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ABSTRACT 

The innate tendency of the background straining field of the midlatitude atmospheric jet to preferentially 
amplify a subset of disturbances produces a characteristic response to stochastic perturbation whether the per­
turbations are internally generated by nonlinear processes or externally imposed. This physical property of 
enhanced response to a subset of perturbations is expressed analytically through the nonnonnality of the linear­
ized dynamical operator, which can be studied to determine the transient growth of particular disturbances over 
time through solution of the initial value problem or, alternatively, to determine the stationary response to 
continual excitation through solution of the related stochastic problem. Making use of the fact that the background 
flow dominates the strain rate field, a theory for the turbulent state can be constructed based on the nonnonnality 
of the dynamical operator linearized about the background flow. While the initial value problem provides an 
explanation for individual cyclogenesis events, solution of the stochastic problem provides a theory for the 
statistics of the ensemble of all cyclones including structure, frequency, intensity, and resulting fluxes of heat 
and momentum, which together constitute the synoptic-scale influence on midlatitude climate. Moreover, the 
observed climate can be identified with the background thermal and velocity structure that is in self-consistent 
equilibrium with both its own induced fluxes and the imposed large-scale thermal forcing. lo order to approach 
the problem of determining the self-consistent statistical equilibrium of the midlatitude jet it is first necessary 
to solve the stochastic problem for the mixed hllJ'OClinic/barotropic jet because fluxes of both heat and momentum 
are involved in this balance. 

In this work the response to stochastic forcing of a linearized nonseparable quasigeostrophic model of the 
midlatitude jet is solved. The observed distribution of transient eddy variance with frequency and wavenumber, 
lhe observed vertical structures, and the observed heat and momentum flux distributions are obtained. Associated 
energetics and implications for maintenance of the climatological jet are discussed. 

1. Introduction the undisturbed background ftow supports exponen­
tially growing nonnal modes and that infinitesimal per­
turbations projecting on the unstable mode of maxi­
mum growth rate become exponentially dominant and 
ultimately mature into a wave of finite amplitude. 
When applied to the origin of cyclones this theory pre­
dicts that the wavelength and structure of the nascent 
cyclone will be that of the most rapidly growing modal 
instability and that the attendant fluxes will at least in­
itially resemble those produced by this instability (Hol­
ton 1992; Pedlosky 1987). When applied to the prob­
lem of obtaining ensemble-mean quantities, modal in­
stability theory has been interpreted to require 
wave~induced fluxes that are just sufficient to adjust the 
mean state to marginal stability (Stone 1978) or that 
the instability that best combines growth with effective 
exploitation of the available potential energy will con­
trol the heat flux (Held 1978). While modal instability 
theory has been applied successfully to simplified 
model problems, it has not produced an unambiguous 
correspondence with observations of either individual 
cyclogenesis events or of climatological-mean variance 

To a first order, the structure of the midlatitude jet 
is determined by adjustment to geostrophic balance be­
tween the thermal forcing produced by differential 
insolation between the equator and pole and the 
wave-induced fluxes of heat and momentum arising 
from synoptic-scale transient disturbances that are dis­
tributed stochastically in space and time. 

Because of the central role of synoptic-scale eddies 
in midlatitude climate, obtaining a physically based 
theory for the statistical distribution of eddy variance 
and fluxes in the mixed baroclinic/barotropic rnidlati­
tude jet is central to a comprehensive understanding of 
the general circulation and the global climate system. 
One current theory for the production and maintenance 
of perturbation variance in baroclinic jets envisions that 
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FIG. I. The background zonal jet as a function of latitude and 
pressure. The functional form is given by Eq. (6) in which U0 = 40 
ms-•, A = 0.5, and C = 0.2. Note that the meridional gradient is 
greatest on the equatorial side of the jet in accordance with obser­
vations (Trenberth 1992). 

and fluxes as observed either in resolved models or the 
atmosphere ( Petterssen 1955; Eliassen 1956; Salmon 
1980; Stone et al. 1982; Vallis 1988). 

An alternative theory envisions that maintenance of 
perturbation variance can be traced to amplification of 
nonmodal perturbations rather than to the growth of 
exponential modal instabilities (Farrell and Ioannou 
1993a). In a forced/ dissipative turbulent system with 
strong rates of strain but in which disruption due to 
wave-wave interaction prevents asymptotic domi­
nance of the exponential modal instability from being 
established it is still possible for the flow to behave as 
an amplifier of the subspace of rapidly but transiently 
growing perturbations and for these growing pertur­
bations to be continually replenished by nonlinear 
wave-wave interactions leading to maintenance of tur­
bulent variance (Farrell and Ioannou 1993b, 1993c). 
In fact, disruption and scattering as parameterized in 
such a model constitute the entire essential role of non­
linearity in turbulence because the energetic exchange 
between the mean flow and the perturbations is fully 
accounted for by terms retained in the linearization (Jo­
seph 1976). 

A number of theoretical and observational advances 
(Farrell 1985, 1989; Sanders 1986; Nordeng 1990) 
support a generalized stability theory in which non­
modal growth mechanisms provide the explanation for 
the origin of synoptic-scale disturbances. Moreover, a 
theory based on the dynamics of nonnormal operators 
can also be applied to understanding the maintenance 
of the statistical climate (Farrell and Ioannou 1993c, 
l 994b). These previous reports developed the statisti­
cal calculus for nonnormal operators and applied it to 
a baroclinic jet without any barotropic shear. However, 
the important role of momentum flux in maintaining 
the jet requires that the statistical dynamics of a sto-

chastically forced nonseparable baroclinic/barotropic 
jet be examined in order to obtain consistent fluxes and 
tendencies. 

2. Stochastic dynamics of a mixed baroclinic­
barotropic jet 

a. The evolution operator 

Consider stochastic excitation of a zonal baroclinic 
jet. Harmonic geopotential height perturbations in a /3-
plane channel with zonal wavenumber k obey the lin­
earized quasigeostrophic potential vorticity equation 
[ for details refer to Farrell and Ioannou ( l 993c)] : 

where 

with 

d<f> = GfU. 
dt ""!'• 

(1) 

(2) 

6. = ~ + !~ - (k2 + sz - dS). (3) 
8z2 

E 8y 2 
E dz 

Here U is the mean zonal wind, E the square ratio of 
the Coriolis parameter to the Brunt-Vilisfila frequency, 
and R a linear potential vorticity damping coefficient, 
which will be a free parameter. The mean potential vor­
ticity gradient is given by 

f3 1 a2u au a2u 
Q =----+2S---, (4) 

y E E cy2 8z 8z 2 

and the stability parameter is defined as 

s = - ! (! dt: - 1) . 
2 E dz 

(5) 

The background zonal wind profile is taken to be 

U/U0 = U(z) sech2 (Ay) + C tanh(y), (6) 

with y scaled by the Rossby radius of deformation Ld 
= NH/ fo, in which N is the Brunt-Vilisfila frequency, 

fo is the Coriolis parameter and in which the scale 
height is taken to be H = 7 .5 km, by which z is also 
scaled. The scaling velocity is taken to be U0 = 40 
m s - 1

, and the size of the jet is controlled by the pa­
rameter A, which is initially set equal to 0.5, while the 
asymmetry of the jet is controlled by the parameter C, 
which is taken equal to 0.2. The vertical jet structure is 
given by 

U(z)ls = z - (z - Zo)H(zlzo) 

+ (z/2 - Zo)H(zlz1), (7) 

in which the smooth ramp function H(z I Z;) = 1 
+ tanh ( ( z - Z; ) Id) is used. The jet maximum is placed 
at z0 = 1.5, while at z1 = 3 we place a transition to no 
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flow. The sharpness of the transitions are controlled by 
the parameter d, which is taken to be d = 0.6. The 
nondimensional shear parameter is taken to be s = 0.6. 
We have nondimensionalized time by Ldl U0 • The zonal 
jet that results is shown in Fig. 1. 

The operator b. - I is rendered unique by incorpora­
tion of boundary conditions at the ground resulting 
from the vertical velocity produced by Ekman pumping 
associated with a coefficient of vertical diffusion v, 
which will be taken to be 20 m2 Is - I • The boundary 
condition at the top of the atmosphere is taken to be 
vanishing vertical velocity at four scale heights. The jet 
is confined to a channel and the meridional velocity is 
set to zero at the channel walls. The Brunt-Vaisala 
frequency is taken equal to N = 0.014 s- 1 in the tro­
posphere and two times this above the tropopause, 
which is placed at the jet maximum. 

Finite differencing of ( 1 ) reduces the continuous 
dynamical system to a finite dimensional dynamical 
system. 

b. Determining the optimal perturbations 

In order to proceed it is necessary to have a means 
of measuring the absolute and relative magnitudes of 
perturbations. Perturbation energy given by 

(Sa) 

is taken as this perturbation measure. In (Sa) </> t is the 
Hermitian transpose of </>, and the energy metric is de­
fined, for a meridional grid of width 8y and vertical 
grid of width 8z, by 

- 8y8z z t t 3n -
4 

(k et+ GfJ/FDy + GfJ,fflJ,), (Sb) 

where GfJ, is the discretized f) I f)z operator; Gf)Y the dis­
cretized f)/,f)y operator; 'f = diag(p; ), where diag de­
notes the diagonal matrix generated by the vector ( p; ) 
in which p; is the mean density at the ith grid; and & 
= diag( f;) is the stratification matrix (Farrell and Ioan­
nou 1993c}. 

We transform ( 1) into generalized velocity variables 
u = 3¥(112</> so that the usual Lz norm corresponds to 
the square :root of the mean energy. Under this trans­
formation a perturbation u0 at t = 0 evolves to time t 
according to 

(9) 

in which e·4
' is called the propagator. The correspond­

ing energy amplification is given by 

u6e.,11'e.,i'uo 
E'=---­

u6uo 

where .A = 3¥( uz"J33¥(- uz. 

(10) 

The optimally growing perturbation over time interval 
tis identified with the eigenvector of e.,1

1
'e.,11 correspond­

ing to the largest eigenvalue (Farrell 1989) or, equiva­
lently, to th,e singular vector corresponding to the maxi-

mum singular value of e.,i'. The energy amplification op­
timized over all initial perturbations is consequently given 
by Jle.,1111~ and is called the optimal growth. 

Due to the nonnormality of the evolution operator 
(i.e., .,A.,At * .,At .A) the growth or decay of perturbation 
energy cannot in general be obtained as the sum of the 
growths of the isolated modes of the system, as would 
be the case for a normal system. Further, the optimal 
growth is necessarily larger than the growth attained by 
the perturbation associated with the maximally growing 
eigenvalu,e. The optimal growth for the midlatitude jet 
shown in Fig. 1 is shown in Fig. 2 for various global 
zonal wavenumbers K (the global wavenumbers are 
estimated for 45° latitude). The linear potential vortic­
ity damping has been chosen to produce a 9 de-folding, 
and the coefficient of eddy diffusion in the Ekman pa­
rameter is taken to be v = 20 m2 s - i . For these param­
eters the zonal jet is asymptotically stable. Despite the 
absence of normal-mode growth there is substantial 
transient growth with a global optimum energy ampli­
fication of 65-fold for K = 6 and T = 12 d. 

Inspection of Fig. 2 reveals the initial growth as the 
slope of the growth curve at the origin (this growth rate 
at t = 0 is the numerical abscissa of .A [i.e., the maximal 
eigenvalue of the Hermitian operator (.A + .,At)/2]. 
Note that the optimal initial growth at time t = 0 in­
creases with wavenumber, suggesting that the domi­
nant cyclone scale cannot be simply related to the initial 
growth of an unbiased spectrum of waves. These results 
agree with the observations that small-scale cyclones 
can be effectively formed by baroclinic energetics, al­
though they also subsequently decay rapidly. It is re­
markable that there is neither a short- nor a long-wave 
cutoff in the numerical abscissa and only a very weak 
scale selection attributable to variation with wavenum­
ber in initial growth rate. 

Because of computational limitations, convergence 
could not be tested by doubling resolution. Instead, test 
integrations with meridional grid numbers ranging from 
ny = 9 to 17 and vertical grid numbers from n, = 20 to 
45 were used. The tests included both the convergence 
of the dispersion properties of the modes [which were 
compared to the calculations of Lin and Pierrehumbert 
( 19SS)] and calculation of the time optimals. We found 
that good results were 9btained for ny = 11 and n, = 40. 
With this resolution the integration is converged for ap­
proximately 25 d, suggesting that large numerical mod­
els with at least this resolution can be accurately inte­
grated for a month considering only their linear dynam­
ics. (Of course, our model cannot provide direct 
guidance for resolution of nonlinear dynamics.) 

c. Determining the stationary statistics 

In generalized velocity variables the stochastically 
forced perturbation potential vorticity equation takes 
the form 

( 11) 
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FIG. 2. The square root of the energy growth of the optimal perturbations as a function of the optimizing 
time T, in days for various zonal wavenumbers. This growth factor is given by the Li norm of e"r, where e4 is 
the evolution operator in generalized velocity coordinates. The background velocity is shown in Fig. 1 and the 
dissipation parameters are 1/R = 9 days and v = 20 m2 s- 1• Note that the flow is asymptotically stable. The 
global optimal occurs for K = 6 and an optimizing time T"" 12 days for which a 65-fold energy amplification 
is achieved. 

where € is the random forcing assumed to be a 8-cor­
related Gaussian white-noise process with zero mean 
and with unit variance 

(€;(t)€/(t')) = 8ij8(t - t'), (12) 

where angle brackets denotes the ensemble average and 
the asterisk complex conjugation. Note that the sto­
chastic forcing excites both independently and with 
unit magnitude each spatial forcing distribution as 
specified by the columns/(j) of the matrix 'Il;j. We want 
to determine the evolution of the variance sustained by 
( 11 ) , which in physical variables is the ensemble-av­
eraged energy (£1) = (ui(t)u;(t)). 

In this theory of the statistical steady state of the 
highly nonnormal baroclinic atmospheric jet the effects 
of nonlinearity are parameterized by white-noise forc­
ing and a potential vorticity damping. In accord with 
the observation that the maintained variance in the at­
mosphere is finite we consider an asymptotically stable 
dynamical operator for which stationary statistics exist. 
For the jet in Fig. 1 and for Ekman damping consistent 
with a coefficient of vertical eddy momentum diffusion 
of v = 20 m2 s -• the stability boundary is reached for 
a potential vorticity damping with an e-folding time of 
approximately 10 d. In most of our calculations we will 
assume a potential vorticity damping with e-folding 
time of 9 d, which is consistent with the observed de-

correlation time of disturbances at synoptic scale. This 
choice places the subcritical flow near neutrality as dis­
cussed in Farrell and Ioannou ( 1994b). 

The random response u is linearly dependent on € 
and consequently is also Gaussian distributed. There­
fore, the statistics of the response of the dynamical sys­
tem are fully characterized by the first two moments. 
The first moment vanishes for large times if .A is as­
ymptotically stable. The expression for the second mo­
ment, the ensemble-average energy density, can be re­
duced to 

(E') = (u(t)(u(t);) = trace('P"K'~. (13) 

where 

(14) 

The evolution equation for "](' with initial condition "K° 
= 0 can be derived by direct differentiation of "K'. It is 

d"K' -- = c9 + .At"](' + "]('.A dt , (15) 

in which c9 is the identity matrix. When the potential 
vorticity damping R is chosen so that .A is asymptoti­
cally stable the stationary matrix 6Jf" can be determined 
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by solving the asymptotic form of Eq. (15), which is 
the Liapunov equation: 

.At"}("' + "ll .A = -J. (16) 

Note that with an orthogonal set of forcing functions 
such that '9f/1. = J, the expression for the energy density 
simplifies to ( £ 00

) = trace ( "}("'), and the variance is 
independent of the specific forcing distribution. 

Second-order moments of all physical quantities can 
be deduced from the ensemble-average correlation ma­
trix of the re:sponse eij = (u(t);u(t)t). which can be 
written using the propagator and forcing matrix asso­
ciated with ( 11) as 

e1 = J; e.A(t-s)~t e.At(t-s)ds, (17) 

which assuming stationarity satisfies the Liapunov 
equation: 

(18) 

Note that because .A is nonnormal (i.e., .At.A * .A.At) 
the equation satisfied by the forcing correlation matrix 
( 16) differs from that satisfied by the response corre­
lation matrix ( 18). 

Consider now the determination of an arbitrary sec­
ond-order moment 

where T1 and T2 are arbitrary operators. Because 

et = (<p;</Jt} = (~-112eoo~-l/2);j, (20) 

we have that S is determined from the correlation ma­
trix by 

(21) 

d. Determining the EOFs and FOFs 

Both "1l and e'° are by construction positive definite 
Hermitian forms with positive real eigenvalues asso­
ciated with mutually orthogonal eigenvectors. Each ei­
genvalue of e00 equals the variance accounted for, under 
unbiased forcing, by the pattern of its corresponding 
eigenvector, and the pattern that corresponds to the 
largest eigenvalue contributes most to the variance. The 
eigenfunctions of e00 ordered by the magnitude of their 
eigenvalues are the structures that contribute most to 
the ensemble-average variance of the statistically 
steady state. These are the primary response structures 
(EOFs) of tllte dynamical system. The EOFs are inter­
preted dynamically by this stochastic theory, thus pro­
viding a link between observed atmospheric statistics 
and dynamical theory. On the other hand, eigenanalysis 
of "1l allows ordering of the forcing distributions ac­
cording to their contribution to producing the variance 
of the statistically steady state and will be called FOFs 
[for further details see Farrell and Ioannou ( 1993b)]. 

If .A is normal, as is the case in the absence of basic­
state shear, .A, e1

, and "JC' commute, and the EOFs, 
FOFs, and the modes of the operator .A coincide. For 
a normal .A (18) can be immediately solved to yield 
for unitary forcing the steady-state ensemble-average 

'energy: 

(£00
) = trace(e00

) = trace(-(.A + .,At)-1) 

1 
= 72Re(-A;(.A))' (22 ) 

where A; (.A) are the eigenvalues of .A. The variance 
maintained by normal dynamical operators has been 
extensively investigated in the past (cf. Wang and Uh­
lenbeck 1945). In normal systems the motion can be 
resolved into the orthogonal modes and the total vari­
ance found as the sum of contributions from the indi­
vidual modes with this variance being inversely pro­
portional to the modal damping rate. In such systems 
the forcing is the only energy source, and the main­
tained variance is simply accumulated from the forcing 
until modal damping produces an equilibrium. 

For nonnormal dynamical operators the nonortho­
gonality of the modes allows the possibility of extrac­
tion of energy by the perturbations from the back­
ground flow field even in the absence of exponential 
instability. The energy balance in such a system is be­
tween the stochastic driving together with the induced 
extraction of energy from the background flow on the 
one hand and the dissipation on the other. This tapping 
of the energy of the mean flow can lead to levels of 
variance much greater than would be found in a normal 
system with the same modal dissipation rate. In fact, it 
can be shown that amplification of variance for un­
biased forcing is a necessary consequence of the non­
normality of the evolution operator ( Ioannou 1994) . 

The first EOF for the winter midlatitude jet is shown 
in Figs. 3a,b for K = 6. The first FOF for the same jet 
is shown in Figs. 4a,b for the same wavenumber. The 
least stable mode is shown in Figs. 5a,b. The impact of 
the nonnormality can be seen in these figures. Note here 
that because of the near neutrality of the atmosphere at 
K = 6 the first EOF is nearly identical to the least stable 
mode, and the first FOF is nearly identical to the adjoint 
of the least stable mode. A numerical model needs to 
resolve not only the energy-bearing scales of the EOFs 
but also the dynamically important FOFs, and these 
results indicate that this should be possible with reso­
lution not greatly exceeding current GCM capabilities. 

3. Wavenumber /frequency spectrum of the 
atmospheric jet 

In order to determine the frequency response of our 
dynamical system we consider the Fourier transform of 
( 11 ) to obtain an expression for the energy 

1 f"' (£
00

) = 27r _,,, F(w)dw (23) 
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FIG. 3. Geopotential height distribution of the first EOF, accounting for 69% of the total eddy energy for K = 6. The background velocity 
is shown in Fig. 1 and the dissipation parameters are l/R = 9 days and v = 20 m2 s-•. (a) A zonal and pressure cross section at Y == 0. (b) 
A zonal and meridional cross section at 500 mb; the meridional structure of the mean wind at this height is marked for reference. Note that 
a unit length in Y corresponds to approximately 10 degrees of latitude. 

as an integral over the frequency response 

F(w) = trace('jlt(w)<jl(w)), (24) 

which is obtained making use of the resolvent 

(25) 

In other words, the power spectrum is given by the 
Frobenius norm of the resolvent 'jl( w), which is equal 
to the square root of the sum of the squares of the sin­
gular values of the resolvent. In addition, the Li norm 
of 'jl( w) gives the maximum response, which is pro­
duced by the optimal forcing structure at frequency w. 
This maximum response is also equal to the maximum 
singular value of the resolvent. 

When .A is normal the response at any w can be cal­
culated knowing only the distance of the eigenspectrum 
from the forcing frequency w. When .A is nonnormal, 
the frequency response is by necessity underestimated 
by the proximity of w to the eigenvalues of .A (Farrell 
and Ioannou 1994a; loannou 1994). We will refer to 
the response calculated using only the eigenspectrum 
as the equivalent normal response. The frequency re­
sponse and the equivalent normal response as a func­
tion of phase speed for K = 6 are shown in Fig. 6. 

The spectrum of response to unbiased forcing as a 
function of period and zonal wavenumber is shown in 
Fig. 7. This graph reveals a pronounced response at low 
wavenumbers ( 4-6) with a period of around IO days 
and at wavenumbers 7-8 and with a period of around 
3 days. In contrast, the spectrum for the equivalent nor­
mal response (Fig. 8) does not exhibit this character­
istic structure, which is in remarkable agreement with 
observations (Fraedrich and Bottger 1978; Schafer 
1979; Salby 1982; Randel and Stanford 1985; Randel 
and Held 1991 ) . 

This agreement with observations indicates that the 
atmospheric flow is subcritical but near neutrality. The 
magnitude of the peak depends primarily on the non­
normality of the operator, which increases as the neu­
tral point is approached (cf. Figs. 7 and 8). As the flow 
is made more stable the peak in the spectrum at large 
scales is reduced. For an e-folding time of 5 d the spec­
tra lose the observed structure and are characterized 
instead by a broad maximum at synoptic scales (cf. 
Farrell and Ioannou 1993c, 1994b). The sharp peak in 
the observed atmospheric spectra suggests that the 
equivalent potential vorticity damping places the flow 
near neutrality, and from this work it is clear that when 
the flow is close to neutral the shape of the resulting 
spectrum does not depend crucially on the details of 
the distribution of the noise so long as it is reasonably 
smooth. If instead of choosing a forcing that is white 
in energy we choose a forcing that is white in enstro­
phy, the spectrum will be multiplied by k 2

• Because the 
spectrum is sharply peaked, such a modification affects 
mainly the shape of the background spectrum and does 
not change our qualitative conclusions. Our results 
demonstrate that the main determinant of the atmo­
spheric spectra is the nonnormality of the near-neutral 
but subcritical atmospheric flow, which results from the 
linear advective operator, and that the structure of the 
noise and the effective damping rate are of relatively 
less importance. 

The greatest response of the atmosphere to any unit 
norm forcing as a function of period and zonal wave­
number is shown in Fig. 9. This is obtained as the Li 
norm of the resolvent for each forcing period and wave­
number, and reveals the maximum possible response 
that can be obtained by the optimally configured forc­
ing at this frequency and wavenumber. This maximum 
response and its associated forcing function can be ob-
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FIG. 4. Geopotential height distribution of the first FOF, which produces 39% of the total eddy energy for K = 6. The background velocity 
is shown in Fig. 1 and the dissipation parameters are l/R = 9 days and v = 20 m2 s-•. (a) A zonal and pressure cross section at Y = 0. (b) 
A zonal and meridional cross section at 500 mb; the meridional structure of the mean wind at this height is marked for reference. Note that 
a unit length in Y corresponds to approximately I 0 degrees of latitude. 

tained by singular value decomposition of ( 25) (only 
the optimal forcing is retained in Fig. 9, while all N 
members of the unbiased forcing set are retained in Fig. 
7, accounting for the larger values in the latter figure) . 

4. Ensemble-average energy, heat, and momentum 
flux 

The ensemble-average eddy energy density ( m2 s - 2
) 

can be expressed in dimensional form for stochastic 
input E,n (W m-2

) as 

(26) 

where diag I[ e00 Ip;) gives the diagonal elements of e00 

divided by the corresponding value of the mean density 
normalized by its value at the ground pg, and 8y, 8z are 
the grid intervals in the meridional and vertical direc­
tion (cf. Farrell and Ioannou 1994b). (The energy den­
sity was chosen because observational data are usually 
presented in this variable.) The number of degrees of 
freedom is N1, which for N1 orthonormal forcings is also 
equal to trace ( <gyt) . 

The vertical distribution of the ensemble-average 
heat flux can be expressed in dimensional form: 

( ) 
_ ( -(J) _ CpTgLd diag(3e

00

) 

H - Cp pv - E;n N , 
gH t 

(27) 

where diag(A) gives the diagonal elements of the ma­
trix A, the bar denotes a phase average, Tg is a repre­
sentative surface temperature, and cP is the specific heat 
per unit mass. The heat flux matrix is 

with the same notation as in (9). Note that knowledge 
of the correlation matrix is in general sufficient for de­
termining any second-order moment. 

The momentum flux can be expressed in dimensional 
form as 

(M) = ( _) = Ld £. diag(~
00

) 
puv UoH '" N1 ' (29) 

with 

Variation of the vertically averaged energy, heat 
flux, and momentum flux with wavenumber at the lat­
itude of the jet maximum is shown in Fig. 10. Note that 
most of the transport is produced by global wavenum­
ber 6 in agreement with results of an 8-year compilation 
of European Centre foi: Medium-Range Weather Fore­
casts ( ECMWF) data (Randel and Held 1991 ) . We 
might have expected the cyclone scales (K > 9) to 
dominate the eddy transport, but instead the picture that 
emerges is of the cyclones stochastically forcing the 
large-scale transient waves, which in tum produce most 
of the eddy transport. We note that this interpretation 
resembles that advanced by Palmen and Newton 
( 1969) for maintenance of the observed large-scale 
transient waves in midlatitudes. In the theory described 
above, the prominence of the K = 6 scale results both 
from the nonnormality of the evolution operator and its 
near neutrality, which in tum results in part from the 
fact that Ekman damping is less effective at lower 
wavenumbers. The location of the wavenu.mber of 
maximum variance and heat and momentum transport 
indicates that the magnitude of mean effective Ekman 
parameter corresponds to a vertical diffusion coeffi-
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(a) A zonal and pressure cross section at Y = O. (b) A zonal and meridional cross section at 500 mb; the meridional structure of the mean 
wind at this height is marked for reference (unit length in Y corresponds to approximately JO degrees of latitude). 

cient of 20-30 m2 s - i, a value that is consistent with 
the observed mean stress at the ground (Gill 1982; 
p. 332). 

Analysis of ECMWF seasonal flux statistics per­
formed by Randel and Held ( 1991 ) and independently 
by Amy Solomon at MIT ( 1994, unpublished manu­
script; cf. Farrell and loannou l 994b) shows that this 
wavenumber 6 prominence is observed in both hemi­
spheres during both the winter and summer months. A 
major simplification of climate dynamics is achieved if 
the midlatitude general circulation can be accurately 
described as a stochastic equilibrium between the mean 
thermal forcing and the Eliassen-Palm ( EP) fluxes pri­
marily arising from a single dominant wavenumber. 

Normalized distributions in the vertical, at the lati­
tude of the jet maximum, of the ensemble-average en­
ergy and heat flux per unit mass as a function of zonal 
wavenumber are shown in Fig. 11 and Fig. 12. (It 
should be noted that these calculations are strictly valid 
above the Ekman layer, which has been arbitrarily 
placed at 1000 mb in our calculations, instead of at 
,,.,,900 mb. This should be taken into consideration 
when comparing these vertical distributions of eddy 
statistics with observations.) The ensemble energy in­
cludes both kinetic and potential forms. The promi­
nence at the ground is mainly due to potential energy 
as can be seen in a plot of the associated rms temper­
ature fluctuation shown in Fig. 13. The corresponding 
distribution of the rms zonal eddy velocity and merid­
ional eddy velocity is shown in Fig. 14 and Fig. 15, 
respectively. Examples of the meridional and vertical 
structure of the heat and momentum flux for wavenum­
bers 5 and 6 are shown in Figs. 16a,b and Figs. 17a,b. 
The derived distributions are in good agreement with 
the observed statistical distributions of these quantities 
(cf. Schubert et al. 1990; Trenberth 1992). 

S. Momentum flux distributions 

Held (1975) and Held and Andrews (1983) argued 
that the meridional extent of the jet controls the direc­
tion of the wave-induced momentum fluxes: jets that 
are broad relative to the Rossby radius of deformation 
and in which the baroclinic shear is comparable to that 
observed in midlatitude jets are associated with wave­
induced upgradient momentum fluxes that tend to re­
inforce the westerly jet, while sufficiently narrowly 
confined jets lead to downgradient momentum fluxes 
and a tendency to decelerate the jet. It has been further 
argued that the size of the jet is determined by an equil­
ibration associated with this mechanism. Held and An­
drews ( 1983), extending the perturbation procedure of 
Mcintyre ( 1970), showed that this intensification of 
broad jets and reduction of sharp jets is quite general. 
In their analysis the direction of the momentum fluxes 
depended both on the zonal scale of the fastest-growing 
mode in relation to the deformation radius and on the 
size of the jet scaled by the deformation radius. In con­
trast to these previous studies, which pivoted on modal 
instability, in this work the direction of the stochasti­
cally induced statistical equilibrium momentum fluxes 
is examined. 

Referring to our parameterization of an asymmetric 
jet ( 6), the scale of the meridional variation of the jet 
L, in units of the Rossby radius Ld, is L == I/A (the 
half-width of the jet is approximately 2/ A). The mean 
flow tendency for a symmetric jet ( C = 0) as a function 
of zonal wavenumber and meridional scale of the jet A 
is shown in Fig. 18. The corresponding mean flow ten­
dency for an asymmetric jet ( C = 0.2) is shown in Fig. 
19. It can be seen that the momentum flux divergence 
changes sign as the size of the jet decreases: when the 
jet is broad (A ,,;;;; 0.8 - 1) the fluxes are upgradient, 
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FIG. 6. The energy response (in a base IO logarithmic plot) of the 
background flow to unbiased forcing as a function of phase speed. The 
lower curve gives the equivalent normal response in which the non­
orthogonality of the modes is not taken into account. The background 
velocity is shown in Fig. 1 and the dissipation parameters are llR = 9 
days and v = 20 m2 s-•. The zonal wavenumber is K = 6, for which 
a phase speed of IO ms-• corresponds to a period of 5.6 d. The primary 
peak is at a period of 7 d, and the secondary peak, not captured by the 
equivalent normal response, is at a period of 9.5 d. 
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mum as a function of the zonal wavenumber. The stochastic driving 
is 2 W m-2

. The background velocity is shown in Fig. I and the 
dissipation parameters are llR = 9 days :md v = 20 m2 s- 1

• 

and when the jet is narrow (A ;;?: 0.8 - 1) the fluxes 
are downgradient, in qualitative agreement with pre­
dictions from modal theory. 

The observed winter jet corresponds approxi­
mately to A = 0.5. The latitudinal distributions of 
vertically averaged energy, heat flux, momentum 
flux, and momentum flux divergence for the domi­
nant K = 6 wave are shown in Fig. 20a and Fig. 21a 
for A = 0.5 and E;n = 1 W m-2

• To attain the sea-

sonal-averaged eddy fluxes a stochastic input of the 
order of 3 W m-2 is required, which implies a max­
imum upgradient momentum flux divergence of ""'1 
m s - 1 day- 1

• Note that in the absence of dissipation 
and because the vertically averaged contribution 
from induced mean meridional circulations vanishes 
due to continuity, the vertically averaged momentum 
flux divergence yields the vertically averaged mean 
flow acceleration (cf. Ioannou and Lindzen 1986). 
In the presence of friction, a stationary jet must be 
maintained against frictional deceleration by upgra­
dient eddy momentum flux divergence. The average 
frictional retardation has been estimated to give a 
mean stress at the ground of ""'l/ 10 N m-2 

( Palmen 
and Newton 1969), and this leads to a deceleration 
of the atmospheric column of >:::<0.83 m s- 1 day- 1

• It 
follows that our chosen atmospheric jet is in approx­
imate stochastic equilibrium. Note also from Fig. 19 
that for all K < 10 the momentum flux divergence is 
upgradient, consistent with observations. 

The corresponding latitudinal distributions of verti­
cally averaged energy, heat flux, momentum flux, and 
momentum flux divergence for the dominant K = 6 
wave but for a narrow jet for A = 1.2 are shown in Fig. 
20b and Fig. 21b. Here note that the eddy momentum 
flux divergence is downgradient, in contrast with ob­
servations. 

6. Conclusions 

Stochastic dynamics of a nonnormal system associ­
ated with a nonseparable baroclinic/barotropic midlat­
itude jet was examined in this work. When the jet is 
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Flo. 11. The normalized distribution of the ensemble-average energy for various global zonal 
wavenumbers as a function of pressure. The dissipation parameters are taken to be v = 20 m2 s- 1 and 
llR = 9 days. 
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FIG. 12. The normalized distribution of the ensemble-average heat flux for various global zonal 
wavenumbers as a function of pressure. The dissipation parameters are taken to be v = 20 m2 s- 1 and 
llR = 9 days. 

forced stochastically and the response transformed to 
generalized velocity variables, the structures of the pre­
ferred response are found from eigenanalysis of the 
correlation matrix, which is in turn found as the solu- · 
tion of Liapunov equation ( 18). Moreover, the distinct 
set of forcing functions that contribute most to produc-
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FIG. 13. The: distribution with height and latitude of the rrns tem­
perature pertmrbation T in K for global zonal wavenumber 6. The 
dissipation parameters are taken to be v = 20 m2 s- 1 and l/R = 9 
days. The stochastic forcing is E;. = 1 W m-2

• 

ing the variance are found by eigenanalysis of the forc­
ing correlation matrix, which is in turn found as the 
solution of the related Liapunov equation (16). The 
forcing functions, the response functions, and the nor­
mal modes are distinct for nonnormal dynamical sys­
tems such as that associated with the jet studied here, 
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FIG. 14. The distribution with height and latitude of the rrns eddy 
zonal velocity u in m s- 1 for global zonal wavenumber 6. The dis­
sipation parameters are taken to be v = 20 m2 s- 1 and llR = 9 days. 
The stochastic forcing is E,. = I W m-2• 
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FIG. 15. The distribution with height and latitude of therms eddy 
meridional velocity v in m s- 1 for global zonal wavenumber 6. The 
dissipation parameters are taken to be v = 20 m2 s- 1 and l/R = 9 
days. The stochastic forcing is£;. = 1 W m-2
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although these three are identical in the case of a nor­
mal system. 

The variance produced by the preferred responses is 
found to have a wavenumber/frequency distribution in 
remarkable agreement with observations. In particular, 
the commonly observed wavenumber 6 response is ob­
tained as well as the cyclone-scale response at higher 
frequency. The vertical/meridional structures associ­
ated with these waves are realistic and in particular dis-
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play the secondary upper-level maximum seen in ob­
servations. The forcing functions reveal that the struc­
tures of the disturbances that contribute most to 
maintaining the variance are of higher vertical wave­
number but are not so highly structured as to pose in­
surmountable resolution requirements on numerical 
models. For the meridional scale of the observed mid­
latitude jet, the heat flux is found to be concentrated 
near the ground and the momentum flux to be upgra­
dient as observed. 

The observed midlatitude jet was found to have a 
meridional scale for which the stochastic momentum 
flux is upgradient, in agreement with observations. It is 
to be expected that sufficiently sharp jets produce 
downgradient fluxes, and this was found to be so for 
jets with a half-width of approximately one Rossby ra­
dius. 

The combined heat and momentum flux produced by 
stochastic forcing gives rise to momentum flux distri­
butions the divergence of which reveals the expected 
tendency toward acceleration of the upper-level jet. 

These distributions of variance and flux could be as­
certained from solution of the linear stochastic equa­
tions, but, in addition to distributions, an amplitude of 
forcing is required in order to make quantitative appli­
cation of the theory. This amplitude was determined by 
requiring that the stochastic solution yield the observed 
total variance. This level of forcing also produced heat 
and momentum fluxes that agree well with observations 
and, in particular, momentum flux divergence in quan­
titative agreement with observed surface stress. 

As with any physical theory, the purpose of stochas­
tic dynamics is both conceptual and practical. Concep­
tually, the theory provides a unifying mechanistic un­
derstanding of the turbulent atmosphere in terms of am­
plification of a subset of perturbations, the existence of 
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FIG. 16. The distribution with pressure and latitude of the ensemble-average heat flux: (a) for global zonal wavenumber 5; (b) for global 
zonal wavenumber 6. The dissipation parameters are taken to be v = 20 m2 s- 1 and 1/R = 9 days. The stochastic forcing is E;. = 1 W m-2

• 



1654 JOURNAL OF THE ATMOSPHERIC SCIENCES VoL. 52, No. 10 

< u v > m'21s'2 , K = 6 R = 9 d , nu = 20 m'2/s 
0 

0 100 
100 

200 
200 

300 
300 

400 
400 

.0 
E 500 ~ 500 

a_ 

600 
a_ 

600 

700 700 

800 800 

900 900 

100~0 30 40 50 60 70 100~0 30 40 50 60 70 80 
DEGREES LATITUDE DEGREES OF LATITUDE 

FIG. 17. The distribution with pressure and latitude of the ensemble-average momentum flux: (a) for global zonal wavenumber 5; (b) for 
global zonal wavenumber 6. The dissipation parameters are taken to be v = 20 m2 s- 1 and l/R = 9 days. The stochastic forcing is E,. = 1 
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which can be traced to the nonnormality of the under­
lying linear dynamics with the role of nonlinearity con­
fined to providing the requisite scattering of perturba­
tions into the growing subset so that a steady state can 
be obtained ailld augmenting the dissipation to account 
for disruption of the growing waves. This conceptual 

1.4 

1.2 

"O 
_J 

--_J 

II 
<( 

0.8 

0.6 

Symm. Jet. d U Id t ( m Is Id ) , R = 6 d, nu = 20 m'2 Is 

I 

4 

/ 
/ 

- - ......... 

5 

/ 
/ 

,..,-0.2 

- - - - - ..... - - + ·E:J,,,, 

0 

6 7 8 
K 

I 
I 

I 

/ 
/ 

9 10 
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wavenumber Kand jet width A. The dissipation parameters are taken 
to be v = 20 m2 s- 1 and IIR = 9 days, and the stochastic forcing is 
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• The observed winter midlatitude jet has A "" 0.5. 
Positive values c:orrespond to an accelerative tendency of the back­
ground flow at the jet maximum. 

view directs attention to the nonnormality of the un­
derlying dynamics and the distinct forcing and response 
functions arising from this nonnormality. In addition, 
the role of nonlinearity is reinterpreted from being the 
primary agent of the turbulence through its spectral in­
teractions to playing a relatively minor, albeit vital, role 

1.4 

1.2 

"O 
_J 

_J 

II 
<( 

0.8 

0.6 

d U I d t ( m I s I day ) , R = 9 d , nu = 20 mA2 Is 

4 

\ -0 §.-1, ' -;¥ ' I I I 
't ., \ :t:5'1, 

I \ ', '*'°-,..... .1 J I \ 
I \ I 
+-0.25' - - -

' ..... - - - ....... 

5 6 7 8 
K 

\ 
\ 

9 10 

FIG. 19. The maximum vertically averaged eddy momentum flux 
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jet as a function of zonal wavenumber K and jet width A. The dis­
sipation parameters are taken to be v = 20 m2 s- 1 and I/R = 9 days, 
and the stochastic forcing is E,. = 1 W m-2

• Positive values corre­
spond to an accelerative tendency of the background flow near the 
jet maximum. 
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chastic forcing is E1n = I W m-2

• Note that a unit in the abscissa 
corresponds to approximately IO degrees of latitude. 

in resupplying the growing subset as these are depleted 
through their transient nonmodal growth. 

This mechanistic theory of quasigeostrophic turbu­
lence in the highly baroclinic rnidlatitude jet exploits 
in an essential way the dominance of the mean flow as 
a source of energy maintaining the perturbation vari­
ance. Because the energetic exchange between the 
mean flow and the perturbations is imbedded in the 
dynamical operator linearized about the mean flow, this 
theory enjoys a simplification not shared by similar the­
ories of turbulence in normal systems such as homo­
geneous isotropic turbulence. Without the simplifica­
tion resulting from dominance of the nonnormal linear 
operator theories such as direct interaction approxi-

mation, random coupling model, test field model (cf. 
Lesieur 1993) require intricate specification of forcing 
and damping as a function of wavenumber. By contrast, 
in highly nonnormal systems such as the midlatitude 
jet the role of nonlinearity, while essential, is much 
more easily parameterized because the nonnormal op­
erator dominates the response. This dominance of the 
nonnormality can be seen clearly in the examples com­
paring the nonnormal with the equivalent normal spec­
tra. The predominance of wavenumber 5-6 in the var­
iance and fluxes proceeds from the preferred response 
of the nonnormal dynamics at this wavenumber rather 
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FIG. 21. The vertically averaged eddy momentum flux divergence 
in mis/day as a function of latitude. The dissipation parameters are 
taken to be v = 20 m2 s- • and I IR = 9 days, and the stochastic forcing 
is E,. = I W m-2

• The dash curve shows the meridional variation of 
the vertically averaged background flow normalized by the maximum 
momentum flux divergence: (a) for ajet with width A = 0.5 for which 
there is an upgradient tendency at the jet maximum and simultane­
ously a tendency for increased asymmetry; (b) for a jet with width A 
= 1.2 for which there is a downgradient tendency at the jet maximum 
and a tendency for a reduction of the asymmetry. Note that a unit in 
the abscissa corresponds to approximately I 0 degrees of latitude. 
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than from, for example, a propensity for nonlinear ups­
cale transfer to enhance response at this wavenumber. 

Because of the central role of the response of the 
dynamical operator linearized about the mean flow in 
this theory., there are some similarities between the sto­
chastic theory and theories envisioning adjustment to 
neutrality, such as baroclinic adjustment parameteriza­
tion for heat flux (Stone 1978; Lindzen 1993). In the 
stochastic theory, however, the instability does not 
equilibrate the flow because the system is maintained 
damped by the divergent fluxes resulting as the stability 
boundary is approached but never reached. 

Practically, stochastic dynamics points the way to a 
consistent parameterization of fluxes associated with 
equilibrium states that balance the stochastic fluxes 
with the large-scale thermal forcing. Obtaining this pa­
rameterization will be the subject of future work. 
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