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Streamwise rolls and accompanying streamwise streaks are ubiquitous in wall-bounded
shear flows, both in natural settings, such as the atmospheric boundary layer, as well as
in controlled settings, such as laboratory experiments and numerical simulations. The
streamwise roll and streak structure has been associated with both transition from the
laminar to the turbulent state and with maintenance of the turbulent state. This close
association of the streamwise roll and streak structure with the transition to and main-
tenance of turbulence in wall-bounded shear flow has engendered intense theoretical
interest in the dynamics of this structure. In this work, Stochastic Structural Stability
Theory (SSST) is applied to the problem of understanding the dynamics of the streamwise
roll and streak structure. The method of analysis used in SSST comprises a stochastic
turbulence model (STM) for the dynamics of perturbations from the streamwise aver-
aged flow coupled to the associated streamwise averaged flow dynamics. The result is
an autonomous, deterministic, nonlinear dynamical system for evolving a second order
statistical mean approximation of the turbulent state. SSST analysis reveals a robust
interaction between streamwise roll and streak structures and turbulent perturbations in
which the perturbations are systematically organized through their interaction with the
streak to produce Reynolds stresses that coherently force the associated streamwise roll
structure. If a critical value of perturbation turbulence intensity is exceeded, this feed-
back results in modal instability of the combined streamwise roll/streak and associated
turbulence complex in the SSST system. In this instability, the perturbations producing
the destabilizing Reynolds stresses are predicted by the STM to take the form of oblique
structures, which is consistent with observations. In the SSST system this instability ex-
ists together with the transient growth process. These processes cooperate in determining
the structure of growing streamwise roll and streak. For this reason, comparison of SSST
predictions with experiments requires accounting for both the amplitude and structure
of initial perturbations as well as the unstable growth rate of the SSST instability.

Over a range of supercritical turbulence intensities in Couette flow, this instability
equilibrates to form finite amplitude time-independent streamwise roll and streak struc-
tures. At sufficiently high levels of forcing of the perturbation field, equilibration of the
streamwise roll and streak structure does not occur and the flow transitions to a time-
dependent state. This time-dependent state is self-sustaining in the sense that it persists
when the forcing is removed. Moreover, this self-sustaining state rapidly evolves toward
a minimal representation of wall-bounded shear flow turbulence in which the dynam-
ics is limited to interaction of the streamwise averaged flow with a single perturbation
structure. In this minimal realization of the self-sustaining process, the time-dependent
streamwise roll and streak structure is maintained by perturbation Reynolds stresses, just
as is the case of the time-independent streamwise roll and streak equilibria. However, the
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perturbation field is maintained not by exogenously forced turbulence, but rather by
an endogenous and essentially non-modal parametric growth process that is inherent to
time-dependent dynamical systems.

Key Words: nonlinear dynamical systems; transition to turbulence; coherent structures;
turbulent boundary layers

1. Introduction

In their experiments on transition to turbulence in boundary layers, Klebanoff and
collaborators identified a prominent structure consisting of streamwise roll vortices and
associated streamwise streaks (Klebanoff et al. 1962). This streamwise roll and streak
structure is commonly observed both in natural settings, such as the atmospheric bound-
ary layer, as well as in controlled laboratory settings and numerical simulations. While
the boundary in a simulation can be assumed analytically smooth and the flow in a lab-
oratory experiment can be carefully prepared so that the level of background turbulence
is kept small, most naturally occurring systems are substantially perturbed by upstream
conditions and imperfections in the boundaries. This naturally occurring background
turbulence is commonly simulated in laboratory experiments by using an upstream grid
(Matsubara & Alfredsson 2001; Kurian & Fransson 2009). Interaction between stream-
wise roll and streak structures and this forced field of turbulence can strongly influence
the dynamics of the streamwise roll and streak (Westin et al. 1994). One goal of this work
is to improve understanding of the dynamics of the interaction between the streamwise
roll and streak structure and background turbulence in transitional flows.

The Klebanoff modes are recognized to be precursor structures for the process of
bypass transition in which these structures, despite being hydrodynamically stable in the
sense of modal stability, instigate transition to a fully turbulent state. After transition,
the streamwise roll and streak structure persists but becomes rapidly varying in space
and time. This time-dependent streamwise roll and streak structure is believed to be
involved in the process maintaining turbulence in shear flow (Kim et al. 1971; Jiménez
& Moin 1991; Hamilton et al. 1995; Schoppa & Hussain 2002). Further evidence for the
involvement of this structure in maintaining the turbulent state is provided by minimal
channel simulations in which the streamwise roll and streak structure is observed to be
in a self-sustaining time-dependent state (Hamilton et al. 1995; Waleffe 1995, 1997). A
second goal of this work is to improve understanding of the dynamics of the streamwise
roll and streak structure in the self-sustaining process.

We turn first to the robust observation of the streamwise roll and streak structure in
boundary layers prior to transition to turbulence, which presented a problem historically
because this structure is not unstable in planar shear flow. The robust appearance of
this structure was first explained by appeal to the lift-up mechanism (Ellingsen & Palm
1975; Landahl 1980). This insight was later advanced by recognition of the connection
between the lift-up mechanism and the non-normality of the associated dynamical oper-
ator. Non-normal operator analysis confirmed that the optimally growing perturbations,
over sufficiently long time intervals, are streamwise rolls and streaks (Butler & Farrell
1992; Reddy & Henningson 1993; Trefethen et al. 1993; Schmid & Henningson 2001).
However, for short optimizing times the linear optimal perturbations are oblique struc-
tures (Farrell & Ioannou 1993a,b) and, interestingly, oblique perturbations have also been
identified as nonlinear optimal structures for transition in Couette flow (Monokrousos
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et al. 2011). Consistent with the optimality of these structures, both the long time op-
timal streamwise roll and streak and the short time optimal oblique perturbations have
been convincingly seen in observations and simulations (Sirovich et al. 1990; Adrian 2007;
Hutchins & Marusic 2007; Wu & Moin 2009) and also shown to be essentially related to
the non-normality of shear flow dynamics (Kim & Lim 2000; Schoppa & Hussain 2002).

The mechanism of non-normal growth has been clarified and its importance in by-
pass transition and maintenance of turbulence is now widely accepted. However, the
route by which non-normality leads to the formation of streamwise rolls and streaks in
turbulent wall-bounded shear flows, and the part played by this coherent structure in
both the transition to turbulence and maintenance of the turbulent state remains to be
comprehensively determined.

Appearance of the streamwise roll and streak in shear flow could result from its being
the most amplified outcome of a linear initial value problem or from a nonlinear mecha-
nism in which turbulent Reynolds stresses generate and amplify this structure. These are
fundamentally related explanations because both the linear non-normal growth and the
nonlinear Reynolds stress interaction mechanisms exploit the same non-normal lift-up
mechanism.

The linear non-normal mechanism can be induced by introducing a streamwise roll per-
turbation directly into the flow, perhaps by using a trip or other device. Using non-normal
operator analysis, Andersson et al. (1999) and Luchini (2000) identified the streamwise
roll and streak in developing boundary layers as an optimally spatially amplifying struc-
ture forced at the leading edge. A related approach is to force the flow stochastically,
with the stochastic forcing regarded as modeling external disturbances (Farrell & Ioannou
1993e,d , 1994; Bamieh & Dahleh 2001; Jovanovic & Bamieh 2005; Hoepffner & Brandt
2008; Gayme et al. 2010; Hwang & Cossu 2010b). In these stochastically forced models,
the streamwise roll and streak structure is envisioned to arise from chance occurrence of
optimal or near optimal perturbations in the forcing.

The nonlinear non-normal mechanism can result from streamwise roll forcing by in-
teracting discrete oblique waves and/or Tollmien-Schlichting waves (Benney 1960, 1984;
Jang et al. 1986; Schmid & Henningson 1992; Reddy et al. 1998; Brandt et al. 2002) and
from Reynolds stresses associated with marginally stable critical layers (Hall & Smith
1991; Hall & Sherwin 2010).

It may be thought that the linear mechanism, which is first order in the perturbation
amplitude, should dominate over the second order nonlinear mechanism. However, Berlin
& Henningson (1999), in simulations of transition in a parallel flow approximation to the
Blasius boundary layer, found that streaks of the same order of magnitude are generated
by linear and nonlinear mechanisms for an initial random perturbation field with 1%
velocity fluctuations. Dominance of the nonlinear mechanism in a boundary layer sub-
jected to free-stream turbulence (FST) was found by Jacobs & Durbin (2001). Perhaps
the most compelling evidence for the importance of the nonlinear growth mechanism is
the observation that streamwise roll initial conditions decay in amplitude if FST levels
are not sufficiently high (Bakchinov et al. 1997; Alfredsson & Matsubara 1996; Westin
et al. 1998), while these structures grow downstream in the presence of moderate levels of
FST (Westin et al. 1994). Moreover, both the linear and nonlinear mechanisms can par-
ticipate in streamwise roll and streak growth with the linear providing the initial growth
and the non-linear becoming important near the time of transition (Brandt et al. 2004).
In this work we show how the linear and the nonlinear mechanisms cooperate to form an
unstable structure exploiting both mechanisms. Indeed, the experiments discussed above
suggest that such a cooperative instability may often be involved in formation of the
streamwise roll and streak.
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However, such an instability must differ qualitatively from the familiar hydrodynamic
modal instability because the streamwise roll and streak is exponentially stable in that
sense. The streamwise roll provides a powerful mechanism for forming and amplifying
streamwise streaks in shear flow through the lift-up mechanism However, in the absence
of feedback between the amplifying streak and streamwise roll this powerful growth
mechanism does not result in instability. Because of the large streak growth produced
by a streamwise roll perturbation, placing even a weak coupling of the streak back to
the roll, such as is provided by a small spanwise frame rotation, produces destabilization
(Komminaho et al. 1996; Farrell & Ioannou 2008a). The close association between the
growing streak and oblique waves suggests that these waves are involved in providing
the feedback destabilizing the streamwise roll and streak in the presence of turbulent
perturbations (Schoppa & Hussain 2002). If we observe a turbulent shear flow in the cross-
stream/spanwise plane at a fixed streamwise location, we see that, at any instant, there
is a substantial Reynolds stress forcing tending to form streamwise rolls. The problem
is that this streamwise roll forcing is not systematic and so it vanishes in temporal or
streamwise average and therefore does not produce a coherent forcing of the streamwise
roll circulation. However, streamwise roll forcing by the Reynolds stresses could, at least
in principle, be organized by the presence of a streak to produce the coherent positive
feedback between the streak and roll required for instability. We demonstrate that this
mechanism does result in instability by deriving a dynamical system for the statistical
mean turbulent state at second order from which we obtain the unstable streamwise
roll/streak/turbulence mode. The mechanism of this instability is illustrated in Fig. 1.

This instability of interaction between the turbulence and the streamwise roll and
streak differs from the mechanism of transient growth of an initial streamwise roll in
that the streamwise roll is being continually forced by the perturbations. However, a
streamwise roll resulting from an optimal perturbation would generally excite an eigen-
mode of this interaction dynamics thereby transforming the transiently growing streak,
and its decaying streamwise roll, into a continuously growing mode. When so initiated by
a finite optimal streamwise roll initial condition, the streamwise roll and streak instabil-
ity would, at least initially, inherit the spatial scale of the optimal rather than manifest
the scale of the maximal instability.

In order to construct a theory for this instability we require a method of analysis
applicable to turbulence/mean flow interaction. The analysis method we use is based on
a dynamical system for evolving a second order approximation of the turbulent state.
We refer to this dynamical system as the stochastic structural stability theory (SSST)
system. This method for analyzing the dynamics of turbulence was developed to study the
phenomenon of spontaneous jet formation in planetary atmospheres (Farrell & Ioannou
2003, 2007, 2008a; Bakas & Ioannou 2011) and has also been applied to the problem of
spontaneous jet formation from drift wave turbulence in magnetic fusion devices (Farrell
& Ioannou 2009). In SSST, the turbulence is simulated using a stochastic turbulence
model (STM) (Farrell & Ioannou 1993c, 1996a; DelSole & Farrell 1996; Bamieh & Dahleh
2001; DelSole 2004; Gayme et al. 2010). The STM provides an evolution equation for the
streamwise averaged perturbation covariance from which the Reynolds stresses can be
obtained. Coupling this equation to an evolution equation for the streamwise averaged
flow though the Reynolds stresses produces a nonlinear dynamical system for the co-
evolution of the streamwise averaged flow and its associated perturbation covariance:
this is the SSST system (Farrell & Ioannou 2003). Related second order closures have
recently been proposed by Marston et al. (2008); Marston (2010); Tobias et al. (2011);
Srinivasan & Young (2012).

The SSST equations constitute an autonomous and deterministic system in the vari-
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ables of the three components of the streamwise averaged flow and and the streamwise
averaged perturbation covariance. While hydrodynamic instability is supported by the
SSST dynamical system, the primary instability in SSST dynamics has no counterpart in
the stability theory of laminar flow; it is rather the new form of cooperative streamwise
roll and streak plus turbulence instability described above. We refer to this coopera-
tive instability as structural instability to distinguish it from hydrodynamic instability.
This new instability is referred to as structural because when the equilibrium state is
unstable the system bifurcates to a new state with a structurally distinct attractor. The
SSST equations incorporate the nonlinear feedback between the evolving streamwise roll
and streak and its consistent field of turbulence which may produce equilibration to
statistically stable states. These statistical equilibrium states differ from exact coherent
structures, as in Nagata (1990), in being maintained by interaction with an incoherent
perturbation field. However, as the perturbation forcing increases, the SSST equilibrium
states ultimately lose stability. The resulting instability leads to transition to a time-
dependent state, which we show self-sustains on removal of the exogenous forcing.

Self-sustaining states have been the subject of numerous studies and the primary
mechanism advanced to explain how these states are maintained is a cycle in which
the streamwise roll is forced by Reynolds stresses associated with modal instability of
the streak (Hamilton et al. 1995; Waleffe 1997). The mechanism maintaining the self-
sustaining state in SSST is similar in that perturbation Reynolds stress forcing of the
highly non-normal streamwise roll and streak structure is central. However, it differs in
that an essentially time-dependent, non-normal, parametric growth mechanism, rather
than modal instability, is responsible for maintaining the perturbation field (Farrell &
Ioannou 1996b, 1999; Poulin et al. 2003; Pedlosky & Thomson 2003; Farrell & Ioannou
2008b; Poulin et al. 2010). This self-sustaining cycle is illustrated in Fig. 2.

We begin in section 2 by formulating the dynamics of the interaction between per-
turbations and streamwise averaged flows using a stochastic parameterization for the
perturbation-perturbation nonlinearity and the external forcing. In section 3 we present
the SSST system, which is a second order closure of this dynamics. In section 4 we in-
troduce the turbulence/mean flow interaction instability and study the bifurcation prop-
erties of the SSST system. In section 5 we study the dynamics underlying the growth
and nonlinear equilibration of the streamwise roll and streak instability. In section 6 we
study the growth of optimal perturbations in the SSST system and extend our results
to a parallel flow approximation of the Blasius boundary layer. In section 7 we study
transition to the self-sustaining state of the SSST system. In section 8 we show that
this self-sustaining state leads to a minimal representation of turbulence. In section 9 we
examine the dynamics underlying this self-sustaining state.

2. Formulation of the stochastic dynamics of the interaction between
perturbations and streamwise averaged flows

Averaging in the streamwise, x, direction is denoted with a bar, and streamwise aver-
aged quantities are indicated uppercase; spanwise, z, averages are denoted with square
brackets, [·], and ensemble averages with angle brackets, 〈·〉. Velocity fields are decom-
posed into streamwise averaged components and perturbations (indicated lowercase) so
that the total streamwise velocity in the x direction is U(y, z, t) + u(x, y, z, t), the cross-
stream velocity in the y direction is V (y, z, t)+v(x, y, z, t), the spanwise velocity in the z
direction is W (y, z, t) + w(x, y, z, t) and the pressure is P (y, z, t) + p(x, y, z, t). In vector

form ~U = (U, V,W ) and ~u = (u, v, w). Consider, as in a Couette flow, a channel in which
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the walls at y = ±Ly move with velocity in the streamwise direction ±U0, respectively.
Impose periodic boundary conditions in x and z, with periodicity Lx and Lz, respectively.
Nondimensionalize distance with the cross-stream channel half-width, Ly, and time with
Ly/U0, and define the Reynolds number as R = U0Ly/ν, with ν the kinematic viscosity.

Consider the flow of a unit density fluid obeying the non-divergent Navier-Stokes equa-
tions:

~ut + ~U · ∇~u + ~u · ∇~U +∇p−∆~u/R = −(~u · ∇~u − ~u · ∇~u) + ~e , (2.1a)

~Ut + ~U · ∇~U +∇P −∆~U /R = −~u · ∇~u , (2.1b)

∇ · ~U = 0 , ∇ · ~u = 0 . (2.1c)

In the perturbation equation (2.1a) the nonlinear terms have been augmented by an
explicit external perturbation forcing, ~e. A stochastic parameterization is introduced to
account for both the perturbation external forcing and the perturbation-perturbation
interactions, ~u · ∇~u − ~u · ∇~u. With this parameterization, the perturbation equation
becomes:

~ut + ~U · ∇~u + ~u · ∇~U +∇p−∆~u/R = ~E . (2.2)

Perturbation equation (2.2), coupled with the mean flow equation, (2.1b), form a nonlin-
ear system which we will show captures the fundamental behavior of wall-bounded shear
flow turbulence.

It is convenient to express equation (2.2) in terms of cross-stream velocity v and cross-
stream vorticity, η = ∂zu − ∂xw. The equations then take the form (cf. Schmid & Hen-
ningson (2001)):

∆vt + U∆vx + Uzzvx + 2Uzvxz − Uyyvx − 2Uzwxy − 2Uyzwx −∆∆v/R = ∆Ev ,

(2.3a)

ηt + Uηx − Uzvy + Uyzv + Uyvz + Uzzw −∆η/R = Eη . (2.3b)

where Ev and Eη are the stochastic excitation in these variables. In equations (2.3),
interaction of the perturbation velocities with W and V has been neglected because
these velocities are much smaller than U . The spanwise and streamwise perturbation
velocities are obtained from the cross-stream velocity and vorticity as follows:

∆2w = −vyz − ηx , ∆2u = −vyx + ηz, (2.4)

with ∆2 ≡ ∂2xx + ∂2zz.
The mean flow equation (2.1b) can be written as:

Ut = UyΨz − UzΨy − ∂yuv − ∂zuw + ∆1U/R , (2.5a)

∆1Ψt = (∂yy − ∂zz)(ΨyΨz − vw)− ∂yz(Ψ2
y −Ψ2

z + w2 − v2) + ∆1∆1Ψ/R .

(2.5b)

In (2.5b), ∆1 ≡ ∂2yy + ∂2zz; V and W are expressed in terms of the streamfunction, Ψ, as
V = −Ψz and W = Ψy.

In Equation (2.5a), the streamwise mean velocity, U , is forced by the term, −∂yuv −
∂zuw, which is the streamwise component of the perturbation Reynolds stress divergence,
and by the term, UyΨz −UzΨy, the first part of which is the familiar lift-up mechanism.

In Equation (2.5b), the Reynolds stress term, −(∂yy−∂zz)vw−∂yz(w2−v2), provides the
streamwise roll forcing by generating streamwise vorticity, Ωx = ∆1Ψ, while the mean
flow advection term, (∂yy − ∂zz)ΨyΨz − ∂yz(Ψ2

y −Ψ2
z), redistributes Ωx.
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3. Formulation of the SSST dynamics

In the previous section we have simplified the perturbation dynamics by using a
stochastic parameterization for the quadratic perturbation nonlinearity and the back-
ground turbulence forcing. For each realization of the stochastic excitation the perturba-
tion equations (2.3) provide a single realization of the perturbation field, which interacts
with the streamwise averaged flow governed by equation (2.5). However, the streamwise
averaged flow interacts with streamwise localized structures, separated on average by the
decorrelation scale of the perturbation field in the streamwise direction. The net effect
of these localized structures on the streamwise averaged flow can obtained from an en-
semble of realizations of the perturbation field. The dynamics of the interaction of this
ensemble with the mean flow constitutes the SSST dynamics, which we now formulate.

Fourier expand the perturbation fields in x:

v =
∑
k

v̂k(y, z, t)eikx , η =
∑
k

η̂k(y, z, t)eikx , (3.1)

with a finite number of k > 0 and the k = 0 streamwise wavenumber excluded. In ma-
trix form, the perturbation evolution equations for each streamwise Fourier component,
discretized in y and z on N = NyNz points, are:

dφ̂k
dt

= Ak(U)φ̂k + εk . (3.2)

where

φ̂k =

(
v̂k
η̂k

)
(3.3)

is the perturbation state, and U is a matrix with diagonal elements the streamwise
averaged streamwise velocity. The stochastic term, εk, on the RHS of (3.2), which pa-
rameterizes the neglected nonlinear terms and the external excitation at wavenumber k,
will be specified below. The matrix Ak is:

Ak(U) =

(
LOS LC1

LC2
LSQ

)
, (3.4)

with

LOS = ∆−1
(
−ikU∆ + ik(Uyy −Uzz)− 2ikUz∂z − 2ik(Uz∂

3
yyz +Uyz∂

2
yz)∆−12 + ∆∆/R

)
,

(3.5a)

LC1 = 2k2∆−1 (Uz∂y +Uyz) ∆−12 , (3.5b)

LC2 = Uz∂y −Uy∂z −Uyz +Uzz∂
2
yz∆−12 , (3.5c)

LSQ = −ikU∆ + ikUzz∆−12 + ∆/R . (3.5d)

In equations (3.5), ∆−1 and ∆−12 are the inverses of the matrix Laplacians, ∆ and ∆2,
which are rendered invertible by enforcing the boundary conditions. The boundary con-
ditions satisfied by the Fourier amplitudes of the perturbation fields are: periodicity in x
and z and v̂k = ∂y v̂k = η̂k = 0 at y = ±1 .

In terms of the perturbation state, φ̂k, the perturbation velocities are

ûk = Lkuφ̂k, v̂k = Lkv φ̂k, ŵk = Lkwφ̂k, (3.6)

with the matrices given by:

Lku =
[
−ik∆−12 ∂y −∆−12 ∂z

]
, (3.7a)
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Lkv = [I 0 ], (3.7b)

Lkw =
[
−∆−12 ∂2yz − ik∆−12

]
. (3.7c)

The stochastic term, εk, on the RHS in (3.2) is expressed as fkFkξ(t) where ξ(t) is
a 2N column vector of random variables, Fk is a matrix that determines the spatial
correlation of the forcing, and fk is a scalar used to control the amplitude of the forcing.
The stochastic vector, ξ(t), is a Gaussian random process which has zero mean and is
delta correlated in time:

〈ξ(t)ξ†(s)〉 = I δ(t− s).
In the above, † denotes Hermitian transpose, and I is the identity matrix.

Consider an ensemble of perturbation fields obeying (3.2). The ensemble average per-

turbation covariance, Ck = 〈φ̂kφ̂†k〉, can be shown (cf. (Farrell & Ioannou 1993e)) to
evolve according to the time-dependent Lyapunov equation:

dCk
dt

= Ak(U)Ck + CkA†k(U) + f2kQk , (3.8)

in which:

Qk = FkF †k . (3.9)

Equation (3.8) is the autonomous and deterministic stochastic turbulence model (STM)
that provides an evolution equation for the perturbation covariance from which all second
order turbulence statistics can be determined. For a given streamwise averaged velocity,
U , the STM provides accurate second-order perturbation statistics (Farrell & Ioannou
1998b; Laval et al. 2003) and and it has been widely used to model the dynamics of
turbulence in channel flows (Farrell & Ioannou 1993e, 1998a; Jovanovic & Bamieh 2005;
Hoepffner & Brandt 2008; Hwang & Cossu 2010a; Gayme et al. 2010). The STM has
also been instrumental in advancing robust control of channel flow turbulence (Farrell
& Ioannou 1998b; Bewley & Liu 1998; Kim & Bewley 2007; Hogberg et al. 2003). In
addition, the STM has been used to obtain the midlatitude atmospheric jet perturbation
structure (Farrell & Ioannou 1995; Zhang & Held 1999; DelSole 2004; Marston et al.
2008).

The stochastic forcing used in the STM is generally taken to be approximately spatially
white in order to maintain a broad spectrum of perturbations typical of turbulence (Far-
rell & Ioannou 1993e; Bamieh & Dahleh 2001). Similar to its role in the above works, the
role of the stochastic forcing in this work is to produce a broadband field of perturbations
rather than to duplicate a particular physical source of turbulence like wall roughness or
FST that results from an upstream grid and our predictions may suffer from this simpli-
fication. However, we believe that the essential dynamics are captured with a uniformly
distributed broadband stochastic forcing, although this remains to be verified in future
work.

When turbulence was forced using an upstream grid by Westin et al. (1994), the
FST resulting filled the test section of their boundary layer with a broad spectrum of
perturbations at a nearly constant turbulence intensity of around Tu = 1.5%. In their
simulations, Wu & Moin (2009) used an upstream isotropic forcing to produce patches
of turbulence that propagate downstream, reaching values of Tu = 1− 3% in the region
of streak growth. These levels of FST exceed by as much as two orders of magnitude the
FST levels that can be achieved in the test sections of low turbulence wind tunnels. In
this study we use stochastic forcing producing perturbation velocities corresponding to
turbulent intensities in the range 1−3%, which are typical of experiments in transitional
boundary layer flows.
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In this work, the stochastic forcing maintaining the turbulence is chosen so that each
degree of freedom is excited equally in energy. As will be explained below, this is accom-
plished by choosing:

Qk = M−1k , (3.10)

where, using the definitions of the velocity operators (3.6),

Mk =
1

4NyNz

(
Lk†u Lku + Lk†v Lkv + Lk†w Lkw

)
. (3.11)

It follows that the volume averaged perturbation energy density, (u2k + v2k + w2
k)/2, at

streamwise wavenumber k is:

Ek = φ̂†kMkφ̂k . (3.12)

Because of the equalities:

〈Ek〉 = 〈φ̂†kMkφ̂k〉 = trace
(

Mk〈φ̂kφ̂†k〉
)

= trace(MkCk) , (3.13)

the ensemble average energy density of the perturbation field is obtained by multiplying
the covariance, Ck, by Mk.

The choice of forcing covariance given in (3.10) can be motivated by noticing that if
the dynamics were only a scale independent linear damping, so that A = −rI , then mul-
tiplying (3.8) by Mk, and choosing Qk = M−1k , we obtain a steady state with covariance
Ck = M−1k /(2r) and as a result MkCk = I/(2r), which shows that choosing Qk = M−1k
results in each degree of freedom being equally excited in energy.

This choice of perturbation forcing distributed uniformly in energy has the advantage
of approximating the broadband nature of turbulent fluctuations and of removing the
stochastic forcing structure from consideration as a variable in the problem. This forcing
of the degrees of freedom of the system uniform in energy is an idealization that does not
model the inhomogeneity in space or the spatial and temporal correlation of perturbations
that result when turbulence is excited using a specific apparatus such as an upstream
grid.

In this work, the stochastic forcing covariance, Qk, is scaled to maintain at equilibrium
a volume averaged RMS perturbation velocity, 1% of the maximum velocity, when it is
used to force the Couette flow profile with fk = 1 in equation (3.8). Explicitly, Qk is scaled
so that

√
2〈Ek〉 = 0.01, where 〈Ek〉 is given by (3.12) and Ck solves equation (3.8) with

U = y, fk = 1 and the LHS set to zero. The explicit parameter, fk, serves as the primary
control parameter in this work. This parameter controls the percent volume averaged
turbulence intensity, defined and denoted as {Iu} = 100

√
2〈Ek〉/3. For the Couette flow

profile and with the chosen normalization of the forcing, {Iu} = fk/
√

3. The commonly
available measure of turbulence in experiments is the free-stream turbulence intensity,
Tu. While these measures are not the same, they correspond closely as measures of
turbulence intensity.

The covariances, Ck, which evolve according to STM dynamics (3.8), provide the
Reynolds stresses for the mean flow equations (2.5) under the ergodic assumption of
equating streamwise and ensemble averages. For example, it is assumed that the Reynolds
stress component uv = 〈uv〉. This implies that this Reynolds stress component, at stream-
wise wavenumber k, is equal to Re(uv|k), where Re denotes the real part and the vector
symbol uv|k is defined as:

uv|k ≡
1

2
diag

(〈
ûkv̂

†
k

〉)
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=
1

2
diag

(〈
Lkuφ̂k

(
Lkvφ̂k

)†〉)
=

1

2
diag

(
LkuCkLk†v

)
. (3.14)

In equation (3.14), diag(B) denotes the vector with elements the diagonal of the matrix
B. The total Reynolds stress is the sum over the contributions from the streamwise
harmonics:

uv =
∑
k

Re (uv|k) .

The streamwise averaged flow equations (2.5) can be expressed concisely in the form:

dΓ

dt
= G(Γ) +

∑
k

Re (LRSCk) , (3.15)

where Γ ≡ [U ,Ψ]T and Ck is the covariance at wavenumber, k. In equation (3.15), G is:

G(Γ) =

(
∂yU · ∂zΨ− ∂zU · ∂yΨ + ∆1U/R

∆1
−1 [(∂yy − ∂zz)∂yΨ · ∂zΨ− ∂yz(Ψ2

y −Ψ2
z) + ∆1∆1Ψ/R

] ) . (3.16)

The forcing of Γ by the Reynolds stresses at wavenumber k is:

LRSCk =

( −∂y uv|k − ∂z uw|k
∆1
−1 [−(∂yy − ∂zz) vw|k − ∂yz(w2

∣∣
k
− v2

∣∣
k
)
] ) , (3.17)

where uv|k is given in (3.14) and

uw|k ≡
1

2
diag

(
LkuCkLk†w

)
, w2

∣∣
k
≡ 1

2
diag

(
LkwCkLk†w

)
, v2

∣∣
k
≡ 1

2
diag

(
LkvCkLk†v

)
.

(3.18)
Equations (3.8) and (3.15) comprise the SSST system for the streamwise roll and streak
plus turbulence dynamics:

dCk
dt

= Ak(U)Ck + CkA†k(U) + f2kQk , (3.19a)

dΓ

dt
= G(Γ) +

∑
k

Re (LRSCk) . (3.19b)

Equation (3.19a), with dimension 4N2
y ×N2

z , is a time dependent Lyapunov equation
for the spatial covariance, Ck, of the perturbation field at streamwise wavenumber k.
This equation involves the perturbation dynamical operator at wavenumber k, Ak(U),
linearized about the instantaneous streamwise averaged streamwise flow, U . The spatial
structure of the parameterized stochastic perturbation forcing is given by Qk and its
amplitude by fk. Equation (3.19b), with dimension 2Ny ×Nz, is the evolution equation
of the streamwise averaged flow state, Γ, which is determined by the dynamical operator
of the streamwise averaged flow G(Γ) and the perturbation Reynolds stresses obtained
from the sum over all retained k of the perturbation covariances by operating with LRS .
This equation is coupled nonlinearly to (3.19a) through the mean flow U .

System (3.19) constitutes a closed, deterministic, autonomous, nonlinear system. Be-
cause the SSST system is autonomous, its fixed points:

Ak(U eq)Ckeq + CkeqA†k(U eq) = −f2kQk , G(Γeq) = −
∑
k

Re (LRSCkeq) , (3.20)

identify statistical equilibrium states.
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Underlying the SSST dynamics are:
(a) The assumption that perturbation-perturbation interactions and the external sources

of turbulence in the perturbation equations can be parameterized as an additive stochas-
tic forcing delta correlated in time.

(b) The ergodic assumption that the streamwise average of the perturbation covariance
can be obtained from the ensemble average over realizations of the forcing.

Some of the properties of SSST dynamics are:
(a) SSST constitutes a closure of the streamwise averaged turbulence dynamics at

second order with the state of the SSST system being the statistical mean state of the
turbulence. The SSST system is the dynamics of the co-evolution of the streamwise
averaged flow and a second order approximation to its associated field of turbulent per-
turbations. Although the effects of the turbulent Reynolds stresses are retained in this
system, the fluctuations of the turbulent Reynolds stresses are suppressed by the ensem-
ble averaging so that the dynamics of turbulence/mean-flow interaction, and particularly
the equilibria arising from this interaction, are revealed with great clarity.

(b) The SSST state vector provides a second order approximation to the probability
density function (pdf) of the streamwise averaged turbulent state. In order to obtain
the evolving ensemble mean pdf using direct numerical simulation (DNS) it would be
required to perform a number of DNS integrations equal to the state dimension.

(c) The attractor of the SSST system dynamics may be a fixed point, a limit cycle, or
be chaotic. Examples of each type have been found in the SSST dynamics of geophysical
and plasma turbulence (Farrell & Ioannou 2003, 2008a, 2009).

(d) The SSST system introduces a new stability concept: the stability of an equilibrium
between a streamwise averaged flow and its associated field of turbulence. This instability
of an SSST equilibrium is called structural and it arises from the mechanism of interaction
between the perturbations and the mean flow, which is distinct from the mechanism of
hydrodynamic instability.

4. SSST equilibria and their structural stability

Couette flow is an equilibrium of the SSST system at perturbation forcing amplitude
f = 0. As f increases, new spanwise independent SSST equilibria are obtained. These
equilibria satisfy (3.20) with spanwise independent U eq(y) and Ψeq = 0. Consistent with
the spanwise independence of both the equilibrium mean flow and the imposed forcing,
Ckeq is also spanwise independent and it follows that there is no streamwise roll forcing.

We now calculate the change in Ckeq resulting from a streak perturbation, δUs(y, z),
to U eq(y). The streak component, Us, is here defined as the departure of the streamwise
averaged flow U from its spanwise average [U ], i.e. Us = U − [U ]. With the introduction
of this streak perturbation, Ckeq no longer satisfies the equilibrium condition, (3.20),
and this perturbation results, as seen from equation (3.19a), in the instantaneous rate of
change of the covariance field:

dCk
dt

= δAkCkeq + CkeqδA†k , (4.1)

where δAk = Ak(U eq + δU s)−Ak(U eq) is the change in the linear operator due to δU s.
The Reynolds stress resulting from this distorted perturbation field, obtained from the
second component of equation (3.17), implies the instantaneous streamwise roll stream-
function acceleration:

∂ttΨ = ∆−11

(
−(∂yy − ∂zz)∂t vw − ∂yz∂t (w2 − v2)

)
, (4.2)
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where the rates of change of the Reynolds stresses are obtained by introducing the time
derivative of Ck into (4.2).

Four example streak perturbations, δU s, together with vectors of the induced stream-
wise roll velocity accelerations, ∂tt(V ,W ) = ∂tt(−∂zΨ, ∂yΨ), from (4.2), are shown in
Fig. 3. Remarkably, all these streak perturbations produce streamwise roll forcing con-
figured to amplify the imposed streak perturbation through the lift-up mechanism. This
robust Reynolds stress mediated feedback between the streamwise streak and roll has
important implications for the maintenance of turbulence in shear flows. We will show
below that even when the streak structure is highly complex and time-dependent, as in a
turbulent shear flow, the streamwise roll forcing produced by the perturbation Reynolds
stresses remains collocated with the streak so as to amplify the streak. Moreover, this
tendency of imposed streaks to induce, through the modification of the perturbation
field, streamwise roll forcing with a tendency to reinforce the imposed streak provides
the mechanism for a streamwise roll and streak plus turbulence cooperative instability
in shear flow. However, most streak perturbations organize turbulent Reynolds stresses
that do not exactly amplify the streak that produced them, as is shown prominently in
the case of the streak perturbation in Fig. 3a. Exponential modal growth of a streak
and its associated streamwise roll and perturbation fields results if the streak organizes
precisely the perturbation field required for its amplification.

We now show that exponentially unstable streamwise roll and streak modes arise in
a spanwise independent field of forced turbulence if the perturbation forcing amplitude
exceeds a threshold. Consider an equilibrium solution (Ckeq,Γeq) of (3.20). The stability
of this equilibrium is determined by eigenalysis of the perturbation equations, obtained
by taking the first variation of equations (3.19). These perturbation equations are:

dδCk
dt

= AkeqδCk + δCkA†keq + δAkCkeq + CkeqδA†k

dδΓ

dt
=
∂G

∂Γ

∣∣∣∣
Γeq

δΓ +
∑
k

Re (LRSδCk) . (4.3)

In equations (4.3), Akeq is the linear perturbation operator about the equilibrium
mean flow U eq, Ckeq is the corresponding covariance at equilibrium and δAk = Ak(U eq+
δU) − Ak(U eq) is the change in the linear operator due to δU . The total perturbation
to the mean flow is δΓ = [δU , δΨ]. The perturbation to the covariance, Ckeq, is δCk.
Equations (4.3) are linear in δCk and δΓ and eigenanalysis of these equations determines
the structure and growth rate of the modes of the equilibrium [Ckeq,Γeq]. When the
equilibrium, [Ckeq,Γeq], becomes unstable, the mean flow and the associated perturbation
field bifurcate from the equilibrium solution.

For sufficiently high turbulence intensities, the spanwise independent equilibria become
structurally unstable with exponentially growing mean flow eigenfunctions in the form
of streamwise rolls and streaks. We demonstrate this for a channel with Lz = 1.2π,
at R=400, and for a perturbation field at the single streamwise wavenumber k = 1.143.
This channel geometry is the same with that used in most of the simulations in Hamilton
et al. (1995). The power method is used to find the structure and growth rate of the most
unstable eigenmodes of (4.3). The calculations use Ny = 21 and Nz = 40 points, with
convergence verified at double resolution.

The spanwise independent equilibrium is stable for f 6 fc = 4.75, with f the pertur-
bation forcing amplitude at the retained wavenumber. At fc this equilibrium becomes
structurally unstable, while remaining hydrodynamically stable. The most unstable eigen-
function is shown in Fig. 4. When this eigenfunction is introduced into the SSST system
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with small amplitude, it grows at first exponentially at the rate predicted by its insta-
bility and then asymptotically equilibrates at finite amplitude, as shown in Fig. 5. This
equilibrium solution, shown in Fig. 6, is a steady, finite amplitude streamwise roll and
streak.

The bifurcation diagram of the SSST equilibria is shown in Fig. 7 as a function of
bifurcation parameter f . The finite amplitude streamwise roll and streak equilibria are
structurally stable for fc 6 f 6 fu. At fu = 6.9 there is a second bifurcation in which
the equilibrium becomes structurally unstable, while remaining hydrodynamically stable.
Examples of these equilibria are shown in Fig. 8. In these equilibria the spanwise average
flow profile, [U ], departs only slightly from the Couette flow profile, U = y. Indicative
of this nearness to Couette flow is the low viscous dissipation rate of the flow in these
equilibria. This dissipation rate is defined as:

D =
1

R

1

2LxLyLz

∫ Lx

0

∫ Ly

−Ly

∫ Lz

0

|~ω|2 dxdydz (4.4)

where ~ω = ∇× ~u is the total vorticity of the flow. The minimum dissipation rate, DC , is
obtained for Couette flow and the ratio, D/DC , for equilibria with fc 6 f 6 fu is in the
range 1 6 D/DC < 1.4, while this ratio is of order 3 in the turbulent state.

These nearly laminar streamwise roll and streak equilibria, shown in Fig. 8, have
spanwise wavenumber 2. For the equilibrium at f = 6.86, this wavenumber corresponds to
a streak spacing, expressed in wall units, of z+ = 45. The nondimensional wall unit, which
is indicated by a superscript +, is defined as lν ≡ (R[Uy(−1)])−1/2, where [Uy(−1)] is the
spanwise averaged shear at the lower boundary. We will discuss below the influence of
optimal streamwise roll perturbations in initiating and setting the scale for this unstable
growth process. We also note that this streak spacing is about half the z+ = 100 seen
in turbulent boundary layers (Smith & Metzler 1983). As we will show below, when
the SSST system transitions to the time dependent state the streak spacing becomes
z+ = 100, as observed in turbulent flows.

Analogous bifurcation behavior is obtained if the Reynolds number is used as the bi-
furcation parameter instead of the perturbation forcing amplitude. A regime diagram
showing the bifurcation boundaries as a function of both R and f is shown in Fig. 9.
Bifurcation from spanwise uniform equilibria to stable equilibria with streamwise rolls
and streaks occurs on crossing the curve indicated fc(R), and bifurcation to a time-
dependent state occurs on crossing fu(R). From Fig. 9, it is clear that the threshold
curve, fu(R), for transition to the time-dependent state is very accurately fit by the
function: fu(R) = 2200/(R − 89). This function suggests that the turbulence intensity,
{Iu}, producing structural instability scales asymptotically as R−α with α = 1. Bifurca-
tion to this time-dependent state implies transition to turbulence in the SSST system and
therefore α provides a Reynolds number scaling for the threshold value of f producing
transition to turbulence for sufficiently small initial conditions. The same, or nearly the
same, exponent is obtained by assuming that transition is determined by the Reynolds
number scaling of the amplitude of an initial condition required to produce a marginally
hydrodynamically unstable streamwise streak (Kreiss et al. 1994; Reddy et al. 1998;
Chapman 2002).

In laboratory experiments or DNS simulations of forced turbulence there is likely to be
a finite amplitude optimal or near optimal initial condition at least episodically present in
the turbulence that would serve to initiate the growth of a streamwise roll and streamwise
streak and set the streak spacing in the spanwise direction (Brandt et al. 2002). When
initiated by a sufficiently small streamwise roll perturbation, the perturbation/mean-flow
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interaction would result in an increase in growth rate of the evolving transient streamwise
roll and streak for subcritical turbulence intensity, corresponding to f < fc. This increase
in growth rate would be followed by finite amplitude equilibration for higher turbulence
intensities in the range fc 6 f 6 fu, and by transition to time-dependence for f > fu.
For example, consider an initial condition consisting of the t = 50 optimal streamwise
roll perturbation. When this perturbation is introduced into a Couette flow at R = 400
in the presence of turbulence with various values of f the resulting evolution is as shown
in Fig. 10. The optimal initial condition is seen to recruit the turbulent perturbation
field to support and maintain itself, producing increased growth for f 6 fc; increased
growth followed by approach to a finite amplitude equilibrium for fc 6 f 6 fu; and, ulti-
mately, destabilization for f > fu. These examples demonstrate how a sufficiently small
amplitude optimal initial streamwise roll structure is effectively converted into an SSST
eigenmode in the presence of a forced turbulence field. This eigenmode then promotes
transition to a time-dependent state. However, as the amplitude of the initial streamwise
roll perturbation increases, the transient growth mechanism would increasingly dominate
the streamwise roll and streak growth process.

5. Dynamics of the SSST streamwise roll and streak in Couette flow

Diagnostics of the dynamics of the streamwise roll and streak are shown in Fig. 11.
The streamwise roll is maintained solely by the perturbation Reynolds stress (cf. Fig.
11c) while the streamwise streak is maintained by the lift-up mechanism (cf. Fig. 11b).
The direct effect of the Reynolds stress on the streamwise streak is to damp it (cf. Fig.
11d).

We turn next to examine the structure of the perturbation field associated with the
streamwise roll and streak equilibrium, making use of the proper orthogonal decompo-
sition (POD) method (Lumley 1967). In the POD method the perturbation field struc-
tures are ordered according to their contribution to the total perturbation energy. This

is achieved by performing an eigenanalysis of M
1/2
k CkeqM

1/2
k , where Ckeq is the equilib-

rium covariance and Mk is the energy metric (3.11) (cf. Farrell & Ioannou (1993e)). The
result is a complete set of eigenfunctions that are orthogonal in energy, called empirical
eigenfunctions (EE). We find that the perturbation energy is spread over many of these
EE structures, but as f increases, a single EE becomes dominant and its structure be-
comes an increasingly good representation of the perturbation field. For the equilibrium
at f = 6.86, the dominant EE, which accounts for 24% of the perturbation energy, is
shown in Fig. 12. This EE is a sinuous oblique structure collocated with the streak. Its
structure is very close to that of the least damped mode of Ak(U eq(y, z)). The eigen-
values, σ, of Ak(U eq), are shown in Fig. 15 for the equilibria of Fig. 8. The emergence
of this sinuous mode, which has been implicated in streak breakdown and transition to
turbulence, is apparent (Kim et al. 1971; Jiménez & Moin 1991; Hamilton et al. 1995;
Waleffe 1997; Reddy et al. 1998).

This dominance of the sinuous mode in the perturbation field need not result from
unstable mode growth. In fact, as was noted by Schoppa & Hussain (2002), this mode
emerged in their simulations primarily from non-normal growth processes. In Appendix
A we show how the optimal perturbation for exciting this sinuous mode is calculated
and in Fig. 13 we show this optimal perturbation. Because of the high non-normality of
Ak(U eq(y, z)), introduction of the perturbation that optimally excites the sinuous mode
results in energy growth by a factor of 1900 more than would introduction of the mode
itself. While the optimal perturbation for exciting the mode is the optimal perturbation
in the limit of large time, the perturbation that results in optimal growth over 10 units
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of time has similar structure and produces comparable growth, as shown in Fig. 14. For
understanding the streamwise roll and streak growth process it is important to note that
coherent forcing of the streamwise rolls results from both the optimal for exciting the
mode and the optimals over shorter times (cf. Fig. 14).

The sinuous mode produces Reynolds stresses that force the streamwise roll, and
thereby indirectly force the streak, but also produces Reynolds stress that directly damp
the streak. This dual role of the sinuous mode in both forcing and damping the streak is
explicitly modeled in the fourth order system of Waleffe (1997) (cf. his Eq. 20). We now
show the net effect of the sinuous mode is to damp the streak.

To compare the relative contributions of the Reynolds stress arising from the sinuous
mode in damping the streak to the indirect effect of its Reynolds stress in building the
streak, via its forcing of the streamwise roll, we impose a modification of the real part
of the eigenvalue of the mode at equilibrium. Specifically, if σrE is the damping rate of
the sinuous mode, we set this damping rate equal to 0.9σrE (less damped) and 1.1σrE
(more damped), and advance the SSST equations (3.19) in time. When the mode is more
damped, the streak amplitude increases while when the mode is less damped, the streak
amplitude decreases, as shown in Fig. 16. We conclude that the net effect of the sinuous
mode is to stabilize the streak.

The perturbation field is supported by transient growth, primarily of the optimal
perturbations. Moreover, these optimal perturbations also provide the coherent vorticity
forcing maintaining the streamwise rolls. Although this tendency to generate streamwise
vorticity occurs regardless of the presence of the streak (cf. Fig. 14 case with f = 4.1), the
streak collocates these optimal evolving structures, aligning them so that their Reynolds
stress divergence coherently forces the streamwise roll.

6. SSST analysis of streamwise roll and streak growth in the Blasius
boundary layer under the parallel flow approximation

While Couette flow is a canonical problem for theoretical study, many of the sim-
ulations and observations available for comparison with theory for the emergence of
streamwise rolls and streaks involve boundary layer flows, particularly developing Bla-
sius flow. Computational resource limitations prevent us from solving the developing flat
plate boundary layer problem. Instead, we have chosen to study a Blasius boundary layer
profile that is maintained constant in the streamwise direction. This parallel flow approx-
imation is widely applied in relating non-normal growth and modal instability analyses to
observations and simulations of developing boundary layers (Cossu et al. 2011; Schlatter
et al. 2008).

Consider a Blasius boundary layer flow, Ubl(y) (cf. Batchelor (2000) p. 310), in which
the parallel flow assumption has been made so that the flow is maintained as a stationary
solution at a chosen fixed Reynolds number. The Reynolds number is defined as Rδ∗ =
U∞δ∗/ν, with U∞ the free-stream velocity, ν the kinematic viscosity, δ∗ ≡ 1.72δ the
displacement thickness, and δ the Blasius length scale, δ =

√
νl/U∞, in which l is a

distance from the leading edge. The channel size is Ly = 7 and Lz = 2π/m, where m is
the spanwise wavenumber of the streamwise roll and streak under study. A discretization
on Ny = 30, Nz = 30 grid points is used. The stochastic forcing is limited to a single
streamwise wavenumber, k = m. The stochastic forcing covariance matrix, Qk, given
in equation (3.10), has been scaled so that perturbation forcing amplitude f maintains
at equilibrium percent volume averaged turbulence intensity {Iu} = f/

√
3, when the

Blasius flow is forced with this scaled Qk. The Blasius profile is maintained in SSST
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equilibrium for chosen values of the perturbation forcing amplitude, f , by introducing
the necessary body force in the streamwise direction into equation (3.19b).

The most unstable SSST streamwise roll and streak eigenmode and its growth rate
is obtained from equations (4.3) for Rδ∗ = 600 and Rδ∗ = 1200 by using the power
method. For perturbation forcing amplitude f = 1.5, this growth rate as a function of m
is shown in Fig. 17c. At Rδ∗ = 600 the maximum growth rate occurs at mmax = 1.2 while
at Rδ∗ = 1200 the wavenumber of the maximum moves to mmax = 2.3. These spanwise
wavenumbers correspond to spacing between low speed streaks of ∆z = 3δ∗ for Rδ∗ = 600
and ∆z = 1.6δ∗ for Rδ∗ = 1200, which contrasts with streak spacings between 4δ∗ and 7δ∗

seen in developing Blasius boundary layers (Westin et al. 1994; Matsubara & Alfredsson
2001). This discrepancy can be explained by noting that the initial condition for the
instability is provided by the optimal, which sets the spanwise scale of the streamwise
roll and streak, with its subsequent growth augmented by the SSST instability. A related
linear/nonlinear two stage growth process was studied previously by Berlin & Henningson
(1999) and Brandt et al. (2002).

The global optimal occurs at mopt = 0.51 with optimal energy growth Gopt = 1681 at
R∗δ = 1200 and Gopt = 400 at R∗δ = 600, as shown in Fig. 17a. This spanwise wavenumber,
mopt, corresponds to streak spacing ∆z = 7.2δ∗. Similar results were obtained by Butler
& Farrell (1992) under the parallel flow assumption and in spatially developing Blasius
boundary layers by Andersson et al. (1999) and Luchini (2000). The structure of the
streak at topt, shown in Fig. 17b,c, also agrees with these previous results and the SSST
unstable mode at mopt has this same streak structure (cf. Fig:17e,f). Notably, and in
contrast to the decay with time of the amplitude of the optimal streamwise roll, the
streamwise roll associated with this SSST mode continues to grow in amplitude in time as
shown in Fig. 18 for the case of Blasius flow maintained at Rδ∗ = 1200 with perturbation
forcing amplitude f = 1.25. This increase of the amplitude of streamwise roll with time
agrees with the observations of Alfredsson & Matsubara (1996).

We now show that with perturbation forcing amplitude 0 < f < fu, with fu the thresh-
old amplitude for structural instability, a streamwise roll of sufficiently small initial am-
plitude attains greater growth than it would in the absence of turbulence, but ultimately
decays, while for f > fu, even a small amplitude initial condition eventually evolves into
an exponentially growing structure (we did not find any stable streamwise roll and streak
equilibria in Blasius flow). Development of the global optimal in the presence of four lev-
els of perturbation forcing amplitude is shown in Fig. 19 for the case of a Blasius flow
maintained at Rδ∗ = 1200. Augmentation of the optimal growth (cf. curve with f = 0)
by interaction with the perturbations is clear (cf. curve for f = 0.5). For a streamwise
roll with spanwise wavenumber mopt the structural instability threshold is at fu = 0.8,
and for any f > fu the flow eventually transitions to the time-dependent state regardless
of the amplitude of the initial perturbation. This transition to a time-dependent state is
shown in Fig. 19 for f = 1.25 and f = 1.5. Experiments in developing boundary layers
reported in Andersson et al. (1999) show that for the Reynolds number ReT = 486750,
equivalent to R∗δ = 1200, transition occurs at Tu ≈ 1.8%. The value fu = 0.8, equivalent
to {Iu} = 0.46%, is predicted for transition for arbitrarily small initial roll perturbations
by our parallel flow model. The smaller threshold value, {Iu} = 0.46%, for the SSST in-
stability at R∗δ = 1200 is at least consistent with the experimental observations because
in developing boundary layers the streamwise roll and streak growth process occurs over
the perturbation trajectory at Reynolds numbers smaller than R∗δ = 1200. Moreover, as
shown above, initial conditions would typically play a central role in determining the
transition scenario in experiments.

A feature of the development of the streamwise roll and streak structure at finite
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amplitude, seen in Fig. 20, is a pronounced asymmetry between the low and high speed
streaks, in which the low-speed streak is notably enhanced. This enhancement, which
is also seen in observations (Hernon et al. 2007), helps to explain the prominence of
low-speed streaks in the dynamics of transition. This asymmetry is also obtained when
optimal streak perturbations are evolved nonlinearly (cf. Andersson et al. (2001)) and
is reflected in the structure of the exact nonlinear solutions found in plane shear flows
(cf. Waleffe (1998)). The fact that this asymmetry is obtained in the SSST framework
establishes that inclusion of the full nonlinearity is not required for its explanation.

Although the streaks reach large amplitude they produce modest change in the span-
wise and streamwise averaged flow, [U ], prior to establishment of the time dependent
state, as shown in Fig. 21. Similar small variations in ∆U = U − [U ] have been observed,
prior to transition, in developing boundary layers subjected to free-stream turbulence
(Westin et al. 1994; Matsubara & Alfredsson 2001), and in boundary layers with devel-
oping optimal streaks (Cossu & Brandt 2002).

The linear followed by nonlinear two stage growth process leading to transition, in
which the linear optimal provides the initial condition for the growth of the structural
instability, serves to explain the observation that streamwise roll initial conditions, which
decay in amplitude in the absence of FST, grow in the presence of FST (Bakchinov et al.
1997; Alfredsson & Matsubara 1996; Westin et al. 1998).

7. Transition to the time-dependent state in Couette flow

We saw that for an f > fc in Couette flow the spanwise uniform equilibrium becomes
structurally unstable, giving rise to a growing streamwise roll and streak mode. This
instability evolves into a finite amplitude stable streamwise roll and streak equilibrium
for fc < f < fu, but for f > fu fails to equilibrate, instead transitioning directly to a
time dependent state. Failure of continuation algorithms to find an equilibrium solution
for f > fu, and the absence of limit cycle behavior, indicates that the transition to
the time dependent state for f > fu is through a saddle-node bifurcation. Saddle-node
bifurcations have also been associated with exact coherent structures (i.e. Nagata (1990,
1997); Waleffe (1998, 2001, 2003); Halcrow et al. (2009)) and low order models (i.e.
Waleffe (1997)).

The streamwise roll and streak equilibria for fc < f < fu are hydrodynamically stable
even when highly inflected. As f approaches fu the perturbation field is increasingly
dominated by the sinuous mode. For f > fu, as shown in Fig. 22 for evolution of the
streamwise roll and streak with f = 8.2, the flow transitions to a time-dependent state,
coincident with the streak becoming hydrodynamically unstable. This scenario of tran-
sition is consistent with the streak breakdown mechanism (Reddy et al. 1998).

Streamwise roll and streak structures during the transition to, and establishment of,
the time-dependent state are shown in Fig. 23. The streamwise flow, with streak spacing
z+ ≈ 50, transitions to a time-dependent state, with streak spacing z+ ≈ 100, which
is characterized by streak collapse occurring at irregular intervals (panel for t = 600).
This time-dependent state is similar to the self-sustaining state seen in minimal channel
turbulence simulations (Jiménez & Moin 1991; Hamilton et al. 1995), and the streak-
spacing of z+ ≈ 100 also agrees with observations (Smith & Metzler 1983; Komminaho
et al. 1996).

This time-dependent state is self-sustaining in the sense that it persists if the forcing
is removed, by setting f = 0.
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8. The minimal self-sustaining turbulence dynamics obtained from
SSST

An important property of the self-sustaining state, with f = 0, in SSST is that the
covariance, Ck, collapses to rank one. Collapse to rank one of Ck results from the fact
that the Lyapunov equation:

dCk
dt

= Ak(U)Ck + CkA†k(U) (8.1)

in the absence of stochastic forcing and with given U(t), admits as a solution the rank

one covariance, Ck = φ̂kφ̂
†
k, in which φ̂k evolves according to:

dφ̂k
dt

= Ak(U) φ̂k. (8.2)

In equation (8.2) all initial states, φ̂k, evolve asymptotically to the first Lyapunov vector
and this happens for every k. It follows that all full rank covariances will asymptotically
approach rank one. Consequently, the SSST dynamics with f = 0 reduce to the nonlinear
interaction between the first Lyapunov vector for each k and the streamwise averaged
flow, governed by:

dφ̂k
dt

= Ak(U)φ̂k, (8.3a)

Ck = φ̂kφ̂
†
k, (8.3b)

dΓ

dt
= G(Γ) +

∑
k

Re (LRSCk) , (8.3c)

where the operators in equations (8.3) are as in equations (3.19).
We wish to show using SSST that the self-sustaining state naturally produces a minimal

representation of turbulence in wall-bounded shear flow in the sense that the dynamics
is limited to the interaction of the streamwise averaged flow with a single harmonic
perturbation. In the self-sustaining state, with f = 0, we have shown that for each k in
equation (8.3a) an initially full rank covariance, Ck, collapses under SSST dynamics to

the rank one covariance Ck = φ̂kφ̂
†
k, with φ̂k the Lyapunov vector associated with its first

Lyapunov exponent, λk = limt→∞(1/t) ln |φ̂k(t)|. Moreover, if the largest λk is attained
at a single streamwise k, the perturbation energy will become progressively concentrated
in this single wavenumber associated with the largest λk, which is necessarily λk = 0,
consistent with a bounded solution trajectory.

Transition to this minimal dynamics is demonstrated by considering the SSST system
(3.19) for Couette channel flow at R = 400 with equal forcing at the three perturbation
wavenumbers: [ k/2, k, 2k] with k = 1.143 and with perturbation forcing amplitude,
fk = 8.2 for each wavenumber. Spanwise symmetry of the Couette flow is broken with a
small initial streak perturbation. The result of such an experiment is shown in Fig. 24. The
system rapidly transitions to a time-dependent state with perturbation energy distributed
among all structures. However, when the perturbation forcing amplitude, fk, is reduced
to zero, at t = 800, so that the system becomes fully self-sustaining, the perturbation
energy becomes concentrated in the single streamwise wavenumber k = 1.143, as shown
in Fig. 24 (top and middle panels). Moreover, this collapse of perturbation energy to
k = 1.143, is accompanied by the collapse of the associated covariance, Ck, to rank one,
as shown in Fig. 24 (bottom panel). This collapse is consistent with the emergence of the
dominant Lyapunov vector associated with equation (8.3a), as discussed above.
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This perturbation covariance rank collapse demonstrates how the self-sustaining turbu-
lent state dynamics naturally reduces to a single time-dependent perturbation structure
interacting with the mean flow, providing a minimal representation of shear flow tur-
bulence. It also suggests a mechanism by which a dominant coherent structure arises in
turbulence and identifies this structure with the first Lyapunov vector of (8.3a), together
with the associated streamwise averaged flow. While nonlinear interaction among pertur-
bations oppose this rank collapse in the full equations, this mechanism of rank collapse
remains robust and helps explain the tendency for a small number of coherent structures
to dominate the variance in wall-bounded shear flow turbulence, which has often been
remarked (Berkooz et al. 1993).

We now demonstrate the establishment and maintenance of a self-sustaining state
by perturbing the Couette flow at R = 400 with the t = 10 energy growth optimal
perturbation at k = 1.143. This optimal, when introduced at RMS amplitude 6.8% of
U0, results in rapid transition to a self-sustaining state, as shown in Fig. 25. This self-
sustaining state, the structure of which is shown in Fig. 26, is essentially similar to the
time-dependent state obtained with stochastic forcing included, shown in Fig. 23.

This minimal turbulence dynamics accurately approximates many aspects of Couette
flow turbulence. In Fig. 27 we plot the projection of the turbulent state on the plane of
the nondimensional energy input rate,

I ≡ 1

R

1

2Ly

(
[U(1)]

d[U ]

dy

∣∣∣∣
y=1

− [U(−1)]
d[U ]

dy

∣∣∣∣
y=−1

)
, (8.4)

and the nondimensional energy dissipation rate, D, given by equation (4.4). This tra-
jectory is consistent with the I/D trajectory obtained in simulations of Couette flow
turbulence (Kawahara & Kida 2001; Gibson et al. 2008). Further, the mean streamwise
flow maintained by this minimal self-sustaining state at f = 0, as well as by the SSST
state at f = 8.2, which are shown in Fig. 28, are close to that obtained in simulations
(Kawahara & Kida 2001). The corresponding cross-stream distributions of the mean RMS
perturbation velocities for this minimal self-sustaining state, shown in Fig. 29, are also
similar to these distributions simulated under turbulent conditions (Kawahara & Kida
2001). These comparisons verify that fundamental features of turbulence are captured
by this minimal self-sustaining state.

9. The parametric mechanism maintaining the self-sustaining state

We wish to gain a clearer understanding of the physical mechanism supporting the self-
sustaining state. The robust tendency for streaks to organize the perturbation field pro-
ducing Reynolds stresses supporting the streak, via the lift-up mechanism, was illustrated
in connection with the streak perturbations shown in Fig. 3. This tendency also produces
the SSST streamwise roll and streak growth process illustrated in Fig. 1. Although the
streak is strongly fluctuating in the self-sustaining state, this tendency of the streak to
organize oblique supporting perturbations is retained as illustrated in Fig. 30. The time
derivative of the domain average square streamwise vorticity, d/dt(

∫
dydz Ω2

x/(2LyLz))
with Ωx = Wy − Vz, provides a measure of the streamwise roll forcing. A times series
of this diagnostic is also shown in Fig. 30. It is remarkable that the perturbations, in
this highly time-dependent state, produce streamwise vorticity forcing maintaining the
streamwise roll not only on average but at nearly every instant.

This robust tendency for perturbation Reynolds stresses to maintain the streak through
the lift-up mechanism explains the maintenance of the streamwise roll and streak struc-
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ture by the perturbations. However, maintenance of the perturbations in the self-sustaining
state remains to be explained. It is tempting to appeal to hydrodynamic instability of
the time-dependent streak to explain the maintenance of the perturbations (Hamilton
et al. 1995; Waleffe 1997). Indeed, eigenanalysis of the instantaneous streamwise averaged
flow reveals that instability would occur, assuming the flow time-dependence could be
ignored, as can be seen from the maximum mode growth rates shown in Fig. 31. How-
ever, this instability is only notional as its growth rate time scale, τ = 1/σr ≈ 25, is the
same as the growth rate correlation time, τ = 25 (cf. Fig. 31). Moreover, perturbation
growth rate is weakly associated with unstable mode growth rate, as can be seen from
comparison of their respective time series, or from a scatter plot of these growth rates,
both shown in Fig. 31.

Therefore, it appears that the perturbations are not sustained by modal instability. In
order to test this, an integration of a turbulent state at R = 800 was performed with
the instantaneous flow enforced to be stable by setting all eigenvalues, (σr + iσi), with
σr > 0 to (−0.001+iσi) at each time step. Despite suppression of all instability, the time-
dependent state continues to be self-sustaining. Persistence of the self-sustaining state is
verified by time series obtained after this intervention, shown in Fig. 32. In fact, it can be
seen from Fig. 32 that the streak is stronger in the stabilized self-sustaining state than
it is in the non-stabilized state, which is consistent with reduced energy extraction from
the streak when instability is suppressed.

This experiment shows that, in the self-sustaining state, perturbation energy is main-
tained by a growth mechanism that is unrelated to modal instability (cf. Schoppa &
Hussain (2002)). We wish to gain an understanding of this mechanism. Despite the lack
of modal instability, perturbations are still able to extract energy through non-normal
interaction with the mean state, but in a stable, time-independent flow the resulting
perturbation growth, however large, is ultimately transient and could not maintain the
perturbation field. In the example of Fig. 32, the system is stable and, if it were not time-
dependent, the perturbations would ultimately decay and the flow would laminarize to
the Couette flow. It is a remarkable fact that, in time-dependent dynamical systems,
the non-normal growth, which would be transient in a time-independent system, can be
sustained to produce exponential growth through an essentially non-normal parametric
mechanism (Farrell & Ioannou 1996b, 1999; Poulin et al. 2003; Pedlosky & Thomson
2003; Farrell & Ioannou 2008b; Poulin et al. 2010). This non-normal parametric growth
process underlies the instability of a damped harmonic oscillator with periodically vary-
ing restoring force, a system which, like the stabilized system example described above,
is non-normal, time-dependent and modally stable at each instant.

This non-normal parametric growth mechanism can be illustrated by projecting the
perturbation states, φ̂k, associated with the self-sustaining states shown in Fig. 25 and
Fig. 26, on the instantaneous directions of energy growth. To facilitate calculating this

diagnostic, transform the perturbation state to ψk ≡ M
1/2
k φ̂k and the perturbation

dynamics to

dψk

dt
= Ãkψk , (9.1)

with Ãk ≡ M
1/2
k Ak(U(t))M

−1/2
k (cf. Appendix A). Perturbation energy growth direc-

tions are those associated with positive eigenvalues of the Hermitian matrix, D =

Ãk + Ãk
†
, while decay directions are associated with negative eigenvalues (Farrell &

Ioannou 1996a,b). Therefore, the instantaneous growth rate can be partitioned into con-
tributions from orthogonal growing and decaying subspaces, spanned by the eigenvectors
of Dg and Dd, respectively:
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1

Ek

dEk
dt

=
ψ†

kDψk

ψ†
kψk

=
ψ†

k(Dg +Dd)ψk

ψ†
kψk

. (9.2)

A plot with axes consisting of the sum of the projections of the perturbation state
on the growing and on the decaying subspaces provides a 2D trajectory of the system
in the coordinates of growth rate and decay rate. Assuming the solutions of (8.3) are
statistically steady, the time average perturbation growth rate is zero implying that
the time average of the projections on the growing and decaying directions are equal.
This implies that the projection of the state lies, on average, along the diagonal in these
coordinates, while a perturbation state maintained by a neutral mode would lie at a point
on the diagonal. Time-series representing the self-sustaining state trajectories with and
without stabilization of modal instability of the instantaneous flow are shown in Fig. 32
and Fig. 33. These trajectories are essentially similar and because one of these systems
is constrained to be always stable, we conclude that the perturbations in both these
systems are sustained by the time-dependent, non-normal, parametric growth process.

This self-sustaining state process is illustrated in Fig. 2; the streak grows by organiz-
ing the perturbation Reynolds stresses to drive its associated streamwise roll while the
perturbations are sustained by the parametric growth mechanism associated with the
time-dependence of the streak.

10. Summary and Conclusion

Two fundamental problems in wall-bounded shear flow turbulence research are under-
standing the mechanism of transition from the laminar to the turbulent state in pertur-
bation stable flows and understanding the mechanism maintaining the turbulent state,
once it is established. In this work, we have used SSST, which provides a determinis-
tic, autonomous, nonlinear dynamical system for evolving a second order approximation
to the statistical mean turbulent state, to study the dynamics of streamwise roll and
streak interaction with turbulence in both transition to and maintenance of turbulence.
Underlying the SSST dynamics are the assumptions that the perturbation-perturbation
interactions and the external sources of turbulence in the perturbation equations can
be parameterized as an additive stochastic forcing delta correlated in time and that the
streamwise average of the perturbation covariance can be obtained from the ensemble
average over realizations of the forcing.

Applied to the transition problem, SSST reveals a new instability arising from interac-
tion between the streamwise rolls and streaks and forced turbulence. Prior to transition to
freely maintained turbulence, forced turbulence is always present in naturally occurring
wall-bounded shear flows, so that this interaction instability of the streamwise roll and
streak is likely to influence transition in such natural settings. We showed that the SSST
instability exploits the optimality of the lift-up mechanism by organizing perturbation
Reynolds stresses to coherently force the streamwise roll. This robust process of Reynolds
stress organization by the streak, resulting in forcing of the associated streamwise roll,
provides the coupling between the streak and the streamwise roll required to produce
modal instability from the powerful non-normal transient growth provided by the lift-
up mechanism. This instability effectively transforms the otherwise transient growth of
optimal or near optimal perturbations arising in the forced turbulence into persistently
growing modal streamwise roll and streak structures.

Linear optimal excitation theory accurately predicts the streamwise roll and streak
structure seen in transitional boundary layers (Luchini 2000; Andersson et al. 2001).
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However, there may be insufficient forcing of the initial condition to produce transition
before the eventual decay of the transiently growing streamwise roll and streak (Brandt
et al. 2002). Indeed, localized streamwise roll and streak initial conditions are observed
to decay in the presence of very low FST (Bakchinov et al. 1997; Alfredsson & Matsubara
1996; Westin et al. 1998). An alternative, and potentially complementary, mechanism is
the formation of streamwise rolls and streaks from the nonlinear interaction of oblique
waves (Benney 1960, 1984; Jang et al. 1986; Schmid & Henningson 1992; Reddy et al.
1998; Brandt et al. 2002). SSST analysis unites linear optimal theory with nonlinear
perturbation/mean-flow interaction theory by showing that forcing of the streamwise
roll by the perturbation field arises naturally from the robust process of turbulence or-
ganization by streaks. Moreover, in forced turbulence a finite amplitude optimal or near
optimal perturbation would exist, at least episodically, and such a perturbation would
serve as an initial condition for the SSST streamwise roll and streak instability. We
showed how the perturbation Reynolds stresses augment the growth of such an initial
streamwise roll and streak. These processes cooperate in determining the structure of
growing streamwise roll and streak perturbations. For this reason, comparison of SSST
predictions with experiments requires accounting for both the amplitude and structure
of initial perturbations as well as the unstable growth rate of the SSST instability. If the
level of forced turbulence is sufficiently high, an initially small amplitude streamwise roll
perturbation is converted into an unstable mode leading to transition. However, if the
initial roll perturbation is large this unstable growth phase may be of less importance,
but in any case these streamwise roll and streak growth processes ultimately lead to
transition to a time-dependent state. After transition to the time-dependent state has
occurred this state persists even if the turbulence is no longer externally forced. This
mechanism of structural instability mediated transition to a self-sustaining state ad-
dresses the first problem mentioned above: transition from the laminar to the turbulent
state in perturbation stable shear flow.

The streamwise roll and streak spacing of the maximally growing SSST instability is
approximately half of the spacing that occurs in the self-sustaining state. The streak
spacing in the self-sustaining state is maintained through the parametric growth SSP
mechanism, illustrated in Fig. 2. The predicted streak spacing is in agreement with
observations of streak spacing of about 100 wall units in turbulent Couette flow. Before
transition to the self-sustaining state the streamwise roll and streak growth is determined
in part by the perturbations turbulent intensity mediated RGP mechanism, illustrated
in Fig. 1. In Couette flow, the streamwise roll and streak spacing predicted by the RGP
instability is approximately 50 wall units. There is no contradiction in the existence of
these two scales of roll and streak organization given that these two streamwise roll and
streak states are associated with very different mechanisms.

The self-sustaining state naturally evolves to a minimal turbulent system in which
the dynamics is limited to the interaction of the streamwise averaged flow with a sin-
gle streamwise harmonic perturbation. This minimal turbulent system, which proceeds
naturally from the SSST dynamics, provides a particular advantage for our study be-
cause the mechanism maintaining turbulence in this minimal system can be understood
with clarity. In this self-sustaining state, we find that the streamwise roll is system-
atically maintained by the robust organization of perturbation Reynolds stress by the
time-dependent streak while the streak is maintained by the streamwise roll through
the lift-up mechanism. Systematic maintenance of the perturbation field results from
the non-normal parametric growth mechanism arising from the interaction between the
time-dependent streak and the perturbation. We hypothesize that this naturally emer-
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gent, minimal, self-sustaining, turbulent system captures the fundamental mechanism
maintaining turbulence in wall-bounded shear flow.

This work was supported by NSF ATM-0123389. Discussions with Eli Tziperman,
Tobias Schneider and Dennice Gayme are gratefully acknowledged. We thank Navid
Constantinou for help in the preparation of the paper.

Appendix A. Optimal excitation of a mode in the energy norm

To determine the perturbation that excites optimally in energy a given eigenmode of

the matrix Ak(U eq), transform the perturbation state to ψ̂k = M
1/2
k φ̂k, with Mk the

energy metric defined in (3.11), so that the transformed dynamics become:

dψ̂k
dt

= Ãkψ̂k , (A 1)

with Ãk ≡ M
1/2
k Ak(U eq)M

−1/2
k . With this transformation, the perturbation energy den-

sity at streamwise wavenumber k, Ek in (3.12), is given simply by the inner product:

Ek = ψ̂
†
kψ̂k. The adjoint mode, ψ̂k,a, of eigenmode ψ̂k,m of Ãk, is the eigenmode of Ã†k

with eigenvalue equal to the complex conjugate of the eigenvalue of ψ̂k,m. It follows that

ψ̂k,b ≡ ψ̂∗k,a is the biorthogonal of ψ̂k,m, that is, it is orthogonal to all the other eigen-

modes of Ãk. It can be shown that this perturbation structure excites the eigenmode
ψ̂k,m optimally in energy (Farrell 1988; Farrell & Ioannou 1996a). Then, the optimal

amplitude of excitation of the unit energy eigenmode ψ̂k,m resulting from a unit energy

initial condition with the structure of its biorthogonal, ψ̂k,b is:

a =
1

|ψ̂†k,bψ̂k,m|
. (A 2)

The ratio of the energy in the eigenmode resulting from excitation by this unit energy
optimal, rather than direct excitation of the mode itself at unit energy, is a2. For normal
operators a = 1 while for highly non-normal operators, such as the evolution operator
for a shear flow, this ratio is typically large.
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Figure 1. The Roll/Streak Growth Process (RGP) in which turbulent perturbations are orga-
nized by the streak to produce Reynolds stresses collocated to force the associated streamwise
roll, which in turn amplifies the streak via the lift-up mechanism.
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Figure 2. The Self-Sustaining Process (SSP) in which a time-dependent streak induces para-
metric growth of perturbations which produce Reynolds stresses that amplify the associated
streamwise roll and maintain the streak via the lift-up mechanism.
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Figure 3. The rate of change of streamwise roll acceleration induced by streak perturbations to
a Couette flow that is maintained turbulent by stochastic forcing. Distortion of the turbulence
by the streak perturbation induces Reynolds stresses that force roll circulations supporting the
streak via the lift-up mechanism. Shown are contours of the imposed streak perturbations, δU ,
and vectors of the resulting rate of change of roll acceleration, (V̈ , Ẅ ). This figure demonstrates
the tendency for streamwise streak perturbations to organize supporting streamwise averaged
roll forcing from the perturbation field. The Reynolds number is R = 400, the perturbation
forcing amplitude is f = 4.1, the spanwise width is Lz = 1.2π and the streamwise wavenumber
is k = 2π/(1.75π) = 1.143.
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Figure 4. The most unstable streamwise roll and streak eigenfunction of the SSST system
linearized about the spanwise uniform equilibrium at perturbation forcing amplitude f = 6.86.
The growth rate of this mode is λr = 0.014. Shown are velocity vectors (δV, δW ) (left) and
streamwise velocity δU (right). The ratio of the maxima of (δU, δV, δW ) is (1, 0.06, 0.03). This
figure demonstrates that the tendency for streamwise streak perturbations to organize support-
ing streamwise roll forcing from the forced turbulence, shown in Fig. 3, leads to the formation
of an unstable streamwise roll and streak eigenmode. Other parameters are as in Fig. 3.



0 500 1000 1500
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

t

RMS  streak velocity

RMS roll velocity

Figure 5. Growth and equilibration of the streamwise roll and streak eigenfunction shown in
Fig. 4. The RMS streak velocity and RMS roll velocity initially grow exponentially with the pre-
dicted growth rate, λ = 0.014, until t ≈ 600 after which an equilibrium is established. This figure
demonstrates that SSST dynamics includes the nonlinear mechanism of streak equilibration as
well as the mechanism of unstable streamwise roll and streak growth.
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Figure 6. The finite amplitude streamwise roll and streak resulting from the equilibration of
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Figure 7. SSST bifurcation diagram for the Couette problem. Shown are the RMS streak
velocity (squares) and RMS streamwise roll velocity (circles) as a function of the perturbation
forcing amplitude, f . For f < 4.75, both the streamwise streak and roll velocities are zero.
At fc = 4.75 the spanwise uniform equilibrium bifurcates to an equilibrium with a streamwise
roll and streak. The dashed line indicates the

√
f − fc dependence of the streamwise roll and

streak velocities near this critical fc. Stable streamwise roll and streak equilibria extend up to
fu = 6.9 beyond which the streamwise roll and streak transitions to a time-dependent state.
The dashed line indicates the

√
fu − f dependence of the streamwise roll and streak amplitude

near this critical fu. The Reynolds number is R = 400, the spanwise width is Lz = 1.2π and
the streamwise wavenumber is k = 2π/(1.75π) = 1.143.
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Figure 8. Streamwise averaged velocity of the SSST equilibria in Fig. 7 at various values of f .
(a): The equilibrium at f = 4.1 is spanwise uniform. (b): At f = 4.9 the spanwise uniform flow
is structurally unstable and leads to an equilibrium with a weak streak. (c): The equilibrium at
f = 6.1. (d): The equilibrium at f = 6.86. The streamwise averaged flow associated with these
equilibria becomes increasingly inflected in the cross-stream as f → fu. The contour interval is
0.2.
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Figure 9. SSST streamwise roll and streak regime diagram for the Couette problem. In re-
gion I the equilibria are spanwise uniform. In region II the equilibria are streamwise roll and
streaks. In region III there are no equilibria and only time-dependent streamwise roll and streak
structures exist. The curves fc(R) (squares) and fu(R) (triangles) indicate structural instability
boundaries. The instability boundary for transition to the time-dependent state is well fit by
the function fu = 2200/(R − 89) (solid). This figure demonstrates that either R or f could
be used as the bifurcation parameter in the SSST dynamics and that the associated volume
averaged turbulence intensity, {Iu}, required to assure transition to the time-dependent state
in SSST dynamics decreases asymptotically as R−1. The spanwise width is Lz = 1.2π and the
streamwise wavenumber is k = 2π/(1.75π) = 1.143.
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Figure 10. Development of a streamwise roll and streak initial condition in the presence of var-
ious perturbation forcing amplitudes in Couette flow as indicated by the maximum square streak
velocity, U2

s . The initial condition is a t=50 optimal perturbation with spanwise wavenumber
l = 4π/Lz and amplitude 0.05% of the maximum velocity of the Couette flow, U0. The optimal is
evolved in the presence of forced turbulence in equilibrium with perturbation forcing amplitudes;
f = 0, 4.5, 5.7, 6.5, 6.9, 7.35. The curve for f = 0 indicates the transient growth followed by
decay of this initial perturbation in the absence of feedback from the forced turbulence. Note
that for f < fc = 4.75 the streak initially grows but then decays, with the rate of decay reduced
by its interaction with the forced turbulence. For fc < f < fu = 6.9, the optimal evolves to
a non-decaying streamwise roll and streak equilibrium structure, while for f > fu, it becomes
structurally unstable and ultimately time-dependent. This figure shows that interaction with tur-
bulence sustains the growth of an optimal initial condition. The Reynolds number is R = 400,
the spanwise width is Lz = 1.2π and the streamwise wavenumber is k = 2π/(1.75π) = 1.143.
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Figure 11. Diagnostics of the dynamics of the streamwise roll and streak SSST equilibrium
shown in Fig. 6. (a): Acceleration of the streamwise roll, (V̇ , Ẇ ), resulting from self-advection

by the mean roll velocity, (V,W ). The maximum of V̇ is 10−4. (b): Acceleration of the stream-

wise averaged streamwise flow, U̇ , induced by the streamwise roll, the maximum of U̇ is 10−2,
mainly due to the lift-up mechanism, (- UyV ). (c): Acceleration of the streamwise roll, (V̇ , Ẇ ),

resulting from the perturbation Reynolds stresses. The maximum of V̇ is 10−3. This term ex-
ceeds the self-advection by the streamwise roll velocities, shown in panel (a), by an order of
magnitude and determines the structure of the streamwise roll. (d): Acceleration of the stream-

wise averaged streamwise flow, U̇ , induced directly by the perturbation field Reynolds stresses.
This term has maximum magnitude 10−2 and decelerates the streak. This figure demonstrates
that the finite amplitude streamwise roll and streak is maintained indirectly by the perturbation
driven streamwise roll, through the lift-up mechanism, while the direct effect of the perturbation
Reynolds stress is to decelerate the streak.



Figure 12. Velocity field of the first energy POD empirical eigenfunction (EE) for the equi-
librium with f = 6.86, shown in Fig. 6. This EE alone accounts for 24% of the perturbation
energy. Velocity vectors are superposed on contours of streamwise velocity, which has maximum
u = 0.16. This figure demonstrates that a dominant sinuous wave structure, collocated with the
streak, arises from the interaction between the streak and the forced turbulence field.



Figure 13. Velocity field of the perturbation that optimally excites the least damped sinuous
mode, which has structure very close to the EE shown in Fig. 12. Optimal perturbations that
maximize energy amplification for shorter time periods have similar structure. A unit energy
initial condition in the form of this perturbation excites the sinuous mode equivalently in en-
ergy to a factor 1900 greater than an initial condition consisting of the sinuous mode itself. It
follows that the sinuous mode amplitude, and by extension the first EE of the POD, arises from
perturbations in the forced turbulence almost entirely due to non-normal growth processes.
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Figure 14. Energy growth and associated streamwise roll forcing resulting from energy optimal
perturbations to equilibria with Couette boundary forcing. Top: Energy growth of the t = 10
optimal perturbation to the streak equilibrium at f = 6.86 (solid), and to the spanwise uniform
equilibrium at f = 4.1 (dashed) (respectively shown in Fig. 8 d, a). The optimal is excited
at unit energy and has streamwise wavenumber k = 1.143. Also shown is the growth of the
adjoint mode which excites optimally the least damped mode of Ak(Ueq) for the equilibrium
flow at f = 6.86 (dash-dot). Bottom: Associated streamwise roll forcing induced by these optimal

perturbations as indicated by the maximum rate of change of streamwise vorticity, |~̇Ωx|. This
figure demonstrates that streamwise roll forcing is associated with optimal growth and that
optimal perturbations produce streamwise roll forcing regardless of the presence of a streak.
The streak serves only to collocate the streamwise roll forcing.
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Figure 15. Emergence of the sinuous mode of the equilibria in Fig. 8. Shown are the least
stable eigenvalues, (σr, σi), of the operator, Ak. Note the emergence of the prominent mode as
the streak increases in magnitude with increasing f (arrow). This is the sinuous mode that is
commonly observed to accompany streaks nearing transition to turbulence.
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Figure 16. Influence of damping the sinuous mode on equilibrium streak amplitude. Shown
as a function of time for both increase and decrease in sinuous mode damping are: RMS streak
amplitude (top), RMS roll amplitude (middle), and RMS perturbation velocity (bottom), for
decrease (solid), and increase (dashed), in the damping rate of the sinuous mode compared to its
damping rate at equilibrium. The corresponding values at equilibrium are also shown (dotted).
The equilibrium is that at f = 6.86, shown in Fig. 6. Although the sinuous mode both drives
and damps the streak, this figure demonstrates that the net effect of the sinuous mode is to
damp the streak.
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Figure 17. SSST streamwise roll and streak eigenmode growth and optimal growth in a
Blasius boundary layer at Reynolds numbers Rδ∗ = 600 and Rδ∗ = 1200. (a): Square root

of the optimal energy growth factor,
√
G, of k = 0 perturbations as a function of spanwise

wavenumber of the streak, m. The global optimal growth, G = 1681, for Rδ∗ = 1200, occurs at
spanwise wavenumber mopt = 0.51, which corresponds to streak spacing ∆z = 7.2δ∗. The time
at which this optimal growth occurs is topt = 960. (b): Streamwise roll velocities, (δV, δW ), of
the global optimal for Rδ∗ = 1200, at t = 0 (dash) and topt (solid). (c): Streak velocity, δU , of
the global optimal for Rδ∗ = 1200 at topt. (d): SSST eigenmode growth rate as a function of the
eigenmode spanwise wavenumber, m, for perturbation forcing amplitude f = 1.5. Perturbation
streamwise wavenumbers are chosen so that k = m. The maximum growth rate for Rδ∗ = 1200
is σr = 0.0125 and occurs at spanwise wavenumber m = 2.3. The maximum growth rate for
Rδ∗ = 600 is σr = 0.002 and occurs at m = 1.2. (e): Streamwise roll velocities , (δV, δW ), and
(f): streak velocity, of the unstable mode at mopt and Rδ∗ = 1200. The growth rate at mopt

is σr = 0.001. This figure demonstrates that the optimal perturbation and the SSST unstable
mode coexist and that the structure of the optimal perturbation is nearly identical to that of
the unstable eigenmode at mopt.
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Figure 18. Effect of turbulence on the development of the global optimal structure in Blasius
flow at Rδ∗ = 1200. The global optimal perturbation at mopt = 0.51 (cf. Fig. 17b,c) is excited at
RMS velocity 0.1% of the free-stream velocity, U∞, in the presence of turbulence with f = 1.25
at perturbation streamwise wavenumber k = 0.51. Shown are the low speed streak velocity
(left panel) and the cross-stream component of the streamwise roll velocity, V (right panel) at
t = 400, 800, 1000, 1200, all prior to transition. The figure shows that in the presence of forced
turbulence the cross-stream velocity increases together with the streak. In contrast, for f = 0
the optimal streamwise roll velocity necessarily decreases.
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Figure 19. Development of the global energy optimal in Blasius flow at Rδ∗ = 1200 in the
presence of four levels of perturbation forcing amplitude. The global optimal perturbation at
mopt = 0.51 (cf. Fig. 17b,c) is excited at RMS velocity 0.1% of the free-stream velocity, U∞, in
the presence of turbulence with f = 0, 0.5, 1.25, 1.5, all at perturbation streamwise wavenumber
k = 0.51. Shown is the square of the maximum streak velocity. This Blasius flow is structurally
stable at mopt = 0.51 for f < fu ≈ 0.8 so that for f = 0.5 the streak initially grows but then
decays, albeit with its rate of decay reduced by interaction with the turbulence. The profile
is structurally unstable for f > fu and therefore for f = 1.25 and f = 1.5 the streak grows
exponentially leading to transition to the time-dependent state. This figure demonstrates that
the interaction between forced turbulence and an optimal initial condition in the Blasius flow
converts the transiently growing initial condition into an SSST eigenmode and for f > fu into
an unstable eigenmode which necessarily leads to transition.
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Figure 20. Development of the global optimal structure in Blasius flow at Rδ∗ = 1200 in the
absence of forced turbulence (top) and with forced turbulence (bottom). The global optimal
perturbation at mopt = 0.51 (cf. Fig. 17b,c) is excited at RMS velocity 0.1% of the free-stream
velocity, U∞. (a): Snapshot at t = 800 of the streamwise averaged streamwise flow, U(y, z)
(contours) and streamwise roll velocities, (V, W ) (vectors) for f = 0 (cf. Fig. 19). (b): The
corresponding streak velocity, Us = U − [U ], at the level of its maximum y/δ∗ = 1.31. (c): The
corresponding snapshot at t = 800 for f = 1.25 and k = 0.51. (d): The corresponding streak
velocity at the level of its maximum, y/δ∗ = 1.18. The velocities are normalized by U∞ and
other parameters are as in Fig. 19. The nonlinearity retained in SSST dynamics predicts the
marked enhancement of the low speed streak at this time prior to transition.
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Figure 21. Streamwise velocity defect resulting from the development of the global energy
optimal in Blasius flow at Rδ∗ = 1200. The global optimal perturbation at mopt = 0.51 (cf.
Fig. 17b,c) is excited at RMS velocity 0.1% of the free-stream velocity, U∞. The turbulence is
forced at k = 0.51 with f = 1.25. Left: Spanwise averaged streamwise velocity for the optimal
streamwise roll and streak evolution shown in Fig. 19 (stars). For comparison the associated
Blasius boundary layer flow profile is also shown (solid). Right: difference between the spanwise
averaged streamwise velocity and the Blasius profile. This defect is normalized by the magnitude
of its minimum value. This figure shows that development of the optimal streamwise roll and
streak in SSST, prior to transition, induces small changes in the boundary layer profile that are
consistent with observations (cf. Westin et al. (1994), their Fig. 7).
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Figure 22. Structural instability induced transition to the time-dependent state starting from
Couette flow. Shown are RMS perturbation velocity (solid), RMS roll velocity (dashed), and
RMS streak velocity (dash-dot). The dotted line at t = 200 marks the time when the instan-
taneous streamwise averaged flow first becomes hydrodynamically unstable. The perturbation
forcing amplitude is f = 8.2 and other parameters are as in Fig. 3.
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Figure 23. Streamwise roll and streak structure during the transition to, and establishment
of, the time-dependent state shown in Fig. 22. Snapshots are shown of the streamwise averaged
streamwise flow (contours), and vectors of the streamwise averaged cross-stream/spanwise flow.
At t = 200, the streamwise flow has just become perturbation unstable. Channel distances are
measured in wall units, revealing the time-dependent state to be characterized by streaks with
mean spacing of about z+ = 100. The streak episodically collapses (cf. panel for t = 600), and
reforms. The contour interval is 0.2.
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Figure 24. Perturbation complexity decrease associated with establishment of the minimal
self-sustaining state as f → 0. The time-dependent state is initialized with perturbation forcing
amplitude f = 8.2 and zero covariance. Subsequently, f is decreased to f = 4.1 at t = 400 and
to f = 0 at t = 800, after which time the state is unforced and self-sustaining. Top: Fraction of
the total perturbation energy (top solid) accounted for by streamwise wavenumbers k0 (solid),
2k0 (dashed), and 3k0 (dash-dot), with k0 = 1.143. For t > 800 in this log plot, suppression of
the subdominant perturbations at streamwise wavenumbers 2k0 and 3k0 is indicated by their
exponential decay at the rate of their negative Lyapunov exponents, while the dominant k0
component necessarily has the zero Lyapunov exponent of the state trajectory. This plot reveals
complete dominance of the k0 perturbation in the self-sustaining state subsequent to t = 800.
Bottom: Fraction of perturbation energy in each of the first three empirical eigenfunctions
associated with the dominant streamwise wavenumber, k0 = 1.143 (first EE: solid, second EE:
dashed, third EE: dash-dot). Simultaneous with the concentration of perturbation structure
in the single streamwise wavenumber, k0, is the collapse of the covariance to rank 1 at this
wavenumber. The collapse of the state to rank 1 is complete for f = 0, but even for f = 8.2,
which parameterizes strong perturbation/perturbation nonlinearity, the tendency for reduction
of the perturbation state to a single structure remains robust. R = 400, and other parameters
are as in Fig. 3. This figure reveals that the self-sustaining state is intrinsically associated with
a minimal representation of turbulence.



0 200 400 600 800 1000 1200 1400 1600
10

−2

10
−1

10
0

t

R
M

S
 v

el
o
ci

ty

Figure 25. Initial condition induced transition to the self-sustaining state starting from Couette
flow. Shown are RMS perturbation velocity (solid), RMS streamwise roll velocity (dashed), and
RMS streak velocity (dash-dot). This figure demonstrates that transition to the self-sustaining
state can be induced by an initial condition in the absence of externally forced turbulence. This
self-sustaining state is maintained by the nonlinear interaction between the streamwise averaged
flow and a single streamwise harmonic perturbation. The initial condition is a t = 10 energy
growth optimal at k = 1.143 excited with RMS velocity 6.8% of U0. The perturbation forcing
amplitude is f = 0 and other parameters are as in Fig. 3.
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Figure 26. Streamwise roll and streak structure during the transition to, and establishment
of, the time-dependent state shown in Fig. 25. Snapshots are shown of the streamwise averaged
streamwise flow (contours), and vectors of the streamwise averaged cross-stream/spanwise flow.
Channel distances are measured in wall units, revealing the time-dependent state to be charac-
terized by streaks with mean spacing of about z+ = 100. At t = 30, the streamwise averaged
flow has just become hydrodynamically unstable. The streak episodically collapses (cf. panel for
t = 1280), and reforms. The contour interval is 0.2.
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Figure 27. Trajectory of the self-sustaining state shown in Fig. 25 on the plane of the energy
input rate, I, and the energy dissipation rate, D. The trajectory begins at Couette flow (lower
left point in trajectory) and settles into a transient chaotic trajectory with values of I and D
typical of turbulence. Both I and D have been normalized by the value for laminar Couette
flow. This figure demonstrates that the self-sustaining state I/D plane trajectory is consistent
with simulations of Couette flow turbulence.
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Figure 28. Spanwise and time averaged streamwise flow, [U ](y), for the self-sustaining state
shown in Fig. 25 (solid), and for the time-dependent state with perturbation forcing amplitude
f = 8.2, shown in Fig. 22 (dash-dot). For comparison, the spanwise and time averaged stream-
wise flow from the simulation of Kawahara & Kida (2001) at the same Reynolds number is
shown (dashed). This figure demonstrates that both the self-sustaining state and the time-de-
pendent state with forced turbulence produce a streamwise averaged flow profile consistent with
simulations of Couette flow turbulence.
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Figure 29. Cross-stream distribution of spanwise and time averaged perturbation statistics
for the self-sustaining state in Fig. 25. Shown are spanwise and time averaged RMS: streamwise
velocity

√
< u2 > (solid-circles), cross-stream velocity

√
< v2 > (solid-triangles), and spanwise

velocity
√
< w2 > (solid-squares). For comparison, the time and spanwise mean flows from the

simulation of Kawahara & Kida (2001) at the same Reynolds number are also shown (dashed).
Velocities are normalized by the maximum Couette flow velocity. This figure demonstrates that
the self-sustaining state produces turbulent velocity statistics consistent with simulations of
Couette flow turbulence.
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Figure 30. Streamwise roll forcing by perturbation Reynolds stresses in the self-sustaining state
shown in Fig. 25. Top left: Vectors of instantaneous cross-stream/spanwise velocity acceleration,

(V̇ , Ẇ ), at time t=980. Top right: Streamwise roll and streak structure at the same time. Bottom:
Time series of streamwise roll forcing as indicated by the rate of change of the average square
streamwise vorticity. It is remarkable that the perturbations, in this highly time-dependent state,
produce streamwise roll forcing, not only on average, but also at nearly every instant.
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Figure 31. Comparison between perturbation growth rate and modal growth rate for the
self-sustaining state in Fig. 25. Top: Maximum mode growth rate, σr, (dashed), and perturbation
growth rate, (1/2E)dE/dt, (solid). Bottom: Scatter plot of these growth rates. The temporal
correlation time of σr is τc = 25, and the mean of σr is 0.04. The correlation coefficient between
these growth rates over the whole simulation is 0.2. This figure indicates that maintenance of the
perturbation energy in the self-sustaining state is not significantly related to streak instability.
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Figure 32. Self-sustaining state at R = 800 with and without modal instability. Top: The
self-sustaining state time evolution in the variables RMS perturbation velocity (solid), RMS
roll velocity (dashed), and RMS streak velocity, (dash-dot). Bottom: The same variables for
the stabilized self-sustaining state. This state was made stable at each instant in the following
manner: all unstable eigenfunctions were ascribed growth rate −0.001 while their phase speed
and structure were left unchanged. The turbulence is unforced, f = 0, and other parameters
are as in Fig. 3. Suppression of modal instability results in a self-sustaining state with stronger
rather than weaker streaks. This figure demonstrates that modal instability does not maintain
perturbation variance in the self-sustaining state.
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Figure 33. Trajectory of the self-sustaining state both with and without modal instability
suppression. The coordinates are the projections of the state on the growing and on the de-
caying subspaces of the dynamical operator. Top: trajectory of the unmodified self-sustaining
state. Bottom: trajectory of the stabilized self-sustaining state. Because this system is stable
at each instant, it would asymptotically approach the zero perturbation state if its mean state
time-dependence were suppressed. This figure demonstrates that the non-normal parametric
mechanism maintains perturbation variance in both these self-sustaining states.
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