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Emergence of non-zonal coherent structures in 
barotropic turbulence 

 

Bakas N.A., Ioannou P.J., Constantinou N.C. 

 

Atmospheric turbulence is observed to self-organize into large scale structures such as zonal 

jets and coherent vortices. One of the simplest models that retains the relevant dynamics is a 

barotropic flow in a beta-plane channel with turbulence sustained by random stirring. Non-

linear integrations of this model show that as the energy input rate of the forcing is increased, 

the homogeneity of the flow is first broken by the emergence of non-zonal, coherent, 

westward propagating structures and at larger energy input rates by the emergence of zonal 

jets. We study the emergence of non-zonal coherent structures using a statistical theory, 

Stochastic Structural Stability Theory (S3T). S3T directly models a second order 

approximation to the statistical mean turbulent state and allows identification of statistical 

turbulent equilibria and study of their stability. We find that when the homogeneous turbulent 

state becomes S3T unstable,  non-zonal large scale structures emerge and we obtain analytic 

expressions for their characteristics (scale, amplitude and phase speed). Numerical 

simulations of the non-linear equations are found to reproduce the characteristics of the 

structures predicted by S3T. 
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1 Introduction 

Atmospheric turbulence is commonly observed to be organized into large scale zonal jets with 

long-lasting coherent vortices embedded in them. The jets control the transports of heat and 

chemical species in the atmosphere, while the coherent vortices sequester chemical species 

and heat and produce significant spatiotemporal variability. It is therefore important to 

understand the mechanisms for the emergence, equilibration, and maintenance of these 

coherent structures.  

 The simplest model that retains the relevant dynamics is a turbulent barotropic flow on a 

β-plane. Numerical simulations of this model have shown that robust, large scale zonal jets 

emerge in the flow and are sustained at finite amplitude. In addition, large scale westward 

propagating coherent waves were found to coexist with the zonal jets (Galperin et al. 2010). 

These large scale waves either obey a Rossby wave dispersion, or propagate with different 

phase speeds and appear to be sustained by non-linear interactions between Rossby waves. 

However the mechanism for their excitation and maintenance remains elusive. In this work, 

we present a theory that predicts the formation and nonlinear equilibration of large scale 

coherent structures in barotropic β-plane turbulence and then test this theory against nonlinear 

simulations. 

Since turbulent dynamics involve complex interactions among many degrees of freedom, 

an attractive approach for understanding the emergence of coherent structures is to study the 

evolution of the flow statistics rather than the evolution of the complex flow itself, investigate 

the dynamics of the corresponding equations and the stability of the statistical equilibria that 

emerge. This approach is followed in Stochastic Structural Stability Theory (S3T) (Farrell and 

Ioannou 2003), which is a non-equilibrium statistical theory applied to atmospheric 

turbulence (Farrell and Ioannou 2008). While recent studies have demonstrated that S3T can 

predict the structure of zonal flows in turbulent fluids (Constantinou et al. 2013), the results 

presented in this work demonstrate that an extended version of S3T can predict the emergence 

of both zonal and non-zonal coherent structures and can capture their finite amplitude 

manifestations.  

2 Formulation of Stochastic Structural Stability Theory 

Consider a non-divergent barotropic flow on a β-plane with cartesian coordinates x=(x,y). The 

velocity field, u=(u,v), is given by (   )  (        ), where ψ is the streamfunction. 

Relative vorticity ζ(x, y, t) = Δψ, evolves according to the non-linear (NL) equation: 

 

(      )           
           ( ) 

 

where      
     

  is the horizontal Laplacian, β is the gradient of planetary vorticity, r is 

the coefficient of linear dissipation that typically parameterizes Ekman drag and ν is the 

coefficient of hyper-diffusion that dissipates enstrophy flowing into unresolved scales. The 

exogenous forcing term fe, parameterizes processes such as small scale convection or 

baroclinic instability, that are missing from the barotropic dynamics and is necessary to 

sustain turbulence. We assume that fe is a temporally delta correlated and spatially 

homogeneous random stirring. We also assume that the forcing is isotropic, injecting energy 

at a rate ε in a narrow ring of wavenumbers with radius Kf=10. The calculations in this work 

are for β=10, r=0.01 and v=1.9x10
-6

. 

     S3T describes the statistical dynamics of the first two same time moments of (1). The first 

moment is the ensemble mean of the vorticity Z(x, t) ≡ ⟨ζ⟩, where the brackets denote an 

ensemble average over forcing realizations. The second moment C(x1, x2, t) ≡⟨ζ′1ζ′2⟩, is the 

two point correlation function of the vorticity deviation from the mean ζ′i≡ ζi −Zi, where the 

subscript i = 1, 2 refers to the value of the relative vorticity at xi = (xi, yi). We adopt the 
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general interpretation that the ensemble average is a Reynolds average over the fast turbulent 

motions (Bernstein and Farrell 2010). With this definition of the ensemble mean, we seek to 

obtain the statistical dynamics of the interaction of the coarse-grained ensemble average field, 

which can be zonal or non-zonal coherent structures represented by their vorticity Z, with the 

fine-grained incoherent field represented by the vorticity covariance C. The equations 

governing the evolution of the first two moments are obtained as follows. Under the 

decomposition of vorticity into an ensemble mean and a deviation from the mean, (1) is split 

into two equations governing the evolution of the vorticity of the coherent structures Z and of 

the eddy (deviation from the mean) vorticity ζ′. The mean vorticity Z evolves according to: 

 

(      )          
      〈    〉   ( )      ( ) 

 

where U , u' are the ensemble mean and the eddy velocity fields respectively. The mean 

vorticity Z is therefore forced by the divergence of the ensemble mean vorticity fluxes that 

can be expressed as a function of the vorticity covariance   〈    〉   ( ). The covariance 

evolves as: 

 

    (     )      ( ) 
where 

       (     )   
         

         

governs the dynamics of linear perturbations about the instantaneous mean flow U and Ξ is 

the spatial correlation function of the external forcing. In obtaining (3), we have ignored the 

fnl term describing the eddy-eddy interactions, so that (2)-(3) form a closed deterministic 

system that governs the joint evolution of the coherent flow field and of the eddy statistics. 

The S3T system has bounded solutions and the fixed points Z
E
 and C

E
, if they exist, define 

statistical equilibria of the coherent structures with vorticity Z
E
, in the presence of an eddy 

field with covariance C
E
. 

3 Results 

The S3T system (2), (3) has for ν=0 the equilibrium ZE=0, CE=Ξ/2r, that has zero large scale 

flow and a homogeneous eddy field with the spatial covariance of the forcing. We now 

investigate the stability of this equilibrium as a function of the energy input rate ε and the 

characteristics of the equilibrated unstable structures and relate the outcome of the analysis to 

the results in the nonlinear simulations of (1). The stability of the homogeneous equilibrium is 

assessed by introducing perturbations δZ=einx+imy+σt, δC, linearizing (2), (3) about the 

equilibrium and calculating the eigenvalues σ. The resulting stability equation for σ(n, m) can 

be solved explicitly (Bakas and Ioannou 2013). For small values of the energy input rate of 

the forcing ε, the homogeneous state is stable. When ε exceeds a critical εc, the homogeneous 

flow becomes S3T unstable and coherent structures emerge.  

 

Fig. 1. Growth rate Re(σ) as a function of the integer valued wavenumbers (|n|,|m|) of the emerging structure for (a) 

ε=4εc and (b) ε=30εc.  
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The growth rates as a function of the integer valued wave numbers (n, m) of the structure are 

shown in Fig. 1. For ε=4εc, the structure with the largest growth rate is non-zonal with 

(|n|,|m|)=(1,5) and has Im(σ)>0, implying westward propagation of the eigenstructure. Note 

also that for this energy input rate, zonal flows (n=0) are stable. For ε=30εc, both stationary 

zonal jets (having Im(σ)=0) and westward propagating non-zonal structures are unstable, but 

the zonal jets have smaller growth rates compared to the non-zonal structures. Numerical 

integration of the S3T system (2)-(3) shows that for ε> εc the unstable structures equilibrate at 

finite amplitude after an initial period of exponential growth. Fig. 2 shows the equilibrated 

structure arising from random initial conditions when ε=4εc. This structure coincides with the 

finite amplitude equilibrium of the fastest growing eigenfunction and propagates as shown in 

Fig. 2 westwards with a speed approximately equal to the phase speed of this eigenfunction. 

For ε=30εc, a mixed structure that consists of a zonal jet with (|n|, |m|)=(0,5) and lower 

amplitude (|n|, |m|)=(1,5) westward propagating waves embedded in it, is the finite amplitude 

equilibrium of the S3T system (not shown).       

 
Fig. 2. (a) Streamfunction of the equilibrated structure for ε=4εc. (b)  Hovmoller diagram of ψ(x,y=π/4,t). The phase speed of the 

most unstable eigenfunction is also shown (dashed line). 

 

A proxy for the amplitude of these equilibrated structures are the zmf and nzmf indices 

defined as the ratio of the energy of zonal jets and non-zonal structures respectively with 

scales lower than the scale of the forcing over the total energy: 

 

    
∑  ̂(     )    

∑  ̂(   )   

            
∑  ̂(   )      

∑  ̂(   )   

          ( ) 

 

where  ̂(   ) is the time averaged energy power spectrum of the flow and k, l are the zonal 

and meridional wave numbers, respectively. These indices that are calculated for the S3T 

integrations, are shown in Fig. 3. 

 

Fig. 3. zmf and nzmf indices defined in (4) as a function of the energy input rate, for the NL and S3T integrations.  

As the energy input rate increases, the non-zonal structures equilibrate at larger amplitudes 

and nzmf increases. However, for ε/ εc>15 the finite amplitude non-zonal equilibria are S3T 

unstable to zonal jet perturbations. As a result, the structures with the largest domain of 

attraction are zonal jets and the flow is dominated by these structures resulting in an increase 

of zmf and a concomitant decrease of nzmf. 
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The results of the S3T analysis are now compared to nonlinear simulations for which the zmf 

and nzmf indices are calculated as well. The stability analysis accurately predicts the critical 

εc for emergence of non-zonal structures in the nonlinear simulations as shown in Fig. 3. The 

finite amplitude equilibria obtained when ε>εc also correspond to the dominant structures in 

the nonlinear simulations. For ε=4εc, the time averaged energy spectra shown in Fig. 4 exhibit 

significant power at (|k|,|l|)=(1,5), corresponding to the equilibrated S3T structure shown in 

Fig. 2. Remarkably, the phase speed of these waves observed in the nonlinear simulations and 

the amplitude of these structures as illustrated by the nzmf index are approximately equal to 

the phase speed and amplitude of the corresponding S3T translating equilibrium structure (cf. 

Figs. 2, 4). In addition, the spectra for ε=30εc exhibit a peak at (|k|,|l|)=(0,5), as in the S3T 

integrations (not shown).    

Fig. 4. (a) Time averaged energy power spectra obtained from the NL simulations for ε=4εc. (b)  Hovmoller diagram of 

ψ(x,y=π/4,t). The phase speed of the most unstable eigenfunction is also shown (dashed line). 

4 Conclusions 

In summary, we presented a theory (S3T) that shows that large scale structure in barotropic 

turbulence arises through systematic self-organization of the turbulent Reynolds stresses, a 

process that is captured by a second order closure of the flow statistics. The theory allowed 

the determination of conditions for the emergence of westward propagating, coherent non-

zonal structures in homogeneously forced flows and we have demonstrated, through 

comparison with nonlinear simulations, that it predicts both the emergence and the finite 

amplitude equilibration of these structures. The relation of these states to westward 

propagating vortex rings in the ocean and the atmosphere will be the subject of future 

research. 
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