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ABSTRACT

Turbulent flows are often observed to be organized into large-spatial-scale jets such as the familiar zonal
jets in the upper levels of the Jovian atmosphere. These relatively steady large-scale jets are not forced
coherently but are maintained by the much smaller spatial- and temporal-scale turbulence with which they
coexist. The turbulence maintaining the jets may arise from exogenous sources such as small-scale convec-
tion or from endogenous sources such as eddy generation associated with baroclinic development processes
within the jet itself. Recently a comprehensive theory for the interaction of jets with turbulence has been
developed called stochastic structural stability theory (SSST). In this work SSST is used to study the
formation of multiple jets in barotropic turbulence in order to understand the physical mechanism produc-
ing and maintaining these jets and, specifically, to predict the jet amplitude, structure, and spacing. These
jets are shown to be maintained by the continuous spectrum of shear waves and to be organized into stable
attracting states in the mutually adjusted mean flow and turbulence fields. The jet structure, amplitude, and
spacing and the turbulence level required for emergence of jets can be inferred from these equilibria. For
weak but supercritical turbulence levels the jet scale is determined by the most unstable mode of the SSST
system and the amplitude of the jets at equilibrium is determined by the balance between eddy forcing and
mean flow dissipation. At stronger turbulence levels the jet amplitude saturates with jet spacing and
amplitude satisfying the Rayleigh–Kuo stability condition that implies the Rhines scale. Equilibrium jets
obtained with the SSST system are in remarkable agreement with equilibrium jets obtained in simulations
of fully developed �-plane turbulence.

1. Introduction

Large-scale coherent jets for which no obvious jet-
scale forcing can be ascribed are often observed in tur-
bulent flows; examples include the banded winds of the
gaseous planets (Ingersoll 1990; Vasavada and Show-
man 2005) and the earth’s midlatitude jets. This phe-
nomenon of spontaneous jet organization in turbulence
has been extensively investigated in observational and
in theoretical studies (Williams 1979, 2003; Panetta
1993; Nozawa and Yoden 1997; Huang and Robinson
1998; Lee 2005; Manfroi and Young 1999; Vallis and
Maltrud 1993; Cho and Polvani 1996; Read et al. 2004;
Galpirin et al. 2004). A comprehensive theory for the

formation and maintenance of jets in turbulence must
account not only for the emergence of the jets but also
for their structure and persistence. The mechanism by
which jets are maintained is upgradient eddy momen-
tum flux and, specifically, flux by small-scale eddies
widely separated in scale from the jet scale. This mecha-
nism is distinct from mechanisms based on a turbulent
cascade, which takes place locally in spectral space.
Furthermore, at equilibrium the flux is carried by the
continuous spectrum of shear waves as distinct from the
discrete jet modes (Huang and Robinson 1998; Panetta
1993; Vallis and Maltrud 1993). This upgradient mo-
mentum transfer mechanism has been found to main-
tain jets both in barotropic forced dissipative models
(Huang and Robinson 1998) and in baroclinic two-layer
free turbulence models (Panetta 1993; Williams 2003).

This mechanism of interaction between jets and tur-
bulence is quasi-linear in the sense that the continuous-
spectrum momentum fluxes can be obtained from a

Corresponding author address: Brian Farrell, Department of
Earth and Planetary Sciences, Harvard University, Geological
Museum 452, 24 Oxford Street, Cambridge, MA 02138.
E-mail: farrell@deas.harvard.edu

3652 J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S VOLUME 64

DOI: 10.1175/JAS4016.1

© 2007 American Meteorological Society

JAS4016



linear model if the jet structure is known (Huang and
Robinson 1998). The forcing of the eddies that produce
the fluxes can be traced either to explicitly exogenous
short-time-scale processes, such as convection (as in the
case of the Jovian jets), or to endogenous turbulence
generated internally (as in the example of the earth’s
midlatitude jets). The wave forcing can be modeled sto-
chastically because these processes have short time
scales compared to the jet persistence time scale. It
follows that the central component in a theory for jets
in turbulence is a method to obtain the structure of the
turbulence and the associated fluxes given the jet. This
problem has been solved using stochastic turbulence
modeling (Farrell and Ioannou 1993a,c, 1996; DelSole
and Farrell 1996; Newman et al. 1997; Zhang and Held
1999; DelSole 2004), which provides an analytic method
to obtain the distribution of momentum flux arising
from the turbulent wave field associated with a given jet
structure. Once these fluxes are known the equilibrium
states of balance between the large-scale forcing or re-
laxation to a mean flow and the turbulent momentum
flux divergence can be identified, from which a theory
for jets in turbulence proceeds.

There are three length scales in barotropic dynamics
on a � plane: the scale imposed by the boundaries, the
Rhines scale L� � �U/�, and, if a shallow water ap-
proximation has been made, the Rossby radius LR �
�gH/f, in which f is the Coriolis parameter, � is its
meridional gradient, g is the acceleration of gravity, H
is the depth of the fluid, and U is a characteristic ve-
locity. Emergence of any of these length scales in the
solution to turbulence in the barotropic equations can-
not be used to argue for any particular physical mecha-
nism for maintaining the jets because the intrinsic scales
of the problem are common to all mechanisms and can
at best be used to argue consistency with the dynamics.
To establish that a physical mechanism is at work in the
jet structure problem requires diagnosing that mecha-
nism in the evolution dynamics and at equilibrium. For
instance, the nonlocal nature of the momentum transfer
from the small eddy scale directly to the jet scale argues
against a turbulent cascade arrested at the Rhines scale
being the mechanism, despite the often-remarked coin-
cidence of the Rhines radius in observations of jets and
in the theory of barotropic �-plane turbulence. The role
of � in the jet structure problem has also been advanced
as required for breaking the symmetry of the f plane
and establishing a preferred direction for the jets, but
this role can be assumed by the boundaries and ex-
amples of equatorial jets maintained by turbulence,
such as the quasi-biennial oscillation (QBO), and eddy-
driven jets in nonrotating systems (Plumb and McEwan

1978) suggest that the planetary vorticity gradient may
not be essential for the maintenance of turbulent jets.

In this paper we study the structure and dynamics of
jets in turbulence by joining the equation governing the
stochastically forced perturbation field with the equa-
tion for the zonal mean to form a coupled wave–mean
flow evolution system. This nonlinear coupled equation
system is the basic tool in stochastic structural stability
theory (SSST) analysis (Farrell and Ioannou 2003,
hereafter FI03).

2. Dynamics of the zonally averaged velocity in
turbulent flows

a. Formulation

A theory for jet dynamics in turbulent flow was de-
veloped in FI03. We now review the salient ideas of this
theory called SSST.

Consider a turbulent rotating barotropic fluid of uni-
form density confined to the x–y plane and let U(y, t)
be the latitudinally dependent (y) and time-dependent
(t) mean velocity averaged in the zonal (x) direction.
Assume isotropy of the planar geometry is broken ei-
ther by the flow being on a � plane or by the flow being
confined to a zonal channel. Let �(x, y, t) be the stream-
function perturbation to this mean flow. The mean flow
obeys the Reynolds-averaged equation:

�U

�t
� �q � reU, �1�

in which overbars denote zonal averaging and the mean
flow acceleration arises from an imbalance between the
northward zonally averaged eddy vorticity flux �q,
which is equal to the convergence of the northward
momentum flux

�q � �
du�

dy
, �2�

and linear relaxation to a state of no flow. In the pre-
ceding equations the zonal and meridional perturbation
velocity are nondivergent with streamfunction �:

u � �
��

�y
, � �

��

�x
. �3�

The perturbation vorticity is then

q �
��

�x
�

�u

�y
� ��. �4�

The perturbation streamfunction is written as a Fou-
rier sum of zonal harmonics:
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��x, y, t� � 	
k

�k�y, t�eikx. �5�

The total eddy vorticity flux in Eq. (1) is the sum of the
eddy vorticity flux due to each Fourier component:

�q � 	
k

Re��kq*k�

2
, �6�

where * denotes complex conjugation.
The continuous operators are discretized and the dy-

namical operators are approximated by finite dimen-
sional matrices in which the state �k is represented by
a column vector with entries of the complex value of
the streamfunction at collocation points.

Each Fourier component of the perturbation stream-
function evolves according to the stochastically forced
linear equation:

d�k

dt
� Ak�U��k 
 Fk��t�, �7�

where U is the diagonal matrix formed from the mean
velocity U(y, t) at the collocation points and Ak(U) is
the operator that governs linear dynamics:

Ak�U� � ��1��ikU� � ik��I � D2U� � rI, �8�

with I the identity matrix and

� � D2 � k2I, �9�

the matrix representation of the Laplacian (D2 is the
matrix representation of d2/dy2). In writing this pertur-
bation equation we have included in the linear operator
parameterization of the nonlinear terms in the com-
plete perturbation equation as stochastic forcing and
added dissipation (Farrell and Ioannou 1993a, 1996;
DelSole and Farrell 1996; Newman et al. 1997; DelSole
2004). Care must be taken that the structure of this
forcing matrix, Fk, does not bias the response. We select
forcing matrices that are homogeneous in the latitudi-
nal direction with Gaussian autocorrelation function
about yi proportional to exp[�(y � yi)

2/�2]. Also, the
forcing matrices will be the same for all zonal wave-
numbers.

The forcing is delta-correlated white noise with zero
mean and unit variance:

���t�� � 0, ���t��†�s�� � I��t � s�, �10�

where I is the identity matrix and † denotes Hermitian
transposition. The angle brackets denote an ensemble
average, that is, an average over realizations of the forc-
ing.

With these assumptions the time evolution of the en-
semble-average covariance matrix of the perturbation
field Ck � ��k�†

k� can be obtained as follows:

dCk

dt
� �d�k

dt
�k

† 
 �k

d�k
†

dt �
� ��Ak�k 
 Fk��t��k

† 
 �k�Ak�k 
 Fk��t�†�

� AkCk 
 CkAk
† 
 Fk���t��k

†� 
 ��k��t�†�Fk
†.

�11�

Taking advantage of the explicit expression for the
state

�k�t� � ��t, 0��k�0� 
 �
0

t

��t, s�Fk��s� ds, �12�

we obtain that

��k��t�†� � ��t, 0���k�0���t�†�


 �
0

t

��t, s�Fk���s���t�†� ds,

�
Fk

2
, �13�

under the assumption that the initial state of the system
is uncorrelated with the noise, so that ��k(0)�(t)†� � 0
and the property of the delta functions �t

0 ��(s)�(t)†�
ds � I/2. We therefore obtain that the covariance obeys
the deterministic equation:

dCk

dt
� AkCk 
 CkAk

† 
 Qk, �14�

with Qk � FkF†
k the spatial covariance matrix of the

stochastic forcing (FI03). For our purposes the matrix
Qk includes all the relevant characteristics of the forc-
ing; the meridional distribution of the forcing is given
by the diagonal elements of this matrix and the auto-
correlation function by the rows.

The jth component of the ensemble average of the
zonally averaged eddy vorticity flux from (6) is

��q�jj � � k
j qk

j 	
k

�
k

2
Im�Ck�†�jj �15�

(no sum over j).
When the ensemble average of the zonally averaged

eddy vorticity flux equals the zonally averaged eddy
vorticity flux, that is, when

��q� � �q, �16�
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then the evolution equations for the covariances, (14),
the diagnostic equation for the total eddy vorticity flux,
(15), and the Reynolds-averaged equation for the mean
zonal flow, (1), define a closed nonlinear system for the
evolution of the mean flow under the influence of its
consistent field of turbulent eddies. This system is glo-
bally stable and its stationary solutions are equilibria in
which the mean flow is maintained with constant struc-
ture by eddy forcing.

This ideal limit in which the ensemble average is
equal to the zonal average is of particular interest. In
this limit, although the effect of the ensemble-average
turbulent fluxes is retained in the solution, the fluctua-
tions associated with the turbulent eddy dynamics are
suppressed by the averaging, and the zonally averaged
flow dynamics become deterministic. In this limit the
mean zonal flow equilibria emerge with great clarity.
This ideal limit is approached when the autocorrelation
scale of the perturbation field, l, is much smaller than
the zonal extent, L, of the channel. In that case taking
the zonal average is equivalent to averaging N � O(L/l)
statistically independent realizations of the forcing,
which, as N → �, converges to the ensemble average
(FI03). Examples of physical systems in which this limit
applies include the Jovian upper atmosphere and the
solar convection zone, both forced by relatively small-
scale convection. When this limit is not approached suf-
ficiently closely the system exhibits stochastic fluctua-
tions about the ideal equilibria. The ideal equilibrium
may nevertheless be detected underlying the noisy ob-
servations using statistical methods (Koo et al. 2002).
One physical system that exhibits such behavior is the
polar jet in the earth’s atmosphere. In that case the
eddy dynamics are dominated by global wavenumbers
4–10. As a result the number of independent systems
that are averaged over a latitude circle is at most order
10, which is too small for the ideal dynamics to be re-
alized closely. Accordingly, while the underlying order
is revealed by the ideal dynamics, the zonal jet exhibits
stochastic fluctuations about the ideal jet (FI03).

The assumption that the stochastic forcing is inde-
pendent of the mean and eddy fields limits our analysis.
While this is probably a good assumption for the Jovian
atmosphere because the forcing is thought to arise from
internally generated convection, this is a crude assump-
tion for the earth’s polar jet where the forcing distribu-
tion parameterized by FF† is influenced by the mean
flow and eddy amplitude itself. Obtaining the forcing
consistent with the turbulence supported by a jet is
equivalent to obtaining a closure of the turbulent sys-
tem. Progress on this problem has been made by Del-
Sole (1999), and his or a similar closure could be used

in the present study. However, while it is an attractive
avenue for future study, such a closure is not necessary
for understanding the basic dynamics underlying the
emergence of zonal jets in turbulence. In the interests
of simplicity and clarity, for the present we retain a
spatially uniform forcing and structure.

b. Scaling of the equations and boundary
conditions

We nondimensionalize the equations, choosing the
earth day for the time scale, T � 1 day, and length scale
Ly � 106 m. All variables will henceforth be considered
nondimensional. The calculations are performed in a
channel 40 units wide in the meridional directions. We
impose periodic boundary conditions in the meridional
direction. Under spatially uniform forcing the periodic
boundary conditions in the meridional direction en-
force translational symmetry in the problem. The size
of the channel has been selected wide enough to ac-
commodate a number of jets.

The strength of the stochastic forcing, Q, is measured
by the forcing density � � trace(Q)�y/Ly (where �y �
Ly/n, Ly is the channel width, and n is the number of
discretization points in the meridional direction). We
will generally give the strength of the forcing in dimen-
sional units (mW kg�1). To obtain the nondimensional
value of trace(Q)/n divide the values given by L2

y /T3.
Unless otherwise stated the number of discretization
points is n � 128.

3. Structural stability of the state of no zonal flow

Consider SSST applied to the case of an eddy per-
turbation field with a single zonal wavenumber, k. The
coupled nonlinear system is

dC
dt

� A�U�C 
 CA�U�† 
 Q, �17a�

dU
dt

� �
k

2
diag�Im�C��† � reU. �17b�

With U we denote the diagonal elements of the velocity
matrix U. Further consider imposing meridionally ho-
mogeneous forcing and periodic boundary conditions.
With these assumptions the absolute vorticity flux van-
ishes, and it follows that the state of no zonal flow, U �
0, is a fixed point of the nonlinear Eqs. (17a)–(17b). The
question arises whether this equilibrium is stable. Its
stability can be determined by considering perturba-
tions �U and �C to the equilibrium, (UE � 0, CE), that
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satisfies the Lyapunov equation A(UE)CE 
 CEA(UE)†


 Q � 0. The perturbation SSST equations are

d�Cij

dt
� A�UE�ik�Ckj 
 A�UE�*jk�Cik


 ��A�UE�ik

�Ul
CEkj 


�A�UE�*jk
�Ul

CEik�Ul ,

�18a�

d�Ui

dt
�

��qi

�Ckl
�

E
�Ckl � re�Ui , �18b�

in which the summation convention has been used, and
where E refers to the equilibrium state consisting of the
mean velocity UE and eddy covariance CE with associ-
ated equilibrium absolute vorticity flux �qE. As dis-
cussed in FI03, the nonanalytic projection operator that
selects the imaginary part of �C requires that the evo-
lution of the real and imaginary part be separated so
that the stability equations written symbolically are

d

dt �
�CR

�CI

�U
� � L�

�CR

�CI

�U
� , �19�

with L a real linear operator and with the superscripts R
and I denoting the real and imaginary parts (respec-
tively) of the linear operator obtained by linearizing
about the equilibrium mean flow UE. Eigenanalysis of
L determines the stability of the coupled equilibria.1

Stability of an equilibrium state (UE, CE) depends on
the strength of the stochastic forcing, Q, measured by
the forcing density � � trace(Q)�y/Ly. Consider an
equilibrium flow, UE, which is linearly stable, in the
sense that the operator A(UE) is stable. If Q � 0 then
CE � 0 (at equilibrium there are no eddies), so that the
stability Eqs. (18a)–(18b) inherit the stability of A(UE),
implying the stability of L. When forcing is introduced
CE becomes nonzero and mean velocity perturbations
can induce changes in the covariance �C, as can be seen
from (18a), with the result that the stability of L departs
from that of A(UE), and L can become unstable even if
A(UE) is stable. In contrast to previous work on wave–
mean flow interaction dynamics in which the eddy vari-
ance is not forced and a mode freely develops as a
marginal instability (Pedlosky 1972), the presence here
of a realistic turbulent background variance allows the

whole spectrum of the stable A(UE) to contribute to the
absolute vorticity fluxes and to participate in the desta-
bilization of the zonal flow as revealed through the per-
turbation stability operator L. This is an example of a
fundamentally new physical mechanism for destabiliz-
ing fluid flows, which is essentially emergent from the
interaction between turbulence and the mean flow.

As an example, in Fig. 1 we present typical results of
the maximum growth rate of perturbations from equi-
librium UE � 0 as a function of the strength of the
stochastic forcing for the case of eddy forcing at k �
1.885 corresponding to the global zonal wavenumber 12
in a channel of length 40. It can be easily demonstrated
that, at � � 0, the system (18a)–(18b) has eigenvalues
consisting of the pairs �i 
 �*j , where �i are the eigen-
values of the operator A(UE) and in addition, n eigen-
values equal to �re, the rate of relaxation of the mean
flow to zero. Consequently, in the absence of stochastic
forcing the state of zero mean flow is stable if A(UE) is
stable. As � increases the state of zero flow is progres-
sively destabilized, becoming unstable in the specific
example when the critical �c � 0.65 mW kg�1 is
reached. At first this instability grows exponentially,
but eventually it reaches a stable equilibrium. As dis-
cussed in FI03, the SSST equations are globally stable
and their dynamics are remarkably regular despite their
high dimensionality. For � � �c the zero mean flow is

1 The size of the matrix L is O(n2 � n2) where n is the number
of discretization points in the meridional direction, and for rea-
sonable discretizations eigenanalysis requires exploiting the
sparseness of L. The calculations to be presented were performed
with 128 points.

FIG. 1. Growth rate, � (day�1), of mean flow perturbations to
the zero mean flow equilibrium state as a function of the strength
of the stochastic forcing, � (mW kg�1). The flow is confined to a
periodic channel of width Ly � 40 (dimensional 40 � 103 km)
discretized on 128 points. The stochastic forcing is limited to the
single zonal wavenumber k � 1.885 (global zonal wavenumber 12)
but is distributed with Gaussian autocorrelation in the meridional
direction. The nondimensional parameters are � � 1.3786 (dimen-
sional 1.5956 � 10�11 1 ms�1), r � 0.25 (day�1), and re � 0.1
(day�1).
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globally stable and any initial mean flow will relax to
the state of zero flow.

Each eigenfunction of L has two components: a per-
turbation covariance and a perturbation mean flow.
The eigenfunctions are harmonic in the meridional di-
rection because of the periodic boundary conditions
and the homogeneity of the L operator in y. The most
unstable eigenfunction of L is shown in Fig. 2 for forc-
ing amplitude � � 1.5 mW kg�1 and the other param-
eters as in Fig. 1. This eigenfunction corresponds to a
perturbation with global meridional wavenumber 8 for
a channel that extends 40 nondimensional units in the
meridional direction. It can be seen from Fig. 2 that the
vorticity flux associated with the perturbation covari-
ance part of the eigenfunction (dashed line) is propor-
tional to the velocity perturbation itself, without any
phase lag, indicating that this eigenfunction grows or
decays without meridional translation and that the cor-
responding eigenvalue is purely real. Since the forcing
� is large enough compared to the zonal flow pertur-
bation dissipation, re, the acceleration induced by the
absolute vorticity flux dominates the relaxation toward
zero flow and the global meridional wavenumber-8
zonal flow perturbation grows exponentially.

The growth rate for this specific example as a func-
tion of meridional wavenumber is shown in Fig. 3. The
maximum growth rate is attained at the global meridi-
onal wavenumber 8 for these parameter values. The

wavenumber of maximum growth rate depends on the
perturbation dissipation parameter r : as the dissipation
parameter is reduced the maximum shifts to higher glo-
bal meridional wavenumber. We have also shown in
Fig. 3 the estimated growth rate of meridional modes
based on the adiabatic approximation. In the adiabatic
approximation the eddy covariance is assumed to be in
asymptotic equilibrium with perturbation �U at all
times [lhs of (18a) set to zero]. Estimates of growth rate
made using this adiabatic approximation agree identi-
cally with the time-dependent eigenfunctions of (18a)–
(18b) only at the zeroes of � (this observation is the
basis for an efficient method for determining the pa-
rameter values for neutral stability of the zero state),
but they provide a good estimate of growth rate other-
wise.

For eddy forcings confined to single wavenumbers
smaller than a critical kc, all the eigenfunctions of L
produce downgradient perturbation vorticity fluxes,
and consequently the zero zonal flow is stable for single
zonal wavenumber forcing of any amplitude at this and
lower values of k. This critical wavenumber is kc � 1.25
for r � 0.25 and is shifted to smaller wavenumbers as
the dissipation rate r is decreased.

In summary, with r fixed the zero zonal mean state is
unstable to eddy components with zonal wavenumbers
k � kc and for forcing exceeding a critical strength, but

FIG. 2. The most unstable eigenfunction of the operator L lin-
earized about the zero mean flow state for forcing at global zonal
wavenumber 12 and amplitude � � 1.5 mW kg�1. The eigenfunc-
tion has global wavenumber 8 in the meridional direction and
growth rate 0.1058 (day�1). Shown is the latitudinal structure of
the mean velocity component, �U (dimensional 11.56 m s�1), of
the eigenfunction (solid) and the vorticity flux, ��q (dimensional
11.56 m s�1 day�1), associated with the perturbation covariance
�C (dashed). The other parameters are the same as in Fig. 1.

FIG. 3. Growth rate, �, of mean flow perturbations to the zero
mean flow equilibrium state as a function of global meridional
wavenumber, n, for a 40-unit-wide channel with forcing amplitude
� � 1.5 (mW kg�1) at global zonal wavenumber 12. The dashed
line shows the imbalance between the perturbation vorticity flux
and the mean flow relaxation induced by a sinusoidal mean flow
perturbation with the indicated global wavenumber. This is the
estimate of the growth rate in the adiabatic approximation of
(18a), which agrees identically with the eigenanalysis of the full
system only at the zeros of �, but provides a good estimate of
growth rate otherwise. The parameters are the same as in Fig. 1.
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it is stable for sufficiently small zonal wavenumbers at
all forcing strengths. The zero state can also be shown
to be globally attracting for those wavenumbers for
which it is locally stable. Consequently, if a nonzero
mean flow is to be maintained, sufficient eddy forcing
must be supplied and the eddy field must include ap-
propriately high wavenumber components.

4. Equilibration of the SSST eigenstates

Consider equilibration of the unstable zero mean
state with eddy field restricted to zonal wavenumber
k � 1.885 treated in the previous section and with dis-
sipation parameters r � 0.25, re � 0.1. Consider first the
case with � � 1.5 mW kg�1, a rather small but desta-
bilizing forcing (recall that the critical forcing density to
produce instability in this example is �c � 0.65 mW
kg�1; cf. Fig. 1). At t � 0 introduce a mean velocity
perturbation with a rich meridional spectrum (left
panel in Fig. 4); by t � 40 the most unstable global
meridional wavenumber-8 mean flow perturbation has
emerged and this structure grows exponentially and
eventually equilibrates at t � 150 (see Fig. 5). This fi-
nite-amplitude equilibrium has the same global meridi-
onal wavenumber as the most unstable eigenfunction of
the perturbation operator L. The final equilibrated
mean flow, UE, is associated with an asymptotically
stable A(UE) although it satisfies the Rayleigh–Kuo

necessary condition for instability as the equilibrated
flow has reversals of the sign of � � U �E. It turns out
that the flow is unstable at zonal wavenumbers not in-
cluded in the calculation. This often occurs for quan-
tized zonal wavenumbers: that instability is avoided by
adjustment of the mean flow so that unstable wavenum-
bers are not included in the set of retained zonal wave-
numbers. The stability of this equilibrated-state UE can
be investigated by eigenanalysis of the operator L. The
equilibrated state is linearly stable if the neutral eigen-
values that correspond to meridional translations of the
equilibrated jets are excepted.

Other mean flow equilibria can be constructed by
following other unstable meridional mean flow pertur-
bations from the zero mean state to equilibrium. For
the chosen strength of forcing these other meridional
mean flow perturbations also equilibrate to finite-
amplitude states with the same meridional structure as
the initial perturbation, and these finite-amplitude
equilibria are locally linearly stable. However, their do-
main of attraction is limited and sufficiently large-
amplitude zonal flow perturbations provoke reorgani-
zation to the most stable global meridional wavenum-
ber-8 mean zonal state.

5. Maintenance of zonal jets on a � plane

Consider an eddy field composed of global zonal
wavenumbers 1–14 in a reentrant zonal channel of
zonal length 40. The corresponding zonal wavenum-
bers, k, take now the discrete values 2�j/40, where j is
the index of the global zonal wavenumber zonal 1 � j �

14. Each mode is forced identically with forcing density

FIG. 4. Structure of the zonal mean velocity perturbations for
the weak forcing strength � � 1.5 mW kg�1 and global zonal
wavenumber 12. These snapshots correspond to t � 0, 40, and 150,
respectively. The initial zonal flow is very small. The final equili-
brated wavenumber-8 mean flow is stable and has maximum wind
speed Umax � 1 corresponding to 11.6 m s�1. The other param-
eters are the same as in Fig. 1.

FIG. 5. Mean velocity maximum as a function of time for forcing
strength � � 1.5 mW kg�1 and global zonal wavenumber 12 (the
other parameters are the same as in the previous figures).
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�, and the dissipation parameters are r � 0.25 and re �
0.1. As discussed in the previous section, high zonal
wavenumber forcing typically produces absolute vortic-
ity fluxes in phase with mean flow perturbations, which
destabilize the zero flow equilibrium mean flow, while
low zonal wavenumber forcing produces out-of-phase
absolute vorticity fluxes that tend to relax perturbations
to the zero flow equilibrium. In the presence of the
assumed rich spectrum of zonal waves, we have deter-
mined [using the adiabatic approximation to the stabil-
ity Eqs. (18a)–(18b) that can, as previously mentioned,
be used to find nonoscillatory neutrally stable states]
that the critical �c in the presence of these waves is
�c � 0.084 mW kg�1 (total forcing 14�c), and the most
unstable zonal mean flow perturbation eigenfunction
has meridional wavenumber 8. The critical forcing re-
quired for maintaining a nonzero zonal flow depends
crucially on the eddy perturbation dissipation param-
eter r. As r increases, the zonal wavenumber for which
the potential vorticity flux becomes upgradient shifts to
higher wavenumbers and the critical forcing increases.
For example, a 4-fold increase in r leads to a 20-fold
increase in the critical forcing, which becomes �c � 2
mW kg�1. As a result, we conclude that the emergence
of zonal jets is inhibited as eddy dissipation increases.
For the dissipation parameters used in this study the
critical forcing for which meridional wavenumber n is
destabilized is given in Table 1.

The equilibrated meridional wavenumber-8 jet flow
that results from the slightly supercritical forcing am-
plitude � � 0.105 mW kg�1 is shown in Fig. 6. The
equilibrated flow is stable with the sign of the mean
absolute vorticity � � U �E everywhere positive (center
panel), and the eddy momentum flux everywhere up-
gradient and proportional to the local shear, �u� �
DdUE /dy, where D is the eddy exchange coefficient
that has the negative value �1/15. The equilibrated ve-
locity profile is nearly of the sinusoidal form of the most
unstable eigenfunction of (18a)–(18b). It is instructive
to recover this eigenfunction alternatively by using the
above (negative) diffusive approximation of the abso-
lute vorticity flux in (1) to obtain the approximate bal-
ance at equilibrium:

d

dy ��D
dUE

dy 	 
 reUE � 0, �20�

implying that

UE�y� � Um sin�
 re

�D
y	, �21�

with Um determined by higher-order balance in (18a)–
(18b). Because � � 0.105 mW kg�1 is only a slightly
supercritical forcing the amplitude of the equilibrated
flow is small and it has nearly the same structure as the
eigenfunctions of the stability operator L.

When the forcing is slightly supercritical the equili-
brated mean flow is weakly constrained, and at equi-
librium it can have any of the meridional wavenumbers
that are unstable for the zero-state flow, although the
most unstable meridional wavenumber is favored. We
have now obtained a complete understanding of the
formation and structure of jets in the limit of weak
forcing. However, as the forcing strength increases the

FIG. 6. (top) Meridional structure of the equilibrium mean flow
maintained by the slightly supercritical forcing � � 0.105 mW
kg�1 per zonal wavenumber. The eddy field consists of global
zonal wavenumbers 1–14. The dissipation parameters are r � 0.25,
re � 0.1, and � � 1.3786. (middle) Meridional structure of the
mean absolute vorticity gradient � � d 2UE/dy2 for the equili-
brated mean flow. The mean absolute vorticity is one signed and
the equilibrated jet is necessarily stable. (bottom) The eddy zonal
mean momentum flux, u�, multiplied by the constant factor 15
(dashed) and the shear of the associated equilibrium mean flow,
dUE/dy (continuous line). It follows that the momentum flux is
everywhere upgradient with a constant eddy exchange coefficient,
D, such that �u� � DdUE /dy, and that D is negative with an
approximate value of �1/15.

TABLE 1. The critical forcing �c (mW kg�1) for which the eigenfunction with meridional wavenumber n destabilizes the zero
mean state.

n 1 2 3 4 5 6 7 8 9 10 11

�c 3.072 0.745 0.323 0.19 0.13 0.102 0.087 0.084 0.091 0.112 0.256
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mean velocity also increases and the process of equili-
bration of zonal flow perturbations to the zero mean
state becomes more complex. An example of the evo-
lution of the maximum zonal velocity as a function of
time for the strongly forced eddy field with � � 41.6
mW kg�1 is shown in Fig. 7. At first the most unstable
eigenfunction of the L operator, which happens to also
have global zonal wavenumber 8, emerges and grows
exponentially to high amplitude. However, this mean
flow (first panel in Fig. 8) is not a fixed point of the
equilibrium of the coupled system (17a)–(17b): the as-
sociated A operator is unstable and the absolute vor-
ticity fluxes do not balance the relaxation of the mean
flow to zero. A process of readjustment occurs in which
the zonal flow moves to a smaller meridional wavenum-
ber, repeatedly adjusting the maximum velocity and the
number of jets until equilibrium is reached, which for
this case occurs at global meridional wavenumber 2.
The operator A associated with this equilibrium is
stable to infinitesimal eddy perturbations.

The meridional structure of the mean flow that re-
sults when the eddy field is forced with various super-
critical � is shown in Fig. 9. The equilibrated flows are
organized in the four panels of Fig. 9 according to the
meridional wavenumber of the equilibrated flow. As
the forcing increases the maximum wavenumber of the
stable equilibrium decreases. For each forcing ampli-
tude there may be multiple stable equilibria with dif-
ferent meridional wavenumbers. When the forcing is
strong the mean flows equilibrate near the stability

boundary and the equilibrium with the largest meridi-
onal wavenumber, n0, has the largest basin of attrac-
tion, although additional stable equilibria exist with
meridional wavenumbers n � n0. It is remarkable that
the finite-amplitude equilibria can each be traced back
to an instability of the zero-state mean flow: if the
eigenfunction mean flow perturbation with meridional
wavenumber n is unstable, a stable equilibrated flow
with this meridional wavenumber may exist if the me-
ridional wavenumber is less or equal to n0. But insta-
bility of the zero state to perturbations with meridional
wavenumber n does not necessarily imply the existence
of a finite-amplitude equilibrium with this meridional
wavenumber. For example, consider the case of n � 1
shown in Fig. 9a. The zero-state mean flow is unstable
to n � 1 perturbations for � � 3.15 mW kg�1. How-
ever, no n � 1 finite-amplitude equilibria were found
for forcing strengths that ranged from the slightly su-
percritical to � � 10.2 mW kg�1.

The structures shown in the bottom right-hand panel
of Fig. 8 and in Fig. 9 exhibit the east–west flow asym-
metry characterized (for � positive) by sharp westerly
flow maxima and comparatively broad easterly flow
maxima characteristic of jets in strongly forced �-plane
simulations (cf. Panetta 1993). The equilibrated flows
are structurally stable2 and also eddy-perturbation

2 As previously discussed there is a zero eigenvalue of the stability
operator corresponding to meridional translation of the mean flow
that is not pertinent to flow stability. This translational mode can be
suppressed by imposing a small amount of spatially varying Ray-
leigh friction that breaks the meridional homogeneity of the flow.

FIG. 7. Mean velocity maximum as a function of time for high
forcing strength. The eddy field consists of global zonal wavenum-
bers 1–14, and � � 41.0 mW kg�1 is the forcing amplitude per
zonal wavenumber. After a period of exponential growth (up to
t � 3) the velocity goes through a sequence of adjustments cul-
minating in an equilibrium with meridional global zonal wave-
number 2. The other parameters are the same as in Fig. 1.

FIG. 8. Structure of the zonal mean velocity perturbations at
times corresponding to a selection of some of the maxima shown
in Fig. 7. In sequence these snapshots correspond to t � 3.34, 4.95,
6.261, 8.181, 19.2, and 29.3. The final wavenumber-2 state is stable.
The parameters are the same as in Fig. 1.
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stable: the operator A(UE) is stable for all zonal wave-
numbers included in the calculation. The maximal
growth rate of A(UE) as a function of zonal wavenum-
ber, k, for some of the equilibrated flows of Fig. 9 are
shown in Fig. 10. While these mean flows are stable for
zonal wavenumbers 1–14 and with the chosen value of
the coefficient of Rayleigh dissipation (the lowest six
wavenumbers used in the calculations are indicated by
black dots), the equilibrated flows may be unstable to
longer waves that are not included in the eddy field.
This may be particularly so when the eddy field is
strongly forced, as the quantization of global zonal
wavenumbers that results from the imposition of peri-
odic boundary conditions excludes the unstable set.
The mean absolute vorticity gradient for the equili-
brated flow that results with � � 5.2 mW kg�1 is shown
in the top panel of Fig. 11. There are small regions of
reversal in the sign of the mean absolute vorticity gra-
dient that would allow for an instability if there were no
dissipation or if other zonal wavenumbers were in-
cluded in the eddy field structure. The maintained
equilibrated mean flow has an approximately sawtooth

shape in which regions of almost constant shear are
joined together and the momentum flux is everywhere
upgradient leading to an eddy exchange coefficient,
D(y), such that �u� � D(y)dU/dy, which is everywhere
negative and of approximate value �0.4 for the case
shown in Fig. 11 (bottom panel). The meridional struc-
ture of the eddy field shown in Fig. 12 is in good quali-
tative agreement with the structures found in the two-
layer simulations of Panetta (1993).

It follows that, in the presence of �, the Rayleigh–
Kuo stability condition provides the useful if not tight
upper bound on the magnitude of the mean flow Umax

and the scale of the jets, L:

Umax � �L2. �22�

When the velocity maximum approaches this upper
bound we have the Rhines scaling of the equilibrium
jets.

The extent to which the Rhines scaling is observed is
shown in Fig. 13, in which the scale of the jet is taken to
be L � Ly/(2�n), where n is the global meridional

FIG. 9. The meridional structure of the equilibrium mean flows maintained by various
strengths of stochastic forcing, �. (a) Mean flow with global meridional wavenumber 1 for the
cases of � � 82, 41, and 20.5 shown in descending order of the velocity amplitude. (b) Mean
flow with global meridional wavenumber 2 for the cases of � � 41, 20.5, 10.2, 5.2, and 2.6
shown in order. (c) Mean flow with global meridional wavenumber 3 for the cases � � 10.2,
5.2, and 2.6. (d) Mean flow with global meridional wavenumber 4 for the case � � 2.6. The
eddy field consists of global zonal wavenumbers 1–14, and � (mW kg�1) is the forcing
amplitude per zonal wavenumber. The dissipation parameters are r � 0.25, re � 0.1, and � �
1.3786.
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wavenumber of the mean flow. It is evident from this
graph that the scaling is observed for the cases of strong
forcing. At each meridional wavenumber, n, the equi-
libria, indicated by squares, progress from right to left
as the forcing, �, is increased. The equilibrium for the
highest forcing is indicated by the square farthest to the
left. This equilibrium occurs close to but generally
slightly above the stability boundary, and therefore just
above the dashed line that indicates the Rhines scaling.

For weak forcing the resulting weak mean flow
equilibrates with the mean flow dissipation far from the
stability boundary, and for these cases (rightmost
squares for each n in Fig. 13) the structure and the
resulting mean flow are determined not by the Ray-
leigh–Kuo stability condition but by dissipative equilib-
rium of the most unstable eigenfunction of the operator
L about the zero-state mean flow, and therefore these
weakly forced equilibria do not follow Rhines scaling.
This regime has been observed in 2D �-turbulence
simulations under weak forcing (cf. Fig. 10 in Vallis and
Maltrud 1993).

The limit � → 0

It is interesting to examine jet stability and equilibra-
tion in the limit � → 0. In the absence of � and with
periodic boundary conditions the channel becomes iso-

tropic so that no zonal direction can be distinguished.
However, we may assume that a zonal direction is im-
posed by the orientation of the meridional boundaries
or by the presence of a small amount of �. Using the

FIG. 11. (top) Meridional structure of the mean absolute vor-
ticity gradient � � d 2U/dy2 for the global meridional wavenum-
ber-3 equilibrated mean flow that results with � � 5.2 mW kg�1

(cf. Fig. 9c). The mean absolute vorticity gradient changes sign in
small regions. (bottom) For the same equilibrated mean flow the
meridional structure of the eddy zonal mean momentum flux u�
(dashed) and the meridional structure of the shear of the equili-
brated mean flow (solid). The momentum flux is everywhere up-
gradient leading to an eddy exchange coefficient, D(y), such that
�u� � D(y)dU/dy, which is negative and of an approximate value
of �0.4. The parameters are the same as in Fig. 9.

FIG. 12. Equilibrium mean flow resulting from forcing each of
the zonal wavenumbers 1–14 with � � 5.2 mW kg�1; the other
parameters are the same as in Fig. 8. Also shown are the meridi-
onal structure of the associated perturbation vorticity flux (dot-
ted), the rms eddy velocity in the x direction (dashed), and the rms
eddy velocity in the y direction (dashed–dotted).

FIG. 10. Growth rate, �, of the most unstable eigenstate of the
linear operator A(UE) as a function of zonal wavenumber k. The
equilibrium jets, UE, considered have meridional wavenumber 1
(solid), meridional wavenumber 2 (dashed), meridional wave-
number 3 (dashed–dotted), and meridional wavenumber 4 (dot-
ted). The corresponding forcing of the eddy field has strength � �
81.9, 41, 10.2, and 2.6 (mW kg�1) and the mean flows are those
with the largest velocity in the four panels of Fig. 9. The equili-
brated flows are stable for the wavenumbers retained by the zonal
quantization. The black circles on the k axis indicate the first 6
global zonal wavenumbers (wavenumbers 1–6) in a zonal channel
of width 40 of the 14 that are included in the calculation.
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same parameters and forcing, except that the calcula-
tions are performed with � � 0, we find that equili-
brated zonal jets are still maintained in the presence of
adequate forcing. These are shown for a variety of forc-
ing amplitudes in Fig. 14. Note that for the case � � 5.2
mW kg�1 two equilibrium jets were found. The equili-
brated mean flows are both structurally stable and also
perturbation stable. They have a sawtooth velocity pro-

file, and as expected do not have east–west asymmetry.
The meridional structure of the shear, the momentum
flux, and the curvature are shown in Fig. 15 for the
equilibrated flow that results with � � 10.4 mW kg�1.
The eddy momentum flux at equilibrium is everywhere
upgradient (has the same sign as the shear) and is
nearly constant over the sections of the sawtooth that
have constant shear, as would also be the case if band-
limited shear waves were forced in an unbounded con-
stant shear flow (Farrell and Ioannou 1993b). We can
define a negative equivalent eddy exchange coefficient,
D, connecting the shear with the momentum flux
through the relation �u� � DdU/dy. From Fig. 15, D is
approximately constant with a value of �1. Note that,
in the regions of nearly constant shear, the curvature
varies linearly with meridional distance indicating that
the velocity profile to first order in re is

UE�y� � ��y 

re

3!��D�
y3	, �23�

consistent with a local balance between perturbation
momentum flux divergence, �Dd2Ue/dy2, and mean
flow dissipation reUE � �rey.

6. Conclusions

Steady coherent large-scale zonal jets are commonly
observed in both rotating and nonrotating turbulent

FIG. 14. Meridional structure of the equilibrium mean flow
maintained for � � 0 by various strengths of stochastic forcing, �.
The eddy field consists of global zonal wavenumbers 1–14, and �
(mW kg�1) is the forcing amplitude per zonal wavenumber. The
dissipation parameters are r � 0.25 and re � 0.1.

FIG. 15. (top) Meridional structure of the curvature d 2U/dy2 for
the equilibrated mean flow with � � 0 that results for forcing � �
10.4 m W kg�1 (cf. Fig. 14). The curvature changes sign in small
regions but the flow is perturbation stable because it is damped.
(bottom) For the same equilibrated mean flow the meridional
structure of the eddy zonal mean momentum flux u� (dashed) and
the meridional structure of the shear (solid) of the equilibrated
mean flow. The momentum flux is everywhere upgradient leading
to an eddy exchange coefficient, D(y), such that �u� � D(y)dU/
dy, with D negative and of an approximate value of �1. The
parameters are the same as in Fig. 14.

FIG. 13. Global meridional wavenumber, n, of equilibrium jets
in a Ly � 40 channel as a function of the Rhines scale ��/Umax,
where Umax is the maximum jet velocity. For strong forcing (left-
most square for each wavenumber) the jets are at or slightly above
the stability boundary and the jet amplitude and spacing are in
approximate agreement with Rhines scaling n � Ly /(2�)��/Umax

(dashed). The different flows were obtained by changing the forc-
ing strength. The parameters are the same as in Fig. 9.
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fluids. These jets emerge spontaneously from the tur-
bulence, and once established are often apparently
stable. Although laminar flow instabilities and turbu-
lent cascades have been considered in the search for a
detailed theoretical explanation of jet emergence from
turbulence, observations suggest that a transfer of mo-
mentum directly to the jet scale by small-scale shear
waves that are nonlocal in wavenumber is responsible.
Accepting that the primary physical mechanism main-
taining the jets is this systematic eddy momentum flux
convergence by small-jet relative-scale eddies, a de-
tailed dynamical explanation for the required system-
atic organization of the eddy fluxes has been lacking. In
this paper we provided this theory, building on results
from linear stochastic turbulence modeling and specifi-
cally SSST. One advantage of SSST is that it allows an
analytic solution for the eddy covariance in statistical
equilibrium with the jet so that feedback between the
jet and the turbulence can be diagnosed in detail. Cen-
tral to this model is coupling the evolution equation for
the eddy forcing obtained from the statistical equilib-
rium stochastic turbulence model with the evolution
equation for the zonal jet. This nonlinear coupled set of
equations exhibits robust and relatively simple behav-
ior. Using this model we find that the state of zero zonal
flow is a stationary state of the coupled system, but that
this stationary state is unstable to zonal perturbations if
the turbulence is sufficiently strong, and these zonal
perturbations evolve into jets that grow and adjust in
structure until reaching finite-amplitude equilibrium.

With weak forcing the equilibrated jets do not follow
the Rhines scaling; however, if the flow is sufficiently
strongly forced, equilibrium occurs near a modal stabil-
ity boundary for the jet. This modal stability boundary
coincides with the intrinsic length scale in the problem
that is the Rhines scale, but it is unrelated to arrested
turbulent cascades. Instead, the stability boundary is
related to the Rhines scale through the Rayleigh–Kuo
necessary condition for instability because jet growth is
due to transports produced by the smoothly distributed
continuous spectrum of shear waves and cannot be in
equilibrium with the local critical-layer transport asso-
ciated with weakly unstable modes. For this reason
strongly forced unstable jets grow and reorganize until
reaching equilibrium near the stability boundary and
therefore near the Rhines scale. Perturbation of the
zero state reveals the coupled system to be unstable for
a range of zonal and meridional wavenumbers but with
a maximum growth rate at a preferred scale, which is a
function of the strength of the stochastic forcing and the
eddy dissipation. The finite-amplitude equilibria
reached starting from these instabilities are found gen-
erally to be individually stable but with a most stable

and therefore a preferred meridional wavenumber that
may be expected to eventually prevail as the statisti-
cally preferred structure. This preferred equilibrium jet
structure for geophysical typical values of � exhibits
pronounced asymmetry, with the westerly jet being
sharper than the easterly jet because the positive cur-
vature of the westerly jet is limited by the Rayleigh
stability requirement. Moreover, the structure of the
jets at finite amplitude can be understood from the up-
gradient transport of momentum proportional to shear
obtained in the analytic solution for band-limited exci-
tation of free shear flow (Farrell and Ioannou 1993b).
This ubiquitous instability of barotropic turbulence to
jet formation can be viewed as arising because the equi-
librium stochastic spectrum of wave modes in a turbu-
lent flow is always available to be organized by a per-
turbation zonal jet to produce a flux proportional to the
jet amplitude. This local upgradient flux due to the con-
tinuous spectrum in shear flow results in an exponential
jet growth rate because it produces a flux proportional
to jet amplitude. This is a new mechanism for destabi-
lizing turbulent flows that is essentially turbulent in na-
ture. As a further consequence, at finite amplitude the
jet sides have nearly constant shear with only that small
variation in velocity that is necessary, consistent with
the proportionality of flux and shear, to balance the
imposed relaxation of the jet to zero. For nearly con-
stant shear flow regions on the jet flank this requires a
deviation from constant shear proportional to y3 to pro-
duce the requisite linearly proportional flux divergence.

The wavenumber of a weakly forced jet is that of the
most unstable eigenmode of the linearized SSST sys-
tem, and the amplitude is obtained from the balance
between upgradient eddy momentum flux proportional
to mean shear flux and dissipation.

This work provides a detailed physical theory for jet
structure in barotropic turbulence. Baroclinic turbu-
lence is similar to barotropic turbulence in that momen-
tum flux convergence into the upper-level jet plays a
similar role in the maintenance of both baroclinic and
barotropic jets, but in baroclinic turbulence there is the
possibility for heat flux and related mean meridional
flows to also play a role in redistributing momentum. In
addition, the forcing in baroclinic jets is primarily in-
trinsically related to baroclinic eddy growth processes
in the jet rather than extrinsically imposed by processes
external to the jet dynamics. The dynamics of baroclinic
jet formation in quasigeostrophic turbulence will be ex-
amined using the methods of structural stability in a
separate paper.
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