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In wall-bounded shear flow the primary coherent structure is the streamwise roll and streak
(R-S). Absent of an associated instability the R-S has been ascribed to non-normality
mediated interaction between the mean flow and perturbations. This interaction may
occur either directly due to excitation of a transiently growing perturbation or indirectly
due to destabilization of the R-S by turbulent Reynolds stresses. A fundamental distinction
between the direct and the indirect mechanisms, which is central to understanding the
physics of turbulence, is that in the direct mechanism the R-S is itself the growing
structure while in the indirect mechanism the R-S emerges as a self-organized structure.
In the emergent R-S theory the fundamental mechanism is organization by the streak of
Reynolds stresses configured to support its associated roll by the lift-up process. This
requires that a streak organizes turbulent perturbations such as to produce Reynolds
stresses configured to reinforce the streak. In this paper we provide detailed analysis
explaining physically why this positive feedback occurs and is a universal property of
turbulence in shear flow. DNS data from the same turbulent flow as that used in the
theoretical study (Poisseullle flow at R = 1650) is also analyzed verifying that this
mechanism operates in DNS.
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1. Introduction

While advances in experiment, simulation and theory continue to be made, the physical
mechanisms underlying turbulence in shear flows remains incompletely understood. The
problem of shear flow turbulence can be divided into two components: transition from
the laminar to the turbulent state and maintenance of the turbulent state. The transition
problem is posed by the lack of an inflection in the velocity profiles of boundary layer flows.
Inflections are associated by the Rayleigh theorem with existence of robust instabilities
that continue in viscous flows from the inflectional instability of the same velocity profile
in an inviscid flow. The problem of robust disturbance growth in perturbation stable
shear flows was solved when it was recognized that the non-normality of the underlying
linear dynamics allows perturbation growth in the absence of exponential instability. The
concept of transient growth in shear flow has roots in the classical work of Kelvin and
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Orr (Kelvin 1887; Orr 1907). Although three dimensional perturbations in the form of a
roll-streak structure were observed in boundary layers (Townsend 1956; Klebanoff et al.
1962; Kline et al. 1967; Blackwelder & Eckelmann 1979; Robinson 1991) and related to
the nonmodal lift-up growth mechanism (Landahl 1980), comprehensive observational
evidence for the mechanism of nonmodal growth in boundary layer flows awaited the
advent of DNS at Reynolds numbers O(1000), for which turbulence is maintained, and
particle image velocimetry (PIV) of turbulent shear flows. The methods of non-normal
operator analysis and optimal perturbation theory were first applied in the context of
laboratory shear flows to two dimensional disturbances (Farrell 1988). It was believed
at the time that secondary instability of finite amplitude two dimensional equilibria
were the mechanism of transition (Pierrehumbert 1986; Bayly et al. 1988) and it was
shown that these unstable two dimensional nonlinear finite amplitude equilibria could be
readily excited by even very small optimal initial perturbations (Butler & Farrell 1994).
However, it became increasingly apparent from observation and simulation that the finite
amplitude structures associated with transition are three dimensional and analysis of three
dimensional optimal perturbation growth followed (Butler & Farrell 1992, 1993; Farrell &
Ioannou 1993a,b; Reddy & Henningson 1993; Trefethen et al. 1993; Schmid & Henningson
2001). These analyses revealed that the optimally growing three dimensional structure
is associated with cross-stream/spanwise rolls and associated streamwise streaks and is
related to the linear lift up mechanism. The remarkable convected coordinate solutions
for perturbation growth in unbounded shear flow (Kelvin 1887) allow closed form solution
for the scale independent structures producing optimal growth in three dimensional shear
flow (Farrell & Ioannou 1993a,b). These closed form optimal solutions in unbounded shear
flow confirm the result found numerically in bounded shear flows that for sufficiently
long optimizing times streamwise rolls produce optimal energy growth while for short
optimizing times the optimal perturbations are oblique wave structures that synergistically
exploit both the two dimensional shear and the three dimensional lift up mechanisms
producing vortex cores oriented at an angle of approximately 60 degrees from the spanwise
direction. And indeed, the roll-streak and oblique accompanying structure complex that
is predicted to produce optimal growth by analysis of non-normal perturbation dynamics
of shear flows has been convincingly seen in both observations and simulations (Klebanoff
et al. 1962; Schoppa & Hussain 2000; Adrian 2007; Wu & Moin 2009; Jiménez 2013) and
shown to be essentially related to the non-normality of shear flow dynamics (Kim & Lim
2000; Schoppa & Hussain 2002).

The most direct mechanism exploiting non-normality to form roll-streak (R-S) structures
is to introduce an optimal perturbation into the flow, perhaps by using a trip or other
device (Butler & Farrell 1992; Reddy & Henningson 1993; Trefethen et al. 1993). A
related approach is to stochastically force the flow which can be analyzed using stochastic
turbulence modeling (STM) (Farrell & Ioannou 1993d ,c, 1994, 1998a,b; Bamieh & Dahleh
2001; Jovanović & Bamieh 2005; Hoepffner & Brandt 2008). Because of the non-normal
nature of perturbation growth in shear flow, stochastic turbulence models are closely
related to optimal perturbation dynamics. In conventional stochastic turbulence models the
R-S is envisioned to arise from chance occurrence of optimal or near optimal perturbations
in the stochastic forcing (Bamieh & Dahleh 2001; Hwang & Cossu 2010a,b; McKeon &
Sharma 2010). These mechanisms exploit the linear non-normal growth process directly.
Although the R-S structures could arise from an optimal or near optimal perturbation
occurring by chance in the free stream or instigated by a mechanism such as a trip or
a boundary injection, the ubiquity of the R-S structure in shear at low levels of free
stream turbulence (Adrian 2007; Wu & Moin 2009) suggests a more systematic origin
and a number of ideas have been advanced to explain the continuous generation and
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maintenance of this structure in turbulent shear flow (Schoppa & Hussain 2002; Panton
2001). However, the ubiquity of streak formation suggests, as argued by Schoppa &
Hussain (2000), that some form of instability process underlies the formation of streaks
and that this instability involves an intrinsic association between the R-S structure and
associated oblique waves. Such a three dimensional instability must differ qualitatively
from the familiar laminar shear flow instability given that it would necessarily violate
the Squire theorem and that extensive search had failed to reveal a candidate instability
in the linearized Navier-Stokes equations. Nevertheless, its existence was frequently
inferred from experiment and simulation e.g. Andersson et al. (1999) who concluded
that the evidence “..corresponds to some fundamental mode triggered in the flat-plate
boundary layer when subjected to high enough levels of free-stream turbulence..”. Efforts
to identify the mechanism underlying instability of the R-S structure include exponential
instability mechanisms (Brown & Thomas 1977) and the Craik-Leibovich instability
(Phillips et al. 1996). Proposed algebraic growth mechanisms involve a streamwise average
torque produced by interaction of discrete oblique waves (Benney 1960; Jang et al. 1986).

In a study of a turbulent shear flow Hamilton et al. (1995) noted that the Reynolds
stresses arising from turbulent perturbations were systematically correlated with the R-S
so as to maintain the roll in the manner of a feedback process referred to as the self-
sustaining process (SSP). This correlation was subsequently attributed to the structure
of the Reynolds stresses produced by inflectionsl instability of the streak (Waleffe 1997),
modal critical layer fluxes (Hall & Smith 1991; Hall & Sherwin 2010) and transiently
growing structures (Schoppa & Hussain 2002). However, suppression of unstable modes
has been demonstrated to have essentially no effect on maintenance of the R-S providing
a constructive proof that inflectional instability is not responsible for the SSP (Farrell &
Ioannou 2012a; Lozano-Durán et al. 2021). This left collocation of transiently growing
structures as being responsible for providing the roll maintaining torques as suggested by
Schoppa & Hussain (2002). The central physical problem posed by this result is explaining
how the perturbation Reynolds stresses are maintained by non-normal growth processes
to have the correct amplitude and structure to provide the roll collocated torques required
by the instability of the pre-transitional boundary layer R-S as well as the time dependent
R-S of the SSP in the turbulent state.

The cross stream-spanwise roll structure provides a powerful mechanism for forming
streamwise streaks in shear flows when continuously forced by an oblique wave structure.
However, observation of the spatial correlation of perturbation structures in turbulent flow
does not support the existence of extensive interfering oblique plane waves. Nevertheless, if
we observe a turbulent shear flow in the cross stream-spanwise plane at a fixed streamwise
location we see that at any instant there is a substantial torque from Reynolds stress
divergence forcing cross stream-spanwise rolls. The problem is that this torque is not
systematic and so it vanishes in temporal or streamwise average. However, in the presence
of a perturbation streak the symmetry in the spanwise direction is broken and the
torque from Reynolds stress divergence can become organized to produce the positive
feedback between the streak and roll required to destabilize this structure by continuously
and coherently exploiting the powerful non-normal R-S amplification mechanism. The
existence of this mechanism for destabilizing the R-S in turbulence makes it likely that
some dynamical perturbation complex exists to exploit it. That this is so was demonstrated
by deriving from the Navier-Stokes equations a system of statistical state dynamics (SSD)
equations closed at second order, eigenanalysis of which reveals the instability responsible
for destabilizing turbulent shear flow to streak formation (Farrell & Ioannou 2012a; Farrell
et al. 2017b). This fundamental instability underlying shear flow turbulence had evaded
detection in part because it has no counterpart in the linearized Navier-Stokes equations.
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This emergent instability can be understood as a streak formation mechanism in which
background turbulence, rather than itself comprising the perturbation the non-normal
growth of which constitutes the streak, instead the stochastically occurring perturbations
are organized and collocated by the streak to form optimally growing structures with
oblique wave form that force the cross stream-spanwise roll by inducing a Reynolds stress
torque linearly proportional to streak amplitude and collocated with the streak resulting
in an emergent exponential instability of the combined roll-streak-turbulence complex.

It has been demonstrated constructively using second order SSD analysis of the N-S
equations that a dynamical perturbation complex exploiting the high non-normality
of the R-S plus turbulence complex exists to destabilize the pre-transitional boundary
layer forming a modal R-S and that this mechanism persists subsequent to transition to
maintain the temporally fluctuating R-S complex in the fully turbulent state through a
parametric instabiity (Farrell & Ioannou 2012a; Farrell et al. 2017b). However, the specific
mean R-S components and their supporting perturbation structures as well as the origin
and the mechanism by which these structures produce torques correctly collocated to
explain the ubiquitous occurrence of the mean R-S in wall-bounded shear flow turbulence
remains to be fully elucidated and its predictions tested against DNS data. In this work
we analyze the mechanism by which turbulent perturbations are organized by streaks to
force and maintain the R-S and compare with DNS to verify that the Reynolds stress
destabilization mechanism occurs and is consistent with the observed formation and
maintenance of the R-S structure in turbulent Poiseuille flow.

2. Analysis of the forces responsible for the formation and
maintenance of streamwise-mean rolls

The flow velocity is decomposed into streamwise mean, denoted by U = (U, V,W ),
with U being the mean streamwise velocity, in the x streamwise direction; V the mean
cross stream velocity in the y cross-stream direction; and W the mean spanwise velocity
in the spanwise z direction. The velocity deviations from the mean, are u = (u, v, w), and
referred to as the perturbations. The non-dimensionalized equations governing the mean
and the perturbations flow and pressure fields (P, p) in a channel take the form

∂tU + U · ∇U +∇P −R−1∆U = −u · ∇u , (2.1a)

∂tu + U · ∇u + u · ∇U +∇p−R−1∆u = −(u · ∇u− u · ∇u) . (2.1b)

∇ ·U = 0 , ∇ · u = 0 , (2.1c)

with no slip boundary conditions at the channel walls. The overline denotes the streamwise
average and R is the Reynolds number of the flow. In the equation for the mean (2.1a)
−u · ∇u represents the Reynolds stress induced forcing of the mean by the perturbations.
Assuming unit density we do not insist on the nomenclature distinction between force and
acceleration so that divergence of the Reynolds stress induces a streamwise mean force
per unit mass in Eq. (2.1a), which is independent of x, resulting in streamwise velocity
component acceleration

Fx = −∂y(uv)− ∂z(uw) , (2.2)

and cross-stream and spanwise velocity component accelerations:

Fy = −∂z(vw)− ∂y(v2) , Fz = −∂y(vw)− ∂z(w2) . (2.3)

We want to examine the maintenance of the streamwise mean roll circulation with
velocity components V , W and streamwise mean vorticity Ωx = ∂yW − ∂zV . From (2.1a)



Roll-Streak Formation 5

we obtain that Ωx is governed by:

DΩx
Dt

= Gx +
1

R
∆2Ωx , (2.4)

with D/Dt = ∂t +V ∂y +W∂z the substantial derivative of the streamwise vorticity under
advection by the streamwise mean flow (V,W ). On the RHS of Eq. (2.4) appears the
dissipation term, with the notation ∆2 = ∂2y + ∂2z for the two-dimensional Laplacian, and
the Reynolds stress roll vorticity forcing term arising from the turbulent perturbations

Gx = ∂yFz − ∂zFy =
(
∂2z − ∂2y

)
vw + ∂yz

(
v2 − w2

)
. (2.5)

In the absence of Gx the mean streamwise vorticity decays as it then obeys the advection-
diffusion equation

DΩx
Dt

=
1

R
∆2Ωx , (2.6)

which implies

d

dt

∫
Ω2
xdydz = − 1

R

∫
|∇Ωx|2dydz ,

d

dt

∫
(V 2 +W 2)dydz = − 1

R

∫
Ω2
xdydz , (2.7)

indicating decay in time of both the square vorticity,
∫
Ω2
xdydz, and the energy of the roll

circulation
∫

(V 2 +W 2)dydz, as noted by Moffatt (1990). This diagnostic clearly implies
that the formation and maintenance of the streamwise mean roll requires a systematic
source of streamwise mean vorticity that can only be provided by the rotational component
of the Reynolds stress vorticity forcing Gx. In wall-bounded flows with cross-stream mean
flow shear such rolls would lead to formation by the lift-up process of low and high
speed spanwise inhomogeneities in the mean streamwise flow, U , referred to as streaks.
This streak component is defined as Us = U − [U ]z where [U ]z is the spanwise average
of U . These considerations require that a Reynolds stress torque exists to maintain a
streamwise roll circulation and that a properly collocated streamwise roll necessarily
forces a collocated streak so that the R-S is a dynamical consequence of a streamwise
mean Reynolds stress torque. The dynamical hypothesis of the SSP (Hamilton et al. 1995;
Waleffe 1997) is that the streak instigates the torque that maintains both the roll and the
streak itself through the lift-up process. If this is so then explaining how the streak gives
rise to its self-sustaining roll-inducing torque is the central dynamical problem posed by
the maintenance of wall-bounded turbulence. Given that the torques are not dependent on
modal instability (Farrell & Ioannou 2012a) theoretical explanation of this SSP requires
identifying how transiently growing structures produce the required torque.

In order to understand the mechanism of roll formation by perturbation Reynolds
stress we must first isolate the component of F = (Fy, Fz) responsible for forcing the roll
circulation. It is clear from (2.5) that only the rotational part of F is involved in roll
formation, the substantial part of F that is divergent being cancelled by the immediate
development of the pressure field required by continuity. The force f that remains from
F to induce the roll circulation is obtained by a Helmholtz-Hodge decomposition of the
total Reynolds stress force F into a divergent component, -∇ϕ, which acts as a pressure
force, and a non-divergent component f = (fy, fz), so that:

F = f −∇ϕ , (2.8)

and fy = 0 at the boundaries of the channel. This Helmholtz-Hodge decomposition in the
channel domain is unique (Chorin & Marsden 1997). The non-divergent force field f has



6 B. F. Farrell, P. J. Ioannou, and M.-A. Nikolaidis

components

f = −∆−12 (∇×Gxx̂)] , (2.9)

where x̂ is the unit vector in the streamwise direction, and ∆−12 the inverse of the two-
dimensional Laplacian ∆2 = ∂yy + ∂zz, rendered unique by the boundary conditions.
The force-field f = (fy, fz) determines the roll circulation, as it is the force-field that
accelerates the (V,W ) velocity field by:

∂tV = fy = −∆−12 ∂zGx , ∂tW = fz = ∆−12 ∂yGx . (2.10)

3. Properties of turbulent perturbation Reynolds stress in mean flows
without streaks

Consider a perturbation field u in a channel. The perturbation dynamics linearized
about the streamwise mean flow U(y)x̂, with x̂ the unit vector in the streamwise direction,
is governed by the equations:

∂tu + U∂xu + (u ·∇)U x̂ +∇p−R−1∆u = 0 , ∇ · u = 0 , (3.1)

with no slip boundary conditions at the channel walls and periodic boundary conditions
in x and z.

Because of the homogeneity in both the streamwise and spanwise direction we can
identify a component of the flow field satisfying (3.1) with the form

(us, vs) = sin(kzz)e
ikxx(û, v̂), ws = cos(kzz)e

ikxxŵ, ps = sin(kzz)e
ikxxp̂ , (3.2)

in which the Fourier components û(y, t), v̂(y, t), ŵ(y, t) satisfy Eq. (3.1). Perturbations
of the form (3.2) comprises a superposition of two oblique plane waves in the (x, z) plane
with wavevectors (kx, kz). Perturbations of the form (3.2) are referred to as sinuous
about the z = 0 axis because the vs and us components are antisymmetric while the ws
component is symmetric about z = 0. In order to complete the set of perturbations we
choose as companion to the sinuous perturbation field (3.2), the varicose perturbation
field

(uv, vv) = cos(kzz)e
ikxx(û, v̂), wv = − sin(kzz)e

ikxxŵ, pv = cos(kzz)e
ikxxp̂ . (3.3)

In (3.3) the functions (û, v̂, ŵ, p̂) are the same as those in Eq. (3.2), as any spanwise
shift of the sinuous perturbation field satisfies the perturbation equations in a spanwise
uniform mean flow, U(y). Perturbations of the form (3.3), referred to as varicose about
the z = 0 axis, have vv and uv components symmetric and wv component antisymmetric
about z = 0.

Up to this point the symmetry axis z = 0 is arbitrary, but with the emergence of a
streak it can be distinguished to be the spanwise location of the streak center. When
there is a streak Us(y, z) in the mean flow, which for theoretical convenience will be
made symmetric, the sinuous and varicose field components will no longer be spanwise
translations of each other and an asymmetry between these two fields develops. Quantities
derived exclusively from sinuous perturbations will from now on be indicated with the
subscript s, while those of varicose form will be indicated with the subscript v.

We note the following general properties of the Reynolds stresses of sinuous and
varicose perturbation fields:

(a) When the mean flow has no streak and is spanwise homogeneous the sinuous and
varicose perturbation fields specified by (3.2) and (3.3) produce equal and opposite
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Figure 1: The time mean streamwise flow Um(y) in a turbulent Poiseuille half-channel at
R = 1650.

Figure 2: Contours of the cross-stream velocity at initial time of the first sinuous (left
panel) and first varicose (right panel) T = 10 optimal with kx = 3α. Both of these
optimals achieve energy growth Eopt(T ) = 23.2. Top panels: contours of cross-stream
velocity at (x, y) cross section reveal the expected initial perturbation structure leaning
against the shear indicative of growth by the Orr mechanism. The mean flow in Fig. 1 is
shown by the white line. Bottom panels: contours of the cross-stream velocity in the (x, z)
plane at the specified y = 0.225. The optimals have identical checker-board sinusoidal
structure, with the varicose shifted by a phase of π/2 in the spanwise direction.

force-fields fs = −fv. In this case it is immediate that the Reynolds stresses of the sinuous

vsws = 1
4 sin(2kzz) Re(v̂ŵ∗) , v2s − w2

s = 1
2 sin2(kzz)|v̂|2 − 1

2 cos2(kzz)|ŵ|2 , (3.4)

and the varicose

vvwv = − 1
4 sin(2kzz) Re(v̂ŵ∗) , v2v − w2

v = 1
2 cos2(kzz)|v̂|2 − 1

2 sin2(kzz)|ŵ|2 ,(3.5)

induce equal and opposite torques Gx =
(
∂2z − ∂2y

)
vw + ∂yz

(
v2 − w2

)
and therefore
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Figure 3: The energy growth as a function of time of the first five pairs of T = 10 optimals
on the mean flow shown in Fig. 1 for perturbations with kx = 3α and at R = 1650. The
mean flow has no streak and is exponentially stable.

equal and opposite force-fields fs = −fv.

(b) In mean flows with a symmetric streak Us(y, z) exclusively sinuous or exclusively
varicose perturbations induce rotational force-fields f , with y components that are
symmetric about the symmetry axis of the streak, z = 0, and z components that are
antisymmetric, i.e. fy(y, z) = fy(y,−z) and fz(y, z) = −fz(y,−z). This is a general
result arising from the symmetry properties of the velocity fields: under reflection
z → −z exclusively sinuous or varicose fields transform vw antisymmetrically and v2 − w2

symmetrically, implying from Eq. (2.5) that the torque Gx transforms antisymmetrically,
Gx → −Gx, and from Eq. (2.10) that the force field components transform as: fy → fy ,
fz → −fz.

Comments:
(i) The Reynolds stresses of sinuous and varicose perturbations (3.4) and (3.5) are
anisotropic and produce streamwise-mean torques when kz 6= 0, i.e. when two oblique
perturbations with kz 6= 0 and kx 6= 0 interact.

(ii) Property (a) implies that if a sinuous perturbation in a mean flow Um(y) induces
a roll circulation, its companion varicose perturbation induces exactly the opposite
roll circulation, and consequently a statistically unbiased and uncorrelated field of
perturbations in a spanwise uniform mean flow Um(y) can not induce a streamwise
mean roll circulation. However, if spanwise homogeneity is broken by the purposeful
introduction of a sinuous or varicose perturbation that breaks the spanwise homogeneity
of the perturbation field a roll circulation may be forced. The mechanism of oblique wave
interference forcing of roll circulation was proposed by Benney (1960) to be responsible
for the emergence of R-S by interfering T-S waves in the experiments of Klebanoff et al.
(1962).

(iii) As discussed, a perturbation field that is spanwise homogeneous can not induce coherent
streanwise roll circulations. However, if the streamwise mean flow is infinitesimally
perturbed with a streak perturbation δUs, a homogeneous perturbation field will be
distorted so as to break the symmetry of sinuous and varicose components and roll
circulations will be induced. Remarkably, at all scales the perturbation field distorted
by a streak results in a rotational forcing configured to amplify the distorting streak
perturbation. Moreover, the roll forcing is not only correlated to amplify the perturbing
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Figure 4: Top panel: vectors of the total Reynolds stress forcing, F = (Fz, Fy), given
by (2.3), for the first sinuous optimal in the mean flow shown in Fig. 1. Center panel:
contours of the equivalent pressure ϕ of the irrotational part of the Reynolds-stress forcing
shown in the top panel. Vectors indicate the force field associated with this pressure field.
Bottom panel: vectors of the rotational component of the forcing, f = (fz, fy), that is
responsible for inducing the streamwise-mean roll circulation. Shown is the forcing by
the T = 10 sinuous optimal with kx = 3α at the initial time. Similar forcing structure
characterizes the optimal perturbation at later times.



10 B. F. Farrell, P. J. Ioannou, and M.-A. Nikolaidis

-0.5 0 0.5

0

0.2

0.4

0.6

-0.5 0 0.5

0

0.2

0.4

0.6

-0.5 0 0.5

0

0.2

0.4

0.6

Figure 5: Top panel: vectors of the dominant Reynolds stress forcing (2.3), F2 = (F2z, F2y),
with F2z = −∂zw2 and F2y = −∂yv2 . Center panel: contours of the equivalent pressure
ϕ2 opposing the irrotational part of the Reynolds-stress forcing of the top panel with
arrows showing the force field associated with this pressure field. Bottom panel: vectors
with components of the rotational part of the forcing f2 = (f2z, f2y) that is primarily
responsible for inducing the streamwise-mean roll circulation. For the T = 10 sinuous
optimal with kx = 3α at the initial time.



Roll-Streak Formation 11

Figure 6: Left panels: Contours in the (x, y) plane of the cross-stream velocity of the
first sinuous T = 10 optimal with kx = 3α at times t = 5, 10, 15 in the mean flow with no
streak. The profile of the mean flow at the cross-section is indicated with the white line.
Right panels: Contours of the low-speed streak and vectors at the corresponding times of
the Reynolds stress force field that induces the streamwise mean roll circulation in the
(y, z) plane. This plot shows that the sinuous optimal at all times induces a roll-circulation
that tends through lift-up to form low and high speed streaks. The corresponding varicose
perturbation induces the exact opposite circulation. The initial energy of the optimal is
E(0) = 0.01.

streak but also, for perturbationally small streak amplitude, to result in roll forcing
proportional to the instigating streak perturbation. i.e. δΩx ∝ δUs leading to exponential
instability and the emergence of coherent finite amplitude streamwise R-S. This nonlinear
instability is a collective instability that has analytic expression only in the equations
for the statistics of the Navier-Stokes equations. This instability was analyzed in the
framework of a second-order closure of the statistical-state dynamics in Farrell & Ioannou
(2012b) and in the full statistical dynamics of the Navier-Stokes equations in Farrell et al.
(2017b). This is the instability underlying the formation and maintenance of the R-S in
turbulent shear flow that was sought in the linear N-S equations without success because
it does not exist in the state component expression of the dynamics.
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Figure 7: Vectors of the rotational component of the ensemble mean Reynolds stress
forcing 〈f〉 = (〈fz〉, 〈fy〉) of the streamwise-mean roll circulation for the sinuous
components of a stochastically excited perturbation field in the turbulent mean flow
shown in Fig. 1 without a streak. The varicose part of the Reynolds stress induces in this
case the exact opposite circulation so that for the complete perturbation field the net
induced circulation is zero. The plot is for the kx = 3α perturbation component.
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Figure 8: Time evolution of the acceleration of the streamwise-mean streak

−
∫ 1

0
dy fyU

′(y, 0) at z = 0 by first four T = 10, kx = 3α optimal perturbations.
The Reynolds stresses of the sinuous optimals (solid) produce a positive fy > 0, at
the symmetry axis near the wall, and consequently produce roll circulations that tend
to form a low-speed streak, while the varicose (dashed) induce equal and opposite roll
circulations that tend to form a high speed streak. The induced streamwise acceleration
by the optimals is negative at all times for the sinuous perturbations and positive for the
varicose. The initial energy of the optimals is E(0) = 0.01.
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Figure 9: The cross-stream distribution of the time averaged streak acceleration
〈−fyU ′(y, 0)〉t at the streak symmetry axis induced by the first four T = 10 optimals
with streamwise wavenumber kx = 3α. Shown separately are the contributions from
perturbations, with sinuous (solid) and varicose (dashed) structure. The initial energy of
the optimals is E(0) = 0.01.
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Figure 10: Left panel: Time evolution of the acceleration of the streamwise-mean streak

−
∫ 1

0
dy fyU

′(y, 0) at the symmetry axis z = 0 induced by the first sinuous (red) and
its corresponding varicose (blue) optimal perturbation as shown in Fig. 2. Most of the
acceleration is due to the contribution from the v2 − w2 Reynolds stress component
(dashed line), the smaller contribution of the vw component of the Reynolds stress is
indicated with the dotted line. The net acceleration from this pair of optimals (black
line) is zero. Right panel: The cross-stream distribution of the time averaged acceleration
〈−fyU ′(y, 0)〉t. The contribution of v2 − w2 (dashed line) dominates that of the vw
(dotted line). The initial energy of the optimals is E(0) = 0.01 and their streamwise
wavenumber is kx = 3α.

4. Roll circulation induced by the Reynolds stresses of sinuous and
varicose perturbations in a spanwise uniform flow

In the previous section it was shown that the Reynolds stresses of sinuous perturbations
in a spanwise uniform mean flow induce roll circulations that are equal and opposite to
those induced by their companion varicose perturbations. We demonstrate in this section
that sinuous perturbations with symmetry axis z = 0 induce roll circulations forming
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Figure 11: Top panels. Left: vectors of the rotational component of the ensemble mean
Reynolds stress forcing 〈f〉 = (〈fz〉, 〈fy〉) of the streamwise-mean roll circulation for the
sinuous components of a stochastically excited perturbation field with zero mean flow.
Right: the cross-stream component 〈fy(y, 0)〉 as function of y at the symmetry axis z = 0

(black), the dashed-red line is the contribution to 〈fy(y, 0)〉 from the v2 − w2 Reynolds
stress, and the dashed blue line is the contribution from the vw Reynolds stress. Bottom
panels: the corresponding 〈f〉 for the varicose perturbations, which induces the exact
opposite circulation so that for the complete perturbation field the net induced circulation
is zero. The plot is for the kx = 3α perturbation component, which has been stochastically
excited with spatially homogeneous forcing in the spanwise. In the cross-stream direction
the forcing was weighted by w = tanh(y/(5δ)) + tanh((Ly − y)/(5δ))− 1, where δ is the
cross-stream grid spacing, in order to reduce the forcing adjacent to the boundaries. The
forcing amplitudes have been normalized by the energy input by the stochastic excitation.

low-speed streaks at the symmetry axis, while varicose perturbations induce high-speed
streaks.

We choose as mean flow the spanwise-averaged turbulent flow Um(y) obtained from a
turbulent channel Poiseuille DNS at R = 1650 (cf. Fig. 1). Our results have been confirmed
to be insensitive to this specific choice. This mean flow was chosen in order to facilitate

comparison to DNS data. The (x, y, z) flow domain is D def
= [0, 4π]×[0, 1]×[−π/2, π/2], and

the perturbations u evolve according to (3.1), and satisfy periodic boundary conditions in
x and z and no slip boundary conditions at y = 0, 1. The gravest streamwise wavenumber
kx is α = 2π/Lx. Our analysis will concentrate on the kx = 3α component of the flow
because in DNS this component’s Reynolds stresses contributed the most in inducing the
streamwise-mean roll circulation. The same qualitative behavior was obtained for the
other streamwise components of the flow, indicating that the results discussed exhibit
insensitivity to scale.

We consider the Reynolds stresses induced by the optimal perturbations on this mean
flow. A T -time optimal perturbation is the unit energy initial perturbation, u(x, 0), that
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Figure 12: Contours of the velocity of the equilibrium low-speed streak (upper panel)
and high-speed streak (lower panel) in turbulent Poiseuille flow at R = 1650 in a channel
with Lx = 4π and Lz = π. The spacing of the contours is 0.04.

leads to the largest energy growth at time T , with energy growth:

Eopt(T ) = maxu(x,0)

(∫
D d

3x |u(x, T )|2∫
D d

3x |u(x, 0)|2

)
, (4.1)

(cf. Farrell (1988); Butler & Farrell (1992); Farrell & Ioannou (1996a)). These perturbations
provide an optimal orthogonal decomposition of the perturbation field according to their
growth over time T in this flow. The optimal perturbations in this mean flow, which is
homogeneous both in the streamwise and spanwise direction, are oblique plane waves of
the form u(y, t)ei(kxx+kzz), characterized by their streamwise Fourier wavenumber kx and
spanwise wavenumber kz. These oblique plane waves can be combined to form symmetric
and antisymmetric pairs in the cross-stream v velocity about z = 0, which is the symmetry
axis of the streak that will be introduced in the sequel. In this way the optimals of this
spanwise uniform flow can be partitioned into sinuous and varicose perturbations with
structure given by Eqs. (3.2) and (3.3). The structure of the cross-stream velocity of
the first pair of sinuous and varicose T = 10 optimals with kx = 3α are shown in Fig.
2. Because of the spanwise translation symmetry of the mean flow each (kx, kz) pair of
optimals with the same cross-stream structure will have identical energy evolution. For
example, the energy growth of the first five kx = 3α pairs of sinuous and varicose T = 10
optimal perturbations are shown in Fig. 3.

To understand the streamwise-mean roll circulation induced by these optimal perturba-
tions we first plot the divergent total force-field F = (Fy, Fz) produced by the Reynolds
stresses of the sinuous optimal perturbation at the initial time in Fig. 4 (top panel) and
perform a Helmholtz-Hodge decomposition of this force-field in order to determine the
characteristics of the residual field f that determines the forcing of the roll circulation.
The total force field F with components Fy = −∂zvw − ∂yv2 and Fz = −∂yvw − ∂zw2 is
strongly divergent at the symmetry axis z = 0 and is almost completely aligned in the
spanwise direction, ẑ, i.e. F ≈ −∂zw2 ẑ. For sinuous perturbations −w2 has a minimum
at z = 0 and therefore the induced F is divergent in the region about z = 0, as is
evident in Fig. 4 (top panel). The opposite situation occurs for varicose perturbations.
The divergent component of F is opposed by the pressure field, ϕ, that develops. Contours



16 B. F. Farrell, P. J. Ioannou, and M.-A. Nikolaidis

0 10 20
0

10

20

30

40

50

0 10 20
0

10

20

30

40

50

Figure 13: Time evolution of the energy of the first (solid lines) and second (dashed
lines) T = 10 optimals in a flow with a low speed streak (left panel) and a high-speed
streak with the same structure (right panel) for streak amplitude ε = 0.4 and ε = 1. The
energy growth of the optimals in the mean flow with ε = ±1 are indicated with red, those
with ε = ±0.4 with blue, and those with no streak ε = 0 with black. The first optimal
has sinuous structure while the second has varicose structure. This figure shows that the
spanwise shear increases the energy growth of both perturbations but that the low-speed
streak supports substantially greater optimal growth compared to that supported by the
high speed streak. Perturbations have kx = 3α.

of the pressure, ϕ, and the resulting force field opposing the divergent component of
the Reynolds stress force, −∇ϕ, are shown in Fig. 4 (center panel). The force from the
pressure field is isotropic, and given that F is divergent along z = 0, the pressure force
will be directed towards the channel boundary near the wall and away far from the wall.
This implies that as F has a very small component in the cross-stream direction the
residual f will have a strong positive cross-stream component fy > 0 at the symmetry
axis. Further from the wall the residual force direction reverses, and the overall force field
f has quadrupole structure at the symmetry axis, as seen in Fig. 4 (lower panel).

Crucial to the above argument is the dominance of the force field induced by the
v2 − w2 components of the Reynolds stress over the contribution of the vw Reynolds
stress. This is shown in Fig. 5 where the Helmholtz-Hodge decomposition of the force field
induced by this Reynolds stress with components F2 = (F2y, F2z) = (−∂yv2,−∂zw2) can
be compared to the decomposition of the full force field field F in Fig. 4. The dominance of
the v2 − w2 Reynolds stress is maintained during the whole evolution of the optimal and
is the reason, as we will see, underlying the direction of the induced roll-circulation of the
sinuous and the varicose perturbations. It should be noted that the smaller contribution
from the vw Reynolds stress changes structure and sign during the evolution. We find
that dominance of the v2 − w2 Reynolds stress also characterizes the DNS statistics.

The force field structure of f persists throughout the evolution of the optimal, as shown
in Fig. 6, and each developing optimal forces a coherent roll circulation that through lift-up
forms a low-speed streak near the wall at the symmetry axis. This particular circulation
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Figure 14: Contours of the cross-stream velocity of the first sinuous (left panel) and
first varicose (right panel) T = 10 optimal for kx = 3α at the initial time with mean flow
U(y, z) = Um(y) + Us(y, z) in which Um(y) is the spanwise averaged turbulent mean flow
shown in Fig. 1 and Us is the equilibrium low-speed streak shown in Fig. 12 (upper panel).
The presence of the streak centers and confines the optimals at the streak minimum and
breaks the symmetry between the sinuous and varicose pairs. The sinuous achieves the
highest energy growth of 50 at t = 10.4, while the varicose reaches energy growth 29
at t = 8.8. Top panels: contours of cross-stream velocity in an (x, y) cross section show
the typical initial configuration of an optimal perturbation which is that it leans against
the shear as expected for growth by the Orr mechanism. The profile of the mean flow is
shown by the solid white line. Bottom panels: contours of the cross-stream velocity in the
(x, z) plane at y = 0.275. The optimals are obliques waves configured to transfer mean
flow energy from the spanwise shear to the perturbation. The profile of the mean flow is
the solid white line. The flow is at R = 1650 in a doubly periodic channel with Lx = 4π,
Lz = 2, and α = 2π/Lx.

structure results from the sinuous form of the perturbations and is not limited to the
first sinuous optimal. We demonstrate that by calculating the ensemble mean force 〈f〉
that arises when all the sinuous components of the flow are equally excited stochastically.
The ensemble mean statistics are calculated by determining the ensemble mean spatial
covariance C of the velocity components which satisfies at statistical equilibrium the
Lyapunov equation

AC + CA† = −Q , (4.2)

where A is the linear operator governing the perturbation dynamics in Eq. (3.1), and
Q is the spatial covariance of the delta-correlated stochastic forcing, chosen here to be
the identity in energy coordinates so that equal energy input is imparted to all degrees
of freedom (cf. Farrell & Ioannou (1993d , 1996a)). The stability of A ensures that the
statistical steady state exists. From the covariance the ensemble mean Reynolds stresses
can be obtained and from them the ensemble mean roll forcing and the lift-up induced
streamwise acceleration cf. Farrell & Ioannou (2012a).
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Figure 15: Left panels: Contours in the (x, z) plane of the cross-stream velocity of the
first sinuous T = 10 optimal with kx = 3α at times t = 5, 10, 15 in the mean flow with the
equilibrium low-speed streak. The profile of the streak at the cross-section is indicated
with the white line. Right panels: Contours of the low-speed streak and vectors at the
corresponding times of the Reynolds stress force field that induces the streamwise mean
roll circulation in the (y, z) plane. The maximum magnitude of the force occurs here at
the symmetry axis of the streak. This plot shows that the sinuous optimal at all times
induces a roll-circulation that tends through lift-up to amplify the low-speed streak. The
initial energy of the optimal is E(0) = 0.01.

The ensemble mean force 〈f〉 from the sinuous components of the stochastically excited
flow is shown in Fig. 7. This is the force field averaged over time if all sinuous optimals are
excited and their Reynolds stress contribution superposed. Fig. 7 shows that the ensemble
mean Reynolds-stress force-field from the sinuous perturbations induces roll circulations
that tend to form a low-speed streak near the wall at the symmetry axis. Varicose
perturbations induce the exact opposite roll-circulations and is not shown. The resulting
roll circulation at the center z = 0 is similar to the roll circulation induced by the first
sinuous optimal. However the stochastically excited flow results in a roll circulation that is
concentrated at the symmetry axis and has smaller spanwise wavenumber. This is caused
by cancellations of the induced circulations that occur far from the symmetry axis as the
roll circulations from the various sinuous optimals add constructively at the symmetry
axis and destructively away from it. This phenomenon of localization of the roll circulation
is observed during transition to turbulence. Generically, streaks emerge during transition
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Figure 16: As in Fig. 15 for the first varicose optimal. This plot shows that the varicose
optimal at all times induces a roll-circulation that tends through lift-up to destroy the
low-speed streak. However the varicose mode induces a weaker circulation than the sinuous
and the net circulation from the first sinuous and varicose optimals results in amplification
of the streak as shown in Fig. 17. The maximum magnitude of the force does not occur
at the symmetry axis of the streak.The initial energy of the optimal is E(0) = 0.01.

as an exponential instability of the interaction of the mean flow and the perturbation field
in the background of free-stream turbulence, an instability that has analytical expression
in the framework of second order closure of the statistical dynamics of the channel flow
(S3T) (Farrell & Ioannou 2012b; Farrell et al. 2017b). The streaks that initially emerge
are almost sinusoidal and inherit the spanwise wavenumber of the most unstable mode
arising in the S3T closure equations. But as transition proceeds and the streaks grow the
spanwise length-scale increases dramatically as a broad spectrum perturbation field starts
being sustained with its Reynolds stresses contributing to localizing the roll circulation.

To quantify the development over time of the rotational force f generating streaks by
lift-up, the time development of quantity −fyU ′(y, 0) at the streak symmetry axis (with

U ′(y, 0)
def
= ∂yU at the symmetry axis) is shown in Fig. 8 and Fig. 9. This quantity measures

the lift-up induced acceleration of the streamwise mean velocity at the symmetry axis. Fig.

8 shows the time evolution of the net induced streamwise-mean streak −
∫ 1

0
dy fyU

′(y, 0) at
the symmetry axis by the first four pairs of sinuous and varicose optimals. The figure shows
that at all times the sinuous optimals induce a low speed streak, while the corresponding
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Figure 17: As in Fig. 15 but vectors of the total force f = (fy, fz) obtained by adding
the force by the first sinuous optimal to the force by the first varicose optimal. The initial
energy of the optimals is E(0) = 0.01.
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Figure 18: As Fig. 14 but for the first sinuous and varicose T = 10 optimals for the mean
flow U(y, z) = [U ]z − Us(y, z), with high-speed streak the mirror image of the low-speed
streak of Fig. 12. The first optimal is still sinuous achieving energy growth 32 at t = 8.4
while the second optimal is varicose and it evolves almost identically with the sinuous
achieving maximum energy growth 29 at t = 8.6. Note that sinuous and the varicose first
optimals have almost the same oblique wave structure and that both perturbations are
located at the wings of the streak.

varicose optimals induce an equal high-speed streak. The time averaged cross-stream
distribution of the induced streak acceleration 〈−fyU ′(y, 0)〉t at the symmetry axis by
the evolving first four pairs of sinuous and varicose optimals is shown in Fig. 9. That the
contribution of the Reynolds stress component v2 − w2 dominates that of vw during the
development of the first pair of sinuous and varicose optimals is shown in Fig. 10.

We have seen that key property of the sinuous and varicose perturbations to determining
the direction of their induced roll forcing is the dominance of the Fz = −∂yvw − ∂zw2

Reynolds stress force component over the Fy = −∂zvw − ∂yv2 component. Dominance of

Fz is due to dominance of the w2 over v2, which in turn is due to the v2 fluctuations being
preferentially suppressed compared to the w2 by the solid boundary condition at the
wall. This asymmetry between w2 and v2 near a boundary is a property connected to the
presence of the wall and is not fundamentally dependent on the presence of wall-normal
shear or the presence of a particular type of perturbation, such as an optimally growing
perturbation, other than its being sinuous or varicose. We demonstrate this by showing
that stochastically excited sinuous perturbations in a channel with zero mean flow produce
a roll-inducing Reynolds stress force field. This resulting roll-inducing force field, shown
in Fig. 11, has the characteristic quadrupole structure and is concentrated near the walls
as is the case for optimal perturbations of sinuous and varicose form. When the mean flow
has wall-normal shear the roll-inducing force field is concentrated in the shear region, as
shown in Fig. 7, and in this case it is the energy bearing optimal perturbations, and their
v2 field decaying faster than their w2 field near the wall, that dominate the perturbation
field and are responsible for the structure of the resulting Reynolds stress roll-forcing.
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Figure 19: Contours of the equilibrium low-speed streak and vectors of the ensemble
mean force field, 〈f〉, when the kx = 3α perturbation field is stochastically excited white
in energy in a mean flow with the low-speed with ε = 1 (upper panel) and with the
high-speed streak with ε = −1 (lower panel). The response is normalized by the energy
introduced in the flow, trace(Q), where Q is the forcing covariance in energy coordinates.

5. Roll circulation induced by the Reynolds stresses of sinuous and
varicose perturbations in the presence of a streak

We have demonstrated that oblique waves, individual optimal perturbations, sums
of optimal perturbations and general stochastically forced perturbations with sinuous
form force roll circulations as do oblique waves, optimals, sums of optimals and general
perturbations with varicose form. However, the tendency of sinuous perturbations to form
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Figure 20: The magnitude of the maximum ensemble mean force f = (fy, fz) produced
by the Reynolds stresses as a function of the amplitude of the streak ε. This maximum
occurs at the symmetry axis of the streak. The roll-circulation induced is in a direction
to accelerate both the low-speed, ε > 0, and the high-speed streaks, ε < 0. The dashed
green line is the force induced when the high-speed streak has the structure of the
equilibrium high-speed streak shown in Fig. 12 (lower panel). The kx = 3α perturbations
are stochastically excited by a stochastic excitation that injects trace(Q) units of energy
density per unit time.

rolls configured to force low speed streaks is exactly canceled in a spanwise statistically
homogeneous flow by the tendency of varicose optimals to form rolls with opposite sign
configured to force high speed streaks. It remains to show how the imposition of a
perturbation streak breaks the cancellation of tendencies in forcing between the sinuous
and varicose components resulting in the instability that is responsible for the formation
and maintenance of the R-S in shear flow.

In this section we discuss the Reynolds stresses induced by perturbations in mean flows
with a streak of the form U = Um(y) + εUs(y, z), with ε a parameter modulating the
amplitude and sign of the streak. The streamwise mean flow Um(y) is the half-channel
time mean flow in Poiseuille turbulence at R = 1650, shown in Fig. 1, and Us(y, z) is the
equilibrium low-speed streak shown in Fig. 12 (upper-panel) which is obtained by time
averaging the low-speed streaks of the turbulent flow. With this choice of Us, when ε > 0
low-speed streaks are introduced in the flow with the shape of the low-speed streak, and
when ε < 0 high-speed streaks are introduced that are mirror images of the corresponding
low-speed streaks. We choose this family of high-speed streaks, instead of those that arise
from the equilibrium high-speed streak (cf. lower panel of Fig. 12) in order to reduce the
number of parameters. Comparisons were made with high-speed streaks in the shape of
the equilibrated high-speed streak of Fig. 12. The results presented here were found to be
robust and not sensitive to this detail.

Upon introduction of a spanwise symmetric streak the perturbations were found to
localize about the center of the streak. The sinuous and varicose perturbations continue
to induce roll circulations predominantly from the Reynolds stress associated with



24 B. F. Farrell, P. J. Ioannou, and M.-A. Nikolaidis

v2 − w2, as previously described, and as previously described these roll circulations
induce respectively low and high-speed streak perturbations. However, the introduction
of the streak creates a crucial difference which is an imbalance between the sinuous and
varicose perturbations. With no streak the net circulation induced by corresponding
sinuous and varicose perturbations cancel. In the presence of a low-speed streak the
sinuous perturbations are favored over the varicose and the induced net roll circulation
tends to reinforce the low-speed streak, while in the presence of a high-speed streak the
varicose perturbations are favored resulting in a net roll circulation that tends to reinforce
the high-speed so that in both cases the Reynolds-stress induced circulation reinforces
the pre-existing streak. We will demonstrate this dynamics for the first pair of optimal
perturbations in the flow and for the ensemble response when a flow with a streak is
stochastically excited by temporally and spatially uncorrelated forcing.

We choose kx = 3α perturbations. This choice of streamwise wavenumber was made
because it is the wavenumber that induces the strongest roll circulation both in DNS
and when the flow with the equilibrium low-speed streak is stochastically excited. This
choice of streamwise wavenumber for the optimal does not change qualitatively the
results that are presented. The energy growth of the first pair of T = 10 sinuous and
varicose optimals is shown in Fig. 13 for low-speed streaks (left panel) and their mirror
high-speed streaks (right panel) with with streak amplitude ε = 0,±0.4,±1. This figure
shows that the optimal perturbation growth increases as the amplitude of the streak
increases and that the increase is substantial when the streak is low-speed and marginal
when the streak is high-speed. Energy transfer from the mean spanwise shear to the
perturbations, −

∫
D dydz uwUz, is the energy source that accounts for the increased

perturbation growth in the presence of the streak, and especially so when a low-speed
streak is present because flows with low-speed streaks have a relatively smaller wall-normal
shear and the perturbations are less readily sheared over by the wall-normal shear, which
limits their potential growth.

Differences in the growth of perturbations in flows of the form Um(y) ± εUs(y, z) is
expected, because the flows are not mirror images of each other. But such pronounced
asymmetry in the growth of optimal perturbations in low-speed and their mirror high-
speed streaks is surprising and has dynamical implications. It implies, as we will show,
that high-speed streaks are supported weakly by their Reynolds stresses, which provides
an explanation for the dominance of low-speed streaks in wall-bounded turbulence. Fig.
13 also shows that in low-speed streak flows the sinuous optimal perturbations achieve
substantially greater energy growth than their companion varicose perturbations. The
structure of the top pair of optimals is shown in Fig. 14. As ε increases the perturbations
become increasingly localized at the center of the low-speed steak. Note that the sinuous
perturbations are concentrated at the wings of the streak, where there is larger spanwise
mean shear. This is consistent with the observation that sinuous perturbations grow more
than the corresponding varicose perturbation, which are concentrated at the center of the
streak where the shear is small.

The time development of the sinuous optimal structure and plots of the resulting
rotational Reynolds stress force field f are shown in Fig. 15. This figure shows that the
sinuous optimal induces a coherent roll-circulation that tends to reinforce the low-speed
streak. The reverse roll circulation is induced by the companion varicose optimal, shown in
Fig. 16. However, in the presence of the low-speed streak the streak opposing circulation
of the varicose perturbation is weaker than the streak amplifying circulation of the sinuous
optimal. Hence, in the presence of even the slightest streak, the net circulation from
the top pair of optimals tends to reinforce the low-speed streak, as indicated in Fig. 17.
The reverse situation occurs in the high-speed streak. In that case although at ε = −1
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Figure 21: Contours of the low-speed streak (solid: negative values, dashed: positive
values) and vectors of the force field, 〈f〉, induced by the time mean Reynolds stresses in
the DNS low-speed streak. Upper panel: the force field induced by the sinuous components
of the flow. In agreement with the discussion, they tend to support the low-speed streak.
Lower panel: the force field induced by the varicose components of the flow, which tends
to destroy the low-speed streak. The force field of the total perturbation field is shown in
Fig. 22 (upper-panel).

the sinuous optimal grows slightly more than the varicose, the Reynolds stresses from
the varicose dominate and the net circulation tends to reinforce the high-speed streak.
The optimals in this case have very similar structure (cf. Fig. 18) and nearly identical
evolution and the net circulation induced from the superposition of the opposing and
almost identical sinuous and varicose components is weak compared with the circulation
induced by the optimals in the low-speed streak flow.

We confirm the robustness of our conclusions about the roll forcing pattern that was
obtained by analysis of the top pair of optimals by considering the general case of roll
forcing by the ensemble mean Reynolds stresses of the perturbation field resulting when
all degrees of freedom are excited stochastically and equal in energy. The ensemble mean
force field f induced when there is a low-speed streak present in the flow is shown in
Fig. 19 (upper-panel), showing that in low-speed streak flows the sinuous perturbation
component dominates the statistics. In a high-speed streak flow, Fig. 19 (lower-panel),
the induced roll circulation reverses with the varicose modes dominating the statistics.
Note that the induced force is stronger when there is a low-speed streak. The dependence
of the amplitude of the induced force-field on the amplitude of the streak is plotted in
Fig. 20 from which it is apparent that a low-speed streak is more vigorously supported
by the Reynolds - stresses and this remains true when the calculation is repeated using



26 B. F. Farrell, P. J. Ioannou, and M.-A. Nikolaidis

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

Figure 22: Vectors of the force field, 〈f〉 induced by the time mean Reynolds stresses in
the DNS low-speed streak (upper panel) and the high-speed streak (lower panel). The
contours show the respective profile of the average low and high speed streaks in the
DNS Top panel: solid line contours for negative values, dashed for positive values. Bottom
panel: solid line contour for positive values, dashed for positive values. The contour level
is 0.03, cf. Fig. 12.

the high-speed streak with the structure of the equilibrium high-speed streak that that is
obtained in DNS (cf. lower panel of Fig. 12). The direction of the induced force, which
always tends to increase the pre-existing streak, and the linear dependence of the induced
force on streak amplitude, when the the amplitude of the streak is small, indicates that the
interaction between streaks and perturbations is consistent with the necessary requirement
for producing an exponential instability. This instability has been analytically studied
using the S3T form of statistical state dynamics (Farrell & Ioannou 2012a; Farrell et al.
2017b).

6. Comparison with DNS data

Observational support for the theoretical arguments that we have presented was obtained
in the DNS data of Poiseuille flow at R = 1650. Details of the simulation are given in Table
1. From the DNS we have obtained the average low-speed streak and average high-speed
streak, shown in Fig. 12, along with their associated perturbation field statistics. The
streaks, which were nearly symmetric in the spanwise direction, were symmetrized and the
average Reynolds stresses of the sinuous and varicose components of the perturbation field
were obtained. We present here the roll-circulation induced by the kx = 3α component of
the perturbation field that produces the largest streamwise-mean torque in DNS.
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Figure 23: The cross-stream distribution of the net mean acceleration −fyU ′(y, 0) from
the sinuous (red lines) and varicose (blue lines) kx = 3α perturbations in the time-averaged
low-speed streak (left panel) and in the time averaged high-speed streak (right panel).
The streaks are shown in Fig. 12. The dashed lines shows the contribution to the induced
acceleration from the Reynolds stress v2 − w2 and the dotted lines the contribution from
the vw Reynolds stress. The net Reynolds stress acceleration from the total perturbation
field tends to support both the low-speed streak and the high-speed streak. Data from a
DNS simulation.

Abbreviation [Lx, Ly, Lz] [L+
x , L

+
y , L

+
z ] Nx ×Nz ×Ny Rτ R

NL100 [4π , 2 , π] [1264 , 201 ,316] 128× 63× 97 100.59 1650

Table 1: The simulation of the plane parallel Poiseuille flow was performed in a channel
of streamwise, wall-normal and spanwise length [Lx, Ly, Lz], with periodic boundary
conditions in x and z and no slip boundary conditions at the channel walls y = 0 and
y = 2. Lengths have been made nondimensional by h the channel half-width, velocities
by 〈U〉c, the center velocity of the time-mean flow, and time by h/〈U〉c. The Reynolds
number is R = 〈U〉ch/ν, with ν the kinematic viscosity. [L+

x , L
+
y , L

+
z ], indicate the domain

size in wall-units. Nx, Nz are the number of Fourier components after dealiasing and Ny
is the number of Chebyshev components. Rτ = uτh/ν is the Reynolds number of the
simulation based on the friction velocity uτ =

√
ν d〈U〉/dy|w,where d〈U〉/dy|w is the

shear at the wall.

The roll-inducing force field f produced by the sinuous component of the perturbation
field of the low-speed streak is shown in Fig. 21 (upper panel) and that produced by
the varicose component in Fig. 21 (bottom panel). The sinuous component of the DNS
tends to amplify the low-speed streak, while the varicose tends to induce a weaker reverse
circulation, in agreement with the theoretical discussion in the earlier sections. In Fig.
22 (top panel) the roll-inducing component of the force field, f , produced by the entire
perturbation field is shown, which, as discussed above, supports the low-speed streak. It
was confirmed that the rotational force f of the total perturbation field is very close to
the sum of the rotational forcing by the sinuous and varicose components. This indicates
that there is no substantial correlation between the sinuous and varicose components
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of the flow giving rise to cross-term contributions to the Reynolds stresses, so that the
total rotational force f and that obtained from the analysis performed in this paper, in
which the sinuous and varicose components independently add, is justified. In Fig. 22
(bottom panel) is shown the roll-inducing force field f of the total perturbation field in the
high-speed streak, which as expected supports the high-speed streak, while the support is
weaker than that of the f in the low-speed streak, as in our previous discussion.

In Fig. 23 we plot the contribution of the v2 − w2 and vw Reynolds stresses to the
cross-stream acceleration of the sinuous and varicose components of the perturbation field
in the mean low-speed streak (left panel) and the mean high-speed streak (right panel).
As expected dominant contribution to f is confirmed to be due to v2 − w2.

7. Discussion

The study of turbulence dynamics has roots in interpretation of spatial and temporal
spectra (Taylor 1935, 1938; Kolmogorov 1941). At the time, data were available from two
point space or time correlations which allowed spectra to be determined. Unfortunately
this required the phase of Fourier components to be left indeterminant and so implicitly
the maximum entropy assumption of random phase was made. The result was that
turbulence theory neglected the role of coherent structures the study of which requires
determining the phase of Fourier components. The origin of structures elicited by the
observational techniques available was commonly ascribed to modal instability based on
Rayleigh’s theory of modes (Rayleigh 1880, 1896). However, smoke and hydrogen bubbles
tended to reveal three dimensional structures that did not correspond with modes of
maximal growth rate and in fact the canonical laboratory shear flows did not support
growing modes. The first 3D turbulence to be comprehensively observed was that of the
baroclinic turbulence of the midlatitude atmosphere. This was accomplished soon after
the invention of the vacuum tube which allowed telemetry from weather ballooons to
be made over the entire troposphere. Twice daily radiosonde observations covering the
entire Northern Hemisphere soon followed. The primary coherent structures revealed
by this comprehensive data set was the midlatitude cyclone and the jet stream. The
midlatitude cyclone was quickly identified with an unstable mode of the equations of
motion linearized about the mean jet flow (Charney 1947; Eady 1949) while the coherent
jet stream structure was determined to result from the cooperative interaction between
the midlatitude cyclones and the jet, the requisite upgradient momentum flux required
for the cyclone perturbations to maintain the jet being ascribed to “negative viscosity”
(Jeffreys 1933; Starr 1953, 1968). It is remarkable that the two primary mechanisms of
coherent structure formation in turbulence, selective perturbation growth in the linearized
equations of motion and cooperative nonlinear interaction between essentially stochastic
turbulent perturbations and the coherent structure had already been recognized within a
decade after comprehensive observations of a turbulent flow became available. While the
fundamental energy source for maintaining the coherent structure by these two dynamical
mechanisms had been identified, the predictions of the analysis of these mechanisms was
soon shown to be at variance with observation: the growth of cyclones did not correspond
with the growth of modes and the satisfaction of necessary conditions for instability did
not allow prediction of cyclone formation. In the case of the second mechanism, while
negative viscosity provided a suggestive analogy for the upgradient eddy momentum
fluxes giving rise to the polar jet; as a parameterization in the equations of motion it
did not result in an analytic theory that predicted jet stream formation in agreement
with observations. Lack of agreement of observed cyclogenesis with modal theory was
subsequently explained by identification of cyclone formation with non-normal transient
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growth of stable optimally growing perturbations arising in the turbulence (Farrell 1982,
1984, 1985, 1989a,b) in which case the dynamics is properly analyzed using generalized
stability theory (GST) (Farrell & Ioannou 1996a,b). Understanding the mechanism of jet
stream formation has roots in the identification of equilibrium structures in stochastic
turbulence models (DelSole & Farrell 1996) and obtained full analytic development
with the advent of statistical state dynamics methods (Farrell & Ioannou 2003, 2007;
Srinivasan & Young 2012; Parker & Krommes 2013, 2014; Constantinou et al. 2016; Farrell
et al. 2017a; Farrell & Ioannou 2019). In wall-bounded shear flow turbulence theory the
non-normal transient growth mechanism for analyzing coherent structure formation was
introduced in the case of 2D structures in Farrell (1988) and in the case of 3D structures
in Butler & Farrell (1992, 1993); Farrell & Ioannou (1993a,b); Reddy & Henningson
(1993); Trefethen et al. (1993); Schmid & Henningson (2001). Formation of the R-S by a
cooperative instability mechanism was advanced by Hamilton et al. (1995); Waleffe (1997)
and the operative mechanism was identified in Farrell & Ioannou (2012a); Farrell et al.
(2017b). More recently methods based on GST have been advanced ascribing the R-S to
the growth of individual optimals (Jiménez 2013, 2018) and alternatively to the excitation
of the zero frequency resolvent (McKeon & Sharma 2010; McKeon 2017). However, in the
case of 3D wall-bounded shear flow it has not been determined whether and in which cases
the non-normal transient growth mechanism explains an observed R-S and in which cases
the observation is explained by the cooperative instability mechanism, that is whether
SSD analysis rather than non-normal transient growth analysis using GST is appropriate.

8. Conclusions

Our analysis reveals the remarkable universal tendency of sinuous perturbations in
channel flows to induce through their Reynolds stresses roll circulations and also for
varicose perturbations to induce roll circulations of opposite sign. This happens even in
a stochastically forced channel with no mean flow. We have ascribed this result to the
presence of solid wall boundaries which constrain the flow so that the wall normal velocity
fluctuations decay to zero faster than the spanwise velocity fluctuations. However, when
the mean flow has no spanwise variation the sinuous and varicose perturbations induce
roll circulations that cancel each other. Furthermore, we have shown that even a streak
at perturbative amplitude can organize turbulent perturbation Reynolds stresses so as to
amplify the perturbing streak which destabilizes the R-S in turbulent shear flows. The
reason for this universal streak amplification property is revealed by the partitioning of the
turbulent perturbation field into sinuous and varicose components. With this partition the
breaking of the tendency for cancellation of the opposing sinuous and varicose structure
Reynolds stresses in a spanwise homogeneous perturbation field is found to be broken by
the imposition of the streak resulting in the sinuous component dominating in the case of
a low speed streak and the varicose component dominating in the case of a high speed
streak. This result when coupled with the fact that the sinuous perturbations are favored
in growth by the low speed streak while the varicose are favored by the high speed streak
provides an analytic explanation for the universal streak amplification property in shear
flow. We find also that the Reynolds stress forcing of the roll circulations of low-speed
streaks is stronger than that of high-speed streaks, indicating that a contributing factor
for the observed relative weakness of high-speed streaks in wall-turbulence is the weaker
forcing by the Reynolds stresses that the high speed streak organizes.

As the origin and maintenance of the R-S is central to the theory of turbulence in shear
flow, in this work we have performed an in depth analysis of the physical mechanism
by which the R-S arises in Poisseullle flow at R = 1650. We find that the R-S arises by
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organization of Reynolds stresses producing roll inducing torques resulting in an SSP
in agreement with predictions of the cooperative SSD mechanism. In addition we have
shown that turbulent Reynolds stresses as predicted and required by this SSD cooperative
perturbation-roll-streak mechanism are observed to be in agreement with DNS data of
turbulence of the same flow which supports the conclusion that this mechanism we have
identified continues at finite amplitude to support the maintenance of the turbulent state.
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