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ABSTRACT

Understanding the physical mechanism maintaining fluid turbulence remains a fundamental theoretical

problem. The two-layer model is an analytically and computationally simple system in which the dynamics of

turbulence can be conveniently studied; in this work, a maximally simplified model of the statistically steady

turbulent state in this system is constructed to isolate and identify the essential mechanism of turbulence. In

this minimally complex turbulence model the effects of nonlinearity are parameterized using an energetically

consistent stochastic process that is white in both space and time, turbulent fluxes are obtained using a

stochastic turbulence model (STM), and statistically steady turbulent states are identified using stochastic

structural stability theory (SSST). These turbulent states are the fixed-point equilibria of the nonlinear SSST

system. For parameter values typical of the midlatitude atmosphere, these equilibria predict the emergence

of marginally stable eddy-driven baroclinic jets. The eddy variances and fluxes associated with these jets and

the power-law scaling of eddy variances and fluxes are consistent with observations and simulations of

baroclinic turbulence. This optimally simple model isolates the essential physics of baroclinic turbulence:

maintenance of variance by transient perturbation growth, replenishment of the transiently growing subspace

by nonlinear energetically conservative eddy–eddy scattering, and equilibration to a statistically steady state

of marginal stability by a combination of nonlinear eddy-induced mean jet modification and eddy dissipation.

These statistical equilibrium states provide a theory for the general circulation of baroclinically turbulent

planetary atmospheres.

1. Introduction

Physical understanding of synoptic-scale baroclinic

dynamics has been advanced by recognition of the role

of nonnormality in producing perturbation growth and

in determining the statistical structure of the eddy field.

We refer to the ideas and methods by which stability

theory is extended through incorporation of the effects

of nonnormality as generalized stability theory (GST)

(Farrell 1982, 1985, 1989; Farrell and Ioannou 1993b,

1994, 1996a,b). The method within GST for obtaining

the statistics of the eddy field given a jet—the stochastic

turbulence model (STM) (Farrell and Ioannou 1995,

1996a; DelSole and Farrell 1995, 1996; DelSole 1996;

Newman et al. 1997; Whitaker and Sardeshmukh 1998;

Zhang and Held 1999; DelSole 2004b)—is a building

block for the recently developed theory for the structure

of turbulent jets, namely, stochastic structural stability

theory (SSST) (Farrell and Ioannou 2003, 2007, 2008,

2009). In this work we exploit these methods to further

our understanding of the fundamental physics of tur-

bulence.

We begin building an idealized but physically and

mechanistically correct closure for turbulence by noting

that the nonlinear terms in the hydrodynamic equations

do not participate in the transfer of energy from the mean

flow to the eddy field, so it follows that eddy variance is

maintained by the linear perturbation terms in the dy-

namics. We anticipate, in accord with observations, that

this linear process is nonmodal perturbation growth

(DelSole 2004a, 2007). It follows that the key physical

mechanism sustaining turbulence is that process main-

taining the nonnormal subspace of growing perturbations
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against continual depletion under shearing by the mean

flow. In statistically steady unforced turbulence, this pro-

cess is the energetically conservative scattering by non-

linear wave–wave interaction; because this scattering

process is chaotic and has short time and space scales,

it can be parameterized as stochastic (DelSole 2004b;

Sardeshmukh and Sura 2007).

Given sufficient excitation of the nonnormal growing

subspace to maintain the observed turbulence in a jet,

the detailed structure of the turbulence and the associ-

ated eddy fluxes can be obtained using an STM. With

eddy forcing of the mean jet obtained from the STM,

the nonlinear dynamical balance among the ensemble

mean turbulent heat and momentum flux divergences,

the mean thermal forcing, and the dissipation can be

obtained using SSST (Farrell and Ioannou 2003, 2007).

In the case of the Jovian winds, which are driven by

internally generated convection (Gierasch et al. 2000;

Ingersoll et al. 2000), the stochastic excitation needed to

maintain the observed turbulence can be identified as

that of the observed convection, so that in this system

turbulence does not require a further closure (Farrell

and Ioannou 2009). In the case of the midlatitude jet,

although part of the excitation of the growing subspace

is traceable to essentially chaotic convection, as in the

Jovian case, a substantial portion originates in the

nonlinear eddy–eddy scattering. One approach to ac-

count for the implicit nature of the eddy–eddy scattering

is to obtain the equilibrium turbulent states for all

plausible scattering intensities and then identify the

physical operating point of the midlatitude turbulence,

taking for the scattering parameterization that intensity

producing the observed jet structure and eddy statistics

(Farrell and Ioannou 2008). This approach has the ad-

vantage of simply and directly identifying the essential

dynamics maintaining the turbulent statistical equilib-

rium state, but it falls short of a closure because the

eddy–eddy scattering remains an explicit parameter.

To close the turbulence problem, the nonlinear eddy–

eddy scattering of energy among scales must be pa-

rameterized in a physically correct manner—that is,

quadratic in velocity, stochastic in time and space, and

conservative of energy.1 We construct a closure with

these properties that is specified by a single scalar pa-

rameter controlling the scattering efficiency. Although

the scattering efficiency remains a parameter, it could

(at least in principle) be found from calculation of

the wave–wave scattering coefficients in Fourier space

(Tung and Orlando 2003; DelSole 2007). We discuss the

physical meaning and effect of this scattering coefficient

below.

Having obtained the excitation from the stochastic

scattering parameterization and the fluxes from the

STM, it remains to obtain the equilibrium statistically

steady turbulent state. Study of midlatitude baroclinic

jet dynamics reveals the mechanism of this equilibration

to be wave–mean flow interaction producing fixed points

of mutual adjustment between the turbulent eddy field

and the mean jet structure (Farrell and Ioannou 2008).

We use an SSST model to locate these equilibria in

which the turbulent state is maintained in a statistical

equilibrium with essentially correct physics. Baroclinic

turbulence adjusts the atmospheric state to marginally

stable equilibria and thus these equilibria constitute the

basis for a theoretical understanding of the general cir-

culation of turbulence-dominated circulations such as

that of the midlatitude atmosphere.

We present two examples: turbulence supported by

relaxation to a meridionally localized unstable tem-

perature gradient, and turbulence supported in a wide

channel relaxed to a meridionally constant unstable

temperature gradient. In the first case, the equilibrium

jet is found to be in good agreement with nonlinear

model simulations of localized jets (DelSole and Farrell

1996; Zurita-Gotor 2007); in the second, multiple jets

emerge and equilibrate in agreement with simulations

of turbulence in wide baroclinic channels (Panetta 1993;

Thompson and Young 2007).

An important problem into which these equilibria

provide insight is that of determining the physical mech-

anism underlying the turbulent heat flux–thermal gra-

dient relationship. Two primary mechanisms have been

advanced to explain this relationship: baroclinic adjust-

ment (Stone 1978) and turbulent diffusion (Green 1970;

Held and Larichev 1996). The baroclinic adjustment hy-

pothesis has been criticized for predicting fixed thermal

gradients whereas the turbulent diffusion hypothesis

has been criticized for failing to predict observed flux–

gradient relationships (Zurita-Gotor 2007; Thompson

and Young 2007). We find that as the thermal gradient

is increased across a wide channel, at first multiple jets

adjust to maintain marginally stable equilibria and the

heat flux increases rapidly with the imposed thermal

gradient until, at a sufficiently high imposed thermal

gradient, jets are no longer maintained but the rapid

increase of heat flux with thermal gradient persists. This

behavior agrees with the concept of baroclinic adjust-

ment in the sense that the system is modified from an

unstable to a marginally stable state by eddy fluxes, but

the process of adjustment produces a functional de-

pendence between the flux and the gradient that varies

1 The nonlinear scattering process conserves potential enstrophy

as well as energy, but we consider potential enstrophy to be a weak

invariant and do not insist that it be conserved.
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to good approximation as a power law in agreement

with predictions of higher-order thermal diffusion (Held

and Larichev 1996; Pavan and Held 1996; Thompson

and Young 2007).

Although the turbulent states obtained in this work

are strikingly realistic when compared with turbulent

states in nonlinear simulations, the goal of this work is

to provide a fundamental understanding of the physical

mechanisms of turbulence rather than to optimize com-

parison with model integrations. For this reason we have

always chosen the simplest parameterization even if a

nonessential improvement in turbulence structure could

be obtained with a more complex parameterization. For

example, we have chosen uniform Rayleigh damping to

model eddy dissipation rather than variance dependent

diffusion, which would improve our jet structure (DelSole

and Farrell 1996), and we have chosen an excitation that is

uniform and white in space and time to model eddy–eddy

scattering rather than a variance-dependent scattering

(DelSole 2001), which would improve the verisimilitude

of the jet structure. We have made these choices to

make clear that the form of the dissipation and the scat-

tering parameterization used in the closure are not es-

sential to the physics of turbulence; rather, that the

fundamental mechanisms of turbulence are replenish-

ment of the nonnormal growing subspace and nonlinear

equilibration by jet structure modification.

2. Dynamics of baroclinic turbulent jets

a. Formulation

A theory of jet dynamics in turbulence was devel-

oped in Farrell and Ioannou (2003). This theory was

applied to the problem of the formation of jets in

barotropic turbulence in Farrell and Ioannou (2007),

to the problem of formation of jets in baroclinic tur-

bulence in Farrell and Ioannou (2008), and to the

problem of the formation of jets in the shallow water

equations on an equatorial beta plane in Farrell and

Ioannou (2009). We now briefly review this theory as it

applies to the baroclinic turbulence closure problem.

Consider a two-layer baroclinic fluid on a midlatitude

b plane. Quasigeostrophic motions are governed by the

equation

›q
n

›t
1 u

n

›q
n

›x
1 y

n

›q
n

›y

5 � r
2
=2c

i
d

i2
1 (�1)n2r

R
l2(C� � c�), (1)

where n 5 1 refers to the top layer and n 5 2 to the

bottom layer. The potential vorticity is defined in terms

of the upper- and lower-layer streamfunction cn as

q
n

5 =2c
n

1 (�1)n2l2c�1 by, (2)

with the baroclinic (denoted 2) and the barotropic

(denoted 1) streamfunctions defined as

c�5
c

1
� c

2

2
and cþ5

c
1

1 c
2

2
. (3)

The corresponding zonal (x) and meridional (y) veloc-

ities in each layer are

u
n

5 �
›c

n

›y
y

n
5

›c
n

›x
, (4)

with similar definitions for the barotropic and baroclinic

velocities.

In (1), r2 is the rate of damping of the mean flow in the

lower layer (layer 2) to a state of rest (as indicated by

the Kronecker di2, which is nonzero only for the lower

layer i52). The baroclinic flow is relaxed at rate rR to

the imposed baroclinic shear:

U�R 5 �C�y .

The nondimensional Rossby radius of deformation

is 1/l 5
ffiffiffiffiffiffiffiffiffi
g9H

p
/fL, where L is the horizontal scale, H is

the height of each layer, g9 5 g(r2 2 r1)/(r2 1 r1) is the

reduced gravity (g is the gravitational acceleration and rn

the density of the layers), and f is the Coriolis parameter.2

Lengths are nondimensionalized by L 5 106 m and

time by the Earth day td 5 1 day so that the velocity

scale is L/td 5 11.6 m s21. All variables will henceforth be

considered nondimensional. In all calculations l2 5 1.

Fields are decomposed into zonal averages and per-

turbations:

c
n

5 c
n

1 c9
n, (5)

in which a bar denotes the zonal average. Averaging (1),

we obtain the equation for the mean
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and by subtraction the equation for the perturbations:
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n
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1 u

n

›q9
n

›x
1 y9

n

›q
n
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2
=2c9
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›
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(u9
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� u9
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q9

n
) 1

›

›y
(y9

n
q9

n
� y9

n
q9

n
). (7)

2 The two-level interpretation equivalently sets the static sta-

bility N 5 (g9/H)1/2, so that 1/l 5 NH/fL.
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The quadratic eddy–eddy interaction term on the rhs

of (7) is parameterized as stochastic excitation and

augmentation to the rate of eddy dissipation:

›

›x
(u9

n
q9

n
� u9

n
q9

n
) 1

›

›y
(y9

n
q9

n
� y9

n
q9

n
)

’

ð ð
W

n
(x� x9, y� y9)h

n
(x9, y9, t) dx9 dy9� r

e
q9

n
,

(8)

where the integral is over the flow domain, hn(x, y, t) is a

variable random in space and time with zero mean and

unit variance such that

hh
n
(x, y, t)h

m
(x9, y9t9)i 5 d

nm
d(x� x9)d(y� y9)d(t � t9),

(9)

re is a rate of eddy dissipation with the form of Rayleigh

friction, and hi indicates an ensemble average. The

function Wn sets both the amplitude of the stochastic

excitation and its spatial distribution (Farrell and

Ioannou 1993a, 1996a; DelSole and Farrell 1996; New-

man et al. 1997; DelSole 2004b). The excitation could be

exogenous, as is appropriate for the gaseous planets, or

partially exogenous to account for, say, random excita-

tion by midlatitude cumulus events, but in this work we

will assume that only endogenous forcing that is qua-

dratic in the eddy amplitude occurs. Further, because the

nonlinear terms do not provide net energy to the eddy

field but only redistribute energy among perturbations,

the energy input from the stochastic excitation will be

balanced by an augmentation of the uniform Rayleigh

friction to enforce energy conservation.

Under the ergodic assumption, the zonal mean can be

replaced by the ensemble mean:

u9
n
q9

n
5 hu9

n
q9

n
i, y9

n
q9

n
5 hy9

n
q9

n
i. (10)

The ensemble mean of all quadratic eddy statistics can be

obtained from the ensemble mean eddy covariance C.

The barotropic and baroclinic perturbation stream-

functions are written as a Fourier sum of zonal harmonics:

c6(x, y, t) 5 �
k

c6
k (y, t)eikx. (11)

Note that the dash is dropped from perturbation quan-

tities and (6) and (7) are discretized in the meridional so

that continuous field variables in y become column

vectors collocated on equally spaced points yi separated

in y by distance d. Under the assumption that hn is a

white noise process,3 the covariance matrix Ck associ-

ated with the k zonal wavenumber eddy fields satisfies

the equation

dC
k

dt
5 A

k
(U)C

k
1 C

k
Ay

k
(U) 1 e

T
ffiffiffiffi
E
p

E
3=2
0

Q
k
� r

e
C

k
, (12)

where is E the total eddy energy, T is the kinetic eddy

energy, E0 is a unit normalizing factor with the dimen-

sions of energy per unit mass so that T
ffiffiffiffi
E
p

/E3/2
0 is di-

mensionless, e is the scalar scattering coefficient, and Qk

is a covariance matrix associated with the spatial corre-

lation Wn in (8). In (12) Ak(U) is the operator of the

dynamics linearized about the zonal mean flow U, where

U [
U1

U�

� �
, (13)

with barotropic and baroclinic components U1 and U2.

The coefficient re is specified by the requirement that

the total energy introduced by the forcing be balanced

by dissipation. Let the energy per unit mass associated

with Ck be Ek 5 trace(MkCk), where Mk is the total

energy metric [defined in (19)]. In order that the pa-

rameterized nonlinear terms do not contribute net en-

ergy, it is required that

e
E
ffiffiffiffi
T
p

E3/2
0

�
k

trace(M
k
Q

k
) 5 r

e
E, (14)

with E 5 SkEk and T 5 SkTk; Tk is the eddy kinetic

energy at wavenumber k given by Tk 5 trace(TkCk),

where Tk is the eddy kinetic energy metric. The coeffi-

cient of the eddy-induced dissipation is

r
e
5 e

ffiffiffiffi
T
p �

k
trace(M

k
Q

k
)

E
3=2
0

. (15)

We choose to express the covariance Ck in terms of

the barotropic and baroclinic streamfunction:

C
k

5
Cþk C6

k

(C6
k )y C�k

� �
, (16)

with Cþk 5 hc1
k c

1 y
k
i, C�k 5 hc�k c

�y
k
i, and C6

k 5

hc1
k c
�y
k
i. In these variables the linear operator in (12)

is

A
k
(U) 5

Aþk (U1) Aþk (U�)
A�k (U1) A�k (U�)

� �
, (17)

in which the individual linear operators are

Aþk (Uþ) 5 D�1[�ikUþD� ik(bI�D2Uþ)]�
r

2

2
I,

(18a)
3 This is not a restriction because red noise processes can be

easily incorporated; cf. Farrell and Ioannou (2009).
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Aþk (U�) 5 D�1(�ikU�D 1 ikD2U�) 1
r

2

2
I, (18b)

A�k (U�) 5 (D� 2l2I)�1 �ikU�(D 1 2l2I)
h

1 ikD2U�1
r

2

2
D
i
, and

(18c)

A�k (Uþ) 5 (D� 2l2I)�1[�ikUþ(D� 2l2I)

1 ik(bI�D2Uþ)�
r

2

2
D 1 2r

R
l2 I�,

(18d)

with D [ D2 2 k2I being the Laplacian and D21 the

inverse Laplacian, with the appropriate lateral bound-

ary conditions incorporated, and I is the identity matrix.

The forcing matrix Qk is chosen to be

Q
k

5 ja
k
j2 WWy 0

0 WWy

� �
, (19)

implying independent stochastic excitation of the baro-

tropic and baroclinic streamfunction each delta cor-

related in time and meridionally correlated by W. We

select W matrices producing Gaussian autocorrelation

of the excitation with width d in y about the latitude of

excitation, yi: exp[2(y 2 yi)
2/d2] which, given that d is

the distance between points in y, corresponds to a con-

tinuous approximation to delta-correlated excitation in

y. This minimal smoothing of the delta correlation of the

excitation in y is done for the purpose of improving the

numerics and the results converge for sufficiently small

values of d. The scalar coefficient ak is chosen so that

each perturbation wavenumber is forced with equal en-

ergy. The energy input associated with Qk is given by

trace(MkQk), with Mk being the total energy metric:

M
k

5 �1

4

D 0
0 (D� 2l2I)

� �
, (20)

defined so that (c1
k , c�k )Mk(c1

k , c�k )y is the total energy

per unit mass of state (cþ
k

, c�k ) at zonal wavenumber k.

The kinetic energy metric is

T
k

5 �1

4

D 0
0 D

� �
. (21)

The metric that produces the eddy available potential

energy is Mk 2 Tk.

The equation for the zonal mean flow [(6)] can be writ-

ten in terms of the barotropic and baroclinic components:

dU

dt
5 GU 1 H(C

k
), (22)

in which G is the linear dynamical operator:

G 5
G

11
G

12
G

21
G

22

� �
, (23)

with components

G
11

5 �
r

2

2
I, (24a)

G
12

5
r

2

2
I, (24b)

G
21

5 (D2 � 2l2I)�1 r
2

2
D2

� �
, and (24c)

G
22

5 (D2 � 2l2I)�1 �
r

2

2
D2 1 2r

R
l2I

� �
, (24d)

and the mean flow forcing H(Ck) is composed of the

eddy forcing and the mean thermal relaxation toward

the radiative equilibrium thermal wind U�R :

H [
hFþi

(D2 � 2l2I)�1(D2F� � 2r
R

l2U�R)

� �
. (25)

The eddy forcing of the mean flow is expressed in terms

of the barotropic and baroclinic eddy streamfunction

under the assumption of ergodicity (DelSole and Farrell

1996; Valis 2006) as

hFþi5 cþx cþyy 1 c�x c�yy and (26a)

hF�i5 cþx c�yy 1 c�x cþyy � 2l2cþx c�. (26b)

The overbars denote zonal averaging. Using the prop-

erty that the zonal average ab of the product of two

sinusoidally varying fields âeikx and b̂e
ilx

is Re(âb̂*)dkl/2

(* denotes the complex conjugate), we can express the

eddy forcings [(26a) and (26b)] in terms of the eddy

streamfunction Fourier amplitudes as

hF1i5��
k

k

2
Im(c 1

k D2c1
k

* 1 c�k D2c�k *) and (27a)

hF�i5��
k

k

2
Im(c1

k D2c�k * 1 c�k D2c 1
k

*� 2l2c1
k c�k *),

(27b)

which can be expressed in terms of the covariances as

hF 1 i5 �
k
� k

2
diag[Im(C1

k 1 C�k )D2y], and (28a)

hF�i5 �
k
�k

2
diagfIm[(C6

k 1 C6y
k

)D2y � 2l2C6
k ]g.

(28b)
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In summary, the ensemble mean turbulent system

consisting of the eddies and the associated mean flow is

governed by the autonomous deterministic equations:

dC
k

dt
5 A

k
(U) C

k
1 C

k
Ay

k
(U) 1 e

E
ffiffiffiffi
T
p

E3/2
0

Q
k
� r

e
C

k
, (29a)

dU

dt
5 GU 1 H(C

k
), (29b)

in which

E 5 �
k

trace(M
k
C

k
), T 5 �

k

trace(T
k
C

k
), and

r
e
5 e

ffiffiffiffi
T
p �

k

trace(M
k
Q

k
)

E3/2
0

. (30)

This system is the minimal mechanistically correct tur-

bulence model. In this system, energetically conserva-

tive scattering by eddy–eddy interaction is parameter-

ized as white in space and time to within requirements

of the numerics. This system is globally stable and the

attractor set for midlatitude jet parameter values con-

sists of fixed-point equilibria, although at other param-

eter values limit cycles are found.

b. Scaling of the equations, boundary conditions,
and parameters

Solutions of (29) were found for a periodic channel of

width Ly 5 12 in the meridional in the case of the radia-

tively forced localized jet with both baroclinic and baro-

tropic shear. Solutions were also obtained for a channel

width Ly 5 24 for the case of a meridionally uniform ra-

diatively forced baroclinic jet. For the meridionally uni-

form jet, the size of the channel was selected to be wide

enough to accommodate a number of jets; however, quan-

tization effects were seen in some cases. The calculations

used 64-point discretization over 12 meridional units in the

meridional. In the zonal direction 14 waves are retained,

consisting of global zonal wavenumbers 1 to 14 in a reen-

trant zonal channel of nondimensional length Lx 5 40.

For diagnostic purposes the meridional mean radiative

equilibrium baroclinic shear U�R is related to the temper-

ature difference across the channel by the thermal wind:

DT 5
2fL

y

R
U�R . (31)

3. Results

a. Turbulent equilibration of a meridionally
localized jet

Consider the case of the radiative equilibrium Gaus-

sian jet:

U�R 5 U�0 exp �
(y� L

y
/2)2

4

" #
. (32)

Turbulence is maintained when the temperature dif-

ference across the channel with meridional width Ly 5 12

exceeds DTc 5 11.75, which coincides with the modal

stability boundary.

The inverse eddy-induced dissipation rate re, defined in

(15), can be identified with eddy turnover time. In the

following calculations we assume the nondimensional

values E0 5 1 and Sktrace(MkQk) 5 0.4389. We antici-

pate 0.1 , re , 1.0, corresponding to replenishment of

perturbations on a time scale of days [cf. Tung and

Orlando (2003), especially their Fig. 5, which reports en-

ergy injection rates as a function of wavenumber]. The

eddy field comprises global zonal wavenumbers 1–14 and

the damping parameters are r2 5 1/5 day21, rR 5 1/10 day21.

Turbulent equilibria are not sensitive to small changes

in e in the range 0.1 , e , 1. For small scattering coef-

ficients (e , 0.1), the equilibria give way to limit cycles

and at e 5 0 there is no excitation and for small super-

criticality we recover the vacillation regime described by

Pedlosky (1972, 1977) and Pedlosky and Frenzen (1980).

The structure of the equilibrium jets, together with as-

sociated fluxes and energy spectra, are shown in Fig. 1 for

e 5 0.5 and DT 5 35 K over the 12 3 103-km channel. The

jet is equilibrated to a marginally stable state, despite a

change of sign of the upper- and lower-level potential

vorticity gradient. This equilibrium results from modifi-

cation of the unstable radiative equilibrium jet and from

eddy-induced dissipation, which has at equilibrium the

value re 5 0.2141. The magnitude, spectra, and structure

of the fluxes are realistic (DelSole and Farrell 1996;

Zurita-Gotor 2007). The upgradient momentum flux

forcing the jet is primarily concentrated in the upper layer

in agreement with turbulence simulations (Thompson and

Young 2007) and in contrast to scaling assumptions for

diffusion (Lapeyre and Held 2003). The eddy energy has a

maximum at global wavenumber 6. The flow is stable at

this wavenumber when the added dissipation associated

with the turbulent fluctuations is included [cf. maximum

at wavenumber 5 in Whitaker and Barcilon (1995)].

We now investigate how this equilibrium changes as a

function of DT. The upper- and lower-layer jet maxima are

shown in Fig. 2. As DT increases, the upper jet maximum

increases until DT 5 57 K over the 12 3 103-km channel,

at which point the barotropic component of the mean jet

collapses and the flow approaches the meridionally uni-

form jet associated with this temperature difference.4

4 Because of the periodic boundary conditions imposed on the

channel walls, the maintained meridional temperature difference

remains equal to that imposed.
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Collapse of the barotropic component of the jet at DT 5

57 K implies corresponding stability and damping pa-

rameters bL2
R/max(U�R) 5 0.35 and r

2
L

r
/max(U�R) 5

0.05, which are close to the values for a similar state

transition found by Thompson and Young (2007) (cf.

their Fig. 11). The eddies in this regime are highly

energetic, with yrms exceeding the mean jet speed. The

eddy energy in this regime increase as (DT )5 whereas

the heat flux increases as (DT )4, giving a higher-order

diffusivity coefficient growing as (DT )3, as in the dif-

fusive theory of Held and Larichev (1996) (shown

in Fig. 3). In this limit the turbulence equilibrates a

meridionally uniform jet that is made stable by eddy

dissipation.

These dissipative equilibria characterize high-DT re-

gimes, whereas for realistic midlatitude DT the equilibria

take the form of jets, the eddy damping is subdominant

in its contribution to equilibration, the upper-level mo-

mentum flux dominates the jet modification, and the

heat flux increases approximately as (DT )3.

b. Turbulent equilibration of a radiatively forced
meridionally uniform shear

Consider now a flow relaxed to a meridionally uniform

baroclinic shear. We consider a channel of width Ly 5 24

to accommodate multiple jets and minimize the effects

of channel size on the equilibria. All calculations are

performed with the eddy field consisting of global zonal

wavenumbers 1–14 and with damping parameters r2 5
1/5 day21 and rR 5 1/10 day21. For the calculation of

the mean eddy scale Leddy, we assume nondimensional

values E0 5 1 and S
k
trace(M

k
Q

k
) 5 0.1881. Turbulence

is maintained when the temperature difference across

the channel is supercritical, the critical temperature

difference for the assumed dissipation parameters being

DTc 5 31.9 over half the channel (i.e., Ly 5 12).

Equilibria as a function of the scattering efficiency e

show the same insensitivity to this parameter noted in

the previous section in which the flow was relaxed to a

localized jet. When the flow is relaxed, as here, to a

FIG. 1. (a) Meridional structure of the equilibrium upper- (solid) and lower-layer (dotted) jets maintained by the

stochastic turbulence model in a channel relaxed toward the Gaussian jet (32) with DT 5 35 K/(12 3 103 km)

(dashed). (b) The potential vorticity gradient of the two layers Q1y/b (solid) and Q2y/b (dotted). (c) The corre-

sponding maximal modal growth rate of the radiative equilibrium jet (dashed), the equilibrated jet without the eddy-

induced Rayleigh friction (dotted), and the equilibrated flows with the eddy-induced Rayleigh friction (solid), as a

function of global wavenumber. The eddy dissipation coefficient is re 5 0.2141 day21. (d) The meridional structure of

the heat flux (K m s21). (e) The momentum flux in the upper (solid) and lower layer (dotted). (f) The total eddy

energy per unit mass (solid), the eddy kinetic energy (dashed), and the eddy available potential energy (dashed–

dotted) as a function of global zonal wavenumber.
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meridionally uniform shear, multiple jets form, with the

number of jets depending on the supercriticality of the

flow (cf. Farrell and Ioannou 2008).

Multiple jet equilibria maintained in a channel with

mean thermal forcing DT 5 45 K/(12 3 103 km) and

scattering coefficient e 5 1 corresponding to re 5 0.1248

day21 are shown in Fig. 4. These jets are equilibrated to

a marginally stable state with stability due in part to the

induced eddy dissipation and in part to modification of

the jet structure. The associated fluxes of momentum

and heat as well as the energy spectra shown in Fig. 4 are

realistic.

For low supercriticality there exist many stable

equilibria differing in meridional wavenumber. As

the temperature contrast increases only the gravest

meridional wavenumber jets survive. The maximum

upper- and lower-level flows for the equilibrium con-

figuration corresponding to meridional wavenumber 3

are shown as a function of DT in Fig. 5. As DT increases,

the jet maximum increases until at DT 5 57.5 jets can no

longer be maintained and the flow collapses to a me-

ridionally uniform flow (dashed line) stabilized by tur-

bulent dissipation, as occurred in the case of the isolated

jet described in the previous section.

4. Conclusions

Understanding turbulence remains a fundamental

problem in fluid dynamics. The two-layer baroclinic model

provides an analytically and computationally convenient

system in which to study the dynamics of turbulence. In

this work we described a closure that incorporates with

maximum simplicity the essential dynamics of baroclinic

turbulence: maintenance of variance by transient pertur-

bation growth, replenishment of the transiently growing

subspace by nonlinear energetically conservative eddy–

eddy scattering, and equilibration to a statistically steady

state by a combination of nonlinear eddy-induced mean

jet modification and eddy dissipation. These dynamics

are modeled as follows: for the replenishment of the

growing subspace a quadratic in velocity, white in time

and space and conservative of energy parameterization

of eddy–eddy scattering is used; an STM is used for the

eddy fluxes and a SSST model for the equilibration.

Despite the extremely simplified parameterization used

to isolate the essential elements of turbulent dynamics,

for radiative forcing appropriate for the midlatitude jets

this closure predicts modification at turbulent equilib-

rium of a meridionally localized unstable jet to a mar-

ginally stable jet with a structure in agreement with

FIG. 3. Maximum heat flux (K m s21), which increases as (DT)4,

implying that the diffusivity increases as (DT)3 (bottom solid).

Maximum total eddy energy (top solid), maximum eddy kinetic

energy (dashed), and maximum potential energy (dashed–dotted)

(m2 s22) as a function of DT. These quantities increase as (DT)5.

FIG. 2. Maximum upper-layer jet velocity (solid) and maximum lower-layer jet velocity (dotted) as a function of the

temperature difference across the channel. The dashed line indicates the maximum shear of the radiative equilibrium

jet; the dashed–dotted line is the upper-level velocity of the meridionally uniform flow associated with temperature

difference DT.
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nonlinear simulations. This closure also predicts in the

case of a wide channel the emergence of marginally

stable multiple jets from a meridionally constant unstable

thermal gradient. As the thermal gradient is increased

across a wide channel, these multiple jets adjust to

maintain marginally stable equilibria and the average

heat flux increases rapidly with the imposed thermal

gradient. This behavior agrees with the concept of bar-

oclinic adjustment in the sense that the system is adjusted

to stability, but the functional dependence of the heat

flux on the thermal gradient varies to good approxima-

tion as a power law in agreement with predictions of

higher-order thermal diffusion (Held and Larichev 1996;

Pavan and Held 1996; Thompson and Young 2007).

However, over the range of radiative forcing appropriate

for midlatitude jets, the mechanism producing this power-

law relation between eddy thermal flux and mean ther-

mal gradient is baroclinic adjustment (i.e., equilibration

to marginal stability) of multiple jets rather than ther-

mal diffusion. Such power-law relations between qua-

dratic quantities (such as the heat flux) and parameters

influencing stability (such as the mean temperature

gradient) are a general property of turbulence main-

tained by nonnormal perturbation growth processes

(Farrell and Ioannou 2003, 2008). Moreover, whereas

baroclinic adjustment only predicts adjustment to mar-

ginal stability and not the particular marginal stable

state, SSST predicts the unique state obtained at sta-

tistical equilibrium and these unique states provide a

theory for the general circulation of baroclinically tur-

bulent atmospheres.

At very high thermal forcing the closure predicts

that the (multiple) jet regime is replaced by a meridi-

onally uniform regime in which stabilization occurs

through eddy dissipation rather than by mean flow

modification.

FIG. 4. (a) Meridional structure of the equilibrium upper- (solid) and lower-layer (dotted) jets maintained in

a channel with DT 5 45 K/(12 3 103 km). The mean flow is relaxed toward a meridionally uniform shear (dashed).

(b) The potential vorticity gradient of the two layers Q1y/b (solid) and Q2y/b (dotted). (c) The corresponding maximal

modal growth rate of the imposed flow (dashed), the equilibrated flows without the eddy-induced Rayleigh friction

(dotted), and the equilibrated flows with the eddy-induced Rayleigh friction, as a function of global wavenumber. The

eddy dissipation coefficient is re 5 0.1248 day21 and the scattering coefficient e 5 1. (d) Meridional structure of the

heat flux (K m s21). (e) The associated upper- (solid) and lower-level (dotted) momentum flux (m2 s22). (f) The total

eddy energy per unit mass (solid), the eddy kinetic energy (dashed), and the eddy available potential energy (dashed–

dotted) as a function of global zonal wavenumber.
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This model provides a physically correct closure for

baroclinic turbulence that is optimally simplified to in-

clude only the essential elements of turbulent dynamics.

It predicts observed turbulent equilibria and associated

turbulent fluxes and the emergence, equilibration, and

structure of the zonal jets associated with the turbulent

state.
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