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ABSTRACT
In this work we study the growth of perturbations in Keplerian disks. Despite the asymptotic stability

of the disk, a subset of optimal perturbations are found to exhibit large transient growth. The transient
growth is due to the nonnormality of the underlying operator which governs the perturbation dynamics.
It is shown that the amplifying perturbations produce positive momentum Ñuxes and a tendency of
outward angular momentum expulsion during ampliÐcation. We calculate the statistical steady state that
emerges under white forcing in space and time. The perturbation structure is found to be organized in
coherent structures that invariably export angular momentum outward. The radial structure of the
resulting angular momentum Ñux is in agreement with the predictions of the equilibrium theory of accre-
tion disks. The e†ect of spatial localization and temporal band limiting of the forcing on the maintained
momentum Ñuxes is investigated. We Ðnd that if the forcing is broadband and adequately distributed,
accretion to the main body can be maintained by stochastic forcing.
Subject headings : accretion, accretion disks È hydrodynamics È novae, cataclysmic variables

1. INTRODUCTION

Mass accretion in astrophysical accretion disks requires
expulsion of angular momentum to the exterior of the disk.
Because molecular viscosity in such disks is believed to be
very small, the outward angular momentum Ñux is believed
to be produced by turbulent Reynolds stresses requiring
that the disks are in a turbulent state (Shakura & Sunyaev
1973 ; Papaloizou & Lin 1995 ; Balbus & Hawley 1998 ;
Hawley, Balbus, & Winters 1999 ; Balbus & Papaloizou
1999). However, the nature of turbulence, especially in
astrophysical disks in near-Keplerian rotation, is not
known. Generally, Keplerian disks have been found to be
asymptotically stable to linearized perturbations of pure
hydrodynamic origin, and although weak instabilities exist
in Keplerian disks conÐned between reÑecting boundaries

1988 ; Godon 1998) or in Keplerian disks with(Jaroszyn� ski
local regions of non-Keplerian angular velocities (Lovelace
et al. 1999 ; Li et al. 2000), numerical experiments cast a
serious doubt on whether Keplerian disks can transition to
turbulence by pure hydrodynamic processes (Balbus,
Hawley, & Stone 1996 ; Balbus & Hawley 1998 ; Hawley et
al. 1999). While Keplerian disks are generally asymp-
totically stable to pure hydrodynamic perturbations,
they are unstable to magnetohydrodynamic instabilities
(Chandrasekhar 1960 ; Balbus & Hawley 1991), and it has
been argued that the anomalous viscosity required for mass
accretion is provided by the magnetohydrodynamic turbu-
lence that develops in ionized disks (Balbus et al. 1996 ;
Balbus & Hawley 1998 ; Hawley et al. 1999). However, the
fraction of ionized matter is often too small to support mag-
netohydrodynamic turbulence, as, for example, for accre-
tion in binaries during quiescence (Menou 2000). It is
therefore necessary to revisit the fundamental processes that
can be responsible for inducing accretion in Keplerian disks
by pure hydrodynamic processes.

The study of the stability of Keplerian accretion disks has
been largely limited to eigenanalysis of the operator linear-
ized about the mean state of Keplerian rotation. However,
Keplerian disks can exhibit transient energy growth despite
their asymptotic stability (Goldreich & Lynden-Bell 1965 ;

Toomre 1964, 1981), which reveals that the perturbation
dynamics are governed by a nonnormal operator (an oper-
ator A is nonnormal when it does not commute with its
adjoint As). Nonnormal operators have nonorthogonal
eigenfunctions in any physically useful inner product, like
the perturbation energy, and eigenanalysis reveals only the
large time behavior of the perturbation dynamics and gives
little information about the dynamical evolution of pertur-
bation structure for times of the order of the rotational
period of the disk. Moreover, in nonnormal systems the
Ñuxes associated with the eigenmodes do not necessarily
reveal the structure of the eddy Ñuxes when the Ñow is
excited by general initial conditions, and the momentum
transport is determined by the structure of the growing
perturbations. In order to address the behavior of pertur-
bations at short times one must resort to the methods of
generalized stability analysis that can reveal the growth
potential of perturbations in the Ñow, their structure, and
associated eddy Ñuxes (Farrell & Ioannou 1996, 1999a,
1999b).

In this work we present a generalized stability analysis of
Keplerian disks. We concentrate on the question of whether
the disk when stochastically forced can produce observed
levels of outward angular momentum transport as inferred
from observations of the radiated power. Stochastic forcing
of the large scales represents either external forcing of the
disk (tidal forcing, shock wave debris, outbursts) or internal
forcing by the nonlinear terms, if the disk is indeed in a
turbulent state (Farrell & Ioannou 1999b). Parameter-
ization of the nonlinear Jacobian in shear turbulence by
an unstructured stochastic forcing has been previously
shown to produce the observed structure of the eddy Ðelds
in laboratory shear turbulence (Farrell & Ioannou 1993a,
1993c, 1998) and of the transient eddy Ñuxes of the atmo-
sphere at the midlatitudes (Farrell & Ioannou 1995).

In this paper we consider Ñat two-dimensional Keplerian
disks of constant density in which the e†ects of self-gravity
are neglected in the perturbation dynamics. Besides the
above simplifying assumptions, we make also the simplify-
ing assumption that the magnitude of the substantial time
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derivatives of the eddy Ðelds are small compared to the
rotational frequency of the disk. In that case the eddy Ðelds
are rotationally balanced, the perturbations are quasi-
nondivergent, and the perturbation dynamics conserve
potential vorticity. The perturbation dynamics under these
assumptions have the same qualitative character with
incompressible dynamics. For simplicity we treat here the
case of a Keplerian disk with strictly nondivergent eddy
Ðelds. The character of turbulence in compressible accretion
disks is presently unknown, and the degree of dominance of
rotationally balanced eddy motions in the turbulent state is
presently under investigation.

2. EVOLUTION OF PERTURBATIONS IN A SIMPLE

KEPLERIAN DISK

We consider a two-dimensional incompressible disk of
constant surface density & rotating around a central
massive body M. The diskÏs mean state is radially sym-
metric with mean velocity [U(r), r)(r)], where U(r) is the
mean radial inÑow and r)(r) the azimuthal, h, velocity com-
ponent. The mean angular velocity is considered Keplerian,

)(r)\ )0(r0/r)3@2 , (1)

where is the radial distance from the central massiver0body at which the centrifugal acceleration balances the
gravitational acceleration, i.e., We neglectr0\ (GM/)02)1@3.self-gravity but consider the disk viscous with coefficient of
kinematic viscosity l. The viscous stress from the mean dif-
ferential rotation is balanced by the mean inÑow velocity,
U(r), which is determined from the azimuthal momentum
equation :

U(r)
d(r2))

dr
\ lr

d
dr
C1
r

d(r2))
dr

D
, (2)

which gives for Keplerian angular velocity the mean inÑow:

U(r)\ [ 3l
2r

. (3)

Small velocity departures from the mean state [u(r, h, t),
v(r, h, t)], where u is the radial and v the azimuthal (zonal)
perturbation velocity, obey the linearized vorticity equa-
tion :

C L
Lt

] )(r)
L
Lh

] U(r)
L
Lr

[ l+2
D
f\ [ dZ(r)

dr
u , (4)

where f is the perturbation vorticity

f\ 1
r
CL(rv)

Lr
[ Lu

Lh
D

, (5)

Z the vorticity of the mean Ñow

Z(r)\ 1
r

d(r2))
dr

\ 1
2

)(r) , (6)

and +2 the Laplacian operator in polar coordinates

+24
L2
Lr2] 1

r
L
Lr

] 1
r2

L2
Lh2 . (7)

Because the perturbations are considered incompressible,
the perturbation velocities can be determined from a stream

function t

u \ [ 1
r

Lt
Lh

, v\ Lt
Lr

, (8)

and, consequently, the perturbation vorticity becomes
f\ +2t, from which the velocities can be determined if the
vorticity Ðeld is given and boundary conditions are
imposed.

Consider now the evolution of harmonic perturbations of
the form t(r, h, t) eimh, f(r, h, t) eimh where\ tü (r, t) \ fü (r, t)
m is the azimuthal wavenumber. The perturbation evolu-
tion equation (4) takes the form

dfü
dt

\ [im)(r)fü [ U(r)
dfü
dr

] i
m
2r

d)(r)
dr

(D2)~1fü ] lD2fü , (9)

having written ) is the Keplerian angulartü \ (D2)~1fü .
velocity given by equation (1), the inÑow velocity U is given
by equation (3), and the Laplacian operator, D2, for zonal
wavenumber, m, is given by

D2\ d2
dr2] 1

r
d
dr

[ m2
r2 . (10)

The (D2)~1 operator is the inverse of the D2 operator and is
given by the GreenÏs function of D2. In order to deÐne this
GreenÏs function we assume that the disk occupies the
region and at the boundaries we require thatr1¹ r ¹ r2,both the radial perturbation velocity and the perturbation
vorticity vanish, i.e.,

uü (r1,2, t) \ fü (r1,2, t) \ 0 . (11)

The perturbation vorticity is set to zero at the boundaries in
order to avoid introduction of perturbation vorticity from
the region outside the disk (the same boundary condition
was introduced by Nolan & Farrell 1999 in the study of
tornadogenesis). The interior boundary conditions do not
inÑuence the perturbation dynamics. Because of the large
shear in the inner region, the perturbations rapidly develop
high radial wavenumbers and are dissipated without being
inÑuenced by the boundary.

The perturbation evolution equation is rendered non-
dimensional by choosing a nondimensional time t8 \ )0 t,
nondimensional radial distance and non-r8 \ r/r0,dimensional vorticity The nondimensional vor-f8 \ fü /)0.ticity perturbation equation is

df8
dt8

\ [im)3 (r8 )f8 [ U3 (r8 )
df8
dr8

] i
m
2r8

d)3 (r8 )
dr8

D3 ~2f8 ] 1
Re

D3 2f8 ,

(12)

where the tilde variables denote the nondimensional vari-
ables or operator, and the Reynolds number is deÐned as

The nondimensional angular velocity isRe\)0 r02/l.and the nondimensional inÑow is)3 (r8 ) \ r8~3@2, U3 (r8 )\[3/
In the sequel we drop the tildes.(2Rer8 ).

The nondimensional vorticity equation can be compactly
written as

df
dt

\ Af , (13)

where

A \ im)
C
[1 [ 3

4r2 (D2)~1
D

[ U
d
dr

] 1
Re

D2 . (14)
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The di†erential operators are discretized, and the evolution
of the perturbation Ðeld is determined by forward propaga-
tion of the initial vorticity Ðeld according to

f(t)\ '(t)f0 , (15)

where is the initial vorticity Ðeld and the propagator '(t)f0is given by the matrix exponential '(t)\ eAt.

2.1. Perturbation Energetics
The total kinetic perturbation energy, E, of single harmo-

nic perturbations is given in terms of the radial perturbation
velocity Ðeld u and azimuthal velocity Ðeld v as

E\
P
r1

r2 Au2
2

] v2
2
B
2n&rdr , (16)

where bars denote an average over an azimuthal wave-
length of the real parts of the velocity components (i.e.,

On integration by parts the kinetic energy canu8 2\ 12uu*).
be expressed in terms of the stream function and vorticity as

E\ [ 1
2
P
r1

r2
tf2n&rdr , (17)

where now In terms of the discretizedtf\ 14(t*f] f*t).
values of the vorticity Ðeld on a radial grid of size d the
perturbation energy can be also written as

E\ fsMf , (18)

where f is the column vector of the vorticity Ðeld values at
the grid points, and the energy metric M is deÐned as the
positive deÐnite Hermitian matrix

M \ [nd&
4

M[(D~2)~1]sR ] RD~2N . (19)

Here (D2)~1 is the matrix representation of the continuous
operator (D2)~1, [(D2)~1]s its Hermitian transpose, and R
the diagonal matrix formed from the column vector of
radial positions. We note that if we deÐne the generalized
velocity coordinate

z\ JMf , (20)

the expression for the perturbation energy (18) can be recast
as an ordinary Euclidean inner product in the new variable
z :

E\ zsz4 (z, z) . (21)

The nonlinearly valid energy tendency equation obtained
from the Ðeld equations is

dE
dt

\ [
P
r1

r2 C
r

d)(r)
dr
D
uv2n&rdr

[
P
r1

r2 A
u2 dU

dr
] v2 U

r
B
2n&rdr

[l
P
r1

r2
o$u o2 ] o$v o2 2n&rdr . (22)

The Ðrst term of the energy tendency represents the rate of
energy extraction from the mean Ñow. Because for
Keplerian Ñow d)(r)/dr \ 0 this term leads to perturbation
energy growth when the perturbation Ðelds have velocity
components such that i.e., energy extracted from theuv[ 0,

mean Ñow is fed to the perturbation Ðeld when the eddy
angular momentum is directed outward. The second term is
the energetic interaction of the inÑow velocity with the per-
turbations. This term, which is negligible for typical astro-
physical Reynolds numbers, contributes to perturbation
growth when the rms perturbation azimuthal velocity Ðeld
Ñuctuations exceed the corresponding Ñuctuations in the
radial velocity Ðeld. The last term is the energy dissipation
which is always a sink. Note that during periods of pertur-
bation growth, angular momentum is invariably transferred
outward if the inÑow is negligible.

2.2. Generalized Stability Analysis of Nonnormal Systems
Traditionally, the stability of the mean Ñow is determined

by eigenanalysis of the dynamical operator A that governs
the linear perturbation dynamics. According to standard
linear stability analysis, if all the eigenvalues (the spectrum)
of the governing operator A are decaying (i.e., the real part
of the eigenvalues is negative), the perturbations will decay
at large times, at a rate equal to the maximum real part of
the eigenvalues, and this is usually taken to indicate the
stability of the mean Ñow.

However, there are many Ñows that are asymptotically
stable but exhibit high transient growth, and the asymptotic
estimates obtained from eigenanalysis of the governing
operator are not indicative of the growth potential of per-
turbations in the Ñow. The asymptotic estimate is not indic-
ative of the growth potential of perturbations when the
governing operator is nonnormal in some physically perti-
nent inner product, which is usually taken to be the energy.
A normal operator is one for which the commutator
AAs [ AsA vanishes (As is the adjoint operator or if the
operator has been represented by a Ðnite dimensional
matrix As is the Hermitian transpose), has orthogonal
eigenvectors, and its stability is fully determined by the
growth rate of the maximally growing eigenvalue of A. A
nonnormal operator is one for which the commutator AAs

the eigenvectors are nonorthogonal, and the[ AsA D 0,
growth potential of perturbations is obtained with the
methods of generalized stability analysis (Farrell &
Ioannou 1996, 1999a).

The operator governing the growth of perturbations in
an astrophysical disk is nonnormal, and in order to assess
the growth of perturbations in such a Ñow, we will apply the
methods of generalized stability analysis.

In generalized stability analysis, the central object of
study is the matrix propagator of the discretized linear per-
turbation equations, that is, the matrix that advances an
initial state to a state of the system t units of time later. We
choose to describe the system in generalized velocity coor-
dinates z (cf. eq. [20]), and the propagator in these coordi-
nates is given by the matrix '(t) \ eBt where the matrix

B \ M1@2AM~1@2 , (23)

governs the perturbation evolution in generalized velocity
coordinates z :

dz
dt

\ Bz , (24)

obtained by transforming equation (13) to generalized
velocities.

The maximum energy growth that can be achieved at
time t is given by the square of the spectral norm of the
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propagator o o '(t) o o2, which is found from the singular
value decomposition

'(t)\ U&Vs . (25)

Matrices U and V are unitary, and & is diagonal with posi-
tive elements. The diagonal elements of & give the squarep

iroot of the energy growth at time t of the initial pertur-
bation speciÐed by the corresponding column of V. The
elements of are ordered decreasing in magnitude. Thep

imatrix V provides a convenient orthogonal decomposition
of the perturbation state space in which each element of the
space is identiÐed by the growth it produces in time t. Each
element of this space is mapped at time t to the correspond-
ing column of U ampliÐed by the corresponding element of
the diagonal matrix &. In this way we characterize all the
perturbations according to their growth potential and
determine the perturbation subspace that produces pertur-
bation growth. The perturbation that leads to the largest
growth in time t is given by the Ðrst column of V, and the
energy growth produced by this perturbation is Thisp12.perturbation is called the optimal perturbation and its
associated growth, the optimal growth (Farrell 1988).p1,The spectral norm of the propagator at time t is deÐned to
be the optimal growth, i.e., The aim of gener-o o '(t) o o \p1.alized stability analysis is to calculate the optimal growth in
the Ñow for all times and identify the optimal perturbations
that produce it.

3. GENERALIZED STABILITY ANALYSIS

OF KEPLERIAN DISKS

We illustrate the response of Keplerian disks by calcu-
lating the energy growth of optimal perturbations. For deÐ-
niteness we choose the disk to have an inner radius of r1\

and outer radius of The qualitative character0.1r0 r2\ 5r0.of the results presented in the sequel do not depend on the
size of the disk.

The Keplerian disk is stable at all wavenumbers and Rey-
nolds numbers. The maximum growth rate associated with
the least damped eigenmode of the evolution operator A is
plotted in Figure 1 (top left panel) as a function of zonal
wavenumber m for various Reynolds numbers. For Rey-
nolds number Re\ 103 and zonal wavenumber m\ 1, the
e-folding time is about 100 nondimensional time units or
about 15 rotational periods of the disk (evaluated at radius

In the same Ðgure (top right panel) we calculate ther \ r0).corresponding maximum optimal energy growth factors
that can be achieved as a function of zonal wavenumber
and for Reynolds numbers ranging between Re\ 103 and
106. For zonal wavenumber m\ 1 and Reynolds number
Re\ 103 the maximum optimal energy growth factor is
about 80, despite the asymptotic stability of the linearized
operator. The optimal energy growth factor as a function of
time, measured in rotational periods, for Reynolds number
Re\ 104 and zonal wavenumbers m\ 1, 2, 3 are shown in
Figure 1 (bottom left panel). Because of their higher growth,

FIG. 1.È(a) Growth rate of the least damped mode of operator A as a function of zonal wavenumber m for several Reynolds numbers for a Keplerian disk
extending between and The disk is asymptotically stable. (b) For the same disk the maximum energy perturbation growth factor that canr1\ 0.1r0 r2\ 5r0.be achieved as function of zonal wavenumber m for various Reynolds numbers. (c) The optimal energy growth factor as a function of time measured in
rotational periods for zonal wavenumbers m\ 1, 2, 3 at Reynolds number Re\ 104. The m\ 1 perturbations dominate the perturbation dynamics.(T0)(d) Optimal energy growth factor as a function of time for m\ 1 and several Reynolds numbers.
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FIG. 2.È(a) Stream function of the least damped mode for a Keplerian
disk extending from to for zonal wavenumber m\ 1r1\ 0.1r0 r2\ 5r0and Reynolds number Re\ 104. The e-folding time is about 32 rotational
periods at (b) The stream function of the optimal perturbation with(T0) r0.m\ 1 that maximizes the energy growth factor in one rotational period in
the same Keplerian disk. The energy growth factor at one rotational period
is 95. The optimal perturbation leads, leaning against the shear, in order to
grow.

zonal wavenumber m\ 1 perturbations are expected to
dominate the perturbation Ðeld. The energy grows rapidly,
and even in one period substantial energy perturbation
growth is achieved. The maximum optimal growth factor
(top right panel) for m\ 1 and Reynolds number Re\ 104

is 160 and occurs at about denotes a rotational8T0 (T0period of the disk at radius The optimal energy growthr0).factor increases with Reynolds number (bottom right panel),
because with reduced dissipation the perturbations can lean
more against the shear without being dissipated and in this
way achieve higher energy growth factors at the optimizing
time. The inviscid perturbation growth is also shown at the
bottom right panel of Figure 1.

The eigenmodes of the disk bear no resemblance to the
optimal perturbations. For example, the stream function of
the least damped mode for zonal wavenumber m\ 1 and
Reynolds number Re\ 104 is shown in Figure 2a. It is
concentrated in the outer region of the disk where the mean
shear is small and the mode can decay with the least
damping. Moreover, the momentum Ñux associated with
the least damped mode yields no tendency for mass accre-
tion, as at all radii. The stream function of theuv\ 0
optimal perturbation of the same Ñow that grows by a
factor of 95 in energy in a single period is shown in the right
panel of Figure 2. The optimal perturbation is leading,
leaning against the shear in order to produce the required
positive angular momentum transfer which is necessary for
energy growth according to the energetic requirements (cf.
eq. [22]). The optimal perturbation is also concentrated
near the radius in order to take advantage of the larger0value of the shear at this location. The optimal perturbation

FIG. 3.È(a) Stream function at t \ 0 of the m\ 1 optimal perturbation that maximizes the energy growth factor at rotational period).t \ 7T0 (T0 \ one
The perturbation has initially unit energy. The Keplerian disk extends from to and the Reynolds number is Re\ 104. The perturbationr1\ 0.1r0 r2\ 5r0,leads. (b) The optimal perturbation at (the optimizing time). The energy of the perturbation is 159. (c) The optimal perturbation at Thet \ 7T0 t \ 10T0.perturbation trails and the perturbation energy is decaying. The energy of the perturbation at this time is 10.

FIG. 4.È(a) Stream function at t \ 0 of the m\ 2 optimal perturbation (of unit energy) that maximizes the energy growth factor in The Keplerian5T0.disk extends from to and the Reynolds number is Re\ 104. The perturbation leads. (b) The optimal perturbation at (ther1\ 0.1r0 r2\ 5r0, t \ 5T0optimizing time). The energy of the perturbation at this time is 70. (c) The optimal perturbation at The perturbation trails and the perturbationt \ 10T0.energy is decaying. The energy of the perturbation at this time is 0.53.
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FIG. 5.È(a) Evolution of the energy of the m\ 1 optimal perturbation
that maximizes the energy growth factor at and evolution of thet \ 7T0energy of the m\ 2 optimal perturbation that maximizes the energy
growth factor at Time is measured in rotational periods Thet \ 5T0. (T0).disk is Keplerian and extends from to and the Rey-r1\ 0.1r0 r2\ 5r0,nolds number is Re\ 104. The dashed lines are the optimal energy growth
factor for perturbations of zonal wavenumber m\ 1 and m\ 2 as a func-
tion of optimizing time. (b) The corresponding total angular momentum
transfer per unit mass of the same optimal perturbations as a function of
time (in rotational periods). The total angular momentum transfer per unit
mass is deÐned as where [É] denotes a radial average, and the barS[uv]T,
denotes a zonal average.

at t ] O becomes the least damped mode but with a greatly
ampliÐed magnitude.

The evolution of the optimal perturbation with zonal
wavenumber m\ 1 that produces optimal energy growth
factor at is shown in Figure 3. The perturbation ist \ 7T0shown at the initial time t \ 0, the optimizing time t \ 7T0and at The optimal perturbation as discussedt \ 10T0.earlier is initially leading, its stream function contours

FIG. 6.ÈRadial distribution of the momentum Ñux associated with the
m\ 1 optimal perturbation that maximizes the energy growth factor at

The disk is Keplerian and extends from tot \ 7T0. r1\ 0.1r0 r2\ 5r0,and the Reynolds number is Re\ 104. (a) The momentum Ñux at t \ 6T0.The momentum Ñux is everywhere outward. (b) The momentum Ñux at
the optimizing time. (c) The momentum Ñux at Thet \ 7T0, t \ 8T0.momentum Ñux is everywhere inward.

leaning against the shear, in order to grow. The phase lines
of the stream function rotate with time in the direction of
the shear. For example, at the optimizing time the phase
lines are aligned with the mean shear and at thet \ 10T0perturbation trails. Eventually, the perturbation will
assume the form of the least damped mode (Fig. 2a). The
energy evolution of this optimal perturbation is shown in
Figure 5a. Similar is the evolution of higher wavenumber
optimals. In Figure 4 the evolution of the m\ 2 optimal
that optimizes energy growth factor in is shown.t \ 5T0The corresponding energy evolution of this perturbation is
shown in Figure 5a. All growing perturbations share these
characteristic patterns during their growth and decay
period. This is dictated by the energy tendency equation
and has been described in the astrophysical literature in the
pioneering work of Goldreich & Lynden-Bell (1965) and
Toomre (1964, 1981). The energy tendency equation (22)
requires that during the growing phase angular momentum
is transported outward (shown in Fig. 6a), and during the
decay phase there must be inward transport of angular
momentum (shown in Fig. 6c). The evolution of the angular
momentum Ñux averaged over the whole disk is shown for
the selected zonal m\ 1 and m\ 2 optimal perturbations
in Figure 5b. Averaged over their life cycle the angular
momentum transport by these perturbations is found to be
positive. We shall show in the sequel that when a full spec-
trum of perturbations is imposed on the disk the angular
momentum transport is robustly outward.

4. PERTURBATION STRUCTURE UNDER

STOCHASTIC FORCING

We have demonstrated that Keplerian disks despite their
asymptotic stability support strong transient growth of a
subset of perturbations which during their growth phase
transport angular momentum outward. In order to demon-
strate the plausibility of the hypothesis that mass accretion
in disks emerges naturally in Keplerian disks in the pres-
ence of background perturbation, we demonstrate that a
mean outward angular momentum transfer will invariably
result when the disk is stochastically forced ; and in order to
demonstrate the inherent dynamical role of the disk di†er-
ential rotation in organizing the perturbation structure to
produce mean outward momentum Ñux, we consider noise
sources which are white in time and space.

Because the disk is asymptotically stable, it will reach a
statistically steady state when subjected to continual sta-
tionary stochastic forcing. The forcing may be due to exter-
nal processes, or it may be considered as a parameterization
of the neglected nonlinear terms. Possible sources of forcing
are tidal interaction in binaries, outbursts in binary systems,
or perturbation debris from shock waves. If the disk is in a
turbulent state, the stochastic forcing may represent a
parameterization of the backscattering due to the neglected
nonlinear terms in the dynamics (DelSole 1996, 1999). In
that sense the stochastically forced model of a Keplerian
disk provides a model of the energy bearing scales of the
turbulent disk. Such a parameterization has been very suc-
cessful in modeling the perturbation variance in other shear
Ñows (Farrell & Ioannou 1993a, 1993c, 1995, 1998, 1999b).
Owing to the nonnormality of the operator governing the
dynamics, the structure, and color of the forcing is essen-
tially inconsequential because the response of the disk will
be dominated by the strongly growing transient structures,
and as long as the forcing projects on these its detailed color
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is unimportant. It has been demonstrated in other studies
that this is the case (Farrell & Ioannou 1994, 1995, 1999b).
In this section we will consider that the whole disk is forced
at all scales and at all frequencies. The e†ects of spatial and
temporal localization of the forcing on the angular momen-
tum transfer will be discussed in the next section.

We incorporate in the perturbation dynamics the forcing
term Fg(t), where g(t) is temporally Gaussian white noise
which is spatially d-correlated with zero ensemble mean and
unit ensemble covariance, i.e.,

Sg
j
(t)T \ 0, Sg

i
(t1)gj

*(t2)T \ d
ij
d(t1[ t2) , (26)

and F is a matrix specifying the radial structure of the
forcing, SÉT denotes an ensemble average. In this section we
will assume that F is unitary, i.e., F sF \ I, where I is the
identity. Under unitary stochastic forcing the same amount
of energy is imparted to all radial scales in the disk. The
generalized velocity perturbation Ðelds satisfy the following
equation :

dz
dt

\ Bz] F g(t) , (27)

where B \ M1@2AM~1@2 as in equation (23).
The dynamical operator A is stable, and, consequently,

the forced Keplerian disk will reach a statistical steady state
with Ðnite variance. The statistical steady state will be char-
acterized by a correlation matrix C \ SzzsT, which can be
obtained (Farrell & Ioannou 1999b) from the forced solu-
tion of equation (27) :

z(t)\
P
0

t
eB(t~s)Fg(s)ds . (28)

The correlation matrix at time t can then be calculated
utilizing the properties of the white noise forcing (eq. [27]) :

C
ij
(t)\ Sz

i
(t)z

j
*(t)T

\
CTP

0

t
ds
P
0

t
ds@eB(t~s)Fg(s)gs(s@)FseBs(t~s{)

UD
ij

\
CP

0

t
eB(t~s)FF seBs(t~s)ds

D
ij

. (29)

The ensemble average perturbation total energy SE(t)T
accumulated at time t is then the trace of the correlation
matrix C(t), which in dimensional units is given by

SE(t)T \E0 in
)0

trace [C(t)] , (30)

where is the total energy input rate (ergs s~1) by theE0 inrandom forcing and the rate of rotation of the disk at)0 r0.We can obtain the correlation matrix of the statistical
steady state by noting that di†erentiation of equation (29)
leads to a di†erential equation for the time rate of change of
the correlation matrix :

dC(t)
dt

\ FFs ] BC(t)] C(t)Bs . (31)

Because of the asymptotic stability of the Keplerian disk,
the time rate of change of the correlation matrix tends to
zero as t ] O, and therefore the asymptotic correlation
matrix that describes the statistical steady state, C=, must

satisfy the algebraic Lyapunov equation :

BC=] C=Bs\ [FFs , (32)

which can be readily solved to obtain the correlation matrix
C= that determines the statistically steady state. Note that
when all the degrees of freedom are forced with unitary
forcing structures that satisfy FFs \ I, the asymptotic
correlation matrix does not dependent of the speciÐc choice
of the elements of the forcing matrix F.

The perturbation structure under stochastic forcing is
revealed by the empirical orthogonal functions (EOFs),
which are the orthogonal eigenfunctions of the correlation
matrix. Each eigenvalue of the positive deÐnite Hermitian
correlation matrix C= equals the energy accounted for,
under unbiased forcing, by the pattern of its corresponding
eigenvector, and the pattern that corresponds to the largest
eigenvalue contributes most to the perturbation energy at
the statistical steady state. Note that because of the non-
normality of A, the eigenfunctions of the correlation matrix,
the EOFs, are distinct from the eigenfunctions of A. The
dominant zonal wavenumber m\ 1 and m\ 2 patterns
that emerge in the stochastically forced disk with unitary
forcing are shown in Figure 7. These top EOFs are similar
to the structure of the optimal perturbations at their peak
energy as can be seen by comparing with the structures in
the middle panels of Figure 3 and Figure 4. The top EOFs
account, respectively, for about 70% and 50% of the main-
tained energy in the statistical steady state, and as it can be
seen in Figure 7 only the Ðrst Ðve EOFs are needed in order
to span the total perturbation Ðeld energy. The maintained
variance for m\ 1 perturbations is 3 times larger than the
energy maintained by the m\ 2 mode under stochastic
forcing of equal magnitude, and the momentum transfer
associated with m\ 1 perturbations is 1 order of magnitude
larger than that due to the m\ 2 mode. The perturbation
dynamics are therefore expected to be dominated by zonal
m\ 1 perturbations.

The correlation matrix determines all the quadratic Rey-
nolds stresses associated with the statistical equilibrium.
For if we are interested in evaluating the matrix G

ij
\

for Ðelds f and g that are dependent linearly on theS f
i
g
j
*T

generalized velocity z, i.e., for f \ Tz and g \ Sz, then the
correlation matrix G can be expressed in terms of C= as
G \ TC=Ss. The quantity of interest is the correlation
matrix of the radial and zonal velocity, from which the
angular momentum Ñux distribution can be derived. This
correlation matrix is

C
ij
uv \ S(u

i
eimh)(v

j
eimh)*T ,

where is the amplitude of the radial velocity at andu
i

r \ r
ithe amplitude of the zonal velocity at the barv

j
r \ r

j
;

denotes a zonal average. The correlation matrix can be
equivalently written as where R denotesC

ij
uv\ 12RSu

i
v
j
*T

the real part of a complex quantity. The amplitude of the
radial velocity u for a perturbation of zonal wavenumber m
is given in terms of the generalized velocity z by
u \ [imR~1M~1@2z, while the amplitude of the zonal
velocity is given by v\ DM~1@2z, where D is the matrix
representation of the di†erential operator d/dr. Therefore,

C uv\ 1
2

R(Suv*T) \ m
2

R~1M~1@2I(C=)M~1@2Ds , (33)
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FIG. 7.È(a) Stream function of the Ðrst EOF for zonal m\ 1 perturbations. This empirical function accounts for 70% of the mean energy. (b) The
corresponding stream function of the Ðrst EOF for zonal m\ 2 perturbations. This EOF accounts for 50% of the mean energy. (c) Percentage ensemble mean
energy accounted for by the Ðrst 10 EOFs of the velocity correlation matrix ordered according to their contribution to the ensemble mean. The case shown is
for m\ 1 perturbations. Note that 90% of the ensemble mean energy is accounted for by the Ðrst 5 EOFs. (d) The same as in (c) but for m\ 2 perturbations.
In this case the Ðrst 10 EOFs account for 90% of the ensemble mean energy. The disk is Keplerian and extends from to the Reynoldsr1\ 0.1r0 r2\ 5r0 ;
number is Re\ 104.

where I(C=) denotes the imaginary part of the correlation
matrix. The diagonal elements of C uv, denoted diag(C uv),
determine the radial distribution of the ensemble averaged
eddy angular momentum Ñux. In dimensional units the
radial distribution of the mean angular momentum Ñux per
unit mass is given by

SuvT \ E0 in
2n&r02)0

diag
Am

2
R~1M~1@2I(C=)M~1@2Ds

B
.

(34)

The radial distribution of the momentum Ñux derived in
equation (34) for the case of unitary forcing, i.e., for forcing
that satisÐes FFs \ I, will be compared to the Ñux obtained
by demanding constancy of the mean angular momentum
Ñux across a disk in equilibrium under the assumption that
the viscous contribution to the mean angular momentum
balance is negligible (Shakura & Sunyaev 1973 ; Pringle
1981 ; Balbus & Hawley 1998 ; Balbus & Papaloizou 1999) :

SuvT \ M0 )(r)
2n&

A
1 [

SR0
r
B

, (35)

where is the equilibrium constant accretion rate andM0 R0is the radius at the inner boundary of the disk. There is no
reason for the radial distribution predicted by equation (34),
for an appropriately chosen energy input to be the sameE0 in,

with the angular momentum Ñux distribution predicted by
equilibrium theory. If they are, it suggests that the equi-
librium angular momentum distribution (35) arises as the
Ðrst-order e†ect of stochastically forcing a viscous disk, in
which the Reynolds number is based on an appropriate
eddy viscosity. It further suggests that the energy-bearing
perturbation structure in Keplerian disks is organized by
the linear shear dynamics and that the e†ects of the nonlin-
ear terms in the turbulent disk can be parameterized by
added di†usion and stochastic forcing. Similar conclusions
have been reached for shear turbulence in other settings
(Farrell & Ioannou 1993a, 1995, 1998 ; DelSole 1996, 1999).
The equilibrium and the stochastically induced angular
momentum distribution for zonal wavenumbers m\ 1 and
m\ 2 are compared in Figure 8. The comparison is made
for Re\ 104, but the distribution does not vary appreciably
with Reynolds number. The agreement between the two
curves is good, especially for the dominant m\ 1 structures.
It is to be noted that the deduced angular momentum Ñuxes
are everywhere outward, implying that in the absence of
any instabilities the natural response of a stochastically
forced Keplerian disk is to accrete mass. It also suggests
that the eddy Ðelds in an accretion disk may be approx-
imately nondivergent.

Matching the maxima of the two angular momentum Ñux
distributions provides a relationship between the energy
input by the stochastic forcing and the resulting mass accre-
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FIG. 8.È(a) Radial distribution of the momentum Ñux sustained by the
dominant m\ 1 perturbations in the statistically steady state. The dotted
line is the equilibrium theory momentum Ñux given by eq. [35]. (b) Same as
(a), but for m\ 2 perturbations. Under the same forcing the Ñuxes of the
m\ 2 perturbations are 1 order of magnitude smaller than those of the
m\ 1 perturbations. The disk is Keplerian and extends from tor1\ 0.1r0the Reynolds number is Re\ 104.r2\ 5r0 ;

tion rate. This relation enables us to estimate the stochastic
energy input required to produce observed levels of mass
accretion. The accretion rate will be estimated from the
observed accretion luminosity which is related to the accre-
tion rate by where is the radius ofM0 L acc \ GMM0 /R

*
, R

*the central body and M its mass. If the disk is externally
forced, we expect On the other hand, if the diskL acc [ E0 in.is in a turbulent state and parameterizes the energyE0 intransfer to the energy bearing m\ 1 scale from smaller
scales by the nonlinear terms, then energy Ñux between
scales in the turbulent energy cascade demands, for balance
in the steady state, only that where isE0 out [ E0 in\D0 , E0 outthe energy that is transferred from the m\ 1 perturbations
to the smaller scales, and is the rate of dissipation (whichD0
exceeds and the magnitude of is undetermined. InL acc) E0 infact, if we determine that the energy input is comparable to

this is an indication that the disk must be turbulentL acc,and the anomalous viscosity is being created by the turbu-
lent stresses. Alternatively, if observation shows that L acc ?

then, while the possibility that the disk is turbulentE0 in,cannot be excluded, accretion could result from pure exter-
nal forcing.

The energy input is related to the mass accretion rate by

E0 in\ 0.1f (Re, m)
r07@2
R03@2

)02 M0 , (36)

where the nondimensional function f (Re, m) is deÐned as

1
f (Re, m)

\ max
G
diag

Cm
2

R~1M~1@2I(C=)M~1@2Ds
DH

.

(37)

Because of the dominance of the zonal wavenumber m\ 1
perturbations, we determine the behavior of f (Re, m) for
m\ 1 as a function of Reynolds number, ““ Re.ÏÏ We Ðnd
that f (Re,1) is nearly independent of Reynolds number and
that it assumes the value f (Re,1)^ 0.2. Consequently, the

ratio between the energy input required to produce accre-
tion and the corresponding luminosity for that acc-M0 L accretion rate becomes for large Reynolds numbers :

E0 in
L acc

\ 0.02
S r0

R
*

, (38)

where the inner boundary of the disk is taken at the stellar
surface, This expression indicates that the energyR0\ R

*
.

input needed to maintain a given accretion of mass is pro-
portional to the square root of the radial size of the disk.
For accretion disks around the active galactic nuclei
(AGN) the accretion luminosity is given by L acc \ gM0 c2,
where g is a radiation efficiency and c the speed of light
(Frank, King, & Raine 1992), and if the inner radius of the
disk is taken to be the Schwarzschild radius, R

*
\ 2GM/c2,

we obtain

E0 in
L acc

\ 7 ] 10~3
g

c
r0)0

. (39)

Ratios (38) and (39) are estimated for astrophysical disks
with parameters given in Table 1. For binary systems we
consider the case of dwarf novae, for AGNs the case of the
mildly active galaxy NGC 4258 (Lin & Papaloizou 1996),
and for young stellar objects (YSOs) we consider the inner
part of HL Tau disk system (Sargent & Beckwith 1991 ;
Ohashi & Hayashi 1996 ; Lin & Papaloizou 1996).1 If we
assume that the forcing structures, F, are unitary, the
required energy input to maintain the observed accretion
luminosity is found to be for binary systems,E0 in/L acc ^ 0.1

for YSOs, and for AGNs.E0 in/L acc ^ 2.8 E0 in/L acc ^ 5 ] 103
Therefore, observed levels of accretion could result by spa-
tially white external forcing in binary systems and possibly
for YSOs, but AGN accretion disks are probably in a turb-
ulent state and accretion ensues from the turbulent Rey-
nolds stresses.

In the calculations above a mean inward radial velocity
U(r) \ [3/(2Re r) was assumed for reasons of consistency,
which for the nearly inviscid calculations presented above is
negligible. The e†ect of a mean radial inÑow on the stochas-
tic equilibrium can be assessed by considering for all ““ Re ÏÏ
a mean inÑow of the form: U(r) \ [3/(2 ] 104r). The

1 HL Tau is a very young object (\105 yr) with a very large accretion
rate and with its outer part free falling. It is probably in a transitional stage,
and the inner Keplerian disk is fed by the surroundings. We use this
example as an extreme case of YSO accretion, while T Tau stars have
about 2 orders of magnitude lower accretion rates.

TABLE 1

PARAMETERS OF ASTROPHYSICAL ACCRETION DISKS

Binary
Systems YSO AGN

(DN System) (HL Tau) (NGC 4258)

M
*

(M
_

) . . . . . . . . 1 0.5 4] 106
R0 . . . . . . . . . . . . . . . . 107 m 1 R

_
. . .

M0 (M
_

yr~1) . . . 10~10 5 ] 10~6 7 ] 10~5
Mdisk (M

_
) . . . . . . 10~11 0.1 4] 106

r0 . . . . . . . . . . . . . . . . . 3 ] 108 m 100 AU 10 pc
EfÐciency g . . . . . . . . . . . . 0.01
L acc (ergs s~1) . . . 8 ] 1032 3 ] 1035 4 ] 1040
E0 in/L acc . . . . . . . . . . 0.56f (Re, m) 14.14f (Re, m) 2.52] 104f (Re, m)

NOTE.ÈData from Sargent & Beckwith 1991 ; Ohashi & Hayashi 1996 ;
Lin & Papaloizou 1996.
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excess unbalanced inÑow for Re[ 104 is assumed here to
outÑow in a deformation region in the inner radius of the
disk. In that case the stochastic forcing input required to
produce a given value of mass accretion diminishes and it is
found that, for m\ 1, f (Re, m) becomes asymptotically

f (Re, 1)B
4000
Re

. (40)

An existing inÑow can thus lead to a dramatic increase of
the accretion rate. For the astrophysical disks considered
and Re\ 1010 the previously calculated ratios become

for binary systems,E0 in/L acc ^ 2 ] 10~7 E0 in/L acc ^ 5
for YSOs, and for AGNs, indicat-] 10~6 E0 in/L acc ^ 10~2

ing that in all cases external forcing could maintain the
accretion rate if it were spatially distributed and broadband.

5. EFFECT OF SPATIAL AND TEMPORAL LOCALIZATION

OF THE FORCING

We have considered a disk that was stochastically forced
with forcings distributed throughout the disk, and the
forcing was assumed to be temporally and spatially white.
In that case we Ðnd that the maintained perturbations Ñux
angular momentum is outward supporting accretion of
mass to the central body. However, if the forcing is spatially
localized and is temporally and spatially band-limited, the
resulting angular momentum Ñux will in general depend on
the speciÐc forcing. We here present an investigation of the
e†ect of spatial and temporal localization of the forcing on
the maintained angular momentum Ñux in statistical equi-
librium.

In order to examine the e†ect of the structure and color
of the forcing on the maintained equilibrium, we identify
the forcing structures that are responsible for producing
the variance. We can identify these forcing structures
by forming the ensemble mean perturbation energy,
SET \ SzszT, which, by using equation (28) and the proper-
ties of the white noise given in equation (26), can be written
conveniently as the quadratic form:

SET \ F sKF , (41)

where F denotes the matrix having as its columns the
spatial structures of the forcing and the stochastic matrix K,
that deÐnes the quadratic form, is given by

K \
P
0

=
eBsseBsds . (42)

The eigenvectors of the Hermitian matrix K determine an
orthonormal set of forcings, which, when ordered in
decreasing order of the magnitude of their eigenvalues,
order the forcings according to contribution in producing
the maintained perturbation energy. These forcing struc-
tures are called stochastic optimals (Farrell & Ioannou
1996, 1999b).

The Ðrst and 26th stochastic optimal for a Keplerian disk
at Reynolds number Re\ 104 is shown in Figure 9. The
percentage of the variance produced by the stochastic opti-
mals is also shown in the same graph. The Ðrst stochastic
optimal, responsible for producing 23% of the variance, is
distinct from the Ðrst EOF and the least damped mode of
the system; this is a reÑection of the nonnormality of the
operator B governing the perturbation dynamics. The Ðrst
stochastic optimals are similar in structure to the optimal
perturbations ; they lean against the mean Ñow shear and,

consequently, when forced lead to angular momentum
expulsion. Indeed, if we limit the stochastic forcing to
include only the structures of the Ðrst 25 stochastic opti-
mals, by choosing the columns of the forcing matrix F to be
the Ðrst 25 stochastic optimals, the maintained angular
momentum Ñux is everywhere positive (except in a region at
small radius). This is shown in Figure 10. If, on the other
hand, the forcing is limited to the higher order stochastic
optimals (e.g., by forcing only the stochastic optimals of
order greater than the 25th) then the angular momentum
transfer is everywhere negative, implying an outward mass
transfer. But, as shown in Figure 10, the net positive angular
momentum Ñux produced by forcing with the Ðrst stochas-
tic optimals is not canceled by the negative angular momen-
tum Ñux produced by forcing with the stochastic optimals
of higher order, and the sum of the two angular momentum
Ñuxes is equal to the net outward angular momentum Ñux
produced by the union of these forcings. This incomplete
cancellation of the angular momentum Ñuxes can be traced
to the lack of symmetry in the angular momentum Ñuxes
produced during the growth and decay phases of the evolu-
tion of perturbations. During their growth phase, pertur-
bations Ñux angular momentum outward, as is required by
the energy tendency equation (22), while during their decay
phase, they Ñux angular momentum inward (cf. Fig. 6). The
upgradient and downgradient Ñuxes associated with the
growth and decay phase would cancel in the absence of
dissipation and in the absence of analytic modes in the disk,
which act as a repository of the energy extracted from the
Ñow during perturbation growth and destroy the structural
symmetry between the growth and decay phases. Complete
reversibility in the angular momentum Ñuxes occurs, for
example, in the idealized situation of an unbounded con-
stant shear Ñow (Farrell & Ioannou 1993b), in which case
there are no analytic modes. The presence of modes breaks
the symmetry between growth and decay phases with the
energy extracted from the mean Ñow during the growing
phase being transferred to the modal structures which do
not shear over and, hence, do not transfer all the angular
momentum Ñux accumulated during perturbation growth
back to the mean Ñow (Farrell & Ioannou 1993b).

The sign of the angular momentum Ñux depends on the
degree of projection of the speciÐc stochastic forcing on the
stochastic optimals. If the stochastic forcing excites all the
stochastic optimals equally, as is the case of unitary forcing
presented earlier, the angular momentum Ñux is positive. If
the forcing projects predominantly on the dominant sto-
chastic optimals, the angular momentum Ñux will be posi-
tive and of larger magnitude than that produced by unitary
forcing. If the forcing projects predominantly on the higher
order stochastic optimals, the angular momentum Ñux can
become negative. Such a case can arise when the pertur-
bation variance is maintained in a disk by a source with a
particular structure, as for example in the case of convective
turbulence, in which the structure is that of the buoyant
plumes. In that case perturbations can grow from the
unstable buoyancy gradients and need not utilize the shear
energetics in order to maintain their variance. In such cases
it may well happen that the stochastic forcing projects
predominantly on the higher order stochastic optimals,
presented in this paper, and the maintained angular
momentum Ñux may be inward, as is indeed found in
convection-dominated disks (Ryu & Goodman 1992 ; Gu
2000 ; Quataert & Chiang 2000).
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FIG. 9.È(a) Stream function of the Ðrst stochastic optimal (SO) for zonal m\ 1 perturbations. This stochastic optimal is responsible for producing 23% of
the mean variance. (b) The corresponding stream function of the 26th stochastic optimal for zonal m\ 1 perturbations. This stochastic optimal is responsible
for producing 0.09% of the mean variance. (c) Percentage ensemble mean energy produced by the Ðrst 100 stochastic optimals. The disk is Keplerian and
extends from to the Reynolds number is Re\ 104.r1\ 0.1r0 r2\ 3r0 ;

FIG. 10.ÈRadial distribution of the momentum Ñux for m\ 1 pertur-
bations in the statistical steady state for various forcings. (A) Forcing with
only the Ðrst 25 stochastic optimals. (B) Forcing with the remaining sto-
chastic optimals. (C) Forcing with all the stochastic optimals, in that case
the forcing is unitary, i.e., FFs \ I. The curve C is the sum of A and B. The
disk is Keplerian and extends from to the Reynoldsr1\ 0.1r0 r2\ 3r0 ;
number is Re\ 104.

In order for mass to accrete to the central gravitating
body, the angular momentum Ñux must be positive
throughout the disk. Spatially localized or temporally
band-limited forcing, will in general be unable to extend its
inÑuence in the whole disk and produce positive momen-
tum Ñux in the entirety of the disk, unless the forcing excites
modal structures that do not have critical layers in the disk
(Vishniac & Diamond 1989). In the disk model presented
here all modes have viscous critical layers in the interior of
the disk, and, consequently, the stochastic forcing can
produce mass accretion if it is not systematically localized.
For example, the angular momentum Ñux resulting from
forcings localized in the inner, center, and outer region of
the disk are shown in Figure 11. Note that for forcing local-
ized in the outer region of the disk the angular momentum
Ñuxes are concentrated around the radius that corresponds
to the viscous critical layer associated with the phase speed
of the least damped mode, which for the case shown is at
r
c
B 4.7.
We consider now monochromatic forcing at frequency u.

Taking the Fourier transform of equation (27) the ampli-
tude of the perturbation response in generalized velocity
coordinates is

zü (u) \ R(u) f ü (u) , (43)
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FIG. 11.ÈRadial distribution of the momentum Ñux (solid curve) for
m\ 1 perturbations in the statistical steady state for various forcings.
(a) The forcing (dash-dotted curve) is limited to the inner region. The
dotted line shows the momentum Ñux sustained under unitary forcing.
(b) The forcing (dash-dotted curve) is limited to the central region of the
disk. The dotted curve shows the momentum Ñux sustained under unitary
forcing. (c) The forcing (dash-dotted curve) is limited to the exterior region
of the disk. The dotted curve shows the momentum Ñux sustained under
unitary forcing. In all cases the momentum Ñux is localized. The disk is
Keplerian and extends from to the Reynolds number isr1\ 0.1r0 r2\ 5r0,Re\ 104.

FIG. 12.È(a) Radially integrated momentum Ñux for m\ 1 pertur-
bations as a function of forcing frequency, u. The forcing is distributed
throughout the disk. The momentum Ñux is positive for almost all fre-
quencies, except for frequencies that have critical layers in the vicinity of
the outer radius of the disk, i.e., for frequencies where theuB[m/r23@2, r2outer radius of the disk. (b) The power spectrum of the perturbation energy
as a function of frequency (solid line) and the power spectrum obtained as a
summation of the contributions from the poles of the resolvent (dashed
curve) : where i) are the eigenvalues of B, as it would be£

i
1/ o iu[ i)

i
o2,

appropriate if B were a normal operator. The area under the curve of the
energy power spectrum is the maintained ensemble mean perturbation
energy. (c) The real [R(u)] and the imaginary [[I(u)] part of the eigen-
values of the operator B. The disk is Keplerian and extends from r1\ 0.1r0to the Reynolds number is Re\ 104.r2\ 5r0 ;

FIG. 13.ÈRadial distribution of the momentum Ñux for m\ 1 pertur-
bations for various forcing frequencies. The forcing is distributed through-
out the disk. The momentum Ñux for forcing frequency u\ [1 (dash-
dotted curve), the critical layer (vertical line), is located at r \ 1. The
momentum Ñux for u\ [0.192 (solid curve), the critical layer is at r \ 3,
and the momentum Ñux for forcing frequency u\ [0.105 (dashed curve),
with critical layer located at r \ 4.5. In all cases the momentum Ñux is
concentrated in the vicinity of the critical layer. The disk is Keplerian and
extends from to the Reynolds number is Re\ 104.r1\ 0.1r0 r2\ 5r0 ;

where the hat variables denote the Fourier amplitudes, i.e.,

zü (u) \ 1
2n
P
~=

=
z(t)e~iutdt , (44)

and is the Fourier amplitude of the forcing. The resolv-f ü (u)
ent R(u) determines the structure of the response and is
given by

R(u) \ (iuI [ B)~1 . (45)

We form the correlation matrix

C(u) \ zü (u)zü s(u) \ R(u) f ü (u) f ü s(u)Rs(u) , (46)

and proceed to calculate the perturbation energy power
spectrum, P(u) \ trace[C(u)], and angular momentum Ñux
produced at each frequency as in the previous section. We
will assume that the disk is forced equally at all radii and
select and in this way determine the mean responsef üf ü s\ I
of the disk at frequency u to spatially uncorrelated forcing.
The perturbation energy power spectrum and angular
momentum Ñux as a function of frequency, u, are shown in
Figure 12. The angular momentum Ñux is positive for
nearly all frequencies except for frequencies that have criti-
cal layers in the neighborhood of the outer radial boundary,
i.e., for where is the outer radius of theuB[m/r23@2, r2disk. The radial structure of the angular momentum Ñuxes
at each frequency u is concentrated around the correspond-
ing critical layer located, for forcing frequency u, at
r \ ([m/u)2@3. The angular momentum Ñux is positive for
nearly all frequencies except for frequencies that have criti-
cal layers in the neighborhood of the outer radial boundary,
i.e., for where is the outer radius of theuB[m/r23@2, r2disk. However, despite their positivity, the momentum
Ñuxes are radially concentrated around the corresponding
critical layer which is located, for forcing frequency u, at
r \ ([m/u)2@3. This is shown in Figure 13. Consequently, in
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order to achieve mass accretion to the central body, it is
additionally required that the forcing has a broad temporal
spectrum.

6. CONCLUSION

The perturbation dynamics in Keplerian disks are gov-
erned by a nonnormal stable dynamical operator. In order
to identify the perturbations that will dominate the pertur-
bation structure and determine their second-order e†ects on
the mean Ñow, the dynamics must be analyzed with the
methods of generalized stability analysis. In this paper such
a stability analysis of perturbation growth in Keplerian
disks is presented under the simplifying assumption that the
perturbation Ðelds are nondivergent. We demonstrate that
although the disk is asymptotically stable and pertur-
bations eventually decay, there is robust rapid growth of a
subset of optimal perturbations at the timescale of one rota-
tional period of the disk. These transiently growing pertur-
bations carry angular momentum outward during their
growing phase, while in their decay phase they carry
angular momentum inward. The perturbation growth was
found to be dominated by zonal wavenumber m\ 1 pertur-
bations. We calculated the statistical steady state that
emerges under white forcing in space and time. The pertur-
bation structure was found to be organized by the non-
normal mean operator into coherent structures that
invariably export angular momentum outward. This shows

that when the full spectrum of perturbations are excited in
the disk, their net e†ect is to transport angular momentum
outward. Remarkably, the radial structure of the resulting
angular moment Ñux is very close to the one that is antici-
pated from equilibrium theory (Shakura & Sunyaev 1973 ;
Pringle 1981 ; Balbus & Hawley 1998 ; Balbus & Papaloizou
1999). We have investigated the e†ect of spatial localization
and temporal band limiting of the forcing, and it was found
that the associated momentum Ñuxes will be spatially local-
ized unless the forcing extends throughout the disk and is
broadband. In conclusion, in the presence of distributed
broadband forcing this work suggests that accretion in
astrophysical Keplerian disks may proceed in the absence
of exponential instabilities of the mean Ñow and may be
explained by invoking only hydrodynamic processes.

It is intriguing that we succeeded in obtaining such a
good angular momentum Ñux distribution under the simpli-
Ðed assumptions made in this paper. It suggests that the
energy bearing perturbation structure in accretion disks
may be dominated by essentially nondivergent motions
rather than a sound Ðeld. This question is presently under
investigation.

We thank Ethan Vishniac and Brian Farrell for their
comments on the manuscript. Alexander Kakouris acknow-
ledges the Greek National Scholarships Foundation for
postdoctoral research Ðnancial support.
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