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Although the roll-streak (R-S) is fundamentally involved in the dynamics of wall-
turbulence, the physical mechanism responsible for its formation and maintenance re-
mains controversial. In this work we investigate the dynamics maintaining the R-S in
turbulent Poiseuille flow atR = 1650. Spanwise collocation is used to remove spanwise dis-
placement of the streaks and associated flow components, which isolates the streamwise-
mean flow R-S component and the second-order statistics of the streamwise-varying
fluctuations that are collocated with the R-S. This streamwise-mean/fluctuation partition
of the dynamics facilitates exploiting insights gained from the analytic characterization
of turbulence in the second-order statistical state dynamics (SSD), referred to as S3T,
and its closely associated restricted nonlinear dynamics (RNL) approximation. Symmetry
of the statistics about the streak centerline permits separation of the fluctuations into
sinuous and varicose components. The Reynolds stress forcing induced by the sinuous
and varicose fluctuations acting on the R-S is shown to reinforce low- and high-speed
streaks respectively. This targeted reinforcement of streaks by the Reynolds stresses
occurs continuously as the fluctuation field is strained by the streamwise-mean streak and
not intermittently as would be associated with streak-breakdown events. The Reynolds
stresses maintaining the streamwise-mean roll arise primarily from the dominant POD
modes of the fluctuations, which can be identified with the time average structure of
optimal perturbations growing on the streak. These results are consistent with a universal
process of R-S growth and maintenance in turbulent shear flow arising from roll forcing
generated by straining turbulent fluctuations, which was identified using the S3T SSD.

Key words:

1. Introduction

Although turbulent flows exhibit fluctuations indicative of a stochastic process, closer
analysis reveals elements of underlying order. Efforts to identify and analyze the origin
of this underlying order in turbulence led to the introduction of a structure measure, the
two-point correlation function, which was originally interpreted to provide an influence
distance from measurements of flow velocities (Taylor 1935). Progress in measuring
apparati subsequently allowed collection of increasingly resolved data sets and Lumley
(1967) proposed a method to identify coherent structures arising in turbulent flows
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making use of two-point spatial correlation in the flow. In tandem with identification
of coherent structure arising from advances in experimental observations were attempts
to provide a theoretical basis for the emergence of these coherent structures, a summary
of which can be found in the reviews by Cantwell (1981), Robinson (1991) and Jiménez
(2018). Advances in flow visualization provided additional evidence of coherent structure
in turbulent shear flows not only in the buffer layer but including organized large- and
very-large- scale motions throughout turbulent shear flows e.g. (Hutchins & Marusic 2007;
Hellström et al. 2011).
A prominent component of the coherent structure observed in turbulent shear flow is

the roll-streak structure (R-S). This coherent structure alone accounts for a significant
fraction of the turbulent fluctuation kinetic energy and considerable effort has been
devoted to identifying the mechanisms forming and maintaining the R-S (Benney 1960;
Jang et al. 1986; Hall & Smith 1991; Hamilton et al. 1995; Waleffe 1997; Schoppa &
Hussain 2002; Flores & Jiménez 2010; Hall & Sherwin 2010; Hwang & Cossu 2010, 2011;
Farrell & Ioannou 2012; Rawat et al. 2015; Cossu & Hwang 2017; Kwon & Jiménez
2021). As a result of these efforts, it became apparent that the R-S is an important
component of not only the energy bearing structures but also of the dynamics underlying
the maintenance of wall-turbulence. One role of the R-S in supporting turbulence is to
transfer streamwise mean momentum from the spanwise homogeneous equilibrium flow,
which is maintained by external mean pressure or boundary-associated forcing, to form
a spanwise inhomogeneous streak in the flow (Ellingsen & Palm 1975; Landahl 1980).
This streak in turn makes available rapidly growing streamwise and spanwise dependent
perturbations that support subsequent energy transfers from the streamwise mean flow
to the fluctuation field required to both generate and maintain the turbulent state. An
example of the former being in transition to turbulence (Westin et al. 1994; Brandt et al.
2004) and of the latter the SSP mechanism (Hamilton et al. 1995; Waleffe 1997).

The fact that the R-S does not arise as a modal instability when the Navier-Stokes
equations (NSE) in velocity variables are linearized about the streamwise-mean flow led
to the belief that the R-S cannot arise as an unstable mode in the NSE. Nonetheless,
in shear flow the R-S is the optimally growing structure in the NSE expressed in
velocity state variables. This has been studied in both the time domain (Butler &
Farrell 1992; Reddy & Henningson 1993) and frequency domain (McKeon & Sharma
2010; McKeon 2017), so that the occurrence of optimals with R-S form arising from
transient growth of fluctuations in the turbulence provides a plausible explanation for the
common observation of this structure in turbulent shear flows. However, R-S formation
through transient growth produces initial algebraic growth followed by decay in time
and, if randomly forced, a stochastic distribution in space because transient growth
lacks an organizational mechanism that would produce temporal persistence and spatial
organization of the R-S. The ubiquity, persistence and large scale organization of the
R-S in turbulent shear flow despite lack of a modal R-S formation instability in the
traditional NSE formulation resulted in attempts to uncover explanations alternative to
transient growth of initial or continuously forced perturbations to explain the formation
and maintenance of the R-S. Among these mechanisms are various regeneration or
self-sustaining processes (Jiménez & Moin 1991; Hamilton et al. 1995; Waleffe 1997;
Jiménez & Pinelli 1999; Schoppa & Hussain 2002; Hall & Sherwin 2010; Deguchi & Hall
2016). Alternatively, the R-S has been attributed to unstable exact coherent structures
(ECS) (Waleffe 2001; Halcrow et al. 2009). While unstable ECS can resemble R-S’s,
these structures can not occur in the turbulence because the ECS is an exact solution,
which clearly cannot lie on the chaotic attractor of the turbulence. In this work we
study the physical mechanism underlying the formation and maintenance of the R-S,
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which manifestly does exist in wall-turbulence. In fact the R-S’s in this study, as well
as the preponderance of those in Poiseuille flow turbulence, are hydrodynamically stable
(Schoppa & Hussain 2002) and therefore the formation and maintenance of these stable
R-S’s cannot be attributed to the dynamics of algorithmically constructed unstable ECS
that do not lie on the chaotic attractor of the turbulence.
It is now recognized that the R-S can arise from a modal instability when the NSE is

expressed in cumulant variables and linearized about the streamwise-mean flow associated
with a background of turbulent fluctuations. This modal instability had been overlooked
because it has analytic expression only when the NSE is written using a statistical
state dynamics (SSD) formulation, such as S3T (Farrell & Ioannou 2012; Farrell et al.

2017b). The dynamics of the S3T SSD is closely approximated by the restricted nonlinear
equations (RNL), which allows insights from the essentially complete characterization
of the analytical structure of wall turbulence dynamics by S3T to be transferred to
RNL, and from RNL to its DNS companion (Thomas et al. 2014; Farrell et al. 2016,
2017a). The crucial choice of dynamical significance in the formulation of both the S3T
and its RNL approximation is to use a partition into streamwise-mean and fluctuations
from the streamwise-mean. This particular partition is crucial to gaining insight into
turbulence dynamics because it isolates the interaction between these two components,
which comprises the fundamental dynamics maintaining and regulating the turbulent
state. The success of this partition in maintaining a realistic turbulent state when the
associated SSD is closed at second order implies that interaction between the streamwise-
mean flow and the covariance of fluctuations from the streamwise-mean suffices for
understanding the physical mechanism sustaining and regulating turbulence in shear flow.
Analysis of the S3T SSD reveals that the influence of the fluctuations on the streamwise
mean component occurs through the fluctuation Reynolds stresses, which can be obtained
from the covariance component of the SSD.
In agreement with simulations, R-S formation through the S3T modal instability

produces initial exponential growth in time leading through nonlinear equilibration to
persistent stable equilibrium R-S with coherent harmonic organization in space (Farrell
et al. 2017b). Although in turbulent Poiseuille flow the R-S is subject to disruption, the
organization mechanism inherent in the S3T dynamics still results in streamwise extended
R-S in Poiseuille flow turbulence, while accounting for the observed persistence and
harmonic organization of the R-S in the less disrupted wide channel Couette turbulence
(Avsarkisov et al. 2014; Pirozzoli et al. 2014; Lee & Moser 2018).

In this work we build on previous work in which the structure of the mean and
fluctuation components of the R-S were identified using POD-based methods (Nikolaidis
et al. 2023). However, our aim in this work is to address not structure but rather dynamics,
specifically, we analyze data obtained from DNS and RNL simulations of turbulent
Poiseuille flows at R = 1650 concentrating on diagnosing the dynamical processes
responsible for sustaining the R-S. In our study of structure in Nikolaidis et al. (2023) we
departed from traditional POD analysis by incorporating into the analysis the recognition
that while the streamwise-mean R-S is an emergent coherent structure supported by the
Reynolds-stresses of the streamwise-varying fluctuations, in turbulence this structure is
subject to stochastic displacements in the homogeneous spanwise direction. In order to
isolate the R-S structure while refining the convergence of the second order statistical
quantities supporting it we collocate the spanwise position of the R-S as indicated by
the spanwise position of the spanwise varying streak. This method is similar in intent to
the slicing and centering methods employed by Rowley & Marsden (2000); Froehlich
& Cvitanović (2012); Willis et al. (2013); Kreilos et al. (2014) and the conditional
space-time (POD) method (Schmidt & Schmid 2019) used recently to obtain small scale
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structure in turbulent boundary layers (Saxton-Fox et al. 2022) and also to the method
applied recently in dynamical mode decomposition (DMD) in turbulent Couette and
Poiseuille flows (Marensi et al. 2023). Using collocation we obtained in Nikolaidis et al.
(2023) the mean structure of the low-speed and high-speed R-S and verified that these
collocated R-S structures are nearly identical in DNS and RNL and that the associated
fluctuations and Reynolds stresses are also compellingly similar. The mean streak was
found to be perturbation stable in the NSE when the NSE is expressed in standard
velocity variables and to be mirror-symmetric about the centerline in the spanwise
direction. This mirror-symmetry allows separation of the fluctuations about the centerline
into linearly statistically independent odd and even components. The fluctuations with
symmetric streamwise and wall-normal velocity components and antisymmetric spanwise
velocity component are referred to as sinuous fluctuations (S), while the fluctuations with
antisymmetric streamwise and wall-normal velocity components and symmetric spanwise
velocity component are referred to as varicose fluctuations (V). While both S and V
fluctuations are represented in the POD modes of both low and high speed streaks,
the dominant POD modes of the fluctuations associated with the low-speed streak in
both DNS and RNL comprise S oblique waves collocated with the streak. Moreover,
these dominant fluctuation POD modes have the average structure of white in energy
perturbations evolved linearly on the R-S, white in energy perturbations being chosen so
that the perturbations that dominate the response reflect only the intrinsic dynamics of
the evolution of the perturbations, which is determined by the perturbations with optimal
growth. This result that the dominant POD modes of the streak excited white in energy
have the same structure as the fluctuation POD modes in both DNS and RNL has a
compelling interpretation: the background turbulence is being strained by the streak to
produce the structures required to support that streak via the SSP mechanism and these
structures can be identified with the optimal perturbations on the streak (Nikolaidis et al.
2023).

Having identified and characterized the mean low-speed and high-speed streaks and
the streak-collocated fluctuation fields, we proceed in this report to study the streamwise-
mean Reynolds stresses arising from these fluctuations in order to identify the dynamical
mechanism responsible for sustaining the rolls that give rise through lift-up to the streaks
in both DNS and RNL. A motivation for establishing the correspondence in the physical
mechanism of the SSP between DNS and RNL is that RNL shares its dynamical structure
with S3T so that establishing correspondence of the SSP in DNS and RNL implies that
the SSP structure and mechanism in DNS is dynamically the same as that in S3T, which
is completely characterized, and therefore establishing this correspondence is tantamount
to achieving an analytic characterization of the SSP underlying wall turbulence in the
DNS.

2. Model problem and numerical methods

The data is obtained from a DNS of a pressure driven constant mass-flux plane
Poiseuille flow in a channel which is doubly periodic in the streamwise, x, and spanwise,
z, direction. The velocity field is decomposed into the streamwise-mean component
U = (U, V,W ) and fluctuations from the mean, u = (u, v, w). In this decomposition
the R-S is part of the mean component of the flow with the streak component defined as

Us(y, z, t) = U− [U ], where the square brackets [·]
def
= (1/Lz)

∫ Lz

0
· dz denote the spanwise

average, and the roll component has velocities components (0, V,W ).
The incompressible non-dimensional NSE governing the channel flow in this decompo-
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Abbreviation [Lx, Lz]/h [α, β] Nx ×Nz ×Ny Rτ R
NSE100 [4π, π] [0.5, 2] 128× 63× 97 100.59 1650
RNL100 [4π, π] [0.5, 2] 16× 63× 97 93.18 1650

Table 1: Simulation parameters. [Lx, Lz]/h is the domain size in the streamwise,
spanwise direction. [α, β] = [2π/Lx, 2π/Lz] denote the fundamental wavenumbers in
the streamwise,spanwise direction. Nx, Nz are the number of Fourier components after
dealiasing and Ny is the number of Chebyshev components. Rτ = uτh/ν is the Reynolds
number of the simulation based on the friction velocity uτ =

√
ν d[U ]/dy|

w
,where

d[U ]/dy|
w
is the shear at the wall.

sition are

∂tU+U ·∇U−Π(t)x̂ +∇P −R−1∆U = −u ·∇u , (2.1a)

∂tu+U ·∇u+ u ·∇U+∇p−R−1∆u = −(u ·∇u− u ·∇u) . (2.1b)

∇ ·U = 0 , ∇ · u = 0 . (2.1c)

The pressure gradient Π(t) is adjusted in time to maintain constant mass flux. Lengths
have been made nondimensional by h, the channel’s half-width, velocities by the time-
mean velocity at the center of the channel, Uc, and time by h/Uc. Averaging in x is
denotedd by (·) and averaging in time by 〈.〉. No-slip and impermeable boundaries are
placed at y = 0 and y = 2, in the wall-normal variable. The Reynolds number is R =
Uch/ν, with ν the kinematic viscosity.
DNS is obtained using NSE (2.1) and for comparison parallel simulations are made with

the RNL approximation of (2.1), which is obtained by parameterizing the fluctuation-
fluctuation nonlinearity in equation (2.1b). Except when expressly stated the parameter-
ization used is to set these nonlinear interactions among streamwise non-constant flow
components in the fluctuation equations (2.1b) to zero. Consequently, the RNL system
of equations is:

∂tU+U ·∇U−Π(t)x̂+∇P −R−1∆U = −u ·∇u , (2.2a)

∂tu+U ·∇u+ u ·∇U+∇p−R−1∆u = 0 . (2.2b)

∇ ·U = 0 , ∇ · u = 0 . (2.2c)

Under this quasi-linear restriction, the fluctuation field interacts nonlinearly only with
the mean, U, flow and not with itself. This quasi-linear restriction of the dynamics
results in the spontaneous collapse in the support of the fluctuation field to a small
subset of streamwise Fourier components, while maintaining conservation of the total
flow energy 1/2

∫
D d3x

(
|U|2 + |u|2

)
in the absence of dissipation (D is the flow domain).

This restriction in the support of RNL turbulence to a small subset of streamwise Fourier
components is not imposed but rather is a property of the quasi-linear dynamics. The
fluctuation components retained by the dynamics identify the streamwise harmonics that
are energetically active in the parametric growth process that sustains the fluctuations
(Farrell & Ioannou 2012; Constantinou et al. 2014; Thomas et al. 2014, 2015; Farrell et al.
2016). In a DNS at R = 2250 these energetically active streamwise harmonics have been
shown to synchronize the remaining components (Nikolaidis & Ioannou 2022).
The data were obtained from a DNS of Eq. (2.1), referred to as NSE100, and from

the associated RNL governed by Eq. (2.2), referred to as RNL100. The Reynolds number
R = Uch/ν = 1650 is imposed in both the DNS and the RNL simulations. A summary
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Figure 1: Contours of the time-mean collocated streak, 〈Us〉, and vectors of the roll
velocity, (〈W 〉, 〈V 〉), for the NSE100 low-speed streak (a) and high-speed streak (b). The
contour interval is 0.025. In (a) the max(|〈Us〉|) = 0.21 Uc, max(〈V 〉) = 0.024 Uc. In (b)
the max(|〈Us〉|) = 0.16 Uc, max(〈V 〉) = 0.015 Uc. The contour interval is 0.025 Uc.

of the parameters of the simulations is given in Table 1. The RNL100 simulation is
supported by only three streamwise components with wavelengths λx/h = 4π, 2π, 4π/3,
which correspond to the three lowest streamwise Fourier components of the channel,
nx = 1, 2, 3.
For the numerical integration the dynamics were expressed in the form of evolution

equations for the wall-normal vorticity and the Laplacian of the wall-normal velocity,
with spatial discretization and Fourier dealiasing in the two wall-parallel directions and
Chebychev polynomials in the wall-normal direction (Kim et al. 1987). Time stepping
was implemented using the third-order semi-implicit Runge-Kutta method.

3. Obtaining the streamwise mean R-S and the covariance of the
associated fluctuations using collocation

In order to analyze the dynamics of the R-S we obtain both the streamwise mean R-S
and the time-mean spatial two-point covariances of the fluctuations collocated with the
R-S for both the high-speed and the low-speed streak. The collocation implementation
is described in Nikolaidis et al. (2023). Briefly the method proceeds by identifying the
spanwise location of the streak with the location of the spanwise coordinate of the min(Us)
(for low-speed streaks) and translating the entire flow field in the spanwise direction to
place the low speed streak minimum at the channel center z/h = 0. We have verified
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that as the averaging time increases the time-mean streak approaches mirror symmetry
in the spanwise about the streak centerline. We enforce this symmetry in the dataset and
double the available data by symmetrizing about the aligned streak center.
The time-mean streak, 〈Us〉, obtained from the aligned time-series of min(Us) isolates

the low-speed streak, producing a coherent low-speed R-S at z/h = 0, while away from
this core region the velocity components cancel indicative of their being incoherently
correlated with the centered streak. This collocation procedure is similarly implemented
to isolate the high-speed streak. The structures in the y − z plane of the time-mean
low-speed and high-speed R-S in NSE100 are shown in Figs. 1a,b using contours for
〈Us〉 and vectors for (〈W 〉, 〈V 〉). The time-mean flow in the upper region, y/h > 1,
is to a good approximation spanwise homogeneous (not shown). The structure of the
time-mean streaks in RNL100 are similar (cf. Nikolaidis et al. (2023)). It is important
to note that although low-speed streaks are associated with flanking high-speed streak
components, the low-speed streaks are isolated structures in the statistical mean because
of the decoherence of the spanwise location of the streaks in Poiseuille flow. In contrast,
simulations of Couette flow turbulence in wide channels reveal that the streaks exhibit
long range correlation (Avsarkisov et al. 2014; Pirozzoli et al. 2014; Lee & Moser 2018).
The implication is that in wide channel Couette flow a collocation procedure would not
be necessary because the turbulence would exhibit a full array of spanwise periodic low-
and high-speed R-S rather than the random distribution of isolated R-S seen in Poiseuille
flow.
Having isolated at each time instant the streamwise mean R-S with streamwise velocity

U(y, z, t), wall-normal velocity V (y, z, t) and spanwise velocity W (y, z, t), we Fourier
decompose in the streamwise direction the fluctuation velocities collocated with the
streak:

u = [u(x, t), v(x, t), w(x, t)]T , (3.1)

and calculate the time-mean covariance

Ckx
(y1, z1, y2, z2) =

〈
ukx

(y1, z1)u
†
kx

(y2, z2)
〉

, (3.2)

where ukx
(yi, zi)) is the amplitude of the nx-th Fourier component of the velocity field

with streamwise wavenumber, kx = nxα, at the position (yi, zi), with † indicating
the Hermitian transpose and α = 2π/Lx the smallest streamwise wavenumber in the
channel. The same point time-mean covariance is denotedCkx

(y, z). From this time-mean
covariance we obtain the time-mean Reynolds stresses produced by the fluctuations.

4. R-S dynamical balance diagnostics

The time-mean collocated R-S and the associated time-mean collocated fluctuation
Reynolds stresses comprise components of the structure of the R-S and the dynamics
maintaining it respectively. We will now examine the terms in this equilibrium for the
case of the low-speed streak.
Equations (2.1a) and (2.2a) imply that the streamwise-mean streak, Us = U − [U ],

satisfies the equation

∂tUs = −(V ∂y(U)− [V ∂yU ])−W∂zUs−∂y(uv− [uv])−∂z(uw− [uw])+R−1∆Us , (4.1)

so that, given that ∂z[uw] = 0, the time-mean streak satisfies the force balance:

−〈(V ∂y(U)− [V ∂yU ])〉 − 〈W∂zUs〉 − ∂y(〈uv〉 − 〈[uv]〉)− ∂z〈uw〉+R−1∆〈Us〉 = 0. (4.2)

The terms comprising this balance are verified to be in a time-mean equilibrium in Fig.
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Figure 2: For the low-speed streak in NSE100 shown are contours in the (y, z) plane of
(a): −〈V ∂yU − [V ∂yU ]〉, (b): −〈W∂zUs〉, (c): −〈∂y(uv − [uv])〉, (d): −∂z〈uw〉, and (e):
R−1∆〈Us〉. The sum shown in (f) confirms that the above terms are in balance. The
contour interval is 0.003 U2

c /h.

2, for the NSE100, and in Fig. 3, for the RNL100. Moreover, Fig. 2 and Fig. 3 show
that, in the time-mean, the streak is principally supported by the lift-up mechanism,
−〈V ∂yU − [V ∂yU ]〉, and opposed by spanwise Reynolds stress divergence, −∂z〈uw〉 and
diffusion R−1∆〈Us〉.
A typical time series of the low-speed streak at the centerline of the streak, of the

instantaneous average streak acceleration by the lift-up process,−
∫ 1

0
dy (V ∂yU−[V ∂yU ]),

the average acceleration by spanwise Reynolds stress divergence, −
∫ 1

0
dy ∂zuw, and the

average acceleration due to diffusion, R−1
∫ 1

0
dy ∆Us, are shown in Fig. 4. The time-mean

acceleration and standard deviation over the entire dataset due to lift up is −0.01 U2
c /h

(dashed blue) with σ = 0.004 U2
c /h, that due to Reynolds stress divergence is 0.007 U2

c /h
(dashed black) with σ = 0.004 U2

c /h and that due to diffusion is 0.003 U2
c /h (dashed

green) with σ = 0.0013 U2
c /h. Over the entire dataset the acceleration due to lift up and

that due to Reynolds stress divergence, −
∫ 1

0
dy ∂zuw, are strongly correlated with cross-

correlation coefficient 0.72 at lag 1.2 h/Uc as shown in Fig. 5. Also, over the entire dataset

streak maxima lead the streak regulation term, −
∫ h

0
dy ∂z(uw)/(h

2U2
c ), by 2 h/Uc. Two

bursting events are seen in Fig. 4 associated with the streak maxima at 3275 h/Uc and
3866 h/Uc. These streak maxima are followed by maxima of the streak regulation term

−
∫ h

0
dy ∂z(uw)/(h

2U2
c ) at 3282 h/Uc and 3879 h/Uc respectively. The near balance and
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Figure 3: As in Fig. 2 for RNL100. The contour interval is 0.003 U2
c /h.

near synchronicity seen in Fig. 5 indicates that the maintenance and regulation of the
streak amplitude is occurring at all times and that breakdown events are not primarily
responsible for either the maintenance or the regulation of the streak (see also Fig. 6).

5. Maintenance of the streamwise-mean roll

Having verified the dominance of lift-up by roll circulations in supporting the R-S,
our attention turns to study the mechanism giving rise to the remarkable universal
coincidence in wall-turbulence of streaks with roll circulations properly configured to
maintain them. By taking the curl of the streamwise-mean equations (2.1a) and (2.2a)
we obtain that in both NSE100 and RNL10 the streamwise component of the vorticity
Ωx = ∂yW − ∂zV satisfies the equation:

∂tΩx = −(V ∂y +W∂z)Ωx︸ ︷︷ ︸
A

+(∂zz − ∂yy)vw + ∂yz(v2 − w2)︸ ︷︷ ︸
G

+R−1∆Ωx︸ ︷︷ ︸
D

, (5.1)

in which the streamwise-mean wall-normal and spanwise velocities are given by V =
−∂z∆

−1Ωx and W = ∂y∆
−1Ωx in which the inverse Laplacian ∆−1 incorporates the

boundary conditions.
The term A, representing advection of Ωx by the roll velocities (V,W ), is not a source

of net streamwise vorticity. The roll vorticity is sustained against dissipation, D, by the
curl of the force arising from the Reynolds stress divergence, G. In this equation the
wall-normal component of the Reynolds stress divergence force is:

Fy = −∂z(vw)− ∂y(v2), (5.2)
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Figure 4: Contributions to streak maintenance and regulation in NSE100. The scaled

average streak amplitude at the centerline of the low-speed streak (0.2
∫ h

0
dy Us/hUc) is

shown in red. The average streak acceleration by lift-up at the centerline of the low-speed

streak (−
∫ h

0
dy (V ∂y(U)− [V ∂yU ])/(h2U2

c )) (blue) is opposed by the acceleration due to

diffusion (green) (R−1
∫ h

0
dy ∆Us/(h

2U2
c )) and downgradient momentum transport by

the streamwise varying fluctuations (black) (−
∫ h

0
dy ∂z(uw)/(h

2U2
c )). The dashed lines

with the corresponding colors indicate the mean values taken over the entire dataset. This
figure shows that maintenance and regulation of the streak is occurring continuously in
time and is not confined to bursting events.

while the spanwise component is:

Fz = −∂y(vw)− ∂z(w2), (5.3)

which results in the contribution to the rate of change of streamwise-mean vorticity in
the streamwise direction:

G = x̂ · ∇ × (0, Fy, Fz) = (∂zz − ∂yy) vw + ∂yz

(
v2 − w2

)
, (5.4)

where x̂ is the unit vector in the streamwise direction. The first RHS term in (5.4)
represents the contribution to G from the Reynolds shear stress vw, while the second
term represents the contribution from v2 − w2, which can be identified with anisotropy
in the Reynolds normal stress components. The implications of this decomposition are
discussed by Alizard et al. (2021) in the context of the formation of streamwise constant
rolls during transition to turbulence in the RNL framework. The Reynolds normal stress
component of G will be shown in the next section to dominate and determine the direction
and location of the roll circulation and consequently of the streak acceleration.
A time series of the inner product of Ωx with G is shown in Fig. 6. Two observations

are appropriate: the first is that forcing by Reynolds stresses is continuous in time
and almost always positive, the second is that streamwise-mean vorticity forcing is
negatively associated with bursting events such as that occurring around t = 3800.
Continual generation of streamwise vorticity supporting the existing roll circulation both



Roll-Streak Dynamics in Poiseuille Flow Turbulence 11

3100 3200 3300 3400 3500 3600 3700 3800 3900 4000
-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

Figure 5: Comparison between the primary components maintaining and regulating
the low-speed streak in NSE100. Shown are the acceleration due to lift-up (blue)
and the negative of the acceleration due to Reynolds stress divergence (black) (cf.
Fig. 4). The time-series have been shifted by the 1.2 h/Uc lag between them which
was obtained over the entire dataset. These two accelerations are highly correlated
(correlation coefficient 0.72) revealing that a tight quasi-equilibrium between lift-up and
downgradient momentum transfer characterizes the maintenance and regulation of the
streak amplitude.
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Figure 6: Typical section of the time series of the integrated correlation between the
instantaneous value of the streamwise mean vorticity and the streamwise mean vorticity

source G,
∫ 1

0
dy [ΩxG] h2/U3

c , for the case of the low-speed steak in NSE10. Over the
whole dataset the time mean is 0.0035 h2/U3

c (dashed). This figure shows that the forcing
of the roll and consequently of the streak is continuous in time and almost always positive.
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Figure 7: For the low-speed streak in NSE100 shown are contours in the (y, z) plane of
(a): 〈A〉 = −〈(V ∂y + W∂z)Ωx〉, contribution to the time-mean rate of change of 〈Ωx〉

by roll self-advection, (b): 〈G〉 = (∂zz − ∂yy)〈vw〉 + ∂yz〈(v2 − w2)〉, contribution to the
time-mean rate of change of 〈Ωx〉 by Reynolds stress divergence, (c): 〈D〉 = R−1∆〈Ωx〉,
contribution to the time-mean rate of change of 〈Ωx〉 by dissipation. The sum shown in
(d) confirms that the above terms are in balance. The contour interval is 0.0015 U2

c /h.

in the buffer layer and also in the logarithmic layer was previously documented in RNL
turbulence at Reynolds number Rτ = 1000 (cf. Farrell et al. (2016)). This result has
not yet been confirmed in DNS, but we expect it to be, given that parallel mechanisms
underlie wall-turbulence in RNL and DNS.
In the time-mean the streamwise-mean vorticity, Ωx, satisfies the balance:

−〈(V ∂y +W∂z)Ωx〉︸ ︷︷ ︸
〈A〉

+(∂zz − ∂yy)〈vw〉+ ∂yz〈(v2 − w2)〉︸ ︷︷ ︸
〈G〉

+R−1∆〈Ωx〉︸ ︷︷ ︸
〈D〉

= 0. (5.5)

The three components of this time-mean balance in NSE100 and RNL100 are shown in
Fig. 7 and Fig. 8.
The roll circulation resulting from the forcing by 〈G〉 can be understood by assessing

the wall-normal velocity induced by 〈G〉 together with its modification by 〈A〉. The
modification given by 〈A〉 results from a pressure field required so that the circulation
forced by 〈G〉 satisfies boundary conditions. We project (5.5) to streamwise-mean wall-
normal velocity by multiplying (5.5) with −δt ∂z∆

−1 for a chosen time interval δt in
order to obtain:

δVA + δVG = −δt R−1∆〈V 〉 , (5.6)
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Figure 8: As in Fig. 7 for RNL100. The contour interval is 0.0015 U2
c /h.

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

-1

-0.5

0

0.5

1

1.5

2
10

-3

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

Figure 9: For the low-speed streak of NSE100 shown are: (a) the time-mean wall-normal
velocity increment δVG resulting from the Reynolds stress, 〈G〉, (b) the wall-normal
velocity increment δVA from advection, 〈A〉, and (c) their sum δVA + δVG. This figure
shows the contribution of the advection and Reynolds stress to the maintenance of the
low-speed R-S. The associated 〈A〉, 〈G〉 fields are shown in Fig. 7a,b. The contour interval
is 2× 10−4 Uc.

where δVG = −δt ∂z∆
−1〈G〉 is the wall-normal velocity increment induced by 〈G〉 over

time interval δt and δVA = −δt ∂z∆
−1〈A〉 is the corresponding wall-normal velocity

increment induced by 〈A〉. It is the δVG induced by 〈G〉 and corrected by δVA that
determines the equilibrium V field as indicated in the balance equation (5.6). The wall-
normal velocity increments δVG and δVA maintaining the low-speed R-S in NSE100
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are shown in Fig. 9. This figure shows that δVG is providing lift-up in the streak core
supporting the low-speed R-S and also the corrective δVA, which is about 1/3 of the δVG,
is adding to the support of the R-S provided by 〈G〉.
In Fig. 9 we have taken the time interval for the development of δV to be δt = 1 h/Uc;

however, it is instructive to identify a physically relevant value of this time scale which for
the low-speed streak is given by Td/δt ≈ Vmax/δVmax = 12, where Vmax is the maximum
wall normal velocity at the streak centerline (cf. Fig. 1a) and δVmax is the maximum
wall-normal velocity increment over unit time also evaluated at the centerline (cf. Fig.
9c). This time scale can be interpreted as a Rayleigh damping time scale for equilibration
of the roll circulation being forced by the Reynolds stresses.

6. Contribution to roll forcing by the sinuous (S) and varicose (V)
fluctuations

In the previous section we showed that the Reynolds stresses induce vorticity forcing
that continuously reinforces the pre-existing streamwise-mean streamwise vorticity so as
to sustain the R-S. Key to understanding this remarkable property is the dynamics of the
S and V fluctuations collocated with the mean streak. In this section we isolate the S
and V components of the velocity fluctuations collocated with the streak and show that
the maintenance of the mean R-S can be attributed to the Reynolds stresses due to the
S and V components of velocity acting independently. Although instantaneous snapshots
of the flow field would reveal Reynolds stresses arising from interaction between the S
and V field, this interaction vanishes in the time-mean. This is expected because the R-S
is mirror-symmetric and the non-vanishing of the time-mean S and V covariance would
result in Reynolds stresses incompatible with the mirror symmetry of the time-mean R-S.
This will be verified below.

In order to define the time-mean covariance of the S and V components of the
fluctuation field we form at each time-step of the simulation the S and V components of
the velocity field:

uS(x, y, z, t) =
u− umirror

2
, uV(x, y, z, t) =

u+ umirror

2
, (6.1)

in which the mirror symmetric fluctuation field about the plane z = 0 is defined as

umirror(x, y, z, t)
def
=




u(x, y,−z, t)
v(x, y,−z, t)

−w(x, y,−z, t)


 . (6.2)

The time-mean spatial covariances of the S and V components of the fluctuation field

at streamwise wavenumber kx are CS,kx
(y1, z1, y2, z2)

def
=

〈
uS,kx

(y1, z1)u
†
S,kx

(y2, z2)
〉

and CV,kx
(y1, z1, y2, z2)

def
=

〈
uV,kx

(y1, z1)u
†
V,kx

(y2, z2)
〉
, where uS/V,kx

are the Fourier

amplitudes of the S and V components of the fluctuation velocity field at kx, while

the corresponding covariance of the total field is given by Ckx
(y1, z1, y2, z2)

def
=〈

ukx
(y1, z1)u

†
kx

(y2, z2)
〉
. The asymptotic approach in time of the equality

Ckx
(y1, z1, y2, z2) = CS,kx

(y1, z1, y2, z2) +CV,kx
(y1, z1, y2, z2), (6.3)

has been verified, implying that there is no time-mean correlation between the S and
V fluctuations. Consequently, the time-mean fluctuation Reynolds stresses, which are a
linear function of the covariances, are the sum of the Reynolds stresses obtained from the
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Figure 10: Increment of mean streamwise vorticity, δΩx,kx
, induced over unit time by

Reynolds stresses of the S (panel a) and the V (panel b) kx/α = 3 fluctuations in the
mean low-speed streak in NSE100. Wavenumber kx/α = 3 is chosen because the forcing
is maximized at this wavenumber (cf. Fig. 12a). Also shown are vectors with components
the roll velocities induced over unit time (δWkx

, δVkx
). This figure shows that the S

fluctuations reinforce the low-speed streak while the V fluctuations oppose it. Overall
the S fluctuations are dominant and the low-speed streak is sustained.

respective S and V covariances. The fluctuation Reynolds stress can be further partitioned
into a sum over kx. Using this partition into S and V components at each wavenumber kx,
we can separate the contribution of the S and V components at each kx to the mechanism
sustaining the R-S.
We turn now to study how the roll is induced by the time-mean fluctuation Reynolds

stresses. We first consider the contribution to the roll forcing by the time-mean Reynolds
stresses due to kx fluctuations, 〈Gkx

〉 = (∂zz − ∂yy)〈vw〉kx
+ ∂yz〈(v2 − w2)〉kx

. This
〈Gkx

〉 acting alone would result, as discussed in the previous section, in a wall-normal
velocity increment over unit time, δVkx

= −δt ∂z∆
−1〈Gkx

〉, and a spanwise velocity
increment over unit-time, δWkx

= δt ∂y∆
−1〈Gkx

〉. The associated streamwise-mean
vorticity increment is δΩx,kx

= 〈Gkx
〉δt and ∆−1 the inverse Laplacian required to

account for the influence of pressure forces arising from the boundary conditions. We
choose δt = 1 from now on.
The spatial distribution of δΩx,kx

and vector plots of the streamwise-mean velocity
fields (δVkx

, δWkx
) induced by S and V components of kx = 3α fluctuations in NSE100

is shown in Fig. 10. Note that the velocity increment vectors are not tangent to the
contours of the vorticity increments, δΩx,kx

. This is due to the action of pressure forces
arising due to the boundary conditions. This figure demonstrates that S Reynolds stresses
produce mean vorticity that reinforces the low speed streak while the V Reynolds stresses
oppose the low speed streak. In low-speed streaks the S Reynolds stresses dominate,
consistent with the S structures maintaining the low-speed streak. While both S and
V fluctuations are present in association with low-speed streaks so that application of
targeted data analysis techniques could be used to educe the presence of e.g. hairpin
vortex structures in association with low-speed streaks, this result demonstrates that the
varicose component at kx = 3α opposes rather than maintains the low-speed streak. We
will verify that this is also the case at other kx. Conversely, in high-speed streaks the V
Reynolds stresses dominate, consistent with maintaining the high-speed streak. We will
show that this is also a general property. In RNL100 we obtain similar results (cf. Fig.
11).
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Figure 11: Increment of mean streamwise vorticity, δΩx,kx
, induced over unit time by

Reynolds stresses of the S (panel a) and the V (panel b) kx/α = 2 fluctuations that
are collocated with the mean low-speed streak in RNL100. Wavenumber kx/α = 2 is
chosen because the forcing is maximized at this wavenumber (cf. Fig. 13a). Also shown
are vectors with components the roll velocities induced over unit time (δWkx

, δVkx
). This

figure shows that the S fluctuations reinforce the low-speed streak while the V fluctuations
oppose it as in NSE100 shown in Fig. 10.
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Figure 12: Velocity increments, δ̃V kx
, forced by the Reynolds stresses over the primary

area of lift-up, partitioned into S and V components, and the velocity increment induced
by their sum, S+V , as a function of the streamwise wavenumber of the fluctuations, kx/α,
for the case of the low-speed streak (panel (a)) and the high-speed streak (panel(b)) of
NSE100. The largest induced velocity occurs at kx/α = 3 for both the low-speed streak
and high-speed streak. These figures show that in the time-mean the S fluctuations
induce lift-up while the V induce push-down. In the low-speed streak the S induced lift-
up dominates the V push-down producing maintenance of the low-speed streak, while
in the high-speed streak the V induced lift-up dominates the S push-down producing
maintenance of the high-speed streak.
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Figure 13: As in Fig. 12 except RNL100.
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Figure 14: Wall-normal distribution at the centerline of δVkx
(y, z = 0). Shown separately

are the S (a) and the V (b) components with streamwise wavenumber kx/α = 1, 2, · · · , 12
for the case of the low-speed streak of NSE100.

The velocity increment forced by the Reynolds stresses over the primary area of lift-up
forcing (see Fig. 9b)

δ̃V kx

def
=

∫ z0

−z0

dz

2z0

∫ y0

0

dy

y0
δVkx

(y, z), (6.4)

with y0 = h/2 and z0 = 0.26 h, partitioned into S and V components, and the velocity
increment induced by their sum, S+V , as a function of the streamwise wavenumber of
the fluctuations, kx/α, for the case of the low-speed streak and the high-speed streak
in NSE100 is shown in Fig. 12. The corresponding RNL100 results shown in Fig. 13
are similar to those of the NSE100, except that in RNL100 the streak is supported by
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only the first three streamwise wavenumbers, which are the streamwise wavenumbers
spontaneously retained by RNL dynamics. These figures show that in the time-mean and
at all streamwise wavenumbers considered the S fluctuations induce lift-up in both low
and high-speed streaks, while the V induce push-down. These figures also show that in
low-speed streaks the S component dominates the V at every kx resulting in the support
of the low-speed streak, while in high-speed streaks the V component dominates the S
resulting in the support of the high-speed streak. Also the contribution to roll forcing by
the fluctuations at each wavenumber is similarly distributed so that each wavenumber is
contributing to the reinforcement of the pre-existing R-S. Note that the Reynolds stress

induced time-mean δ̃V kx
is maximized at kx/α = 3 for both low-speed and high-speed

streaks in NSE100. However, the support of the streak extends over a broad band of
streamwise wavenumbers implying structural robustness of the mechanism of roll forcing
supporting the SSP cycle in wall-turbulence.
Note that the wall-normal velocity increments induced either by the S or the V fluctu-

ations in the case of the low speed streak are substantially larger than the corresponding
velocity increments induced for the case of the high-speed streak. Moreover, the net roll
forcing from the sum of the opposing S and V induced velocities is approximately 2
times larger in the low-speed streak compared to the high-speed streak. This dynamical
advantage in forcing of the low speed streak in comparison to the forcing of the high
speed streak, combined with the increased dissipation resulting from displacement of the
high speed steak toward the boundary, provides explanation for the relative dominance
of the low speed streak in observations of isolated R-S as occur in this Poiseuille flow.
In the case of the highly-ordered R-S observed in wide channel Couette flow (Pirozzoli
et al. 2014), the low and high-speed streaks would not be independent and their mutual
interaction would need to be taken into account.

7. Contribution to streak forcing by the S and V shear and normal
Reynolds stress components

Simplicity in analyzing the mechanism by which the Reynolds stress forcing G gives
rise to the R-S can be obtained by concentrating on the forcing of V along the centerline
of the streak given by δVkx

(y, z = 0). The y structure of the S and V components of
δVkx

(y, z = 0) for the low-speed streak in NSE100 is shown in Fig. 14. This figure shows
that the Reynolds stress induced lift-up at each wavenumber add coherently.
For the analysis of the streak forcing we choose to show the streak velocity at the streak

centerline induced by δVkx
(y, 0) acting over unit time, δU = −δVkx

(y, 0)U ′(y, 0)δt, with
δt = 1 and U ′(y, 0) the shear of the streamwise flow at the streak centerline. The streak
velocity δU induced by the dominant kx/α = 3 fluctuations is plotted in Fig. 15 for the
low-speed streak in NSE100 and in Fig. 16 for the high-speed streak in NSE100, both
of which are located in the lower half of the channel by our collocation procedure. The
net δU induced in the upper half of the channel by the S and V fluctuations, where
there is no streak, vanishes in the time-mean. In the lower region, where there is a streak,
the S and V contributions do not cancel in the time-mean and a net δU results. In the
low-speed streak region of Fig.15a, the S fluctuations dominate the V fluctuations in the
time-mean resulting in δU increments supporting the low-speed streak. In general it can
be shown that S fluctuations force low-speed streaks while V fluctuations oppose this
forcing (Farrell et al. 2022). In the high-speed streak regions, as shown in Fig.16a, the
high-speed streak is forced by the Reynolds stresses of V fluctuations which dominate
the opposing tendency of the S fluctuations. The induced δU in RNL100 are similar; for
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Figure 15: In (a) is shown the contribution to streak forcing, δU , that is induced by
lift-up. The lift-up is that induced over unit time by the kx/α = 3 fluctuations. Shown is
the resulting δU in the low-speed streak region (y/h < 1) and in the spanwise uniform
flow (y/h > 1) in NSE100 (black). Shown separately are contributions to δU induced
by the S (blue) and V fluctuations (red). In (b) is shown partition of the δU induced
by S (dashed black) into the component, δUv2−w2 , induced by the 〈v2 − w2〉 Reynolds
stresses (solid blue) and the component, δUvw, induced by the 〈vw〉 Reynolds stresses
(solid red) while in (c) is shown the corresponding partition for the V fluctuations. This
figure shows that S fluctuations tend to accelerate the low-speed streaks, while the V
fluctuations tend to decelerate it, that the acceleration induced by the S is greater than
that induced by the V in the region of the low-speed streak in the lower half channel,
that the S and V accelerations are equal and opposite where there is no streak, and that
the 〈v2 − w2〉 Reynolds normal stress dominates the forcing of lift-up resulting in streak
forcing, δU .

example, in Fig. 17 we show the induced δU by the kx/α = 2 fluctuations in the low-
speed streak in the lower-half channel of RNL100 and the δU in the spanwise uniform
flow in the upper-half channel.
Partition of the Reynolds stress induced streak increment δU into the component δUvw

induced by the Reynolds shear stresses, 〈vw〉, and that induced by the Reynolds normal
stresses, 〈v2 − w2〉 is shown in Figures 15b,c, 16b,c, 17b,c. The net Reynolds normal
stresses, 〈v2 − w2〉, which results from the dominance of the S over the V fluctuations in
the presence of a low-speed streak, is seen to determine the resulting net streak forcing.
Moreover, similar distributions characterize the induced acceleration for other streamwise-
wavenumbers, kx. This will be shown below to be a consequence of universality in the
structure of the Reynolds-stress with kx.
Indicative of the primary dynamics underlying the R-S is the Reynolds normal stress

produced by the dominant wavenumbers. The distribution of the time-mean Reynolds
normal stress components partitioned into the contribution from the S and the V
fluctuations and the sum of these is shown in Fig. 18. The S fluctuations have v = 0 and
∂zw = 0 at the centerline and the normal stress 〈v2 − w2〉 is negative and has a minimum
as a function of z at the centerline with its overall minimum, in the case of our streak,
attained at y/h ≈ 0.4 above the center of the streak, which is at y/h ≈ 0.15 (cf. Fig. 1a
and Fig. 18a). The V fluctuations have w = 0 and ∂zv = 0 at the centerline consistent
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Figure 16: As in Fig. 15 except for the kx/α = 3 fluctuations in the high-speed streak
in NSE100.

with maxima of 〈v2 − w2〉 at the center of the streak (cf. Fig. 18b). In the absence of
a streak, as in the region of the upper boundary of the channel, the S fluctuations and
the V fluctuations are equal and the sum 〈v2 − w2〉 is constant in the spanwise direction,
as shown in Fig. 18c near the upper boundary, and no roll forcing results from the
Reynolds normal stress. In low-speed streaks, as in the region of the lower boundary
of the channel, the S fluctuations dominate consistent with the primacy of this term
in providing the required roll forcing to maintain the low-speed streak through lift-up
(cf. Fig. 18c). In contrast to the case of low-speed streaks, in high-speed streaks the V
fluctuations dominate with the maximum 〈v2 − w2〉 of the V fluctuations almost canceling
the minimum of the S fluctuations at the centerline leading the total 〈v2 − w2〉 to be
determined by the two minima of 〈v2 − w2〉 of the V fluctuations at the wings of the
streak (cf. Fig. 19). Note that the stresses in the presence of a high-speed streak are not
mirror images of the stresses in the presence of a low-speed streak as the low-speed streak
flow is not a mirror image of the high-speed streak flow. However, as discussed in the
next section, the stresses in the presence of infinitesimal low and high streaks are mirror
images of each other and remarkably the low speed streak is dominantly forced by the S
fluctuations and the high-speed streak by V fluctuations even for infinitesimal strain of
the perturbation field. The high-speed streak is supported by the 〈w2〉 component of the
normal stress at the wings of the high-speed streak, consistent with the 〈w2〉 Reynolds
stress distribution being the dominant component supporting both low and high speed
streaks. A similar dominance of the w2 component of the normal stress in roll formation
was found in transitional RNL flows by Alizard et al. (2021) and in the vortex-wave
theory for the generation of rolls (cf. Hall & Sherwin (2010)).
The crucial observation is that in the region of the streak an asymmetry between the S

and V induces net Reynolds stresses that sustain the pre-existing streak. This asymmetry
between S and V fluctuations arises as a general property of turbulence in the presence of
a streak, as will be argued in the next section, and manifests in the time-mean statistics
as a general property that is responsible for the roll forcing that generates and maintains
the SSP and that underlies the universal mechanism of the S3T modal instability of
spanwise uniform flows reponsible for the emergence of the R-S as a ubiquitous structure
in turbulent shear flows (Farrell & Ioannou 2012; Farrell et al. 2017b, 2022).
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Figure 17: As in Fig. 15 except for the kx/α = 2 fluctuations in the low-speed streak in
RNL100.

Figure 18: Time-mean Reynolds normal stress at kx/α = 3 in NSE100 for the low-speed
streak shown in Fig. 1. The normal stress shown is partitioned into S (panel(a)) and V
(panel (b)) components. The total time-mean normal stress is the sum of S+V (panel (c)).
This figure shows that the low-speed streak results primarily from the S component. Near
the upper boundary the flow is spanwise homogeneous and the normal stress becomes
spanwise constant producing no roll-forcing. The contour interval is 0.25× 10−4 U2

c .

8. Universality in structure of the Reynolds stresses arising from
fluctuations about the mean streak

We have seen that the SSP is primarily supported by the Reynolds stresses of the
first 10 streamwise wavenumbers (cf. Fig. 12). The time-mean Reynolds stresses at these
wavenumbers exhibit a notable universality in structure about the time-mean streak for
the case of both the low-speed streak (Fig. 20, 21) and the high-speed streak (Fig. 22).
Universality and self-similarity of the time-mean structure of fluctuations about time-
mean flows has been found to characterize wall-bounded turbulence (del Álamo et al.

2006; Hwang & Cossu 2010; Lozano-Durán & Jiménez 2014; Hwang 2015; Hellström
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Figure 19: As in Fig. 18 except for the high-speed streak.

Figure 20: Time-mean Reynolds stresses of fluctuations collocated with low-speed streak
of NSE100. Top row: kx/α = 2; middle row kx/α = 3; bottom row kx/α = 4. The first
two columns show contours of 〈uv− [uv]〉 and 〈uw〉 which comprise the Reynolds stresses
responsible for the regulation of the streak. The third and fourth column show contours
of 〈vw〉 and 〈v2 − w2〉 which comprise the Reynolds stresses responsible for forcing the
roll sustaining the low-speed streak. This figure shows that there is universality in the
mechanism sustaining and regulating the low speed streak as a function of streamwise
wavenumber.

et al. 2016) and it has been demonstrated that this property derives from the linear
interaction of the fluctuations with the time-mean flow (Farrell & Ioannou 1993a; del
Álamo & Jiménez 2006; Moarref et al. 2013; McKeon 2019; Vadarevu et al. 2019; Hwang
& Eckhardt 2020; Holford & Hwang 2023). Here we verify the universality of the time-
mean structure of the large scale fluctuations that are collocated with the low-speed and
high-speed streak, which was already apparent in Fig. 14, and attribute the self-similarity
of these structures to the linear interaction of the fluctuations with the time-mean streak.
The typical structure of Reynolds stresses of the fluctuations in NSE100 in low-speed
streaks is shown in Fig. 20, 21 and in Fig 22 for high-speed streaks. These figures show
the universality in streamwise wavenumber of the structure of the time-mean Reynolds
stresses implying universality of the mechanism sustaining and regulating the low speed
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Figure 21: As in Figure 20 for fluctuations with kx/α = 10 (top row), kx/α = 11 (middle
row) and kx/α = 12 (bottom row). This figure shows that the universality in structure
is still apparent at high streamwise wavenumbers.

Figure 22: As in Figure 20 except for fluctuations with kx/α = 3 (top row), kx/α = 4
(middle row) and kx/α = 5 (bottom row) in the high-speed streak.

streak. Remarkably, the universal structure of the fluctuations on the streak will be shown
to arise from the growth of fluctuations excited white in energy so that their structure
arises solely from the optimal growth properties of the streak and does not require the
introduction of color to the excitation.
The structure of the 〈uw〉 (the second column of figures 20, 21 and 22) and of the

〈v2 − w2〉 (the fourth column of figures 20, Fig. 21 and 22) Reynolds stress components
are directly interpretable. The structure of 〈uw〉 indicates that energy is being transferred
in the mean from the spanwise varying mean streak to the fluctuations. This reflects the
mechanism by which the fluctuations are sustaining while at the same time regulating
the streaks. Near the centerline of a low speed streak ∂z〈uw〉 < 0 indicating that on
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Figure 23: Reynolds stresses predicted by the STM about the NSE100 low-speed streak:
the ensemble mean Reynolds shear stress 〈vw〉 (panel (a)), and the Reynolds normal
stress component 〈v2 − w2〉 (panel (b)). Also shown in (c) is the roll circulation (δW, δV )
induced in unit time by both components of the Reynold stress. The streamfunction δΨvw

of the roll circulation induced by 〈vw〉 is shown in (d) and the streamfunction δΨv2−w2 of

the roll circulation induced by 〈v2 − w2〉 is shown in (e), while the total streamfunction
δΨ = δΨvw+ δΨv2−w2 is shown in (f) (the contour interval in (d),(e),(f) is 2×10−10 hUc).
These Reynolds stresses and roll circulations emerge when a spanwise homogeneous field
of fluctuations white in energy with kx/α = 3 is strained for only 0.001 h/Uc units of time
by the low-speed streak of Fig. 1 centered at z = 0. This figure shows that the universal
structure of the Reynolds stresses supporting a streak emerges immediately through the
straining of a random homogeneous field of perturbations by the streak.

average the fluctuations are being sustained by gaining kinetic energy from the streak
(cf. second column of Fig. 20). The opposite polarity of the 〈uw〉 is found as required
for sustaining the fluctuations in the case of a high speed streak (cf. second column of
Fig. 22). The 〈v2 − w2〉 Reynolds stress, identified as the asymmetric component of the
Reynolds normal stress, was shown above to be the primary source of roll acceleration
supporting the streak through the lift-up mechanism. As discussed in the previous section
the minimum of the normal stress at the centerline of the low-speed streak indicates
dominance of the S component of the fluctuations, consistent with the primacy of this
term in providing the roll forcing maintaining the low-speed streak through lift-up (cf.
Fig. 20, 21 (last column)). In high-speed streaks the minimum of v2 − w2 occurs at the
wings of the streak (cf. Fig. 22) indicating the dominance of the V fluctuations over the
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Figure 24: As in Figure 20 but showing the time-mean Reynolds stresses of fluctuations
obtained using the Td = 30h/Uc STM covariance resulting from stochastically exciting
the time-mean low-speed streak of NSE100 white in energy. Results are shown for
fluctuations with kx/α = 2 (top row), kx/α = 3 (middle row) and kx/α = 4 (bottom
row).

Figure 25: As in Fig. 22 but showing the time-mean Reynolds stresses of fluctuations
obtained using the Td = 30h/Uc STM covariance resulting from stochastically exciting
the high-speed streak of NSE100 white in energy. Results are shown for fluctuations with
kx/α = 3 (top row), kx/α = 4 (middle row) and kx/α = 5 (bottom row).

S at the wings of the streak, as is clear in Fig. 19 from the contribution to this stress
from the S and V fluctuations separately.
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9. Tracing the origin of the universality of the Reynolds stresses
supporting the R-S to the optimal growth of perturbations on the
R-S

We have seen that there is a universal mechanism producing Reynolds stresses properly
collocated to result in streak growth in turbulent shear flow. This remarkable result
has precedence in earlier work in which it was shown that even an infinitesimal streak
perturbation imposed on a random spanwise homogeneous field of turbulence in a shear
flow organizes roll-inducing Reynolds stresses resulting in an unstable mode with R-
S form arising from the streak perturbation (Farrell & Ioannou 2012; Farrell et al.

2017b, 2022). This result was ascribed to the structure of optimal perturbations which
dominate the perturbation variance as a necessary consequence of the completeness of
basis functions which requires that a sufficiently random field will have a projection on
every basis function and in a non-normal dynamics, such as a shear flow, only a small
set of these projections grow appreciably over time in the energy norm. These structures
can be identified using singular value decomposition to be the optimal perturbations. It
follows that in the stochastic background field of shear turbulence a small set of optimal
perturbations form a basis in the energy norm for the set of energy active fluctuations
that determine the fluctuations obtaining significant amplitude. The hypothesis to be
tested is whether the optimal perturbations on a streak in a shear flow evolve correlated
with the streak just so as to force the streak to grow by inducing roll forcing that results
in a streak-amplifying lift-up process. The implication of this hypothesis being verified is
that, in the random field of the turbulent background, the set of growing structures that
spontaneously develop are responsible for the universality of the Reynolds stresses and
also that these optimal perturbations tend to destabilize any perturbation with streak
form giving rise to a universal streak destabilizing mechanism that is a general property
of turbulence in shear flow.

We test this unlikely hypothesis by calculating the ensemble mean covariance of
randomly excited perturbations imposed on a mean streak. In this stochastic turbulence
model (STM) the ensemble mean covariance, Ckx

, of the fluctuations with streamwise
wavenumber kx (cf. Equation (3.2)) that develop through the non-normal interaction
with the mean flow, U , satisfy the time-dependent Lyapunov equation

dCkx

dt
= Akx

(U)Ckx
+Ckx

A†
kx

(U) + I , (9.1)

which, it is useful to note, is also the second cumulant equation of S3T. Akx
(U) is the

linear operator governing the evolution of the fluctuations with wavenumber kx about the
mean flow, U , I is the spatial covariance of the stochastic forcing, which is taken as the
identity in order that all degrees of freedom are excited equally in energy, and † denotes
the Hermitian transpose (Farrell & Ioannou 1993b). The mean flow Ux̂ considered is
hydrodynamically stable (it is our stable low or high speed streak). While all fluctuations
eventually decay, continual excitation produces a finite covariance, which is dominated
by the structures that grow the most by non-normal interaction with the mean flow over
the interval of the development of Ckx

. The dominant structures of the covariance and
the associated Reynolds stresses are the optimal perturbations with optimization taken
over the time chosen for the development of Ckx

. In Nikolaidis et al. (2023) the dominant
POD modes of the covariance that develops in (9.1) in the background of the time-mean
low-speed streak shown in Fig. 1 were obtained. It was shown there that the dominant
POD modes reflect the average structure of the optimal perturbations that grow on the
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Figure 26: Time evolution of the energy of the S (red) and V (blue) T = 10 h/Uc

optimal perturbations in a flow with a low speed streak (a) and a high-speed streak with
the same structure (b) for streak amplitude ε = 1. The corresponding energy growth of
the S and V optimals with no streak ε = 0 are indicated with the black line, in this
case the growth of the S and V optimal perturbations is equal. This figure shows that
the spanwise shear increases the energy growth of both S and V perturbations but that
the low-speed streak supports substantially greater growth of the S optimal perturbation.
Perturbations have kx/α = 3.

streak and consequently provide a characterization of the Reynolds stresses and of the
induced roll forcing.
First consider the covariances that develop when the mean flow U in (9.1) is spanwise

independent. This to a good approximation occurs in the upper region, y/h > 1, of the
time mean flow in Fig. 1. In that case the S and V fluctuation components are equal on
average modulo a spanwise shift, the Ckx

are therefore spanwise homogeneous and the
associated Reynolds stresses do not produce roll forcing as 〈v2 − w2〉 is spanwise constant
and 〈vw〉 = 0 (cf. equation (5.1) and the streak acceleration in the y/h > 1 region of
Figures 15a, 17a and 16a). Upon introducing in (9.1) the mean flow of the streak of Fig. 1,
indicated as Us, the covariances are no longer spanwise homogeneous and the Reynolds
stresses produce roll forcing. Consider (9.1) integrated forward with the streak mean
flow in Fig. 1 and initial condition the spanwise homogeneous equilibrium covariance,
Chom,kx

, that emerges asymptotically when the mean flow is the spanwise independent
time-mean flow. The inhomogeneous covariance Cinh,kx

that will develop according to
(9.1) in time δt after the introduction of the streak is:

Cinh,kx
= (Akx

(Us)Chom,kx
+Chom,kx

A†
kx

(Us))δt . (9.2)

The Reynolds shear and normal stresses produced by Cinh,kx
are shown in Fig. 23a,b

after integration of (9.1) for δt = 0.001 h/Uc units of time. The roll-circulation induced
through the straining of the field over this short interval of time is shown in Fig. 23c,d,e,f.
Remarkably, the universal structure of the Reynolds stresses and of the roll forcing seen
in the time mean statistics of NSE100 and RNL100 manifests instantaneously upon the
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introduction of the streak in the flow. This indicates that straining over an infinitesimal
time interval of a spanwise homogeneous fluctuation field by a low-speed streak favors
the S component of the field over the V producing correctly configured roll forcing to
destabilze the streak.

Note that because Akx
(U) depends linearly on U , reversing the sign of Us in Equation

(9.2) reverses the sign of all the Reynolds stresses and Equation (9.2) predicts that a
high-speed streak strains a spanwise homogeneous field of turbulence to produce push-
down reinforcing the high-speed streak. Because changes of the strength of the streak
in (9.2) are associated only with changes in the time scale, these results also apply to
infinitesimal streaks and it is in fact the mechanism underlying the exponential growth
of the R-S which, while clearly manifested in DNS and RNL, has analytic expression as
a modal instability only in the infinite ensemble framework of S3T theory (Farrell et al.
2017b). This example application underscores the fundamental theoretical importance
of analyzing the dynamics of an infinite ensemble of realizations and the value of
convincingly demonstrating the dynamical similarity among DNS, RNL and S3T in
order to exploit the power afforded by the analytic structure of S3T to understand NSE
turbulence.

Having shown that infinitesimal straining of a spanwise homogeneous field of turbu-
lence by a low or high-speed streak produces R-S destabilizing Reynolds stresses, we
turn next to straining a turbulent field over a time interval typical of fully developed
turbulence by considering the Reynolds stresses that develop in the STM over a period
of Td = 30h/Uc initiated with the asymptotic covariance in the absence of a streak. This
period is selected because it is the typical coherence time of integral scale fluctuations
in the turbulent flow (cf. Lozano-Durán et al. (2021)). The Reynolds stresses that are
obtained by this STM, shown in Fig. 24 (cf. Fig. 20) for the low-speed streak and Fig. 25
(cf. Fig. 22) for the high-speed streak, verify that non-normal linear interaction between
the streak and white in energy random perturbations give rise to average perturbations
producing the roll-forcing ensemble mean Reynolds stresses observed in DNS.

Note that in the case of infinitesimal straining the structure of the stress distribution
in high-speed streaks is identical to that in low speed streaks except for a change in
sign. In contrast, the stress distributions in finite amplitude high and low speed streaks
differ substantially in structure, as seen in Fig. 24 and Fig. 25. Nevertheless, in both
cases the stress distributions induce roll forcing that maintain the imposed streak. The
difference in the stress distribution between low and high-speed finite amplitude streaks
results from differences in the optimal perturbation growth in low and high-speed streaks,
which favors the growth of S optimal perturbations in low-speed streaks, as was previously
noted by Hoepffner et al. (2005).

We illustrate in Fig. 26 this divergent behavior of the S and V optimals in the presence
of the time-mean flows Um(y) ± εUs(y, z), where Um(y) is the spanwise mean flow and
Us(y, z) is the time mean low-speed streak of Fig. 1 with streak amplitude ε = 0,±0.4,±1.
This figure shows that the optimal perturbation growth increases as the amplitude of
the streak increases and that the increase is substantial when the streak is low-speed
and marginal when the streak is high-speed. The optimization time T = 10 h/Uc was
chosen to correspond to the global optimal time. Energy transfer from the mean spanwise
shear to the perturbations, −

∫
D
dydz uwUz, is the energy source that accounts for the

increased perturbation growth in the presence of the streak, and especially so when a
low-speed streak is present because flows with low-speed streaks have a relatively smaller
wall-normal shear and the perturbations are less readily sheared over by the wall-normal
shear, which limits their potential growth. Differences in the growth of perturbations in
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flows of the form Um(y)± εUs(y, z) is expected, because the flows are not mirror images
of each other.
The pronounced asymmetry in the growth of optimal perturbations in low-speed

and high-speed streaks is surprising and has dynamical implications. It implies, as we
have seen reflected in the time-mean statistics of the DNS and also RNL, that high-
speed streaks are supported weakly by their Reynolds stresses, which contributes to the
dominance of low-speed streaks in wall-bounded turbulence.

10. Conclusions

In this work we have examined the dynamics supporting the R-S in plane Poiseuille
turbulence at R = 1650 and verified that this dynamics is substantially the same in RNL
and DNS and that it is the mechanism of R-S destabilization by transiently growing
structures identified in S3T dynamics (Farrell & Ioannou 2012). Transient growth is
shown to destabilize an imposed steak immediately as the background turbulence is
strained by the streak and to continue to amplify the streak as optimally growing
structures contained in the background turbulence evolve over finite time, as is required
for both initial destabilization of the R-S and its maintenance at finite amplitude.
In order to study the R-S formation, maintenance and regulation to its finite amplitude

equilibrium we have departed from the traditional decomposition of wall-bounded tur-
bulence into time-mean and fluctuation fields, in which the R-S is relegated to comprise
a part of the fluctuation field. We have rather chosen a streamwise mean decomposition
because this partition results in a SSD that comprises the fundamental dynamics of
wall-turbulence in a transparent manner. With the R-S contained in the mean flow we
obtain a second-order closure, referred to as S3T (Farrell & Ioannou 2012), that concisely
captures the structure and dynamics of wall-turbulence.
The validity and utility of S3T theory is evident from the fact that it provides the means

for the analytic study of the stability of the attractors of the SSD of turbulent shear flows.
Consider as example a plane wall-bounded flow with a statistical mean equilibrium profile
consistent with an externally supplied spanwise homogeneous field of random fluctuations
(a field of free-stream turbulence). Application of S3T perturbation stability analysis
reveals that this spanwise-uniform mean flow and its associated fluctuation cumulant
is modally unstable at large enough Reynolds numbers, giving rise to a mean flow
that includes rolls and streaks (Farrell et al. 2017b). That this fundamental symmetry
breaking instability has analytic expression only in S3T, while being clearly manifest
in both DNS and RNL, indicates the analytic utility of adopting S3T for the study of
turbulence in shear flow. This point of view is implicitly adopted in the classical picture
of the SSP cycle (Hamilton et al. 1995), which involves a self-sustaining quasi-linear
interaction of the streamwise mean with the fluctuations, as analytically embodied in
the S3T/RNL dynamics. Because S3T and RNL have the same dynamical structure
(RNL is essentially S3T with the second cumulant approximated by a finite ensemble)
we can take RNL simulations as confirming at higher Reynolds numbers than S3T can be
integrated that this quasi-linear interaction, with this definition of the mean, produces,
within the framework of the Navier-Stokes equations, a sustained SSP cycle and realistic
turbulent states (Thomas et al. 2014; Bretheim et al. 2015; Farrell et al. 2016, 2017a).
The key ingredient of the SSP cycle, as identified in (Farrell & Ioannou 2012) and
extensively verified in RNL simulations, is that in the presence of a streak the non-
normal growth of fluctuations results in Reynolds stresses that drive roll circulations
that reinforce the pre-existing streaks in the flow. This is also the underlying mechanism
of the S3T modal instability discussed in (Farrell & Ioannou 2012; Farrell et al. 2017b):
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any flow perturbation with streak form induces ensemble fluctuation Reynolds stresses
that lead to collocated roll circulations that, at high enough Reynolds numbers, lead to
exponential growth of the R-S. In this work we began by verifying that the turbulent
fluctuations in DNS and in RNL become configured in the presence of a streak so as to
induce roll circulations that reinforce pre-existing streaks in the flow. While roll forcing by
fluctuation Reynolds stresses was previously identified and verified to be the mechanism
of R-S formation in S3T, RNL and DNS, the exact dynamical mechanism producing
the required collocated roll forcing was left unidentified. In this work we showed using
data from a DNS that in the time mean the S and V components of the fluctuations are
linearly statistically independent and it is the S fluctuations about the centerline of the
streak that produce roll circulations leading to lift-up in shear regions, strengthening pre-
existing low-speed streaks and weakening high-speed streaks, while it is the V fluctuations
that produce the opposite effects resulting in amplification of high-speed streaks. In a
homogeneous turbulent background field and without a perturbation of streak form these
opposing streak forming tendencies cancel exactly leading to no roll formation. However,
in the presence of a streak, exact stress balance between the S and V components is
disrupted so that for a low-speed streak the S roll-forming stresses dominate over the
V roll-destroying stresses while the opposite is true in high-speed streaks. In this way
the presence of a streak partitions the fluctuation stresses between S and V components
in just the manner required for its amplification. While both the S and V fluctuations
are present in both low-speed and high-speed streaks, so that e.g. careful data analysis
would reveal V structures consistent with hairpin vortices coincident with low-speed
streaks, we show in this work that these V structures oppose rather than support the
low-speed streak.

When diagnosis of the streamwise varying fluctuation Reynolds stresses is made we
find that the Reynolds stress that dominates in the formation and maintenance of the
R-S is the asymmetry in the Reynolds normal stress, 〈v2 − w2〉, and primarily of the
〈w2〉 component that develops due to the asymmetric non-normal amplifications of the
S and V components of the fluctuations arising in the turbulent field, and that the
distribution of this normal stress determines the direction of the roll circulation. In
a forthcoming publication we explain how this normal stress distribution determines
the direction of the roll forcing (Farrell et al. 2022). This remarkable identification
of the primary role of the asymmetric Reynolds normal stress in the dynamics of
the R-S points to a novel interpretation of the origin of this structure that underlies
the maintenance of wall-turbulence. The utility of verifying that the same mechanism
supports wall-turbulence in the three representations of NS dynamics, the S3T SSD
closure, the RNL approximation of the S3T SSD closure and DNS, lies in the fact that
the S3T is analytically complete in the dynamics of its turbulence whereas the DNS has
proven recalcitrant to reveal its fundamental dynamics. The S3T/RNL system being
both analytically transparent and numerically tractable provides a powerful tool for
understanding the fundamental dynamics of wall-turbulence. In addition to its theoretical
utility, the quasi-linear structure of S3T/RNL promises to allow extension of the powerful
methods of linear control to address other problems associated with both understanding
and controlling turbulence in shear flow.
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Kwon, Yongseok & Jiménez, Javier 2021 An isolated logarithmic layer. Journal of Fluid

Mechanics 916, A35.
Landahl, M. T. 1980 A note on an algebraic instability of inviscid parallel shear flows. J. Fluid

Mech. 98, 243–251.
Lee, Myoungkyu & Moser, Robert D. 2018 Extreme-scale motions in turbulent plane

couette flows. Journal of Fluid Mechanics 842, 128–145.
Lozano-Durán, A., Constantinou, N. C., Nikolaidis, M.-A. & Karp, M. 2021 Cause-and-

effect of linear mechanisms sustaining wall turbulence. Journal of Fluid Mechanics 914,
A8.
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