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Statistical State Dynamics: A New Perspective on
Turbulence in Shear Flow

B R I A N F . F A R R E L L A N D P E T R O S J . I O A N N O U

25.1 INTRODUCTION

Adopting the perspective of statistical state dynamics (SSD)
as an alternative to the traditional perspective afforded by the
dynamics of individual turbulent state realizations has facili-
tated a number of recent advances in understanding turbulence
in shear flow. SSD reveals the operation in shear flow turbulence
of previously obscured mechanisms, particularly mechanisms
arising from cooperative interaction among disparate scales in
the turbulence. These mechanisms provide physical explana-
tion for specific phenomena, including formation of coherent
structures in the turbulence as well as more general and fun-
damental insights into the maintenance and equilibration of
the turbulent state. Moreover, these cooperative mechanisms
and the phenomena associated with them are not amenable
to analysis by the traditional method of studying turbulence
using statistics obtained from individual realizations of turbu-
lent state dynamics. Another advantage of the SSD approach
is that obtaining the probability density function (PDF) or a
suitable approximation to it directly provides access to all the
statistics of the turbulence, at least within the limitations of the
approximations applied to the dynamics. Although the utility
of obtaining the PDF dynamics directly as a state variable or
a suitable approximation to it from state variables is obvious,
the PDF is often difficult to obtain accurately by sampling
state trajectories even if the PDF is stationary. In the event that
the PDF is time dependent, which is often the case, solving
directly for the PDF as a state variable is the only alternative.
While these are all important advantages afforded by adopting
the PDF as a state variable, the overarching advantage is that
adopting the statistical state as the dynamical variable allows
an understanding of turbulence at a deeper level, which is the
level in which the essential cooperative mechanisms underlying
the turbulent state are manifest.

It is well accepted that complex spatially and temporally
varying fields arising in physical systems characterized by
chaotic state trajectories and involving interactions over an
extensive range of scales in space and time can be insight-
fully analyzed using statistical variables. In the study of tur-
bulent systems, examining statistics of variables arising in the
turbulence is a common practice; however, it is less common
to adopt statistical variables for the dynamics of the turbulent
system. The potential of SSD to provide insight into the mecha-
nisms underlying turbulence has been underexploited, at least in
part, because obtaining the dynamics of the statistical state has
been assumed to be prohibitively difficult in practice. An early
attempt to use SSD in the study of turbulence was the formal
expansion in cumulants by Hopf (Hopf, 1952; Frisch, 1995).

However, Hopf’s cumulant method was subsequently restricted
in application, in large part due to the difficulty of obtaining
robust closure of the expansion. Another familiar example of a
theoretical application of SSD to turbulence is provided by the
Fokker–Planck equation which, while very useful conceptually,
is generally intractable for representing complex system dyna-
mics except under very restrictive circumstances. Because of
the perceived difficulty of implementing SSD to study systems
of the type typified by turbulent flows, the dynamics of these
systems has been most often explored by simulating individ-
ual realizations of turbulent state trajectories, which are then
analyzed to obtain an approximation to the assumed statisti-
cally steady probability density function of the turbulent state.
This approach fails to provide insight into phenomena that are
associated intrinsically with the dynamics of the statistical state
rather than with the dynamics of the individual realizations.
The reason is that while the influence of multiscale coopera-
tive phenomena on the statistical steady state of turbulence is
apparent from the statistics of sample realizations, the coopera-
tive phenomena producing these statistical equilibria have ana-
lytical expression only in the SSD of the associated system. It
follows that, in order to gain understanding of turbulent equi-
libria, adopting the SSD perspective is essential. But there is
a more subtle insight into the dynamics of turbulence afforded
by the perspective of statistical state dynamics: while the sta-
tistical state of a turbulent system may asymptotically approach
a fixed point, in which case the mean statistics gathered from
sample realizations form a valid representation of the station-
ary statistical state, the dynamics of the statistical state may
instead be time dependent or even chaotic, in which case the
statistics obtained from sample realizations would not in gene-
ral correspond to a representation of the statistical state at any
time. The dynamics of such turbulent systems is accessible to
analysis only through its SSD.

Before introducing some illustrative examples of phenom-
ena accessible to analysis through the use of SSD it is use-
ful to inquire further as to why this method has not been
more widely exploited heretofore. In fact, as mentioned pre-
viously, closure of cumulant expansions to obtain equilibria of
the SSD has been very extensively studied in association with
isotropic homogeneous turbulence (Kraichnan, 1959b; Orszag,
1977; Rose and Sulem, 1978). However, the great analyti-
cal challenges posed by this approach and the limited success
obtained using it served to redirect interest toward dimensional
analysis and interpretation of simulations as a more promis-
ing approach to understanding the inertial subrange. It turns
out that the inertial subrange, while deceptively straightforward
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in dynamical expression, is intrinsically and essentially nonlin-
ear and as a result presents great obstacles to analysis. How-
ever, the arguably more relevant forms of turbulence, at least
in terms of applications to meteorology, oceanography, astro-
physics, magnetohydrodynamics (MHD) and engineering fluid
dynamics, is turbulence in shear flow at high Reynolds num-
ber. At the core of these manifestations of turbulence lies a
linear dynamics which is revealed by linearization about the
mean flow itself. This linearization in turn uncovers an underly-
ing simplicity of the dynamics arising from the non-normality
of the linear operator determining the set of dynamically rele-
vant structures and their interaction with the mean shear. While
not sufficient to eliminate the role of nonlinearity in the dyna-
mics of turbulence entirely, recognizing the centrality of this
non-normality-mediated interaction between perturbations and
mean flows motivates a concept of central importance to under-
standing turbulence in shear flow which is the pivotal role of
quasi-linear interaction between a restricted set of non-normal
structures and the mean flow. A primary implication of this
insight is that the SSD of shear flow turbulence is amenable
to study using closures based on this interaction.

Consider the large-scale jets that are prominent features of
planetary-scale turbulence in geophysical flows, of which the
banded winds of Jupiter and the Earth’s polar jets are familiar
examples. These jets can be divided into two groups: forced jets
and self-sustained jets. Jupiter’s jets are maintained by energy
from turbulence excited by convection arising from heat sources
in the planet’s interior, and so the source of the turbulence from
which the jets of Jupiter arise may be regarded as dynamically
independent of the jet structure itself; such jets we refer to as
forced. In contrast, the Earth’s polar jets are maintained by tur-
bulence arising from baroclinic growth processes drawing on
the potential energy associated with the meridional temperature
gradient, which is directly related to the jet structure by thermal
wind balance. Because baroclinic growth mechanisms depend
strongly on jet structure it follows that the mechanism produc-
ing the jet cannot be separated dynamically from the mecha-
nism producing the turbulence so that these problems must be
solved together; such jets we refer to as self-sustained. In the
case of Jupiter’s jets the energy source is known from observa-
tions to be convection (Ingersoll, 1990), leaving two fundamen-
tal problems presented by the existence of these jets. The first is
to explain how the jets arise from the turbulence, and the second
how they are equilibrated with the observed structure and main-
tained with this structure over timescales long compared to the
explicit timescales of the dynamics. Although these phenomena
manifest prominently in simulations of individual state realiza-
tions, neither is accessible to analysis using single state simula-
tion while both have analytical expression and straightforward
solution when expressed using SSD (Farrell and Ioannou, 2003,
2007). Moreover, in the course of solving the SSD problem for
jet formation and equilibration, a set of subsidiary results are
obtained including identification of the physical mechanism of
jet formation (Bakas and Ioannou, 2013b; Bakas et al., 2015),
the structure of the finite-amplitude equilibrated jets, and pre-
diction of the existence of multiple equilibria jet states (Farrell
and Ioannou, 2007, 2009a; Parker and Krommes, 2013; Con-
stantinou et al., 2014a). But perhaps most significant is the
insight obtained from these SSD equilibria into the nature of

turbulence: the turbulent state is revealed to be fundamentally
determined by cooperative interaction acting directly between
the large energy-bearing scales of the mean flow and the
small scales of the turbulence. This fundamental quasi-linearity,
which is revealed by SSD, is a general property of turbulence in
shear flow, recognition of which provides both conceptual clar-
ity and analytical tractability to the turbulence closure problem.

An additional issue arises in the case of self-sustained jets
that are maintained by baroclinic growth processes: establish-
ment of the statistical mean turbulent state for supercritical
imposed meridional temperature gradients requires suppres-
sion of the unstable growth. It has long been remarked that
coincident with the equilibration of baroclinic instability in
supercritically forced baroclinic turbulence is a characteristic
organization of the flow into prominent large-scale jets, but
this association remained an intriguing observation because
although fluctuating approximations to SSD equilibria occur in
realizations, analytic expression of the mechanism of flow insta-
bility equilibration is in general inaccessible within sample state
dynamics. However, this problem can be directly solved using
SSD: the equilibrium turbulent state is obtained in the form of
fluctuation-free fixed points of the autonomous SSD. Moreover,
the mechanism of equilibration is also identified as these fixed
points are found to be associated with stabilization of the super-
critical flow by the jets, in large part by confinement of the per-
turbation modes by the meridional jet structure to sufficiently
small meridional scale that the instabilities are no longer sup-
ported, a mechanism previously referred to as the “barotropic
governor” (Ioannou and Lindzen, 1986; James, 1987; Lindzen,
1993; Farrell and Ioannou, 2008, 2009c).

In the magnetic plasma confinement problem, which is of
great importance to the quest for a practical fusion power
source, the formation of jets by cooperative interaction with
drift wave turbulence is fundamental to the effectiveness of the
plasma confinement (Diamond et al., 2005). The jet-mediated
high confinement regime is another example of a phenomenon
that arises from cooperative interaction acting directly between
large jet and small perturbation scales in a turbulent flow that
can only be studied directly using SSD. Drift wave turbu-
lence in plasmas, governed by the Charney–Hasegawa–Mima or
Hasegawa–Wakatani equations, parallels in dynamics the baro-
tropic or baroclinic turbulence in the Earth’s atmosphere with
the Lorenz force playing the role of the Coriolis force in the
plasma case, so it is not surprising that the same or very simi-
lar phenomena occur in these two systems. The time-dependent
statistical state of drift wave turbulence has natural expression
as the trajectory of the statistical state evolving under its associ-
ated SSD (Farrell and Ioannou, 2009b). The trajectory of the
statistical state of a turbulent system commonly approaches
a fixed point corresponding to a statistically steady state, but
in the case of plasma turbulence the statistical state instead
often follows a limit cycle or even a chaotic trajectory. These
time-dependent states are distinct conceptually from the famil-
iar limit cycles or chaotic trajectories of single state trajectory
realizations. Rather, these statistical state trajectories represent
time dependence or chaos of the cooperative dynamics of the
turbulence which, while apparent in observation of single tur-
bulent state trajectory temporal variability, has no counterpart
in analysis based on the dynamics of individual turbulent state
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trajectories. An example of a time-dependent statistical state
trajectory that is perhaps more familiar to the atmopheric sci-
ence community is provided by the limit cycle behavior of
the quasi-biennial oscillation (QBO) in the Earth’s equatorial
stratosphere (Farrell and Ioannou, 2003).

A manifestation of turbulence of great practical as well
as theoretical interest is that collectively referred to as wall-
bounded shear flow turbulence, examples of which include
pressure-driven pipe and channel flows, flow between dif-
ferentially moving plane surfaces, over airplane wings and
in the pressure-forced shear flow of the convectively stable
atmospheric boundary layers. These laminar shear flow veloc-
ity profiles have negative curvature and, consistent with the
prediction of Rayleigh’s theorem for their inviscid counter-
parts, these flows do not support inflectional instabilities. Two
fundamental problems are posed by the turbulence occurring
in wall-bounded shear flows: instigation of the turbulence,
referred to as the bypass transition problem, and maintenance
of the turbulent state once it has been established. The second
of these problems, maintenance of turbulence in wall-bounded
shear flow, is commonly associated with what is referred to as
the self-sustaining process (SSP). Transition can occur either
by a pathway intrinsic to the SSD of the background turbulence,
or alternatively transition can be induced directly by imposition
of a sufficiently large and properly configured state perturba-
tion (Farrell and Ioannou, 2012). The former bypass transition
mechanism has no analytical counterpart in sample state dyna-
mics, while the latter has been extensively studied using indi-
vidual initial state realizations as, for example, in Brandt et al.
(2004). In contrast, the SSP mechanism maintaining the turbu-
lent state is fundamentally a quasi-linear multiscale interaction
amenable to analysis using SSD that can be identified with a
chaotic trajectory of the SSD (Farrell and Ioannou, 2012).

In this review, one implementation of SSD, referred to as
Stochastic Structural Stability Theory (S3T), will be described.
This is a second-order cumulant expansion (CE2) closure that
employs a stochastic parameterization to close the expansion.
S3T and alternative implementations of CE2 have been used
recently to study barotropic turbulence in planetary atmo-
spheres (Farrell and Ioannou, 2003, 2007; Marston et al., 2008,
2016; Marston, 2010, 2012; Srinivasan and Young, 2012; Bakas
and Ioannou, 2013a; Parker and Krommes, 2014; Constantinou
et al., 2014a, 2016; Woillez and Bouchet, 2017), in equatorial
dynamics (Farrell and Ioannou, 2009a; Fitzgerald and Farrell,
2018), in baroclinic turbulence (Farrell and Ioannou, 2008,
2009c, 2017b; Bernstein and Farrell, 2010), the growth of
dry convective boundary layer in the atmosphere (Ait-Chaalal
et al., 2016), turbulence in astrophysical flows (Tobias et al.,
2011), drift wave turbulence in plasmas (Farrell and Ioannou,
2009b; Parker and Krommes, 2013) and the turbulence of
wall-bounded shear flows (Farrell and Ioannou, 2012, 2017a;
Constantinou et al., 2014b; Thomas et al., 2014, 2015; Farrell
et al., 2016, 2017a,b).

25.2 IMPLEMENTATION OF SSD: S3T THEORY
AND ANALYSIS

S3T implements a closure at second order of the expansion in
cumulants of the system dynamics (Hopf, 1952; Frisch, 1995).

The Hopf expansion equations govern the joint evolution of
the mean flow (first cumulant) and the ensemble perturbation
statistics (higher-order cumulants). A second-order closure is
obtained by either a stochastic parameterization of the terms
in the second cumulant equation that involve the third cumu-
lant (Farrell and Ioannou, 1993a,b; DelSole and Farrell, 1996;
DelSole, 2004b) or setting the third cumulant to zero (Marston
et al., 2008). Restriction of the dynamics to the first two cumu-
lants is equivalent to either neglecting or parameterizing by
additive noise the perturbation–perturbation interactions in the
fully nonlinear dynamics, which removes the mechanism of the
nonlinear perturbation cascade as well as nonlinear mixing from
the dynamics. This closure results in a nonlinear, autonomous
dynamical system that governs the evolution of the mean flow
and its associated second-order perturbation statistics. The S3T
equations constitute an SSD which, when implemented as the
dynamics of a zonal mean flow and the covariance of perturba-
tions from this zonal mean flow, governs the evolution of the
statistical state represented by the zonal mean and a Gaussian
approximation to the perturbation covariance that is consistent
with it.

We now review the derivation of the S3T system starting from
the discretized Navier–Stokes equations, which can be assumed
to take the generic form:

dxi
dt
=
∑
j,k

ai jk x j xk −
∑
j

bi j x j + f i . (25.1)

The flow variable xi could be the velocity component at the
ith location of the flow and the discrete set of equations (25.1)
could arise from discretization of the continuous fluid equations
on a spatial grid. The linear term

∑
j bi j x j represents dissipa-

tion, with bi j a positive definite matrix. Any externally imposed
body force is specified by f i . In fluid systems

∑
i,j,k ai jk xi x j xk

vanishes identically implying, in the absence of dissipation and
forcing, that E = 1

2
∑

i x2
i is conserved.

Consider now the averaging operator ( · ). This could be the
zonal mean in a planetary flow, but for now it is left unspecified;
it will be assumed that it satisfies the Reynolds postulates that
require that (a): λφ(t) + μψ(t) = λφ(t)+μψ(t) for all real num-

bers λ, μ, and (b): φ(t)ψ(t) = φ(t) ψ(t). It is also assumed that
the averaged quantities are at least as differentiable and inte-
grable as the original unaveraged fields, and that the averaging
operator commutes with time translations, so that(
∂φ

∂t

)
=
∂φ

∂t
,
(∫

dt φ

)
=

∫
dt φ. (25.2)

Note that the running time average,

φ(t) ≡ 1
2T

∫ t+T

t−T
φ(τ)dτ, (25.3)

commutes with time translations, satisfies the linearity assump-
tion (a), but does not define an averaging operator as it does not
satisfy condition (b). These postulates imply that the dependent
variable xi can be decomposed into a mean and a perturbation
part: xi = Xi + x ′i , where Xi ≡ xi , and x ′i = 0, and, most impor-
tantly, that

xi x j = XiX j + Xi x ′j + X j x ′i + x ′i x
′
j = XiX j + x ′i x

′
j ,
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and that also

dXi

dt
=

dXi

dt
,

dx ′i
dt
=

dx ′i
dt
= 0. (25.4)

In the development that follows we assume that, upon decom-
posing the external forcing f i = Fi + f ′i , the Fi ≡ f i are
deterministic while the f ′i are stochastic. Taking the average of
(25.1) we obtain that the mean and perturbation variables evolve
according to

dXi

dt
−
∑
j,k

ai jk X j Xk +
∑
j

bi j X j =
∑
j,k

ai jk x ′j x
′
k
+ Fi , (25.5a)

dx ′i
dt
=
∑
j

Ai j (X )x ′j + f ′i
NL
+ f ′i , (25.5b)

where

Ai j (X ) =
∑
k

(
aik j + ai jk

)
Xk − bi j (25.6)

and

f ′i
NL
=
∑
j,k

ai jk
(
x ′j x

′
k − x ′j x

′
k

)
. (25.7)

The term
∑

j Ai j (X )x ′j is bilinear in X and x ′ and represents
the influence of the mean flow on the perturbation dynamics,
while the quadratically nonlinear term f ′N L represents the
perturbation–perturbation interactions which are responsible
for the turbulent cascade in the perturbation variables. The term
FRi ≡ ∑j,k ai jk x ′j x

′
k

in (25.5a) is the perturbation Reynolds
stress divergence and represents the influence of the perturba-
tions on the mean flow. Equations (25.5) determine the evolu-
tion of the mean flow and the perturbation variables under the
full nonlinear dynamics (25.1), and will be referred to as the NL
equations.

The quasi-linear (QL) approximation to NL results when
the perturbation–perturbation interactions, given by the term
f ′N L in (25.5b), are either neglected entirely or replaced by
a stochastic parameterization while the influence of perturba-
tions on the mean is retained fully by incorporating the term FR

in the nonlinear mean equation (25.5a). The QL approximation
of (25.5) under the stochastic parameterization f ′i

NL + f ′i =√
ε
∑

j f i jdBt j is

dXi

dt
−
∑
j,k

ai jk X j Xk +
∑
j

bi j X j =
∑
j,k

ai jk x ′j x
′
k
+ Fi , (25.8a)

dx ′i =
n∑
j=1

Ai j (X )x ′jdt +
√
ε f i j dBt j . (25.8b)

The noise terms, dBt j , are independent delta-correlated
infinitesimal increments of a one-dimensional Brownian motion
at time t (cf. Øksendal, 2000) satisfying

〈dBti〉 = 0,
〈
dBtidBs j

〉
= δi jδ(t − s) dt, (25.9)

in which 〈 · 〉 denotes the ensemble average over realizations of
the noise. Equations (25.8) will be referred to as the QL equa-
tions. In the absence of forcing and dissipation the QL equations
conserve the energy EQL = 1

2
∑

i

(
X2
i + x ′2i

)
and, in the pres-

ence of bounded deterministic forcing, Fi , and dissipation, real-
izations of the dynamics (25.8b) have all moments finite at all

times. In general, the energy conserved in NL differs from that
conserved in QL, and their difference is E − EQL =

∑
i Xi x ′i .

This cross term vanishes identically if summation over i is
equivalent to the action of averaging with the chosen averag-
ing operator, otherwise the equality of the energy invariants is
true only on average. For example, if the averaging operator is
the zonal mean and the index refers to the value of the variable
on a spatial grid the cross term vanishes and then E = EQL . We
will require that the averaging operators have the property that
the QL invariants (energy, enstrophy, etc.) are the same as the
corresponding NL invariants.

Consider N realizations of the perturbation dynamics (25.8b)
evolving under excitation by statistically independent realiza-
tions of the forcing but all evolving under the influence of a
common mean flow X according to

dx ′ri =
n∑
j=1

Ai j (X )x ′rj dt +
√
ε f i jdBr

t j (r = 1, . . . , N ). (25.10)

Denote with superscript r the rth realization so that xrj (t) corre-
sponds to the forcing dBr

t j . Assume further that the mean flow

X is evolving under the influence of the average FR over these
N realizations, so that

dXi

dt
−
∑
j,k

ai jk X j Xk +
∑
j

bi j X j =
∑
j,k

ai jkCN
jk
+ Fi , (25.11)

with

CN
ij =

1
N

N∑
r=1

x ′ri x ′rj (25.12)

the N-ensemble averaged perturbation covariance matrix. To
motivate this ensemble, consider it to correspond to the physical
situation in which the averaging operator is the zonal mean and
assume that over a latitude circle the zonal decorrelation scale
is such that the latitude circle may be considered to be pop-
ulated by N independent perturbation structures, all of which
contribute additively to the Reynolds stresses that collectively
maintain the zonal mean flow.

An explicit equation for the evolution of CN
ij is obtained using

the Itô lemma and (25.10):

dCN
ij =

1
N

N∑
r=1

(
dx ′ri x ′rj + x ′ri dx ′rj

)
+ ε

n∑
k=1

f ik f T
k jdt

=

n∑
k=1

(
Aik (X )CN

k j + CN
ik AT

k j (X ) + ε f ik f T
k j

)
dt +

+

√
ε

N

N∑
r=1

n∑
k=1

(
f ik x ′rj + f jk x ′ri

)
dBr

tk . (25.13)

The stochastic equation (25.13) should be understood in
the Itô sense, so that the variables x ′ and the noise dBt

are uncorrelated in time and the ensemble mean of each of(
f ik x ′rj + f jk x ′ri

)
dBr

tk
vanishes at all times. The correspond-

ing differential equation in the physically relevant Stratonovich
interpretation is obtained by removing from (25.13) the term
ε
∑n

k=1 f ik f T
k j

dt. However, both interpretations produce iden-
tical covariance evolutions because in the Stratonovich inter-
pretation the mean of

√
ε ( f ik x ′rj + f jk x ′ri )dBr

tk
is nonzero and

exactly equal to the term ε
∑n

k=1 f ik f T
k j

dt that was removed
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from the Itô equation. This results because the noise in (25.10)
enters additively. The noise term in (25.13) can be further
reduced using the Itô isometry (cf. Øksendal, 2000) according
to which any noise of the form

∑m
k=1 gk (x ′1, . . . , x ′n) dBtk can be

replaced by the single noise process
√∑m

k=1 g
2
k

(x ′1, . . . , x ′n) dBt ,

in the sense that both processes have the same probability den-
sity function. Applying the Itô isometry to the noise terms in
(25.13), we obtain
√
ε

N

N∑
r=1

n∑
k=1

(
f ik x ′rj + f jk x ′ri

)
dBr

tk =

=

√
ε

N

√√
n∑

k=1
f ik f ikCN

j j + f jk f jkCN
ii + 2 f ik f jkCN

ij dBt ,

and (25.13) becomes

dCN
ij =

n∑
k=1

(
Aik (X )CN

k j + CN
ik AT

k j (X ) + ε f ik f T
k j

)
dt +

+

n∑
k=1

√
ε

N
Rik (CN ) dBtk j , (25.14)

where dBti j is an n × n matrix of infinitesimal increments of
Brownian motion, and the elements of Ri j are

Ri j (C
N ) =

√
QiiCN

j j +Q j jCN
ii + 2Qi jCN

ij , (25.15)

with Qi j =
∑n

k=1 f ik f T
k j

. Equations (25.11) and (25.14) which
govern the evolution of the mean flow interacting with N inde-
pendent perturbation realizations will be referred to as the
ensemble quasi-linear (EQL) equations.

The stochastic term in the EQL vanishes as the number of
realizations increases, and in the limit N → ∞ we obtain
the autonomous and deterministic system of S3T for the mean
X and the associated perturbation covariance matrix Ci j =

limN→∞ CN
ij :

dXi

dt
−
∑
j,k

ai jk X j Xk +
∑
j

bi j X j =
∑
j,k

ai jkCjk + Fi , (25.16a)

dCi j

dt
=

n∑
k=1

(
Aik (X )Ck j + Cik AT

k j (X )
)
+ ε Qi j . (25.16b)

25.3 REMARKS ON THE S3T SYSTEM

1. We have followed a physically based derivation of the S3T
equations as in Farrell and Ioannou (2003). These equations
can also be obtained using Hopf’s functional method (Hopf,
1952; Frisch, 1995; Marston et al., 2008).

2. The choice of averaging operator as well as the choice of the
stochastic parameterization for the perturbation–perturbation
interaction and the external perturbation forcing used in the
S3T model must be consistent with the dynamics of the tur-
bulent flow being studied. For example, using the zonal mean
as an averaging operator is appropriate when studying zonal
jet formation.

3. In the case of homogenous isotropic turbulence, the stochas-
tic excitation must be very carefully fashioned in order to

obtain approximately valid statistics using a stochastic clo-
sure (Kraichnan, 1971), while in shear flow the form of the
stochastic excitation is not crucial. The reason is that in shear
flow the operator Ai j is non-normal and a restricted set of
perturbations participate strongly in the interaction with the
mean flow. As a result, the statistical state of the turbulence is
primarily determined by the quasi-linear interaction between
the mean and these perturbations rather than by nonlinear
interaction among the perturbations.

4. The S3T dynamics exploits the idealization of an infinite
ensemble of perturbations interacting with the mean. It fol-
lows that S3T becomes increasingly accurate as the number
of effectively independent perturbations contributing to influ-
ence the mean increases.

5. It is often the case that the zonal mean is an attractive choice
for the averaging operator. A stable fixed point of the asso-
ciated S3T system then corresponds to a statistical turbulent
state comprising a mean zonal jet and fluctuations about it
with covariance Ci j so that the PDF of the perturbation field
is Gaussian with distribution

p(x ′1, . . . , x ′n) =
exp

[
− 1

2
∑

i,j (C−1)i j x ′i x
′
j

]
√

(2π)n det(C)
.

6. S3T theory can also be applied to problems in which a
temporal rather than a spatial mean is appropriate. The inter-
pretation of the ensemble mean is then as a Reynolds aver-
age over an intermediate timescale, in which interpretation
the perturbations are high-frequency motions while the mean
constitutes the slowly varying flow components (Bernstein
and Farrell, 2010; Bakas and Ioannou, 2013a; Constantinou
et al., 2016).

7. Often the attractor of the S3T dynamics is a fixed point rep-
resenting a regime with stable statistics. However, the attrac-
tor of the S3T dynamics need not be a fixed point and in
many cases a stable periodic orbit emerges as the attract-
ing solution. In many turbulent systems large-scale observ-
ables exhibit slow and nearly periodic fluctuation despite
short timescales for the underlying dynamics and the lack of
external forcing to account for the long timescale (e.g. the
QBO in the Earth’s atmosphere, the solar cycle). S3T pro-
vides a mechanism for such phenomena as reflections of a
limit cycle attractor of the ideal S3T dynamics (Farrell and
Ioannou, 2003).

8. S3T provides an analytical mechanism for investigating the
sensitivity of the statistical mean state of a turbulent system
(the climate as represented by the model) to perturbations of
system parameters. Small changes in system parameters typ-
ically cause correspondingly small and linearly related vari-
ation in the statistical state from which the sensitivity of the
model climate can be inferred.

9. However, at the bifurcation points of the SSD small changes
of the system parameters produce large changes in the sta-
tistical state of the turbulence. For example, S3T dynamics
predicts bifurcation from the statistical homogeneous regime
in which there are no zonal flows to a statistical regime with
zonal flows when a parameter changes or predicts the transi-
tion from a regime characterized by two jets to a regime with
a single jet.
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10. The EQL equations (25.11) and (25.14) contain informa-
tion about the fluctuations remaining in the ensemble dyna-
mics when the number of ensemble members is finite. These
fluctuation statistics can be used to determine the statistics
of noise-induced transitions between ideal S3T equilibria
(Tangarife, 2015).

11. The close correspondence of S3T and NL simulations sug-
gests that turbulence in shear flow can be essentially under-
stood as determined by quasi-linear interaction occurring
directly between a spatial or temporal mean flow and pertur-
bations. This result provides a profound simplification of the
dynamics of turbulence, identifies the mechanism determin-
ing the statistical mean state in a turbulent flow, and shows
that the role of nonlinearity in the dynamics of turbulence is
highly restricted.

12. The S3T system has bounded solutions and if destabilized
typically equilibrates to a fixed point which can be identi-
fied with statistically stable states of turbulence (Farrell and
Ioannou, 2003). Moreover, these equilibria closely resemble
observed statistical states. For example, S3T applied to an
unstable baroclinic flow takes the form of baroclinic adjust-
ment that is observed to occur in observations and in simula-
tions (Stone and Nemet, 1996; Schneider and Walker, 2006;
Farrell and Ioannou, 2008, 2009c).

25.4 APPLYING S3T TO STUDY SSD
EQUILIBRIA AND THEIR STABILITY

S3T dynamics comprises interaction between the mean flow, X ,
and the turbulent Reynolds stress obtained from the associated
second-order covariance of the perturbation field, C. A fixed
point of this system, when stable, corresponds to a stationary
statistical mean turbulent state. When rendered unstable by a
change of a system parameter, these equilibria predict struc-
tural reorganization of the whole turbulent field leading to the
establishment of a new statistical mean state. These bifurcations
correspond to a new type of instability in turbulent flows asso-
ciated with statistical mean state reorganization. Although such
reorganizations have been commonly observed, there has not
heretofore been a theoretical method for analyzing or predict-
ing them.

We consider first the stability of an equilibrium probabil-
ity density function in the context of S3T dynamics. The S3T
equilibrium is determined jointly by an equilibrium mean flow
X e and a perturbation covariance, Ce, that together constitute a
fixed point of the S3T equations (25.16a) and (25.16b):∑
j,k

ai jk X e
j X e

k −
∑
j

bi j X
e
j +
∑
j,k

ai jkCe
jk
+ Fi = 0, (25.17a)

∑
k

(
Aik (X e)Ce

k j + Ce
ik AT

k j (X e)
)
+ εQi j = 0. (25.17b)

The linear stability of a fixed-point statistical equilibrium of
the S3T system (X e, Ce

i j ) is determined from the associated per-
turbation equations

d δXi

dt
=
∑
k

Aik (X e)δXk +
∑
j,k

ai jkδCjk , (25.18a)

d δCi j

dt
=
∑
k

(
δAikCe

k j + Ce
ikδAT

k j+

+Aik (X e)δCk j + δCik AT
k j (X e)

)
, (25.18b)

with

δAi j =
∑
k

(
aik j + ai jk

)
δXk . (25.19)

The asymptotic stability of such a fixed point is determined
by assuming solutions of the form (δ̂X i , δ̂Ci j )eσt with δAi j =

δ̂Ai jeσt and by obtaining the eigenvalues, σ, and the eigenfunc-
tions of the system:

σδ̂X i =
∑
k

Aik (X e)δ̂Xk +
∑
j,k

ai jk δ̂C jk , (25.20a)

σδ̂Ci j =
∑
k

(
δ̂AikCe

k j + Ce
ik δ̂A

T
k j+

+Aik (X e)δ̂Ck j + δ̂Cik AT
k j (X e)

)
. (25.20b)

If the attractor of the S3T is a limit cycle then (25.16) has
time-varying periodic solutions (Xp

i (t), Cp
i j (t)) with period T .

The S3T stability of this periodically varying statistical state is
determined by obtaining the eigenvalues of the propagator of
the time-dependent version of (25.18) over the period T .

25.5 REMARKS ON S3T INSTABILITY

1. Consider an equilibrium mean flow X e; if ε vanishes iden-
tically then Ce also vanishes and S3T stability theory col-
lapses to the familiar hydrodynamic instability of this mean
flow, which is governed by the stability of A(X e). Conse-
quently, S3T instability of (X e, 0) implies the hydrodynamic
instability of X e. However, if ε does not vanish identically
then the instability of the equilibrium state (X e, Ce) intro-
duces a new type of instability, which is an instability of the
collective interaction between the ensemble mean statistics
of the perturbations and the mean flow. It is an instability
of the SSD and can be formulated only within this frame-
work. Eigenanalysis of the S3T stability equations (25.18)
provides a full spectrum of eigenfunctions comprising mean
flows and associated covariances that can be ranked accord-
ing to their growth rate. These eigenfunctions underlie the
behavior of QL and NL simulations. An example of this can
be seen in the EQL system, governed by (25.11) and (25.14),
which provides noisy reflections of the S3T equilibria and
their stability. Specifically, the response of an EQL simula-
tion of a stable S3T equilibrium manifests structures reflect-
ing stochastic excitations of the stable S3T eigenfunctions by
the fluctuations in EQL (Constantinou et al., 2014a).

2. Hydrodynamic stability is determined by eigenanalysis of the
n × n matrix A(X e). However, in order to determine the S3T
stability of (X e, Ce) the eigenvalues of the (n2 + n) × (n2 + n)
system of equations (25.18) must be found; special algo-
rithms have been developed for this calculation (Farrell and
Ioannou, 2003; Constantinou et al., 2014a).

3. If (X e, Ce) is a fixed point of the S3T system, then X e is nec-
essarily hydrodynamically stable, i.e. A(X e) is stable. This
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follows because the equilibrium covariance Ce that solves
(25.17b) is determined from the limit

Ce
i j = ε lim

t→∞

∫ t

0

∑
k,l

eA(Xe)(t−s)
ik

Qkl eAT (Xe)(t−s)
l j

ds, (25.21)

which does not exist if A(X e) is neutrally stable or unsta-
ble, and consequently in either case X e is not a realizable
S3T equilibrium. This argument generalizes to S3T periodic
orbits: if S3T has a periodic solution, (Xp(t), Cp(t)) of period
T , then the perturbation operators A(Xp(t)) must be Floquet
stable, i.e. the propagator over a period T of A(Xp(t)) has
eigenvalues λ with |λ | < 1, so that the time-dependent mean
states Xp(t) are hydrodynamically stable.

4. While S3T stable solutions are necessarily also hydrodynam-
ically stable, the converse is not true: hydrodynamic stability
does not imply S3T stability. We will give examples below
of hydrodynamically stable flows that are S3T unstable. This
is important because it can lead to transitions between turbu-
lent regimes that are the result of cooperative S3T instability
rather than instability of the associated laminar mean flow.

25.6 APPLYING S3T TO STUDY THE SSD OF
BETA-PLANE TURBULENCE

Consider a barotropic mid-latitude beta-plane model for the
dynamics of jet formation and maintenance in the Earth’s upper
troposphere or in Jupiter’s atmosphere. For simplicity assume
a doubly periodic channel with x and y Cartesian coordinates
along the zonal and the meridional direction respectively. The
nondivergent zonal and meridional velocity fields are expressed
in terms of a stream function, ψ, as u = −∂yψ and v = ∂xψ. The
planetary vorticity is 2Ω+ βy, withΩ the planetary rotation rate
and β the planetary vorticity gradient evaluated at the latitude
of the midpoint of the channel. The relative vorticity is q = Δψ
where Δ ≡ ∂2

xx + ∂
2
yy is the Laplacian. The NL dynamics of this

system is governed by the barotropic vorticity equation:

∂tq + u ∂xq + v ∂yq + βv = D +
√
ε f . (25.22)

The term D represents linear dissipation with the zonal com-
ponent of the flow (corresponding to zonal wavenumber k = 0)
dissipated at the rate rm while the nonzonal components are dis-
sipated at rate r > rm (cf. Constantinou et al., 2014a). This
dissipation specification allows the use of Rayleigh damping
while still modeling the physical effect of a smaller damping
rate at the large jet scale than at the much smaller perturba-
tion scale. Periodic boundary conditions are imposed in x and
y with periodicity 2πL. Distances are nondimensionalized by
L = 5000 km and time by T = L/U , where U = 40 m s−1,
so that the time unit is T = 1.5 days and β = 10 corresponds
to a mid-latitude value. Turbulence is maintained by stochastic
forcing with spatial and temporal structure f and variance ε .

Choosing as the averaging operator the zonal mean, i.e.

φ(y, t) =
∫ 2π

0 φ(x, y, t) dx/2π, and decomposing the fields in
zonal mean components and perturbations, we obtain the dis-

cretized barotropic QL system:

dU
dt
= v′q′ − rm U , (25.23a)

dqk
dt
= Ak (U)qk +

√
ε FkdBtk , (25.23b)

where U is the mean flow state, the subscript k = 1, . . . , Nk

in (25.23b) indicates the zonal wavenumber and qk the Fourier
coefficient of the perturbation vorticity that has been expanded
as q′ =  

(∑Nk

k=1 qkeikx
)
. The Nk wavenumbers include only

the zonal wavenumbers that are excited by the stochastic forcing
because the k � 0 Fourier components do not directly interact
in (25.23b) and therefore the perturbation response is limited
to the wavenumbers directly excited by the stochastic forcing.
The linear operator of the perturbation dynamics (25.23b) is
given by

Ak (U) = −ikU − ik (β − D2U)Δ−1
k − r , (25.24)

with Δk = D2 − k2, Δ−1
k

its inverse, and D2 = ∂yy . The contin-
uous operators are discretized and approximated by matrices.
The perturbation velocity appearing in (25.23a) is given by
v′ =  

(∑Nk

k=1 ikΔ−1
k

qkeikx
)
, and the meridional vorticity flux

accelerating the mean flow is

v′q′ =
Nk∑
k=1

k
2

diag
[
"
(
Δ−1
k Ck

)]
, (25.25)

with " denoting the imaginary part, Ck = qkq†
k

the single-
ensemble member covariance, † the Hermitian transpose, and
diag the diagonal elements of a matrix. The forcing structure is
chosen to be nonisotropic with matrix elements

Fki j = ck
[
e−(yi−yj )2/(2s2) + e−(yi−2π−yj )2/(2s2)+

+ e−(yi+2π−yj )2/(2s2)
]

, (25.26)

with s = 0.2/
√

2 and the normalization constants chosen so
that energy is injected at each zonal wavenumber k at unit rate.
The delta correlation in time of the excitation ensures that this
energy injection rate is the same in the QL and NL simulations
and is independent of the state of the system. This forcing
is chosen to model forcing of the barotropic jet in the upper
atmosphere arising from e.g. baroclinic turbulence. For more
details, see Constantinou et al. (2014a).

The barotropic S3T system is:

dU
dt
=

Nk∑
k=1
− k

2
"
(
diag

(
Δ−1
k Ck

))
− rmU , (25.27a)

dCk

dt
= Ak (U)Ck + CkA†

k
(U) + ε Qk , (25.27b)

with Ck =
〈
qkq†

k

〉
and Qk = FkF†

k
. The imaginary part

in (25.27a) requires that we add to the system an equation for
the conjugate of the covariance. This is necessary for treating
the S3T equations as a dynamical system and for analyzing the
stability of S3T equilibria. Alternatively, we can treat the real
and imaginary parts of the perturbation covariance as separate
variables to obtain a real S3T dynamical system, as in (25.16).

Under the assumption that the stochastic forcing in the peri-
odic channel is homogeneous, (25.27a) and (25.27b) admit the
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homogeneous equilibrium

Ue = 0, Ce
k =

ε

2r
Qk , (25.28)

as shown in Appendix 25.A. The assumption of homogeneity
of the excitation is crucial for obtaining a covariance (25.28)
and associated turbulent equilibrium with no mean flow, which
requires that the excitation does not lead to a momentum flux
convergence. If the excitation were confined to a latitude band,
the homogeneous state would not be an S3T equilibrium. The
question is whether this homogeneous equilibrium is S3T sta-
ble. If it becomes S3T unstable at certain parameter values this
would be an example of a flow that is hydrodynamically stable
but S3T unstable.

25.6.1 Formation and Structural Stability of Beta-Plane
Jets

To motivate our intuition for jet formation by cooperative inter-
action across spatial scales in beta-plane turbulence, consider
an infinitesimal perturbation of the homogeneous turbulence in
the form of a jet, δU , such as, for example, the one shown in
the left panel of Fig. 25.1, and calculate the vorticity fluxes
induced by this perturbation mean flow assuming that the tur-
bulence adjusts to δU so that it satisfies the equilibrium form of
(25.27b) with zonal mean flow perturbation δU . The modifica-
tion produced in the turbulence field by this mean flow perturba-
tion produces a steady-state covariance satisfying the Lyapunov
equation:

Ak (δU)Ck + CkA†
k

(δU) = −εQk , (25.29)

for k = 1, . . . , Nk . By solving (25.29) we find that introduc-
ing the infinitesimal jet δU breaks the homogeneity of the tur-
bulence resulting in an ensemble mean acceleration which can

0 2 4 6
−2

−1

0

1

2

3

4
x 10

−3

y
0 2 4 6

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

y

vq for β=0 vq for β=0

vq for β=10

vq for β=10

δ U

Figure 25.1 Mean flow acceleration resulting from a small mean flow
perturbation imposed on a background of homogeneous turbulence. In
the absence of a perturbation jet the vorticity flux v′q′ = 0. The
turbulence is distorted by the jet perturbation, inducing vorticity fluxes
that tend to amplify the imposed jet perturbation. The left panel shows
a Gaussian jet perturbation together with the accelerations that it
induces for β = 0, 10. The mean flow acceleration is not the same
function as the δU that was introduced. Right panel: When the δU is
sinusoidal the mean flow acceleration has the same form resulting in
exponential growth that leads to the emergence of large-scale jets.
Calculations were performed in a doubly periodic square beta-plane
box of length 2π. The coefficient of linear damping is r = 0.1.

be calculated from (25.25). This induced acceleration, which is
shown in Fig. 25.1, is up-gradient and tends to reinforce the
mean flow perturbation that induced it, and this occurs even
in the absence of β (it vanishes for β = 0 only if the flow
domain is unbounded and the forcing covariance is isotropic).
Repeated experimentation shows that this positive feedback
occurs for any mean flow perturbation under any broadband
excitation (isotropic or nonisotropic) as long as there is power
at sufficiently high zonal wavenumbers.1 This universal prop-
erty of reinforcement of pre-existing mean flow perturbations,
revealed through S3T analysis, underlies the ubiquitous pheno-
menon of emergence of large-scale structure in turbulent flows
and explains why homogeneous equilibrium states are unsta-
ble to jet perturbations.2 It is clear that the acceleration induced
by the test perturbation δU shown in Fig. 25.1 is not identi-
cal to δU and therefore is not an eigenfunction, but if there
exists a mean flow perturbation that induces accelerations with
the same form as the imposed mean flow perturbation then
that perturbation would be an eigenfunction of the S3T stabil-
ity equations and it would grow or decay exponentially with-
out change of form. S3T provides the framework for system-
atically determining the full spectrum of such eigenfunctions,
enabling a full description of the evolution of a perturbation
of small amplitude to an S3T equilibrium state. In fact, homo-
geneity in y of the mean state assures that the mean flow com-
ponent of the eigenfunctions of the S3T equilibrium (25.28)
are harmonic so that, modulo phase, δUn = sin(ny), where
n indicates the number of jets associated with this eigenfunc-
tion. The right panel of Fig. 25.1 shows a verification that a
single harmonic induces mean flow acceleration of the same
form and is therefore an eigenfunction of the S3T stability
equations (25.18).

Consider the stability of the homogeneous equilibrium state
(25.28) as a function of the excitation amplitude ε . For ε = 0
the equilibrium Ue = 0 and Ce

k
= 0 is S3T stable. For ε > 0

the universal process of reinforcement of an imposed jet occurs
and therefore if rm = 0 the homogeneous S3T equilibrium
would immediately become unstable. For rm > 0, instability
occurs for ε > εc, where εc is the forcing amplitude that ren-
ders the S3T stability equation neutrally stable. The normal-
ized critical forcing amplitude for the S3T eigenfunctions with
meridional wavenumber n = 1, . . . , 11 is shown in Fig. 25.2.
S3T predicts that for these parameters the maximum S3T insta-
bility occurs for mean flow perturbations δU = sin(ny) with
n = 6, and thus S3T predicts that the breakdown of the homo-
geneous state occurs with the emergence of six jets in this
channel.

25.6.2 Structure of Jets in Beta-Plane Turbulence

For parameter values exceeding those required for inception of
the S3T instability, the S3T attractor comprises statistical steady
states with finite-amplitude jets that can be characterized by

1 This implies that numerical simulations must be adequately resolved
for jet formation to occur.

2 The dynamics leading to this behavior in barotropic flows is discussed
by Bakas and Ioannou (2013b) and Bakas et al. (2015). The counterpart of
this process for three-dimensional flows is discussed by Farrell and Ioannou
(2012) and Farrell et al. (2017a,b).
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Figure 25.2 S3T stability diagram showing the predicted zonal flow
equilibria as a function of the number of jets, n, and the marginal
fractional amplitude of excitation ε/εc in the doubly periodic channel
(dashed curve). The amplitude εc is the minimal excitation amplitude,
obtained from S3T stability analysis, that renders the homogeneous
state unstable. For parameter values below the dashed curve the
homogeneous state is S3T stable and no jets are predicted to emerge.
Above the dashed curve the flow is S3T unstable and new statistical
steady states emerge characterized by the number of finite amplitude
jets across the channel, n. S3T-stable finite-amplitude equilibrium jets
are indicated with a full circle. Note that for given excitation
amplitude there exist multiple S3T-stable equilibria characterized by
different numbers of jets. Unstable S3T equilibria determined with
Newton iterations are indicated with open circles. Near the curve of
marginal stability the S3T-unstable modes other than the most
unstable one at wavenumber 6 do not continue to stable
finite-amplitude structures with the same wavenumber as the
instability. This can be understood as a manifestation of the universal
Eckhaus instability as discussed in Parker and Krommes (2013). As
the excitation amplitude increases, jet bifurcations occur resulting in
the successive establishment of stable S3T equilibria with smaller n.
Zonal wavenumbers k = 1, . . . , 14 are forced, β = 10, r = 0.1,
rm = 0.01. Adapted from Constantinou (2015).

their zonal mean flow index Em/E, where Em is the kinetic
energy density of the mean flow and E the total kinetic energy
density of the flow. A plot of Em/E as a function of forc-
ing amplitude as predicted by S3T, and as observed in QL
and NL, is shown in Fig. 25.3; the corresponding meridional
structures of the jet equilibria for various parameter values are
shown in Fig. 25.4. Jets corresponding to S3T equilibria must
be hydrodynamically stable, which generally requires that the
mean vorticity gradient β − Ue

yy of the equilibrium jets not
change sign as the coefficient of the linear damping becomes
vanishingly small. Consistent with being constrained by this
criterion, the equilibrated jets at high supercriticality shown in
Fig. 25.4 assume the characteristic shape of sharply pointed pro-
grade jets, with very large negative curvature, and smooth ret-
rograde jets which satisfy β ≈ Ue

yy . This consideration leads to
the prediction that the mean spacing of the jets at high super-
criticality is approximately given by

√
|Umin |/β, with Umin the

peak retrograde mean zonal velocity. At low supercriticality
jet amplitude is too low for instability to be a factor in con-
straining jet structure with typical planetary values of β and

the jets equilibrate with nearly the structure of their associated
eigenmode, as discussed in Farrell and Ioannou (2007). While
the spacing of highly supercritical jets could be interpreted as
corresponding to Rhines scaling, the mechanism that produces
this scaling is associated with the modal stability boundary
of the finite-amplitude jet and is unrelated to the traditional
interpretation of Rhines scaling in terms of arrest of turbulent
cascades.

S3T also predicts that the Fourier energy spectrum of the
mean zonal flow of the highly supercritical jets has approxi-
mate l−5 dependence on meridional wavenumber, l, in accord
with highly resolved nonlinear simulations (Sukoriansky et al.,
2002; Danilov and Gurarie, 2004; Galperin et al., 2004) as well
as observations (Galperin et al., 2014b). The finite-amplitude
jets obtained as fixed-point equilibria in S3T are characterized
by near discontinuity in the shear at the maxima of the prograde
jets. This discontinuity would be consistent with a zonal energy
spectrum proportional to l−4. However, this discontinuity can-
not materialize in the presence of diffusion and it is smoothed,
resulting in the approximate l−5 dependence seen in simula-
tions. Note that S3T not only predicts the energy spectrum of
the zonal jets but also their structure, and therefore the phase of
the spectral components. The occurrence of this power law is
theoretically anticipated by S3T because the up-gradient fluxes
act as a negative diffusion on the mean flow and as a result
tend to produce constant shear equilibria at each flank of the
jet resulting in the near discontinuity observed in the derivative
of the prograde jet (Farrell and Ioannou, 2007).

Figure 25.3 The ratio of the energy of the zonal mean flow, Em, to the
total energy, E , in S3T (solid and diamonds), QL (dashed and dots)
and NL (dash-dot and circles) as a function of forcing amplitude ε/εc.
S3T predicts that the homogeneous flow becomes unstable at ε/εc = 1
with a symmetry-breaking bifurcation giving rise to finite-amplitude
zonal jets. This prediction of S3T is reflected accurately in the
simulations of both QL and NL. The agreement between NL and S3T
reveals that zonal jet formation is a bifurcation phenomenon and the
fact that S3T predicts both the inception of the instability and the finite
equilibration of the emergent flows demonstrates that the essential
dynamics of the formation and nonlinear equilibration is captured by
QL/S3T. Other parameters as in Fig. 25.2.
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Figure 25.4 Left: The equilibrium mean flow Ue for excitation
amplitudes ε/εc = 2, 8, 150, 500 and 104. Center: The corresponding
mean vorticity gradient β −Ue

yy . Right: The energy spectrum of the
zonal mean flow. For the highly supercritical jets the energy spectrum
approaches the approximate l−5 dependence on meridional
wavenumber l found in NL simulations. We argue that in the inviscid
limit this slope should approach l−4 as the prograde jet becomes
increasingly sharp. Other parameters as in Fig. 25.2. Adapted from
Constantinou (2015).

25.6.3 Comments on Statistical Equilibria in Beta-Plane
Turbulence

The emergence of jets as a bifurcation and the maintenance of
jets as finite-amplitude stable equilibria in barotropic turbulence
are predictions of S3T that could not result from analysis within
the NL and QL systems, as in both NL and QL turbulent states
with stable statistics do not exist as fixed-point equilibria so that
a meaningful structural stability analysis of statistically stable
equilibria states cannot be performed. However, as revealed in
Figs. 25.3, 25.5 and 25.6, reflections of the bifurcation struc-
ture and of the finite-amplitude equilibria predicted by the S3T
closure dynamics can be clearly seen both in QL and NL sim-
ulations. The reflection in NL of the bifurcation structure pre-
dicted by S3T for ε ≈ εc is particularly significant because it
shows that the S3T perturbation instability faithfully reflects the
physics underlying jet formation in turbulence even as it man-
ifests for infinitesimal mean flows. For a more detailed discus-
sion, see Constantinou et al. (2014a).

25.7 APPLYING S3T TO STUDY SSD
EQUILIBRIA IN BAROCLINIC TURBULENCE

A two-dimensional barotropic fluid lacks a source term to main-
tain vorticity against dissipation and therefore it cannot self-
sustain turbulence. Perhaps the simplest model that self-sustains

Figure 25.5 Hovmöller diagrams of jet emergence in NL, QL and
S3T simulations for excitation ε/εc = 20 as in Fig. 25.3. Shown for
the NL, QL and S3T simulations are U (y, t). In all simulations the jet
structure that first emerges is the n = 6 maximally growing jet
structure predicted by S3T stability analysis. After a series of mergers,
S3T is attracted to a statistical steady state with an n = 4 jet. The
whole process of jet mergers and S3T equilibration is accurately
reflected in the QL and NL simulations. This figure shows that S3T
predicts the structure, growth and equilibration of strongly forced jets
in both the QL and NL simulations. Other parameters as in Fig. 25.2.

turbulence is the baroclinic two-layer model, which is essen-
tially two barotropic fluids sharing a horizontal boundary. We
use this model to study the statistical state dynamics of baro-
clinic turbulence. The perturbation–perturbation nonlinearity
has been shown to be accurately parameterized in S3T studies
of baroclinic turbulence by using a state-independent stochastic
excitation as a closure (DelSole and Farrell, 1996; DelSole and
Hou, 1999; DelSole, 2004b). The dynamics of baroclinic turbu-
lence has also been studied using S3T with a state-dependent
closure with similar results (Farrell and Ioannou, 2009c).

Consider a two-layer fluid with quasi-geostrophic dynamics.
The layers are of equal depth h/2 and bounded by horizon-
tal rigid walls at the bottom and the top. Variables in the top
layer are denoted with subscript 1, and in the bottom layer
with subscript 2. The top layer density is ρ1 and the bot-
tom ρ2, with ρ2 > ρ1; the potential vorticity of the layer
is qi = Δψi + βy + (−1)i2λ2(ψ1 − ψ2)/2 (i = 1, 2), with
λ2 = 2 f 2

0 /(g′h), where g′ = g(�2− �1)/�1 is the reduced grav-
ity and f0 the Coriolis parameter so that, in terms of the Rossby
radius of deformation Ld =

√
g′h/ f0, λ =

√
2/Ld. The flow
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Figure 25.6 The S3T equilibrium jet (solid blue) for ε/εc = 20, and
its reflection in an NL simulation (dash-dot, black) and a QL
simulation (dashed, red). The jets in NL and QL undergo small
fluctuations, as is evident in Fig. 25.5, so shown is the average jet
structure over 500 units of time. This figure shows that S3T predicts
the structure of jets in strongly excited turbulence in both the QL and
NL simulations. Other parameters as in Fig. 25.2.

is relaxed to a constant temperature gradient in the meridional
direction (y) which, through the thermal wind relation, induces,
in the absence of turbulence and at equilibrium, a meridion-
ally independent mean shear HT in the zonal (x) mean veloc-
ity. This shear is taken without loss of generality to result from
relaxation to zero velocity in the bottom layer (2) and a con-
stant mean flow with stream function −HTy in the top layer (1).
Relaxation to this velocity structure is induced by Newtonian
cooling, and the bottom layer is dissipated by Ekman damp-
ing. The quasi-geostrophic dynamics governing this system is
given by

∂tq1 + J (ψ1, q1) = 2λ2rT
ψ1 − ψ2 + HTy

2
, (25.30a)

∂tq2 + J (ψ2, q2) = −2λ2rT
ψ1 − ψ2 + HTy

2
− rΔψ2, (25.30b)

in which the advection of potential vorticity is expressed using
the Jacobian J (ψ, q) = ∂xψ∂yq−∂yψ∂xq, rT is the coefficient of
the Newtonian cooling and r is the coefficient of Ekman damp-
ing. Equations (25.30) have been made nondimensional with

length scale Ld = 1000 km and timescale 1 day. With this scal-
ing λ =

√
2, the velocity unit is 11.5 m s−1 and a typical mid-

latitude value of β = 1.4. These equations can be expressed
alternatively in terms of the barotropic ψ = (ψ1 + ψ2)/2 and
baroclinic θ = (ψ1 − ψ2)/2 stream functions as

∂tΔψ + J (ψ,Δψ) + J (θ,Δθ) + βψx = −
r
2
Δ(ψ − θ), (25.31a)

∂tΔλθ + J (ψ,Δλθ) + J (θ,Δψ) + βθx =

r
2
Δ(ψ − θ) + 2λ2rT

(
θ +

HT
2

y

)
, (25.31b)

where Δλ ≡ Δ − 2λ2.
The barotropic and baroclinic stream functions are decom-

posed into a zonal mean (denoted with capitals) and deviations
from the zonal mean (referred to as perturbations):

ψ = Ψ + ψ ′, θ = Θ + θ ′, (25.32)

and we denote with U = −∂yΨ the barotropic zonal mean flow
and with H = −∂yΘ the baroclinic zonal mean flow. With this
decomposition we obtain the equations for the evolution of the
barotropic and baroclinic zonal mean flows:

∂tU = ψ ′xψ ′yy + θ ′xθ ′yy −
r
2

(U − H) − rmU + νD2U ,

(25.33a)

∂t D
2
λH = D2

(
ψ ′xD2

λθ
′ + θ ′xψ

′
yy

)
+

r
2

D2(U − H)+

+ 2λ2rT

(
H − HT

2

)
− rmD2

λH + νD2D2H ,

(25.33b)

with D2 ≡ ∂yy , D2
λ ≡ ∂yy − 2λ2, subscripts x and y

denoting differentiation and the overline denoting zonal aver-
aging. The corresponding barotropic and baroclinic compo-
nents of the zonal mean flow deviations are U = −Ψy and
H = −Θy . The equations for the evolution of the perturbations
are

∂tΔψ
′ +U∂xΔψ

′ + H∂xΔθ
′ + (β − D2U)∂xψ

′−

− D2H∂xθ
′ = − r

2
Δ(ψ ′ − θ ′) − rpΔψ

′ + νΔΔψ ′

− J (ψ ′,Δψ ′)′ − J (θ ′,Δθ ′)′, (25.34a)

∂tΔλθ
′ + H∂xΔψ

′ +U∂xΔλθ
′ + (β − D2U)∂xθ

′−

− D2
λH∂xψ

′ =
r
2
Δ(ψ ′ − θ ′) + 2λ2rTθ

′ − rpΔλθ
′+

+ νΔΔθ ′ − J (ψ ′,Δλθ ′)′ − J (θ ′,Δψ ′)′, (25.34b)

with the prime Jacobians denoting the perturbation–
perturbation interactions,

J (A, B)′ = J (A, B) − J (A, B). (25.35)

We have allowed in (25.33) and (25.34) for linear dissipa-
tion of the mean flow at rate rm and of the perturbations at
rate rp. This choice in decay rates reflects the different rates
of dissipation of the mean flow and the perturbation field,
which in natural flows is concentrated at smaller scales. We
have also included diffusive dissipation of the velocity field
with coefficient ν. Equations (25.33) and (25.34) comprise
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the NL system that governs the two-layer baroclinic flow. We
impose periodic boundary conditions at the channel walls on
Ψ, Θ, ψ ′ and θ ′ as in Haidvogel and Held (1980) and Panetta
(1993). These boundary conditions can be verified to require
that the zonally and meridionally averaged velocity at all times
remains equal to that of the radiative equilibrium flow, which in
turn implies that the temperature difference between the chan-
nel walls, and therefore the channel mean criticality, remains
fixed.

The corresponding QL system is obtained by substituting for
the perturbation–perturbation interaction a state-independent
and temporally delta-correlated stochastic excitation together
with sufficient added diffusive dissipation to obtain an approx-
imately energy-conserving closure (DelSole and Farrell, 1996;
DelSole and Hou, 1999; DelSole, 2004b). Under these assump-
tions, the QL perturbation equations for the Fourier components
of the barotropic and baroclinic streamfunction are

dψk

dt
= Aψψ

k
ψk + Aψθ

k
θk +

√
ε Δ−1

k Fk ξ
ψ (t), (25.36a)

dθk
dt
= Aθψ

k
ψk + Aθθ

k θk +
√
ε Δ−1

kλFk ξ
θ (t), (25.36b)

in which we have assumed that the barotropic and baroclinic
stream functions are excited respectively by

√
εΔ−1

k
Fkξ

ψ and√
εΔ−1

kλ
Fkξ

θ . We also assume that ξψ and ξθ are independent
temporally delta-correlated stochastic processes of unit vari-
ance and that the perturbation fields have been expanded as
ψ ′ =  

(∑
k ψkeikx

)
and θ ′ =  

(∑
k θkeikx

)
. The operators

Ak linearized about the mean zonal flowU = [U , H]T are

Ak (U ) = �� Aψθ
k

Aψθ
k

Aθψ
k

Aθθ
k

�� , (25.37)

with

Aψψ
k
= Δ−1

k

[
−ikUΔk − ik

(
β − D2U

)]
− r

2
− rp + νΔk ,

(25.38a)

Aψθ
k
= Δ−1

k

[
−ikHΔk + ikD2H

]
+

r
2

, (25.38b)

Aθψ
k
= Δ−1

kλ

[
−ikHΔk + ikD2

λH +
r
2
Δk

]
, (25.38c)

Aθθ
k = Δ

−1
kλ

[
−ikUΔkλ − ik

(
β − D2U

)
−

− r
2
Δk + 2rT λ

2 + νΔkΔk

]
− rp, (25.38d)

and Δk ≡ D2 − k2, Δkλ ≡ Δk − 2λ2. Continuous operators are
discretized and the dynamical operators approximated by finite-
dimensional matrices. The states ψk and θk are represented by a
column vector with entries the complex value of the barotropic
and baroclinic stream function at the collocation points in (y).

The corresponding S3T system is obtained by forming from
the QL equations (25.36) the Lyapunov equation for the evo-
lution for the zonally averaged covariance of the perturbation
field, which takes the form

dCk

dt
= Ak (U ) Ck + Ck A†

k
(U ) + εQk , (25.39)

with the covariance for the wavenumber-k zonal Fourier com-
ponent defined as

Ck = �� Cψψ
k

Cψθ
k

Cψθ†
k

Cθθ
k

�� , (25.40)

where Cψψ
k
= 〈ψkψ

†
k
〉, Cψθ

k
= 〈ψkθ

†
k
〉, Cθθ

k
= 〈θkθ†k〉 with 〈 · 〉

denoting ensemble averaging, which under the ergodic assump-
tion is equal to the zonal average. The covariance of the stochas-
tic excitation,

Qk =

(
Δ−1
k

FkF†
k
Δ−1†
k

0
0 Δ−1

kλ
Fθ
k
Fθ†
k
Δ−1†
kλ

)
, (25.41)

has been normalized so that for each k a unit of energy per unit
time is injected by the excitation, and therefore the amplitude
of the excitation is controlled by the parameter ε .

The S3T equations for the mean flow (25.33) in terms of the
perturbation covariances are

dU
dt
=
∑
k

k
2

diag
[
"
(
D2Cψψ

k
+ D2Cθθ

k

)]
−

− r
2

(U − H) − rmU + νD2U , (25.42a)

dD2
λH

dt
= D2

∑
k

k
2

diag
[
"
(
D2
λCψθ†

k
+ D2Cψθ

k

)]
+

+
r
2

D2(U − H) + 2λ2rT

(
H − HT

2

)
−

− rmD2
λH + νD2D2H . (25.42b)

As is the case in the previous barotropic examples, for
homogeneous forcing there also exists a meridionally and zon-
ally homogeneous turbulent S3T equilibrium state consisting
of an equilibrium zonal mean flow equal to the thermal-
wind-balanced radiative equilibrium flow U e = [HT/2, HT/2]
corresponding to layer velocities Ue

1 = HT and Ue
2 = 0 and a

perturbation field with covariances Ce
k

which satisfy the cor-
responding steady-state Lyapunov equations (25.39); for the
explicit expression of the equilibrium covariance, see DelSole
and Farrell (1995). However, unlike in the previous case of
the barotropic beta-plane example, this homogeneous equilib-
rium state is realizable only for parameter values for which
U e is hydrodynamically (baroclinically) stable. In the absence
of dissipation, instability occurs for this constant flow when
HT > β/λ2 or, in terms of the criticality parameter ξ =
max(U1 − U2)λ2/β, when ξ > 1. This dissipationless critical-
ity parameter is customarily used despite the fact that ξ > 1
implies instability only when the meridionally uniform flow is
dissipationless. In the presence of dissipation, the homogeneous
S3T equilibriumU e = [HT/2, HT/2] is realizable when ξ < ξc,
where ξc is the critical value for instability for the parameters
of the flow being studied. Although with ξ < ξc the homo-
geneous equilibrium state is stable to the traditional baroclinic
modal instability, it becomes S3T unstable at some critical exci-
tation amplitude εc. For ε > εc the turbulent flow transitions to
an inhomogeneous S3T turbulent fixed-point state consisting of
zonal jets and their associated perturbation field. The formation
of finite-amplitude equilibrium jets under homogeneous forcing
in this baroclinically stable regime occurs through a bifurcation
similar to that discussed previously in the example of barotropic
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Figure 25.7 Hovmöller diagrams of jet emergence in NL, QL and
S3T simulations under Jovian conditions with ξ = 0. Shown for the
NL, QL and S3T simulations are the flow, U1(y, t), in the upper layer
(the flow in the lower layer is not shown as the flow is almost
barotropic). After a series of mergers, S3T is attracted to a statistical
steady state with an n = 2 jet. The whole process of jet mergers and
S3T equilibration is accurately reflected in the QL and NL
simulations. This figure shows that S3T predicts the structure, growth
and equilibration of jets in strongly excited turbulence in both the QL
and NL simulations. The dissipation parameters in all simulations are
r = rT = 0, rp = 1/5 and rm = 1/2000. The channel has
Lx = Ly = 40 and global zonal wavenumbers k = 1, . . . , 14 are
equally excited in energy. The total energy input by the stochastic
excitation is 2.5 W m−2.

jet formation. When ξ > ξc the only homogeneous states are
the (unstable) laminar equilibria with ε = 0 and Ce

k
= 0 and the

flow, if perturbed, transitions to an inhomogeneous state, which
equilibrates to an inhomogeneous statistical state with zonal jet
flows.3

We wish to examine the equilibria that are predicted by S3T
in both the baroclinically stable and unstable regimes and com-
pare them with the turbulent states in corresponding QL and NL
simulations. We consider two example cases, one with ξ = 0, a
stable case with no temperature difference across the channel,
and another with ξ = 2, in which case the temperature gradient
is being relaxed to a baroclinically unstable shear.

When ξ = 0 the S3T dynamics of the two-layer model
is found to be essentially barotropic, similar to the examples
in Section 25.6, with the difference being that the deforma-

3 In this regime the S3T self-sustains in the absence of forcing. In the
absence of forcing the S3T reduces to the corresponding QL simulation.
NL self-sustains when ξ > ξc, but we note that self-sustaining turbulent
states have been found for subcritical parameters close to criticality (Lee
and Held, 1991).

Figure 25.8 Comparison of the S3T equilibrium jet in the upper layer
for ξ = 0 (solid blue) with instantaneous realizations of the jet in
corresponding NL (solid black) and QL (solid red) simulations. The
jet is barotropic, and the jet in the lower layer is not shown. The
growth rate of the least-damped eigenmode of the S3T equilibrium jet
is shown as a function of zonal wavenumber in the lower panel. The
circles in this plot indicate the growth rate for each of the 14
harmonics retained in the S3T simulation. The parameters are as in
Fig. 25.7.

tion radius is finite. This case models the atmospheres of the
outer planets, which have small temperature gradients and are
maintained turbulent by injection of energy by small-scale con-
vective excitation. The same stochastic excitation is applied to
the S3T, QL and NL simulations by forcing the 14 gravest
zonal wavenumbers, k, with the forcing structure Fk chosen
so that the (i, j) element of the excitation is proportional to
exp[−(yi − yj )2/(2s2)], as in (25.26), with s = 1/

√
2. The total

energy input by this excitation is 2.5 W m−2 distributed equally
among the excited zonal components. The domain is a doubly
periodic channel with Lx = Ly = 40. Dissipation parameters
for the NL, QL and S3T simulations are r = rT = 0, rp = 1/5
and rm = 1/2000. An example of emergence of zonal flows
in this system can be seen in Fig. 25.7 in NL, QL and S3T,
and a comparison of the corresponding zonal mean flows is
shown in Fig. 25.8. S3T predicts that for these parameters the
statistics of the turbulent flow are attracted to an equilibrium
with a jet and associated consistent eddy structure. The equi-
librium mean flow is barotropic and barotropically stable with
maximum growth rates plotted as a function of k in Fig. 25.8.
Both the NL and QL simulations reflect the predictions of S3T,
and the equilibrated flow has the characteristic complex struc-
ture of the 23◦ N jet on Jupiter, with sharp prograde jets and
rounded retrograde jets (Sánchez-Lavega et al., 2008a; Farrell
and Ioannou, 2008, 2017b). The structure of the retrograde jets
is not quite consistent with potential vorticity homogenization
(Dritschel and McIntyre, 2008), as the potential vorticity gradi-
ent of the equilibrium flow in Fig. 25.8 is slightly negative in
limited locations of the retrograde jets, which is indicative of
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Figure 25.9 Hovmöller diagrams of jet emergence in NL, QL and
S3T simulations under Earth-like conditions with supercritical ξ = 2.
Shown for the NL, QL and S3T simulations are the flow, U1(y, t), in
the upper layer. The flow has substantial baroclinicity and mean flow
in both layers is shown in Fig. 25.10. This figure shows that S3T
predicts the structure, growth and equilibration of jets in strongly
excited turbulence in both the QL and NL simulations in the
self-sustained baroclinic turbulence regime. The dissipation
parameters are r = 1/10, rT = 1/20, rp = 1/5 and rm = 1/5, and the
channel size is Lx = 40 and Ly = 20. In the QL and S3T simulations,
global zonal wavenumbers k = 1, . . . , 14 are stochastically excited
equally in energy with a total energy injection of 0.5 W m−2. In QL
and S3T, diffusive damping is included with ν = 0.02.

dynamical processes beyond mixing (cf. Fig. 3 in Farrell and
Ioannou, 2008).

Consider now the baroclinically unstable case, ξ = 2, which
represents mid-latitude Earth-like conditions. We again choose
a doubly periodic channel with Lx = 40 and Ly = 20, and
impose dissipation parameters r = 1/10, rT = 1/20 and
rp = rm = 1/5. For these dissipation parameters the shear
HT is baroclinically unstable – a plot of the maximum growth
rate of this flow as a function of zonal wavenumber is shown in
Fig. 25.10(c) – and a self-sustained turbulent state develops in
NL, QL and S3T. In the absence of excitation the NL simulation
equilibrates to a three-jet structure as shown in the top panel of
Fig. 25.9, with associated jet structure shown in Fig. 25.10(a).
To obtain correspondence with the NL simulation we param-
eterize the eddy interactions in QL and S3T as in DelSole and
Farrell (1996), using a state-independent stochastic forcing with

Figure 25.10 (a) Upper- and lower-layer flow in S3T (blue), QL (red)
and NL (black) for supercritical equilibria with ξ = 2. (b) Growth rate
as a function of zonal wavenumber k for the baroclinic flow
radiatively relaxed to supercriticality ξ = 2. The dashed curve is the
growth rate in the absence of dissipation, in which case the shortwave
cut-off occurs at k = λ2 = 2. The solid line is for the dissipation
parameters rT = 1/15 and r = 1/5 used in the S3T calculations. With
these dissipation parameters the flow becomes unstable for
ξ > ξc = 0.875. The circles indicate the growth rate of the k
associated with the 14 harmonics used in the S3T calculations. The
parameters are as in Fig. 25.9.

the same structure as that used for ξ = 0. A total injection rate
of 0.5 W m−2 in the 14 gravest zonal components and diffusion
with ν = 0.02 bring the S3T and the QL simulations in good
agreement with the NL. The agreement in the emergence of
the jets and in the maintained flows are shown in Figs. 25.9
and 25.10. S3T predicts that for these parameters the statistics
of the turbulent flow are attracted to an equilibrium with a jet
and associated eddy structure. The mean flow is by necessity
stable, with growth rates shown in Fig. 25.10(b). To avoid insta-
bility, the jets become increasingly east/west asymmetric as crit-
icality is increased with the eastward portion equilibrating by
zonal confinement (Ioannou and Lindzen, 1986; James, 1987;
Roe and Lindzen, 1996), and the westward jets equilibrating
more barotropically approximately close to the Rayleigh–Kuo
stability boundary while maintaining substantial baroclinicity.

A characteristic of the equilibrated jets in all cases is that
while stable, they are highly non-normal and support strong
transient growth. This non-normal growth is succinctly sum-
marized in Figs. 25.11(a) and (b) by comparison between the
Frobenius norm of the resolvent of the jet perturbation dyna-
mics,

���R(ω)���2
F
=
∑
k

trace
(
Rk (ω)Rk (ω)†

)
, (25.43)

where

Rk (ω) = − (iωI + Ak (Ue)
)−1 , (25.44)
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Figure 25.11 (a) The Frobenius norm of the resolvent associated with
the eddy dynamics about the equilibrium mean flow of Fig. 25.8 that
obtains at ξ = 0 as a function of frequency, and the Frobenius norm of
the resolvent of the corresponding equivalent normal eddy dynamics
(dashed). (b) Similarly for the equilibrium flow shown in Fig. 25.10
for ξ = 2.

and its equivalent normal counterpart, with resolvent the diago-
nal matrix, Sk , of the eigenvalues of Ak :

R⊥k (ω) = − (iωI + Sk )−1 . (25.45)

The square Frobenius norm of the resolvent shown as a func-
tion of frequency, ω, in Fig. 25.11 is the ensemble mean eddy
stream function variance, 〈|ψ |2+ |θ |2〉, that would be maintained
by white-noise forcing of this equilibrium jet. Non-normality
increases the maintained stream function variance 〈|ψ |2 + |θ |2〉
over that of the equivalent normal system 〈|ψ⊥|2 + |θ⊥|2〉, and
the extent of this increase is a measure of the non-normality
(Farrell and Ioannou, 1994; Ioannou, 1995). The non-normality
of the equilibria, which is associated with both baroclinic and
barotropic growth processes, increases as ξ increases, as shown
in Fig. 25.11.

The maintained eddy stream function variance, 〈|ψ |2〉, in the
equilibrium jet, and, for comparison, the eddy stream func-
tion variance of the equivalent normal jet system, 〈|ψ⊥|2〉, as
a function of the criticality measure of the equilibrated flow
ξ are shown in Fig. 25.12. The eddy variance maintained by
the equilibrium jet increases as ξ4, while the equivalent normal
system eddy variance, 〈|ψ⊥|2〉, does not increase appreciably.
This increase in variance with criticality is due to the increase
in the non-normality of the equilibrated jet. The heat flux, which
is proportional to 〈θ∂xψ〉, exhibits a ξ7 power-law behavior,
implying an equivalent higher-order thermal diffusion. While
such power-law behavior is recognized to be generic to strongly
turbulent equilibria (Held and Larichev, 1996; Barry et al.,
2002; Zurita-Gotor, 2007), it lacked comprehensive explana-
tion in the absence of the SSD-based theory for the structure
of the statistical equilibrium turbulent state and its concomi-
tant non-normality that is provided by S3T. Coexistence of
very high non-normality with modal stability has been hereto-
fore regarded as highly unlikely to occur naturally, and such
systems have been generally thought to result from engineer-
ing contrivance. In fact, the goal of much of classical control
theory is to suppress modal instability by designing stabiliz-
ing feedbacks. That this process of modal stability suppres-
sion sometimes resulted in modally stable systems that were

Figure 25.12 Shown for the equilibrated jets are: the eddy barotropic
stream function variance 〈 |ψ |2〉 (solid line), the eddy heat flux 〈θ∂xψ〉
(dashed line) and the eddy barotropic stream function variance
maintained by the equivalent normal system 〈 |ψ⊥ |2〉 (dash-dot line) as
a function of the criticality parameter ξ . The eddy barotropic stream
function variance increases as ξ4, the heat flux increases as ξ7, while
the equivalent normal variance is nearly constant. The dissipation
parameters are r = 1/10, rT = 1/20, rp = 1/5, rm = 1/5, ν = 0 and
the channel size is Lx = 40 and Ly = 20. The 14 gravest zonal
components are excited.

at the same time highly vulnerable to disruption due to large
transient growth of perturbation led to the more recent develop-
ment of robust control theory, which seeks to control transient
growth associated with non-normality as well as modal stabil-
ity (Doyle et al., 2009). A widely accepted argument for the
necessity of engineering intervention to produce a system that
is at the same time modally stable and highly non-normal fol-
lows from the observation that in the limit of increasing system
non-normality, arbitrarily small perturbations to the dynamical
operator itself result in modal destabilization. If the dynamics is
expressed using a dynamical matrix, as we have done here, this
vulnerability of the non-normal dynamics to modal destabiliza-
tion finds expression in the pseudo-spectrum of the dynamical
matrix (Trefethen and Embree, 2005). It is remarkable that the
naturally occurring feedback between the zonal mean flow and
the perturbations in turbulent systems results characteristically
in their having highly non-normal while stable dynamics.

In summary, we have provided an explanation for the
observation that adjustment to stable but highly amplifying
states exhibiting power-law behavior for flux/gradient rela-
tions is characteristic of strongly supercritical baroclinic tur-
bulence. One consequence of stability coexisting with high
non-normality in the Earth’s mid-latitude atmosphere is the
association of cyclone formation with chance occurrence in
the turbulence of optimal or near optimal initial conditions
(Farrell, 1982, 1989a; Farrell and Ioannou, 1993a; DelSole,
2004a). We have explained why a state of high non-normality
together with marginal stability is inherent: it is because the
SSD of the turbulence maintains flow stability by adjust-
ing the system to be in the vicinity of a specific stability
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boundary, which is identified with the fixed point of the S3T
equilibrium, while retaining the high degree of non-normality
of the system. Such a state of extreme non-normality coex-
isting with exponential stability is an emergent consequence
of the underlying SSD of baroclinic turbulence, and can only
result from the feedback control mechanism operating in baro-
clinic turbulence which has been identified by SSD analysis
using S3T.

25.8 APPLICATION OF S3T TO STUDY THE SSD
OF WALL-BOUNDED SHEAR FLOW
TURBULENCE

Consider plane Couette flow between walls with velocities
±Uw. The streamwise direction is x, the wall-normal direction
is y and the spanwise direction is z. Lengths are nondimension-
alized by the channel half-width, δ, and velocities by Uw, so
that the Reynolds number is R = Uwδ/ν, with ν the coefficient
of kinematic viscosity. We take for our example a doubly peri-
odic channel of nondimensional length Lx in the streamwise
direction and Lz in the spanwise (note that we have adopted the
wall-bounded turbulence convention for the vertical coordinate,
which differs from the meteorological convention).

In the absence of turbulence, the equilibrium solution is the
laminar Couette flow with velocity components (y, 0, 0) which
has been shown to be linearly stable at all Reynolds numbers
(Romanov, 1973) and globally stable for R < 20.7 (Joseph,
1966). However, experiments show that plane Couette flow can
be induced by a perturbation to transition to a turbulent state for
Reynolds numbers exceeding R ≈ 360 (Tillmark and Alfreds-
son, 1992). During transition to turbulence and in the turbu-
lent state a prominent large-scale structure is observed in the
flow. This structure, referred to as the roll–streak, comprises a
modulation of the streamwise mean flow in the spanwise direc-
tion by regions of high and low velocity, referred to as streaks,
together with a set of nearly cylindrical vortices in the wall-
normal/spanwise plane, referred to as rolls. The roll circulation
is such that the maximum negative wall-normal velocity is coin-
cident with the maximum positive streamwise velocity of the
streak, and the maximum wall-normal velocity with the mini-
mum streak velocity. This roll circulation serves to amplify the
streak by advecting the mean shear; a mechanism referred to
as lift-up. The streak is analogous to the jet that develops in
barotropic and baroclinic flows, and roll–streak structure arises
naturally from S3T instability of the spanwise homogeneous
shear turbulence. To show this, we formulate the S3T dynamics
for this flow and demonstrate that the S3T homogeneous tur-
bulent equilibria become unstable with the eigenfunctions of
maximum growth rate being the roll–streak structures.

Consider the vector velocity field �U to be decomposed into
a streamwise mean, with components, (U , V , W ), and pertur-
bation from this mean with components (u, v,w). The pressure
gradient is similarly decomposed into its streamwise mean, ∇P,
and perturbation from this mean, ∇p. All streamwise-averaged
quantities are denoted with capitals, and the streamwise aver-
aging operation is denoted by an overline. In these vari-
ables a unit-density fluid obeys the nondivergent Navier–Stokes

equations:

�ut + �U · ∇�u + �u · ∇�U + ∇p − Δ�u/R =

= −(�u · ∇�u − �u · ∇�u) +�e, (25.46a)

�Ut + �U · ∇�U + ∇P − Δ�U/R = −�u · ∇�u, (25.46b)

∇ · �U = 0 , ∇ · �u = 0, (25.46c)

with boundary conditions �u = 0 and �U = (±1, 0, 0) at y = ±1
and periodicity in x and z.

In the perturbation equation (25.46a), allowance is made
for specifying an explicit external perturbation forcing, �e. A
stochastic parameterization is now introduced to account for
both this external forcing and the perturbation–perturbation
interactions, �u · ∇�u−�u · ∇�u. With this parameterization, the per-
turbation equation becomes

�ut + �U · ∇�u + �u · ∇�U + ∇p − Δ�u/R = �E. (25.47)

The perturbation equation (25.47), coupled with the mean flow
equation, (25.46b), form the quasi-linear (QL) form of the
Navier–Stokes equations. This approximate set of equations
is also referred to as the restricted nonlinear (RNL) system
(Thomas et al., 2014).

It is convenient to eliminate the pressure and express (25.47)
in terms of cross-stream velocity v and cross-stream vorticity,
η = ∂zu − ∂xw. The equations then take the form

Δvt +UΔvx +Uzzvx + 2Uzvxz −Uyyvx − 2Uzwxy−
− 2Uyzwx − ΔΔv/R = ΔEv , (25.48a)

ηt +Uηx −Uzvy +Uyzv +Uyvz +Uzzw − Δη/R = Eη ,
(25.48b)

where Ev and Eη are the stochastic excitation in these vari-
ables (cf. Schmid and Henningson, 2001). In the perturba-
tion equations (25.48), advection of perturbations by the small
V and W components of the streamwise mean velocity has
been neglected.4 Using nondivergence, the mean flow equa-
tion (25.46b) can be written as

Ut = UyΨz −UzΨy − ∂yuv − ∂zuw + Δ1U/R, (25.49a)

Δ1Ψt = (∂yy − ∂zz )(ΨyΨz − vw)−

− ∂yz (Ψ2
y − Ψ2

z + w
2 − v2) + Δ1Δ1Ψ/R. (25.49b)

In (25.49b), Δ1 ≡ ∂2
yy + ∂

2
zz and V and W have been expressed

in terms of the stream function, Ψ, as V = −Ψz and W = Ψy .
We next Fourier expand the perturbation fields in x: v =

 
[∑

k v̂k (y, z, t)eikx
]
, η =  

[∑
k η̂k (y, z, t)eikx

]
, and write

the equations for the evolution of the Fourier components of
(25.48) in matrix form:

dφk
dt
= Ak (U)φk +

√
ε FkdBtk , (25.50)

where the state of the system φk = [v̂k , η̂k ]T comprises the val-
ues of the v̂k and η̂k on the N = NyNz grid points of the (y, z)
plane, and

Ak (U) =

(
LOS LC1

LC2 LSq

)
, (25.51)

4 The results presented are not affected by neglecting the advection of
the perturbation field by V and W velocities in the perturbation equations
(cf. Thomas et al., 2014).
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with

LOS = Δ
−1

[
−ikUΔ + ik (Uyy −Uzz ) − 2ikUz∂z −

−2ik (Uz∂
3
yyz +Uyz∂

2
yz )Δ−1

2 + ΔΔ/R
]

, (25.52a)

LC1 = 2k2Δ−1
(
Uz∂y +Uyz

)
Δ−1

2 , (25.52b)

LC2 = Uz∂y −Uy∂z −Uyz +Uzz∂
2
yzΔ

−1
2 , (25.52c)

LSq = −ikUΔ + ikUzzΔ
−1
2 + Δ/R (25.52d)

being the conventionally designated Orr–Somerfeld, coupling
and Squire operators, respectively. In (25.52), Δ−1 and Δ−1

2 are
the inverses of the matrix Laplacians, Δ and Δ2 = ∂2

xx + ∂
2
zz ,

which are rendered invertible by enforcing the boundary condi-
tions. The boundary conditions satisfied by the Fourier ampli-
tudes of the perturbation fields are: periodicity in x and z and
v̂k = ∂y v̂k = η̂k = 0 at y = ±1.

The ensemble average perturbation covariance, Ck = 〈φkφ†k〉,
evolves according to the time-dependent Lyapunov equation:

dCk

dt
= Ak (U) Ck + Ck A†

k
(U) + ε Qk , (25.53)

in which Qk = FkF†
k
. If we then, as previously, make

the ergodic assumption that streamwise averages are equal
to ensemble averages, all the quadratic fluxes that enter into
the streamwise-averaged flow equations (25.49) become lin-
ear functions of the Ck , and the mean flow evolution equa-
tions (25.49) can be written concisely in the form

dΓ
dt
= G(Γ) +

∑
k

 (LRSCk ) , (25.54)

where Γ ≡ [U ,Ψ]T determines the three components of the
streamwise-averaged flow, the term

∑
k (LRSCk ) produces,

by multiplying Ck with matrix LRS, the forcing of the mean
equations by the perturbation field and G(Γ) is the nonlinear
term representing the self-advection of the streamwise-averaged
flow. Equations (25.53) and (25.54) comprise the S3T system
for the Couette problem. The forcing covariances, Qk , are cho-
sen to be spanwise homogeneous. Under this assumption, span-
wise homogeneous S3T equilibrium states exist. For further
details on the formulation see Farrell and Ioannou (2012).

The Couette flow is a laminar equilibrium of the S3T system
with excitation ε = 0. For any ε and any spanwise homogeneous
Qk there are always spanwise-independent S3T equilibria hav-
ing spanwise-independent streamwise-averaged flow Ue(y) and
Ψe = 0 and spanwise homogeneous perturbation covariances
Ce
k
. These are equilibria because, consistent with the span-

wise independence of both the equilibrium mean flow and the
imposed excitation, Ce

k
is also spanwise independent and this

results in ensemble mean uw, v2 and w2 that are independent of
z, and vw that identically vanishes by symmetry. Consequently,
(25.49b) admits Ψe = 0 as a solution as the ensemble mean
perturbation forcing vanishes. However, the ensemble mean
Reynolds stress divergence ∂yuv in (25.49a) does not vanish,
and Ue(y) satisfies Δ1Ue/R = ∂yuv, indicating that the pres-
ence of external excitation induces a modification to the laminar
Couette profile.

In analogy with the test function probe used to elucidate
the mechanism underlying jet formation in barotropic flow (see

Figure 25.13 Streamwise roll acceleration induced by a streak
perturbation to a Couette flow that is maintained turbulent by
stochastic forcing. Distortion of the turbulence by the streak
perturbation induces Reynolds stresses that force roll circulations
supporting the streak via the lift-up mechanism. Shown are contours
of the imposed streak perturbations, δU = cos(πy/2) sin(2πz/Lz ),
with δU > 0 in z > 0, and vectors of the resulting roll acceleration,
(V̇ ,Ẇ ). The Reynolds number is R = 400, Lx = 1.75π and
Lz = 1.2π. Adapted from Farrell and Ioannou (2012). © Cambridge
University Press. Reprinted with permission.

Section 25.6.1), we wish to determine the effect on the spanwise
homogeneous field of turbulence of an infinitesimal spanwise-
dependent mean-flow streak5 perturbation δUs(y, z) added to
the equilibrium flow, Ue(y). We are particularly interested to
determine whether distortion of the turbulence by the pertur-
bation streak results in a positive feedback on the perturbation
streak, δUs(y, z). We determine this feedback by calculating
the change δCk in Ce

k
resulting from the streak perturbation

δUs(y, z) as in the barotropic example. The divergence of
the ensemble-averaged perturbation Reynolds stresses result-
ing from this δCk produce a forcing of the streamwise vorticity
component in the y–z plane inducing a circulation, according to
(25.49b), with stream function tendency

∂tδΨ = Δ
−1
1

[
−(∂yy − ∂zz ) δ vw − ∂yz (δ w2 − δ v2 )

]
. (25.55)

An example of streak perturbations, δUs, together with vec-
tors of the induced acceleration of the streamwise roll circu-
lation from (25.55), is shown in Fig. 25.13. Remarkably, this
streak perturbation induces a distortion of the perturbation field
resulting in a streamwise roll forcing configured to amplify
the imposed streak perturbation through the lift-up mechanism;
i.e., positive wall-normal velocity is collocated with the mini-
mum of the streak, and maximum negative wall-normal veloc-
ity is collocated with the maximum of the streak. As a result,
this streak perturbation, when imposed on the initially homo-
geneous field of turbulence, induces Reynolds stresses, driv-
ing a roll circulation producing through lift-up growth of the

5 The streak component, Us, is in general defined as the departure of
the streamwise-averaged flow U from its spanwise average [U], i.e. Us =
U − [U].
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Figure 25.14 The most unstable streamwise roll and streak
eigenfunction of the S3T system linearized about the spanwise
uniform equilibrium at supercriticality ε/εc = 1.4. The growth rate of
this mode is λr = 0.014. Shown are the velocity vectors (δV , δW )
(left) and streamwise velocity δU (right). The ratio of the maxima of
(δU , δV , δW ) is (1, 0.06, 0.03). Other parameters are as in
Fig. 25.13. Adapted from Farrell and Ioannou (2012). © Cambridge
University Press. Reprinted with permission.

imposed streak. This robust Reynolds-stress-mediated destabi-
lizing feedback process operating on the streamwise streak and
roll structure has important implications for both the transi-
tion to and the maintenance of turbulence in shear flows. We
will show below that even when the streak structure is highly
complex and time dependent, as in a turbulent shear flow, the
streamwise roll forcing produced by the perturbation Reynolds
stresses remains collocated so as to amplify the streak. More-
over, this property of imposed streaks to induce, through mod-
ification of the perturbation field, streamwise roll forcing con-
figured to reinforce the imposed streak provides the mechanism
for a streamwise roll and streak plus turbulence cooperative
instability in shear flow. This emergent instability is especially
interesting because wall-bounded flows have laminar and tur-
bulent mean velocity profiles with negative curvature, and as a
result do not support fast inflectional laminar flow instability
as a mechanism for robustly transferring energy from the mean
flow to the perturbation field as is required in order to main-
tain the turbulent state. While most streak perturbations orga-
nize turbulent Reynolds stresses that do not exactly amplify the
streak that produced them, as is clear in the case of the streak
perturbation in Fig. 25.13, if a streak were to organize precisely
the perturbation field required for its amplification then expo-
nential modal growth of this streak and its associated stream-
wise roll and perturbation fields would result.

We determine now the S3T stability of the spanwise homo-
geneous equilibrium as a function of excitation amplitude,
ε , at a fixed Reynolds number, R, and show that expo-
nentially unstable streamwise roll and streak modes arise
in a spanwise-independent field of forced turbulence if the
perturbation-forcing amplitude exceeds a threshold. The
spanwise-independent equilibrium is stable for ε < εc. At
εc it becomes structurally unstable, while remaining hydrody-
namically stable. The most unstable eigenfunction, which is
shown in Fig. 25.14, consists of a roll circulation with a per-
fectly collocated streak. When this eigenfunction is introduced
into the S3T system with small amplitude, it grows at first
exponentially at the rate predicted by its eigenvalue, and then
asymptotically equilibrates at finite amplitude. This equilib-
rium solution, shown in Fig. 25.15, is a steady, finite-amplitude
streamwise roll and streak. The bifurcation diagram of the S3T
equilibria is shown in Fig. 25.16 as a function of bifurcation
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Figure 25.15 The finite-amplitude S3T equilibrium streamwise roll
and streak resulting from the equilibration of the eigenmode shown in
Fig. 25.14 at supercriticality ε/εc = 1.4. Shown are the
streamwise-averaged streamwise flow U (y, z) (contours) and the
streamwise-averaged velocities (V ,W ) (vectors). The maxima of the
fields (U ,V ,W ) are (0.26, 0.02, 0.009). Adapted from Farrell and
Ioannou (2012). © Cambridge University Press. Reprinted with
permission.

Figure 25.16 Typical S3T bifurcation diagram for the Couette
problem. Shown are the root mean square (rms) streak velocity (solid)
and 10× the rms streamwise roll velocity (dashed) as a function of the
perturbation forcing amplitude, ε . For ε/εc < 1, the spanwise
homogeneous state is S3T stable. At εc the spanwise uniform
equilibrium bifurcates to an equilibrium with a streamwise roll and
streak. Stable streamwise roll and streak equilibria extend up to
εu/εc = 2.1 beyond which the streamwise roll and streak transitions to
a time-dependent state which can self-sustain and in which the
amplitudes of the roll and streak become independent of ε . Shown for
reference are the rms velocities of the streak and roll in the
self-sustaining state. Ensemble NL integrations of the full
Navier–Stokes equations of a stochastically excited Couette flow have
confirmed these S3T predictions (Farrell et al., 2017a). The Reynolds
number is R = 400, Lx = 1.75π and Lz = 1.2π.

parameter ε . The finite-amplitude streamwise roll and streak
equilibria are S3T stable for εc ≤ ε ≤ εu.

At εu there is a second bifurcation in which the equilibrium
becomes S3T unstable, while remaining hydrodynamically sta-
ble, and the SSD fails to equilibrate, instead transitioning
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Figure 25.17 Comparison of the spanwise and time-averaged
streamwise flow, [U](y), for the self-sustaining state (solid) with the
mean flow obtained from a 128 × 65 × 128 direct numerical simulation
(DNS) of Couette turbulence at R = 1000 in a doubly periodic
channel in x and z of length 4π in each direction. The S3T
self-sustaining turbulent state produces on average a friction
velocity-based Reynolds number of Rτ = 64.9, while the DNS
simulation has Rτ = 66.2. This Reynolds number indicates the
turbulent production and dissipation and is defined as Rτ = uτδ/ν,

with δ the channel half-width and uτ =
√
ν d[U]/dy |y=1 the friction

velocity. This figure demonstrates that the S3T self-sustaining state
produces a streamwise-averaged flow profile consistent with
simulations of Couette flow turbulence. Courtesy of V. Thomas.

directly to a time-dependent state. Remarkably, the time-
dependent S3T state that emerges for ε > εu self-sustains even
when ε is set to 0. This S3T self-sustaining time-dependent
state produces realistic turbulence with the mean turbulent pro-
file [U] shown in Fig. 25.17. Moreover, comparison with direct
numerical simulations (DNS) verifies that this S3T turbulence is
similar to Navier–Stokes turbulence despite the greatly simpli-
fied S3T dynamics underlying it (Thomas et al., 2014; Bretheim
et al., 2015; Farrell et al., 2016, 2017b).

Remarkably, the S3T self-sustaining state with ε = 0 nat-
urally simplifies further by evolving to a minimal turbulent
system in which the dynamics is supported by the interaction
of the roll–streak structures with a perturbation field compris-
ing a small number of streamwise harmonics (as few as 1).
This minimal self-sustaining turbulent system, which proceeds
naturally from the S3T dynamics, reveals an underlying self-
sustaining process (SSP) which can be understood with clar-
ity. The basic ingredient of this SSP is the robust tendency
for streaks to organize the perturbation field so as to produce
Reynolds stresses supporting the streak, via the lift-up mecha-
nism as illustrated in Fig. 25.13. Although the streak is strongly
fluctuating in the self-sustaining state, the tendency of the streak
to organize the perturbation field is retained, as illustrated in
Fig. 25.18 in which a snapshot of the streamwise roll and streak
is shown together with the associated roll acceleration, (V̇ , Ẇ ),
arising from the perturbation Reynolds stresses – cf. (25.55).
The time derivative of the integral square streamwise vortic-
ity, d/dt(

∫
dy dz Ω2

x ) with Ωx = Wy − Vz , provides a mea-
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Figure 25.18 Streamwise roll forcing by perturbation Reynolds
stresses in the self-sustaining state with ε = 0. Top left: Vectors of
instantaneous cross-stream/spanwise velocity acceleration, (V̇ ,Ẇ ), at
time t = 980. Top right: Streamwise roll and streak structure at the
same time. Lengths are measured in wall units, y+ = Rτy and
z+ = Rτz. Bottom: Time series of streamwise roll forcing as indicated
by the rate of change of the average square streamwise vorticity. It is
remarkable that the perturbations, in this highly time-dependent state,
act to maintain the roll circulation produce, not only on average, but
also at nearly every instant. Adapted from Farrell and Ioannou (2012).
© Cambridge University Press. Reprinted with permission.

sure of the vorticity forcing produced by the Reynolds stress
divergences that support the roll circulation. A time series of
this diagnostic is also shown in Fig. 25.18. It is remarkable that
the perturbations, in this highly time-dependent state, produce
torques that maintain the streamwise roll not only on average
but at nearly every instant. As a result, in this self-sustaining
state, the streamwise roll is systematically maintained by the
robust organization of perturbation Reynolds stress by the time-
dependent streak that was identified by SSD analysis using the
S3T system, while the streak is maintained by the streamwise
roll through the lift-up mechanism. Through the resulting time
dependence of the roll–streak structure the constraint on insta-
bility imposed by the absence of inflectional instability in the
mean flow is bypassed and the perturbation field is maintained
by parametric growth, thus completing the SSP cycle.6

We conclude that the dynamics of turbulence in wall-
bounded shear flow can be understood at a fundamental level
by using SSD, and specifically by exploiting the direct rela-
tion between wall turbulence and the highly simplified S3T
turbulence. Among the results obtained is that the mechanism
of turbulence in wall-bounded shear flow is the same roll–
streak-perturbation SSP that has been shown to maintain S3T
turbulence.

25.9 DISCUSSION

Although turbulence is commonly thought of as being defini-
tional of disorder, the turbulent state in shear flow possesses

6 It has been shown that flows that at each time instant satisfy the
Rayleigh condition necessary for stability can still become exponentially
unstable if the flow is time dependent (cf. Farrell and Ioannou, 1999).
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an underlying order that is revealed by adopting statistical state
variables to express the dynamics of the turbulent state. This
fundamental order at the center of turbulence dynamics has
remained incompletely appreciated for lack of a conceptual
basis, as well as of methods for analyzing the order underlying
statistical states of turbulence. In this review we have described
an approach to understanding emergence of order in turbulence
through adopting the perspective of SSD. From this perspec-
tive order is understood to arise in turbulence due to systema-
tic cooperative interaction between large-scale structures and
the field of small-scale turbulence in which these structures are
embedded. Motivating examples of order emergence arise from
considering a field of turbulence of some kind (geophysical
fluid dynamics, MHD, Navier–Stokes) into which a trial pertur-
bation of small amplitude but large scale is introduced. When
introduced, such a structure both alters the turbulence and is
altered by it. Most such structures are not systematically main-
tained by this interaction. But suppose that we were to continue
trying different large-scale perturbations until we hit on a per-
turbation structure that affected the turbulence in just such a
manner as to produce Reynolds stresses configured to amplify
this structure without changing its form. Such a structure would
naturally grow spontaneously out of the turbulence and would
provide an explanation for the observed emergence of large-
scale structure in turbulent flow. This concept of coherent struc-
ture emergence through cooperative multi-scale interaction in
turbulence takes analytical form through eigenanalysis of the
SSD of the turbulence linearized about an equilibrium turbu-
lent statistical state. Bifurcations occur in association with these
instabilities as parameters of the problem such as the amplitude
of the turbulence excitation rate, the damping rate of the flow or
the beta parameter are varied. Extensions of these instabilities
into the nonlinear regime of the SSD reveal fixed-point equilib-
ria that predict the associated finite-amplitude coherent struc-
tures, e.g. zonal jets in the case of barotropic and baroclinic
turbulence in planetary atmospheres. Moreover, these finite-
amplitude equilibria of the nonlinear SSD have an interpretation
that transcends prediction of jet structure. The statistical state
of the turbulence comprises both the mean flow and the per-
turbations that have mutually adjusted to produce the equilib-
rium statistical state so that these equilibria constitute a closure
of the associated turbulence dynamics. The success of SSD in
predicting the statistical mean state of turbulence as S3T equi-
libria in the systems we have discussed argues constructively
that the nonlocal in spectral space interaction between pertur-
bations and large-scale mean flows that is retained in S3T cap-
tures the physical mechanism underlying the maintenance of
the turbulent state in these systems. In addition, this closure is
deterministic so that the physical mechanisms producing the
closure are made available for study through analysis of the
SSD underlying them. A straightforward example of such an
insight into closure in turbulence arises in the case of barotropic
beta-plane turbulence in which the observed jet scale in strongly
excited turbulence is linked mechanistically through SSD with
Rayleigh’s stability criterion; SSD analysis makes the further
and associated verifiable prediction of successive bifurcations
to jet structure of smaller wavenumber with increase in turbu-
lence intensity. This example shows the power of SSD to both
predict and provide physical explanation for observed phenom-
ena in turbulent flows.

Adopting the perspective of SSD also provides new concep-
tual insights into the dynamics of turbulence; an example of this
is the concept of the dynamical trajectory of a statistical state.
Consider a statistical state equilibrium consisting of a fixed
point. An example might be a barotropic jet together with its
supporting turbulence. This fixed point corresponds to a proba-
bility density function that is stationary in state space. But just
as sample state trajectories, which are points in phase space,
may converge to a fixed point or follow a time-dependent path
through the state space, so also statistical state trajectories may
follow more or less intricate paths in phase space, taking their
probability density function along with them. Interpretation of
the dynamics of these statistical state trajectories provides a
way to deepen understanding of the dynamics of turbulence.
The successive bifurcations with increase in excitation leading
to lower and lower meridional wavenumber for the equilibrium
jet in the example of beta-plane turbulence mentioned above
can be viewed as a trajectory of the deterministic SSD with the
bifurcations arising from instability of the evolving statistical
state. These trajectories and instabilities have no analytical
counterpart in the dynamics of individual realizations of the
turbulent state. A familiar example of limit cycle behavior of
a statistical state trajectory is provided by the QBO of the
Earth’s equatorial stratosphere, which exhibits nearly periodic
27-month cycles in phase space. The analytical structure of
the associated bifurcation only exists in the SSD framework
(Farrell and Ioannou, 2003). Chaotic statistical state trajectories
are also found in jet dynamics of plasma turbulence (Farrell
and Ioannou, 2009b). In the case of wall-bounded shear flow
turbulence the statistical state trajectory is also chaotic and the
time dependence of this statistical state, consisting of the streak
structure and the associated perturbations it supports, which
results from their cooperative interaction, is a fundamental
component of the dynamical mechanism underlying the SSP
maintaining the turbulence. This is because the turbulence is
maintained by perturbations that result from parametric inter-
action with the streak, the time dependence of which is in turn
maintained by interaction with the perturbations. This para-
metric process underlies energy transfer from the inflectionally
stable forced mean flow that is required to maintain the turbu-
lent perturbation variance in wall-bounded shear flows. This
parametric growth process is intrinsically a property of the SSD,
and this cooperative parametric process can only be understood
through analysis of the dynamics of the statistical state of the
turbulence.

Viewing turbulence from the perspective of SSD has proven
to be remarkably tractable and to provide a richness of analysis
and concept that has already allowed progress in a number of
areas and holds promise of continuing insight into the nature of
turbulence.

APPENDIX

25.A THE HOMOGENEOUS EQUILIBRIUM
COVARIANCE

We prove that the equilibrium covariance (25.28) under
homogeneous stochastic excitation of a channel with peri-
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odic boundary conditions produces zero-mean vorticity fluxes,
v′q′ = 0. This is required in order for Ue = 0 to be an S3T
equilibrium with perturbations with covariance (25.28). We
provide a proof that uses technical arguments that are useful for
exploring the properties of discrete S3T dynamics and stability
in periodic channels (cf. Bakas and Ioannou, 2011). We use
the property that in the matrix formulation of S3T in a peri-
odic channel, in which the fields have been discretized on a
grid, all matrices that correspond to homogeneous continuous
operators, as well as all covariances of homogeneous fields, are
circulant, i.e. each row is a cyclic shift of the row above it. They
are circulant because they commute with the matrix of spatial
shifts on the grid lattice. Circulant matrices commute with
each other, and their common eigenbasis is a unitary matrix
consisting of harmonics. Consequently, the forcing covariance
at wavenumber k is analyzed in Fourier components in y as
Qkαβ =

∑
l Q̂kleil(yα−yβ ) , with l the y wavenumber. Moreover,

the Fourier coefficients Q̂kl must be real and non-negative
coefficients in order to ensure that Qkαβ , for each k, is positive
definite, Hermitian and a covariance of a homogeneous field
(this statement is the content of Bochner’s theorem). Because
for each k we have

n∑
m=1
Δ−1
kαmQkmβ =

∑
l

Q̂kl

n∑
m=1
Δ−1
kαmeil(ym−yβ )

= −
∑
l

Q̂kl
eil(yα−yβ )

k2 + l2 ,

we obtain that the diagonal elements of
∑n

m=1 Δ
−1
kαm

Ce
kmβ

are
equal and real, and therefore the vorticity flux associated with
the equilibrium covariance, which is proportional to the imagi-
nary part of the diagonal elements of this matrix, vanishes.




