = (1, m), where m is the number of jets in the
channel. Such an agreement again holds for a wide range of
energy input rates, as the zmf indices obtained from the EQL
and the NL simulations indicate. In summary, S3T predicts the
characteristics of both nonzonal propagating structures and of
zonal jets in the nonlinear simulations.

27.6.3 Zonostrophic Regime

S3T and the corresponding ensemble quasi-linear system were
obtained by ignoring the eddy–eddy nonlinear interactions.
Therefore, the question arises as to whether the predictions
of S3T are useful in the zonostrophic regime. In this regime,
which is highly supercritical with respect to S3T instability of
the homogeneous equilibrium (sees Fig. 27.1), maintenance of
zonal jets and zonons were interpreted by previous studies to
arise from an inverse energy cascade (Galperin et al., 2010), a
highly nonlinear process, which is absent in S3T. According to

Figure 27.14 Residual (blue) and zonal (red) energy spectra for the
NL (solid) and EQL (dashed) simulations in the zonostrophic regime.
Also shown are the residual spectra from the EQL simulations when
only the coherent motions are taken into account (blue dotted line).
The parameters are Kf = 60, ΔK = 1, β = 42, r = 0.01 and
ε = 0.0065, for which β̃ = 70, ε̃ = 7308ε̃c, kβ = 12.9 and Rβ = 2.5.
Lines (thin dashed) of slope K−5/3 and K−5 are also plotted for
reference. The pseudo-spectral code was run with a 512 × 512
resolution and the exponential filter of Smith et al. (2002) instead of
hyperdiffusion.

this interpretation, the turbulent energy cascades isotropically
toward large scales until it reaches kβ . At this scale the cas-
cade becomes anisotropic and most of the energy is channelled
into the zonal flows. To illustrate this, the time-averaged energy
power spectra Ê(k, l) are typically split between the zonal spec-
tra Êz(l) = Ê(k = 0, l) and the residual ÊR(k, l) = Ê − Êz. The
zonal and residual spectra calculated from NL integrations in
the zonostrophic regime (Kf = 60, ΔK = 1, β = 42, r = 0.01,
ε = 0.0065) are shown in Fig. 27.14. Up to the scale kβ , the
residual spectra follow the Kolmogorov K−5/3 law in accor-
dance with an isotropic cascade assumption. At this scale, the
cascade is anisotropized and the residual spectra steepen. How-
ever, most of the energy is in zonal scales, with the zonal spectra
following a much steeper K−5 law.

The residual and the zonal spectra obtained from an EQL
simulation with Nens = 10 for the same parameters are also
shown in Fig. 27.14. The residual spectra follow a slope shal-
lower than K−5/3 for K > kβ , while they steepen after kβ and
reach a lower peak with respect to the corresponding spectra
from the NL simulations. In addition, the residual part of the
spectrum corresponds mainly to incoherent motions for scales
with K > kβ . This is revealed by taking into account only the
spectra of the coherent part of the flow and calculating the resid-
ual spectrum, which is also shown in Fig. 27.14. For most of the
scales, it is at least one to two orders of magnitude lower than
the corresponding residual spectrum when both coherent and
incoherent motions are taken into account, and only the non-
zonal structures with large scales (close to the energy peak)
appear to be coherent. The failure of the EQL simulations to
exactly reproduce the K−5/3 slope of the incoherent turbulent
motions is not surprising, since the inverse energy cascade that
is absent in the EQL simulations is essential for this part of
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the spectrum. The energetically important part, however, which
contains the large-scale energetic waves, is captured by the EQL
simulations. The zonal spectra obtained from the EQL simula-
tions follow the same K−5 law and peak at the same scale com-
pared to the NL simulations, but the peak has a larger amplitude.

So, to summarize, the scale and the shape of the dominant
jet structure, as well as the scale of the most energetic coher-
ent nonzonal structures, are accurately captured by the EQL
simulations. The eddy–eddy interactions neglected in the EQL
simulations appear to only set the proper scaling for the tail
of the spectrum that consists of incoherent turbulent motions
and change the partition between the energy of the jet (which is
overestimated in the EQL simulations) and that of the nonzonal
large-scale structures (which is underestimated in the EQL sim-
ulations).

27.7 SUMMARY AND DISCUSSION

This chapter has addressed the emergence of coherent structures
in barotropic β-plane turbulence using the tools of Stochastic
Structural Stability Theory (S3T), a theory that expresses the
statistics of the turbulent flow dynamics as a systematic cumu-
lant expansion truncated at second order. With the interpretation
of the ensemble average as a Reynolds average over the fast
turbulent eddies adopted in this contribution, the second-order
cumulant expansion results in a closed, nonlinear dynamical
system that governs the joint evolution of slowly varying, spa-
tially localized coherent structures with the second-order statis-
tics of the rapidly evolving turbulent eddies. The fixed points of
this autonomous, deterministic nonlinear system define statisti-
cal equilibria, the stability of which are amenable to the usual
treatment of linear and nonlinear stability analysis.

The linear stability of the homogeneous S3T equilibrium
with no mean velocity was examined analytically for the case of
an isotropic random stirring at scale Lf that sustains the turbu-
lence in the barotropic flow, which reaches a steady state in the
presence of linear dissipation at a rate r . Structural instability
was found to occur for perturbations with smaller scale than the
forcing, when the energy input rate ε̃ = ε/(r3L2

f ) is larger than
a certain threshold ε̃c that depends on β̃ = βLf/r . It was found
that when β̃ is small or of order one, the maximum growth
rate occurs for stationary zonal structures, while for large β̃,
westward-propagating nonzonal structures grow the most.

The eddy–mean flow dynamics underlying the S3T instabil-
ity of zonal jets was then studied in detail. It was shown that,
close to the structural stability boundary, the dynamics can be
split into two competing processes. The first, which is shearing
of the eddies by the local shear described by Orr dynamics in the
β plane, was shown to lead to jet-forming up-gradient momen-
tum fluxes acting exactly as negative viscosity for an anisotropic
forcing and as negative hyperviscosity for isotropic forcing. The
second, which is momentum flux divergence resulting from lat-
eral wave propagation on the nonuniform local mean vortic-
ity gradient, was shown to lead to jet-opposing down-gradient
fluxes acting as hyperdiffusion.

The equilibration of the unstable, exponentially growing
coherent structures for large β̃ was then studied through numer-
ical integrations of the S3T dynamical system. When the forc-

ing amplitude is slightly supercritical, the finite-amplitude trav-
eling wave equilibrium has a structure close to the correspond-
ing unstable nonzonal perturbation with the same scale. When
the forcing amplitude is highly supercritical, the instabilities
equilibrate to mixed states consisting of strong zonal jets with
smaller-amplitude traveling waves embedded in them.

The predictions of S3T were then compared with the results
obtained from direct numerical simulations of the turbulent
dynamics. The critical threshold above which coherent non-
zonal structures are unstable according to the stability analy-
sis of the S3T system was found to be in excellent agreement
with the critical value above which nonzonal structures acquire
significant power in the nonlinear simulations. The scale, phase
speed and amplitude of the dominant structures in the nonlinear
simulations were also found to correspond to the structures pre-
dicted by S3T. In addition, the threshold for the emergence of
jets, which is identified in S3T as the energy input rate at which
an S3T stable, finite-amplitude zonal jet equilibrium exists, was
found to roughly match the corresponding threshold for jet for-
mation in the nonlinear simulations, with the emerging jet scale
and amplitude being accurately obtained using S3T. Such good
agreement between the predictions of S3T and direct numeri-
cal simulations holds not only close to the bifurcation point for
the emergence of coherent structures but also in the regime of
zonostrophic turbulence. Consequently, these results provide a
concrete example that large-scale structure in barotropic turbu-
lence, whether it is zonal jets or nonzonal coherent structures,
emerges and is sustained from systematic self-organization of
the turbulent Reynolds stresses by spectrally nonlocal interac-
tions and in the absence of a turbulent cascade.

APPENDICES

27.A BOUNDEDNESS OF THE SOLUTIONS AND
INVARIANTS OF THE S3T EQUATIONS

The S3T system in the absence of forcing and dissipation
has similar quadratic invariants to the nonlinear system. Fur-
ther, the solutions of the S3T equations remain bounded for
all times. That is, the sum of the enstrophy of the ensem-
ble mean over the domain, Hm = 1/2

∫
Z2dxdy, and the

eddy enstrophy over the domain, Hp = 1/2
∫

Cx1=x2dxdy,
is conserved. Similarly, the sum of the energy of the ensem-
ble mean, Em = 1/2

∫
(U2 + V 2)dxdy, and the eddy energy,

Ep = 1/2
∫

(Δ−1
1 C)x1=x2dxdy, is also conserved. We show this

by first multiplying (27.9) (in the absence of hyperdiffusion) by
Z to obtain

∂tηm+U∂xηm+V∂yηm+ βV Z = −Z∇·〈u′ζ ′〉−2rηm, (27.A.1)

where ηm = Z2/2 is the enstrophy density of the ensemble
mean. Integrating by parts and using the continuity equation,
we rewrite the advection terms as

U∂xηm + V∂yηm = ∂x (Uηm) + ∂y (Vηm). (27.A.2)

Writing Z = ∂xV−∂yU and again using the continuity equation,
we have

ZV = ∂x
U2 + V 2

2
− ∂y (UV ), (27.A.3)
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and (27.A.1) becomes

∂tηm +∇ · (Uηm) + β∂xem − β∂y (UV ) = −Z∇ · 〈u′ζ ′〉− 2rηm,
(27.A.4)

where em = (1/2)(U2 +V 2) is the energy density of the ensem-
ble mean. Similarly, it can be shown from (27.12) that the
ensemble mean of the eddy enstrophy density ηp = (1/2)Cx1=x2

evolves (in the absence of hyperdiffusion) according to

∂tηp + ∇ · (Uηp) + β
[
∂x (ep) − ∂y

〈
u′v′
〉]
+

+
〈
u′ζ ′
〉
∂xZ +

〈
v′ζ ′
〉
∂yZ = ηf − 2rηp, (27.A.5)

where ep = (1/2)(Δ−1
1 C)x1=x2 is the ensemble mean of the eddy

energy density and ηf = (1/2)Ξx1=x2 is the enstrophy density of
the forcing. Adding (27.A.4) and (27.A.5), we obtain the equa-
tion for the evolution of the total enstrophy density η = ηp+ηm:

(∂t +2r)η−ηf = −∇· (Uη)− β∂x (ep+em)+ β∂y (UV +
〈
u′v′
〉
).

(27.A.6)

Integrating (27.A.6) over the horizontal domain, the terms on
the right-hand side of (27.A.6) integrate to zero and the total
enstrophy H = Hm+Hp =

∫
(ηm+ηp)dxdy evolves according to

∂tH = Hf − 2rH , (27.A.7)

where Hf is the total enstrophy imparted by the forcing.
As a result, the enstrophy is bounded and has the value
Heq = Hf/(2r) at steady state. Similarly, it can be shown
that the total energy E = Em + Ep is bounded.

27.B CALCULATION OF THE DISPERSION
RELATION AND ITS PROPERTIES

In this appendix we derive the dispersion relation (27.15),
which determines the stability of zonal as well as nonzonal
perturbations in homogeneous turbulence. We follow closely
the treatment of Srinivasan and Young (2012). We first rewrite
(27.9) and (27.12) in terms of the variables x̃ = x1 − x2,
x = (1/2)(x1 + x2), ỹ = y1 − y2 and y = (1/2)(y1 + y2).
The derivatives transform into this new system of coordinates
as ∂xi = (1/2)∂x + (−1)i+1∂x̃ , ∂yi = (1/2)∂y + (−1)i+1∂ỹ ,
Δi = Δ̃+ (1/4)Δ+ (−1)i+1∂2

ỹy
+ (−1)i+1∂2

x̃x
, with Δ̃ = ∂2

x̃ x̃ +∂
2
ỹỹ

and Δ = ∂2
xx
+ ∂2

yy
. It is also convenient to introduce the stream

function covariance S( x̃, x, ỹ, y) ≡
〈
ψ ′1ψ

′
2

〉
, which is related to

C( x̃, x, ỹ, y) via

C =
〈
ζ ′1ζ

′
2

〉
=
〈
Δ1ψ

′
1Δ2ψ

′
2

〉
= Δ1Δ2S

=

⎡⎢⎢⎢⎢⎣
(
Δ̃ +

1
4
Δ

)2
− Γ2

⎤⎥⎥⎥⎥⎦ S, (27.B.1)

where Γ = ∂2
x̃x
+∂2

ỹy
. Equations (27.9) and (27.12) then become,

in the absence of hyperviscosity (ν = 0),[
∂t +U∂x + Ũ∂x̃ + V∂y + Ṽ∂ỹ

]
C+

+
[
(β + Zy )∂x + Z̃y∂x̃ − Z x∂y − Z̃x∂ỹ

] (
Δ̃ +

1
4
Δ

)
S−

−
[
2(β + Zy )∂x̃ +

1
2

Z̃y∂x − 2Z x∂ỹ −
1
2

Z̃x∂y

]
ΓS =

= −2rC + Ξ, (27.B.2)

(∂t + U · ∇) Z + βV = (∂2
x̃y − ∂

2
ỹx )ΓS |x̃=ỹ=0 − r Z , (27.B.3)

where (U, V ) = (1/2)(U1+U2, V1+V2), (Ũ , Ṽ ) = (U1−U2, V1−
V2), (Z x , Zy ) = (1/2)(∂x1 + ∂x2 , ∂y1 + ∂y2 )Z and (Z̃x , Z̃y ) =
(∂x1 − ∂x2 , ∂y1 − ∂y2 )Z .

The forcing covariance Ξ is homogeneous, and as a result it
depends only on the difference coordinates, x̃ and ỹ. It can then
be readily shown from (27.B.2) and (27.B.3) that the state with
no coherent flow (UE = VE = ZE = 0) and with the homo-
geneous vorticity covariance CE( x̃, ỹ) = Ξ/(2r) (implying also
that the stream function covariance SE is homogeneous) is a
fixed point of the S3T system. The stability of this homoge-
neous equilibrium can be addressed by first linearizing the S3T
system about it:

∂tδC = −
(
δŨ∂x̃ + δṼ∂ỹ

)
CE −

(
δ Z̃y∂x̃ − δ Z̃x∂ỹ

)
Δ̃SE−

− β
{ [
Δ̃ +

1
4
Δ

]
∂x − 2Γ∂x̃

}
δS − 2rδC, (27.B.4)

∂tδZ = −βδV + (∂2
x̃y − ∂

2
ỹx )ΓδS |x̃=ỹ=0 − rδZ , (27.B.5)

where δZ , δŨ , δṼ , δ Z̃x , δ Z̃y , δC and δS are small perturba-
tions in the ensemble mean vorticity, velocities and vorticity
gradients, and in the eddy vorticity and stream function covari-
ances respectively, and then performing an eigenanalysis of the
linearized equations (27.B.4) and (27.B.5).

We consider a harmonic vorticity perturbation of the form
δZ = einx+imyeσt , for which

[δŨ , δṼ , δ Z̃x , δ Z̃y] =

= −2
[ m

N2 ,− n

N2 , n, m
]

sin
( nx̃

2
+

m ỹ

2

)
einx+imyeσt ,

(27.B.6)

with N2 = n2 + m2. Taking the same form for the stream func-
tion covariance perturbation δS = Snm( x̃, ỹ)einx+imyeσt and
inserting it in (27.B.4) and (27.B.5) along with (27.B.6) yields

(σ + 2r)
⎡⎢⎢⎢⎢⎣
(
Δ̃ − N2

4

)2
+ Δ2

+

⎤⎥⎥⎥⎥⎦ Snm

−
[
2i βΔ+∂x̃ − inβ

(
Δ̃ − N2

4

)]
Snm =

=
2

N2 sin
( nx̃

2
+

m ỹ

2

) (
m∂x̃ − n∂ỹ

)
(Δ̃ + N2)Δ̃SE, (27.B.7)

− (σ + r)N2 + inβ = N2
(
m∂x̃ − n∂ỹ

)
Δ+Snm |x̃=ỹ=0, (27.B.8)

where Δ+ = n∂x̃ + m∂ỹ and CE = Ξ/2r = Δ̃2SE is the equilib-
rium vorticity covariance with zero mean flow.
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Defining the Fourier transform of Snm( x̃, ỹ) by

Ŝnm(k, l) =
1

2π

∫ ∞

−∞

∫ ∞

−∞
Snm( x̃, ỹ)e−ik x̃−ilỹdx̃dỹ, (27.B.9)

we obtain from (27.B.7) that the Fourier component Ŝnm satis-
fies

Ŝnm =
(mk− − nl−)K2

−(K2
−/N2 − 1)ŜE(k−, l−)

i β(k−K2
+ − k+K2

−) + (σ + 2r)K2
+K2
−
−

−
(mk+ − nl+)K2

+(K2
+/N2 − 1)ŜE(k+, l+)

i β(k−K2
+ − k+K2

−) + (σ + 2r)K2
+K2
−

, (27.B.10)

with k± = k±n/2, l± = l±m/2, K2
± = k2

±+ l2
± and K2 = k2+ l2.

ŜE = Ξ̂/(2rK4) is the Fourier transform of SE, and Ξ̂ is the
Fourier transform of Ξ. In addition, (27.B.8) becomes

inβ − (σ + r)N2 =

= −N2

2π

∫ ∞

−∞

∫ ∞

−∞

[
nm(k2 − l2) + (m2 − n2)kl

]
Ŝnmdkdl

= Λ+ − Λ−, (27.B.11)

where

Λ± =
1

2π

∫ ∞

−∞

∫ ∞

−∞
dkdlK2

±(K2
± − N2)ŜE(k±, l±)×

×

[
nm(k2 − l2) + (m2 − n2)kl

]
(mk± − nl±)

i β(k−K2
+ − k+K2

−) + (σ + 2r)K2
+K2
−

. (27.B.12)

Equation (27.B.11) can be further simplified by noting that
because the choice of x1 and x2 is arbitrary, the forcing
covariance satisfies the exchange symmetry Ξ(x1, x2, y1, y2) =
Ξ(x2, x1, y2, y1). In terms of the new variables, the exchange
symmetry is written as Ξ( x̃, x, ỹ, y) = Ξ(−x̃, x,−ỹ, y), and con-
sequently Ξ̂ satisfies Ξ̂(−k,−l) = Ξ̂(k, l). As a result,

Λ+ = −Λ−. (27.B.13)

sign of k in the integral to obtain∫ ∞

−∞

∫ ∞

−∞
dkdl K2(K2 − N2)ŜE(−k, l)×

×
(mk − nl)

[
nm(k2

+ − l2
+) + (m2 − n2)k+l+

]
−i β
(
kK2

s − (k + n)K2
)
+ (σ(−n,m) + 2r)K2K2

s
=

= π(σ(−n,m) + r)N2 + iπnβ. (27.B.16)

Using (27.B.13) and shifting the axes in the resulting integrals
(k → k + n/2 and l → l + m/2), reduces (27.B.11) to the
following dispersion relation:∫ ∞

−∞

∫ ∞

−∞
dkdl K2(K2 − N2)ŜE(k, l)×

×
(mk − nl)

[
nm(k2

+ − l2
+) + (m2 − n2)k+l+

]
i β
(
kK2

s − (k + n)K2
)
+ (σ + 2r)K2K2

s
=

= π(σ + r)N2 − iπnβ, (27.B.14)

where K2
s = (k + n)2 + (l + m)2. The corresponding dispersion

relation on a periodic box can be readily calculated by simply
substituting the integrals in (27.B.14) by finite sums of integer
wavenumbers. For a mirror symmetric forcing obeying

Ξ̂(−k, l) = Ξ̂(k, l), (27.B.15)

the eigenvalues σ satisfy the symmetries (27.17). In order to
show this, we consider (27.B.14) for σ(−n,m) and change the

Taking the conjugate of (27.B.16) and using the mirror symme-
try (27.B.15) yields (27.B.14), and therefore σ(−n,m) = σ

∗
(n,m) .

Similarly, it can be readily shown, by considering (27.B.14)
for σ(n,−m) and changing the sign of l in the integral, that
σ(n,−m) = σ(n,m) .






