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ABSTRACT

The physical mechanisms of transient amplification of initial perturbations to the thermohaline circulation
(THC), and of the optimal stochastic forcing of THC variability, are discussed using a simple meridional box
model. Two distinct mechanisms of transient amplification are found. One such mechanism, with a transient
amplification timescale of a couple of years, involves an interaction between the THC induced by rapidly decaying
sea surface temperature anomalies and the THC induced by the slower-decaying salinity mode. The second
mechanism of transient amplification involves an interaction between different slowly decaying salinity modes
and has a typical growth timescale of decades. The optimal stochastic atmospheric forcing of heat and freshwater
fluxes are calculated as well. It is shown that the optimal forcing induces low-frequency THC variability by
exciting the salinity-dominated variability modes of the THC.

1. Introduction

Quite a few physical mechanisms of thermohaline
circulation (THC) variability have been proposed over
the past few years, varying from damped linear oscil-
lations excited by stochastic atmospheric forcing (e.g.,
Griffies and Tziperman 1995), interpreting the coupled
GCM study of Delworth et al. (1993) via self-sustained
small amplitude variability (e.g., Chen and Ghil 1995),
jumps between different equilibria induced by stochastic
forcing (Cessi 1994), to larger self-sustained amplitude
variability (e.g., Weaver et al. 1991), and to yet stronger
THC flushes (e.g., Winton and Sarachik 1993). Present-
day THC variability is most likely of a fairly small
amplitude (5%–10% of the mean value), so that line-
arized dynamics might be able to describe it relatively
well. It is known that stable non-normal linear systems
can undergo large transient amplification given optimal
perturbations (Farrell 1988; Farrell and Ioannou 1996).
One wonders whether such transient amplification is
also relevant to the dynamics of present-day THC var-
iability.

The nonnormal nature of the THC dynamics could
play a role in two different contexts that motivate the
present work. First, optimal initial conditions could re-
sult in large transient THC amplification. While the
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THC seems to have been quite stable for about 10 000
years, there are indications that it might be close to an
instability threshold (Tziperman et al. 1994; Tziperman
1997) below which the THC may become unstable. Are
there transient amplification mechanisms that may result
in a transition of the climate system to below the THC
stability threshold? The second question to be studied
here is whether a continuous excitation of the nonnormal
dynamics by atmospheric noise could result in a sig-
nificant THC variability, and what might be the physical
mechanism behind the optimal stochastic forcing. We
study these issues in the framework of a simple box
model that is described in section 2. The results for the
optimal initial conditions and mechanisms of transient
THC growth are described in section 3 and those for
the optimal stochastic forcing are described in section
4. We conclude in section 5.

2. The model

The model (Fig. 1) is chosen to be the simplest THC
meridional box model that displays the oscillatory THC
mode studied by Tziperman et al. (1994) and Griffies
and Tziperman (1995). There are three ocean boxes,
with box 1 representing the midlatitude upper ocean,
box number 2 representing the polar ocean, and box 3
the midlatitude deep ocean. The model equations are
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FIG. 1. The meridional THC box model.

TABLE 1. Eigenvectors and inverse eigenvalues of the linearized box model equations in a typical stable oscillatory regime. The inverse
eigenvalues given in the top row of the table are in units of years.

e1 e2 e3 e4 e5 e6

l21

T1

T2

T3

S1

S2

S3

20.6539
20.6656

0.7463
20.0041
20.0062

0.0063
20.0000

20.8164
0.9523
0.3052

20.0021
20.0010

0.0010
20.0000

280.8612 1 i30.5346
0.2754 1 0.2904i

20.2693 2 0.2806i
20.0627 1 0.0767i

0.6526
20.3194 2 0.3681i
20.0833 1 0.0920i

280.8612 2 i30.5346
0.2754 2 0.2904i

20.2693 1 0.2806i
20.0627 2 0.0767i

0.6526
20.3194 1 0.3681i
20.0833 2 0.0920i

2135.3168
20.0925

0.1161
0.9640

20.2142
0.0063
0.0520

`
20.0000

0.0000
20.0000

0.5774
0.5774
0.5774

U 5 u {r 2 [dr 1 (1 2 d)r ]}0 2 1 3

r 5 2aT 1 bS

Ṫ 5 U(T 2 T )/V 1 g(T* 2 T )1 3 1 1 1 1

Ṡ 5 U(S 2 S )/V 1 FW /V , (1)1 3 1 1 1 1

with the above temperature and salinity equations writ-
ten for the case of a thermally dominant mode (U .
0). The equations for the two other boxes and for neg-
ative (salinity dominant) THC are written using the same
standard box model upwind differencing scheme (Rivin
and Tziperman 1997). The north–south dimensions of
the boxes are L1,2,3 5 5000, 2000, 5000 km; their depths
H1,2,3 5 1, 5, 4 km; and their width W 5 4000 km. The
model parameters are u0 5 16/0.0004 Sv g cm23 (1 Sv
[ 106 m3 s21), a 5 1668 3 1027 g cm23 K21, b 5
0.781 3 1023 g cm23 psu21, g 5 1/300 day21, d 5 H1/
H3 5 0.25. The restoring atmospheric temperatures are

5 22, 08C, and the freshwater (FW) forcing is FW1T*1,2

5 2FW2 5 S0 3 100 cm yr21 3 Area1, with S0 5 35
ppt. The use of a linearized equation of state is a ne-
cessity because of the linear nature of the analysis to
be applied below to this model, although it is may be
expected to result in some bias because of the known
stronger dependence of the density on salinity at low
temperatures. The box model is very standard so we do
not explore its parameter sensitivities here, which may
be found, for example, in Griffies and Tziperman
(1995), Tziperman et al. (1994), and Rivin and Tzip-
erman (1997).

3. Transient amplification and optimal initial
conditions

Begin by examining the possibility of transient am-
plification of the THC by the nonnormal linearized dy-
namics in the linearly stable regime under mixed bound-
ary conditions. Write the box model variables as steady-
state solution plus a small perturbation, Ti 5 i 1 .T T9i
The equations for the temperature and salinity anoma-
lies, linearized about the steady-state solution, in vector
form, are

dP
5 AP

dt

P [ [T9, T9, T9, S9, S9, S9], (2)1 2 3 1 2 3

where A is the 6 3 6 matrix of the linearized model
equations. Now drop the primes and consider the sta-
bility of the steady solution to small perturbations. Un-
like the two-box Stommel (1961) model, the present
model is characterized by a damped oscillatory behavior
for FW forcing that is below some critical value (Tzip-
erman et al. 1994). This oscillatory mode makes the
dynamics richer and more interesting for the purpose of
the following analysis.

The six eigenvectors e i and eigenvalues li of the lin-
earized model equations (Table 1) contain two rapidly
decaying vectors with decay times in the order of 1–2
years that correspond to SST anomalies (vectors e1, e2

in Table 1), two oscillatory (complex) modes with an
oscillatory and decay times on the order of a few de-
cades (e3, e4), and a slowly decaying mode (e5). Finally,
there is one mode with a zero eigenvalue that corre-
sponds to a constant shift in the salinity of all boxes
(e6), to which the THC is not sensitive, nor any of the
other model equation (hence the zero eigenvalue).

We now wish to find the optimal initial conditions
P(t 5 0) that maximize the THC at a time t, U(t 5 t)2.
This measure to be maximized may be written as

TJ(t) [ P(t 5 t) XP(t 5 t), (3)

where

X 5 R R R · P 5 U, (4)i j i j

where R is a six-dimensional vector that has the explicit
form [derived from the first two equations in (1)]

R 5 u [da, 2a, (1 2 d)a, 2db, b, 2(1 2 d)b]. (5)0
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FIG. 2. THC anomaly calculated by the linearized model equations. Initial conditions are those that
maximize the transient amplification of the THC anomaly at t 5 2 yr, according to mechanism 1 (see text):
(top) aTi, (middle) bSi, (bottom) THC and its temperature and salinity components.

The THC may be divided into the separate contributions
of the temperature and the salinity:

U 5 R · PT T

U 5 R · PS S

R 5 u [da, 2a, (1 2 d)a, 0, 0, 0]T 0

R 5 u [0, 0, 0, 2db, b, 2(1 2 d)b]. (6)S 0

Note that the norm kernel X is singular for the above
norm that measures the THC amplitude (the rank of X
is one). The maximization is done subject to the con-
dition that the initial conditions have a unit norm under
some possibly different norm kernel Y:

TJ(0) 5 P(t 5 0) YP(t 5 0) 5 1. (7)

Now, the solution to the model equation is
tAP(t 5 t) 5 e P(t 5 0) 5 B(t, 0)P(t 5 0), (8)

where B(t, s) is the propagator from time s to time t:
P(t) 5 B(t, s)P(s). We wish to find the optimal initial
conditions that maximize P(t 5 t)TXP(t 5 t) subject to
P(t 5 0)TYP(t 5 0) 5 1. For this purpose, we need to
solve the constrained optimization problem

T T Tmax {P B XBP 1 lP YP }, (9)0 0 0 0
P0

where P0 5 P(t 5 0). By equating the derivative of this
expression with respect to P0 to zero, we find that the
optimal initial conditions are the eigen vectors e of the
generalized eigen problem

TB(t, 0) XB(t, 0)e 5 lYe. (10)

Let us now set Y 5 X with X from (4) reflecting the
amplitude of the THC. Because X is singular, the eigen
problem (10) is singular. We therefore need to regularize
X as explained in the appendix. In this case, the eigen
vector e1 with the largest eigenvalue of (10) is the spatial
structure of the normalized temperature and salinity ini-
tial conditions that results in the largest THC amplifi-
cation at a time t. The actual amplification of the THC
in this case is the corresponding eigenvalue l. By ex-
amining the optimal transient amplification for a variety
of run times t, we find that there are two different phys-
ical mechanisms that allow for transient amplification
of the THC in the box model. One has a typical timescale
of O(2) years and the other O(40) years. We now con-
sider each of these in some detail.

Figure 2 shows the temperature, salinity, and THC
calculated by the linearized model as function of time
for the optimal initial conditions obtained with an op-
timization time t 5 2 yr. The solid line in the lower
panel of that figure shows that the optimal initial con-
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ditions correspond to a zero value of the initial THC,
and to a rapid growth within a timescale of some 2–3
years. (At that stage the THC starts to slowly increase
as part of a slow oscillation due to the oscillatory modes
of the model dynamics.) The physical interpretation of
the rapid initial growth is very simple. The initial THC
anomaly depends on both the temperature and salinity
distributions. The dash and dash–dot lines in the lower
panel of Fig. 2 show that the transient amplification of
the THC is due to the interaction of the rapidly decaying
SST modes and the slow-decaying oscillatory modes.
In mathematical terms, these modes are nonorthogonal
in the norm whose kernel is X. In more physical terms,
we note that the initial conditions correspond to tem-
perature and salinity perturbations that create exactly
canceling contributions to the THC, UT 5 2US (6), so
that the THC anomaly vanishes at t 5 0, U(t 5 0) 5
0. The THC due to the temperature perturbations, UT,
depends mostly on the surface temperature in this op-
timal mode, and therefore decays rapidly to zero, caus-
ing the total THC to rapidly grow to the value of the
much slower decaying salinity contribution US.

This transient amplification mechanism due to the
interaction of two (or more) nonorthogonal eigenmodes
with different decay times is typical of nonnormal sys-
tems (Farrell and Ioannou 1996). Typically in such sys-
tems optimal small-amplitude initial conditions are the
superposition of two (nonorthogonal) large-amplitude
eigenmodes of the system. The two large-amplitude
components composing the initial conditions partially
cancel each other, resulting in a small-amplitude initial
condition. One of these eigenmodes has a rapid decay
time, while the other a slower decay time. After some
short time past the initial conditions, the faster-decaying
eigenmode vanishes, leaving only the component of the
initial conditions corresponding to the slowly decaying
eigenmode. This decay eliminates the mutual cancel-
lation between the two modes, and the system finds itself
at a state that is close to the large initial value of the
slower-decaying mode, hence the initial amplification.
At a later time the remaining eigenmode slowly decays
to zero as well.

Note that because the initial THC anomaly vanishes
for the optimal initial conditions, whose time evolution
is plotted in Fig. 2, the actual amplification U(t)/U(0)
is infinite, and so is the eigenvalue corresponding to this
mode. (As explained in the appendix, when the norm
Kernel X is regularized, the initial THC approaches zero,
and the amplification approaches infinity, as the regu-
larization constant « approaches zero.) Although the am-
plification relative to the initial value of the THC is
infinite, the actual maximal value of the THC depends
on the amplitude of the initial salinity perturbations. The
eventual maximum amplitude to which the THC anom-
aly may reach is limited by the initial amplitude of the
salinity contribution to the THC, US.

This brings us to one of the two motivations for this
study mentioned in the introduction. That is, can a tran-

sient amplification of small-amplitude initial perturba-
tion to the ocean state cause a large-amplitude transient
amplification that would bring the THC below the sta-
bility threshold? It seems from the above discussion that
this is not likely to happen, as the eventual amplitude
of the THC anomaly at the maximum transient ampli-
fication is limited by the contribution of the salinity
anomalies of the initial conditions to the THC. Thus to
get a large THC amplification, we need a large initial
salinity anomaly, not a small one.

The second physical mechanism of transient THC
growth is shown in Fig. 3 and is different from the one
described above in several aspects. First, it occurs after
a time of O(40) years, rather than a couple of years as
in the first mechanism. Second, it involves mostly a slow
reorganization of the salinity and temperature anomalies
in the model, rather than an interaction of the fast de-
caying temperature modes and slow salinity modes as
discussed above. As can be seen in the lower panel of
Fig. 3, the contribution of the temperature (UT, dash)
to the changes in the THC anomaly (solid) is negligible,
and the THC anomaly due to salinity anomalies (US,
dash–dot) dominates throughout the shown time series.
The spatial structure of the optimal initial conditions is
such that the initial THC is very close to zero separately
for both the temperature and the salinity contributions
(the two still cancel at t 5 0, so that US 5 2UT). Note
that this is distinctly different from the first mechanism
discussed above. However, as the salinity anomalies
evolve in time because of both the advection of the
anomalies by the mean THC and the advection of the
mean salinity gradients by the anomalous THC, the
structure of the salinity anomalies at a time of 40 yr
past the initial conditions evolves into a structure that
maximizes the salinity contribution to the THC, US. This
basically happens because of the evolution of the south-
ern surface box salinity S1 and the polar box salinity S2

as can be seen in the middle panel of Fig. 3. Note again
that while changes do occur in the temperature field
(upper panel), they are of little consequence to the evo-
lution and transient growth of the THC (dashed line,
lower panel of Fig. 3). Unlike in the first mechanism
discussed above, the second mechanism relies mostly
on the slower-decaying eigenmodes of the linearized
model matrix. Because of the timescales of these modes
(see e3, e4, e5 in Table 1) are different by only a factor
of 2 from each other, the transient amplification is not
very rapid relative to the eventual decay timescales (as
explained above, the transient amplification typically
has the timescale of the fastest decaying relevant ei-
genmode, and the perturbation then decays according
to the timescale of the slowest decaying mode, (Farrell
and Ioannou 1996). Moreover, it should be quite clear
from Fig. 3 that the second ‘‘amplification’’ mechanism
is not very different from the oscillatory mechanism of
the two complex oscillatory modes seen in Table 1. Such
oscillatory modes always have phases with a zero value
of the THC that later develop into a nonzero THC. To
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FIG. 3. THC anomaly calculated by the linearized model equations. Initial conditions are those that
maximize the transient amplification of the THC anomaly at t 5 45 yr, according to mechanism 2 (see text):
(top) aTi, (middle) bSi, (bottom) THC and its temperature and salinity components.

some degree, that is what happens in the above second
growth mechanism, although some other nonoscillatory
modes of the linearized model also contribute to the
optimal initial conditions of this second transient am-
plification mechanism.

It might be useful to add a word regarding the norm
kernel X used here. In works looking at the nonnormal
transient amplification in various models, one normally
makes an effort to show that the results do not depend
on the choice of norm. It is important to understand that
in the present work, we are interested particularly in the
specific norm used here which measures the amplifi-
cation of the THC. Using an energy norm, for example
(sum of squares of the temperature and salinity), may
eliminate the interesting growth mechanisms explored
here, and would simply be irrelevant to the objective of
this work, which has to do with transient amplification
of the THC itself. It is possible that a norm kernel X
which measures the THC amplitude in a more realistic
model may not be singular. However, the two specific
physical mechanisms found here using the singular
norm kernel are physically sensible and therefore should
be robust in fuller models as well.

Having identified two physical mechanisms for tran-
sient THC amplification, we now proceed to study the

optimal excitation of the THC by continuous stochastic
forcing.

4. Stochastic optimals
Consider now a white noise heat and freshwater forc-

ing of the THC added to the mean surface forcing fields.
In this case we would like to know what is the optimal
spatial structure (stochastic optimals) of the noise that
results in maximal variance of the THC variability. The
derivation below follows Kleeman and Moore (1997) and
is also practically identical to that of Farrell and Ioannou
(1996). The forced linearized model equation is

Ṗ 5 AP 1 F f(t), (11)

where f is a six-vector noise forcing term and F is a
matrix operator restricting the noise to the surface boxes
only (boxes 1 and 2): Fij 5 1 for i 5 j 5 1, 2, 4, 5 and
Fij 5 0 elsewhere. The solution to the model equation
(11) is

t

t (t2s)A AP(t) 5 e P(0) 1 dse F f (s)E
0

t

5 B(t , 0)P(0) 1 dsB(t , s)F f (s). (12)E
0
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We are interested in the variance of the THC defined
using the norm kernel X:

Var(\P\) [ ^P (t)X P (t)& 2 ^P (t)&X ^P (t)&,i i j j i i j j

where the average ^ & is over realizations of the noise
f. Based on the solution (12) for P, we have ^Pi(t)& 5
^Bij(t, 0)Pj(0)& so that

t t

Var(\P\) 5 ds dtB (t , s)F f (s)X B (t , t)E E i l l l9 l9 i j jn7
0 0

3 F f (t)nn9 n9 8
t t

5 ds dtB (t , s)X B (t , t)F FE E i l i j jn l l9 nn9

0 0

3 ^ f (s) f (t)&, (13)l9 n9

specifying the noise statistics to be separable in space
and time,

^ f (t) f (s)& 5 C D(t 2 s),l9 n9 l9n9

we have
t t

Var(\P\) 5 ds dtB (t , s)F X B (t , t)E E i l l l9 i j jn

0 0

3 F C D(t 2 s)nn9 l9n9

t t

T T5 Tr ds dtD(t 2 s)F B(t , s)E E5[
0 0

3 XB(t , t)F C6]
5 Tr[ZC]. (14)

With this last expression we can now calculate the sto-
chastic optimals, that are the eigenvectors of Z with the
largest eigenvalues (Farrell and Ioannou 1996; Kleeman
and Moore 1997). The actual computational examples
below are worked out with the noise f n at any given
spatial location and time step n being a 1D Markov
process:

2f 5 Rf 1 Ï1 2 R nn11 n n

R [ exp(2Dt/T )corr

2^n n & [ s dn m nm

D(t 2 t ) [ ^ f f &n m n1m n

2 2mD t /Tcorr5 s e . (15)

The matrix Z is evaluated from the double time integral
of (14) by changing variables of integration to r 5 t 2
s; q 5 t 1 s such that s 5 (q 2 r)/2; t 5 (q 1 r)/2.
Note that the coordinate transformation may be written
using a 2 3 2 matrix M as (r, q) 5 M(t, s) where M 5
[1, 21; 1, 1] so that dt ds 5 det(M21)dr dq 5 (1/2)dr

dq. For efficiency, truncate integration region in the (r,
q) plane to | r | 5 | t 2 s | , Ttrunc K t, which would
be a good approximation as long as Ttrunc k Tcorr, due
to the short correlation time of the noise as expressed
in the D(t 2 s) 5 D(r) factor in (15). Note also that
the matrix Z is independent of the time t as long as it
is sufficiently longer than the relevant physical decay
times of the model (the neutral mode with infinite decay
time of our linearized equations does not affect the THC,
so the time t needs to be a few times the slowest decay
time seen in Table 1).

Figure 4 shows time series of the temperature, salin-
ity, and THC from the solution of the linearized box
model (2) forced by stochastic noise in the heat and
freshwater fluxes that has the spatial structure obtained
from the most optimal eigenvector of Z (f6, Table 2).
Similarly, Fig. 5 shows the results when forcing by the
third most optimal such eigenvector (f4). Clearly the
solution forced by the first eigenvector has a larger var-
iance of the THC, as expected given the norm X we are
using. This can also be seen in the spectra of the THC
time series forced by the different eigenvectors of Z,
shown in Fig. 6. Note that not only the variance is
different, but also the less optimal modes produce high-
er-frequency response. It seems that the most optimal
two eigenvectors (f5,6 in Table 2) excite mostly the sa-
linity-controlled THC variability modes, while the less
optimal eigenvectors excite the thermally controlled
variability modes (compare UT and US in the lower panel
of Figs. 4 and 5). This is also seen in Table 2 which
shows the spatial structure of the stochastic optimals,
and the corresponding eigenvalues which reflect the de-
gree of excitability of each mode (Kleeman and Moore
1997; Farrell and Ioannou 1996).

The spectra of the model solution for the THC (Fig.
6) is basically red, with no large-amplitude peaks. The
model does have an oscillatory mode that may be ex-
cited to produce a peak at the appropriate period of about
thirty years (see complex eigenvalues in Table 1). How-
ever, there is also an exponentially decaying mode that
is slower decaying than the oscillatory damped modes,
and it seems that the excitation of this mode dominates,
resulting in no large spectral peaks at the frequency of
the oscillatory modes in the stochastically forced model
solution.

There is one issue we need to be aware of regarding
stochastically forcing the salinity in ocean models such
as the one used here. Because there is a zero mode of
the box model corresponding to a constant shift in the
salinities of all boxes (e6 in Table 1), the ensemble av-
erage salinity variance can grow indefinitely and linearly
in time when forced with uncorrelated freshwater forc-
ing. This can be seen in the slow drift of the mean
salinity seen in the middle panel of Fig. 4. In reality,
this drift of the mean salinities is limited by the finite
mass of the freshwater available for evaporation (E)
minus precipitation (P) (mostly due to the finite mass
of land glaciers whose accumulation and melting pro-
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FIG. 4. Response of the linearized box model THC to stochastic surface forcing patterns based on the
most optimal eigenvector of Z: (top) aTi for all boxes, as function of time; (middle) bSi, (bottom) the THC
anomaly, as well as its temperature and salinity components, UT and US.

TABLE 2. Eigenvectors (stochastic optimals) and eigenvalues of the
matrix .Z

f1 f2 f3 f4 f5 f6

l
T1

T2

T3

S1

S2

S3

0
0
0

21
0
0
0

0
0
0
0
0
0
1

0
20.9824
20.1862
20.0000

0.0008
20.0000

0

0.001
20.1862

0.9822
0.0000

20.0190
0.0135
0

0.452
20.0033

0.0220
0.0000
0.9491

20.3140
0

2.567
0.0015

20.0066
0.0000
0.3142
0.9493
0

vide the sink/source for the net freshwater flux into the
ocean). This implies that in order to prevent the variance
of salinity perturbations in the ocean from growing in-
definitely, we should actually use a FW flux that is
constrained by an explicit glacier mass balance equa-
tion. Such FW forcing will be characterized by long
time correlations corresponding to the timescale of the
land glaciers (tG ; tens of thousands of years). Alter-
natively, we can consider only timescales that are sig-
nificantly smaller than tG. On such timescales, shorter
than the time it takes for the finite mass of the glaciers
to have an effect, it is realistic to expect the averaged
salinity variance to grow linearly in time. Note that
alternatively, we could have demanded that the net E
2 P forcing of the ocean box model vanishes, basically

demanding that precipitation over the high-latitude
ocean at any given time only comes from the instan-
taneous evaporation from the ocean over the lower lat-
itudes. However, this is not a physically realistic con-
straint, because the land glaciers can provide a net sink/
source making the net E 2 P nonzero at any given
moment. Note that, in any case, because there are only
two surface boxes in this model, adding a constraint of
zero net E 2 P at any given time would mean that the
spatial structure of the noise is determined completely.
There would, of course, be no meaning to a calculation
of the optimal spatial structure of the stochastic forcing
then.

5. Conclusions

We have examined the optimal initial conditions that
lead to transient growth of THC anomalies in a simple
meridional box model. The possible physical mecha-
nisms that lead to such transient growth were analyzed
in some detail. One such mechanism is based on an
interaction of the thermally driven and salinity-driven
components of the THC anomalies. We found that ini-
tially, the two components exactly balance in the op-
timal initial conditions, leading to a zero initial value
of the THC anomaly. The thermal component then de-
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FIG. 5. Same as Fig. 4, but for third optimal eigenvector of Z.

FIG. 6. Power spectral density of the time series of the THC in the
box model forced by the four stochastic optimals f3,4,5,6.

cays rapidly (within a couple of years or so) because
of the restoring thermal boundary conditions, making
the THC anomaly grow to the initial value of the sa-
linity-driven THC anomaly component. The second
transient growth mechanism involves a rearrangement
of the initial salinity anomaly field that leads to the
growth of the THC anomaly. This second mechanism
is closely related to the oscillatory modes of the line-
arized model dynamics.

The optimal stochastic atmospheric forcing of heat and
freshwater fluxes were also calculated. It was shown that
the optimal forcing induces low-frequency variability by
exciting the salinity variability modes of the THC.

There are some very basic questions that we have not
been able to address here: What is the concert physical
meaning of the ordinary and stochastic optimals? How
could such perturbations actually be realized? Do ob-
servations project into these optimal modes? These three
important questions are ones that have been answered
very nicely in the context of the optimal excitation of
ENSO, where the observed westerly wind bursts seem
similar to the optimal forcing calculated by some models
(Moore and Kleeman 1999). This situation is more dif-
ficult to reproduce presently in the context of the THC.
With the two-point resolution in space in the box model
used here for an entire ocean basin, it is difficult to
compare calculated optimal surface forcing patterns
with observations. Once the same analysis is done with
a fuller-resolution model, it would hopefully be possible
to analyze the available observations of air–sea fluxes
and look for modes that project on the optimal stochastic
forcing.

It is quite satisfactory that we have been able to iden-
tify two simple physical mechanisms that can result in
transient THC amplification, as well as get some phys-
ical intuition into the mechanism of optimal stochastic
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forcing of the THC by stochastic atmospheric heat and
freshwater forcing. Past experience with THC box mod-
els has proven that when a physical mechanism can be
identified in such simple models, it is more often than
not also found in fuller and more complex/realistic mod-
els. One example out of many possible ones is the con-
jecture of Walin (1985) and Tziperman et al. (1994)
based on simple box models, that present-day climate
might be close to a stability threshold, which has later
found additional evidence in the ocean and coupled
GCM studies of Tziperman et al. (1994) and Tziperman
(1997). It would clearly be interesting therefore to ex-
amine the findings here in fuller models of the THC.
Such an examination using fuller models is obviously
necessary to evaluate the relevance of the findings here
to the actual THC.
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APPENDIX

Transient Growth Using a Singular Norm Kernel

Solving the eigen problem (10) with singular norm
kernel may lead to an infinite amplification factor with
optimal modes for which the initial value of the THC
is zero and the value at the optimization time is finite.
Now, if there are two or more such eigenmodes, they
may be linearly superimposed resulting again in a mode
with infinite amplification factor. This nonuniqueness of
the optimal eigenmodes may result in a suboptimal tran-
sient growth estimate. It is therefore necessary to reg-
ularize the eigen problem by adding a small diagonal
matrix to the norm kernel

X 5 X 1 «I.«

We have therefore used X 5 Y 5 X« in (10). Once this
is done, the initial THC value for the optimal mode is
not zero, and the optimal amplification factor is not
infinite but tends to infinity as « approaches zero.
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