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ABSTRACT 
Planetary turbulence is observed to self-organize into large scale structures such as zonal jets and 
coherent vortices. One of the simplest models that retains the relevant dynamics of turbulent self-
organization is a barotropic flow in a beta-plane channel with turbulence sustained by random stirring. 
Non-linear integrations of this model show that as the energy input rate of the forcing is increased, the 
homogeneity of the flow is first broken by the emergence of non-zonal, coherent, westward 
propagating structures and at larger energy input rates by the emergence of zonal jets. The emergence 
of both non-zonal coherent structures and zonal jets is studied using a statistical theory, Stochastic 
Structural Stability Theory (S3T). S3T models a second order approximation to the statistical mean 
state and allows identification of statistical equilibria and study of their stability. It is found that when 
the homogeneous turbulent state becomes S3T unstable, coherent structures emerge (non-zonal large 
scale structures and zonal jets). Analytic expressions for their characteristics (scale, amplitude and 
phase speed) are obtained and their non-linear equilibration is studied numerically. Direct Numerical 
Simulations of the nonlinear equations show that the structures predicted by S3T dominate the turulent 
flow. 
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1. INTRODUCTION

Planetary turbulence is commonly observed to be organized into large scale zonal jets with long-
lasting coherent vortices embedded in them. Prominent examples are the banded jets and the Great 
Red Spot in the Jovian atmosphere (Vasavada and Showman, 2005). The jets control the transports of 
heat and chemical species in the atmosphere, while the coherent vortices sequester chemical species 
and heat and produce significant spatiotemporal variability. It is therefore important to understand the 
mechanisms for the emergence, equilibration, and maintenance of these coherent structures.  

The simplest model that retains the relevant dynamics is a turbulent barotropic flow on a β-plane. 
Numerical simulations of this model have shown that robust, large scale zonal jets emerge in the flow 
and are sustained at finite amplitude. In addition, large scale westward propagating coherent waves 
were found to coexist with the zonal jets (Galperin et al., 2010). These large scale waves either obey a 
Rossby wave dispersion, or propagate with different phase speeds and appear to be sustained by non-
linear interactions between Rossby waves. However the mechanism for their excitation and 
maintenance remains elusive. In this work, we present a theory that predicts the formation and 
nonlinear equilibration of large scale coherent structures in barotropic β-plane turbulence and then test 
this theory against nonlinear simulations.  
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Since organization of turbulence into coherent structures involves complex nonlinear interactions 
among a large number of degrees of freedom, which erratically contribute to the maintenance of the 
large-scale structure, an attractive approach is to study the Statistical State Dynamics (SSD) of the 
turbulent flow, rather than single realizations of the turbulent field. This approach is followed in 
Stochastic Structural Stability Theory (S3T) which is a second order Gaussian approximation of the 
full SSD (Farrell and Ioannou, 2003). In S3T the third cumulant is either ignored (Marston et al., 
2008) or parameterized as the sum of a known correlation function and a dissipation term (DelSole 
and Farrell, 1996), which is equivalent to the elimination of the eddy--eddy nonlinearity or its 
parameterization as random forcing with the required  dissipation to remove the energy injected by the 
forcing. Such a representation is strongly supported by the results of previous studies  (Farrell and 
Ioannou, 1993; DelSole, 2004; Bouchet et al., 2013). 

The second order closure results in a nonlinear, autonomous dynamical system that governs the 
evolution of the mean flow and its consistent second order perturbation statistics. Its fixed points 
define statistical equilibria, whose instability brings about structural reconfiguration of the mean flow 
and of the turbulent statistics. Previous studies employing S3T addressed the bifurcation from a 
homogeneous turbulent regime to a jet forming regime in barotropic beta-plane turbulence and showed 
that S3T can predict the structure of zonal jets in the turbulent flow (Farrell and Ioannou, 2007, 
Srinivasan and Young, 2012, Constantinou et al., 2014). In this work we demonstrate that an 
extended version of S3T can predict the emergence of both zonal and non-zonal coherent structures 
and can capture their finite amplitude manifestations. 

2. FORMULATION OF STOCHASTIC STRUCTURAL STABILITY THEORY

Consider a non-divergent barotropic flow on a β-plane with cartesian coordinates x=(x,y). The velocity 
field, u=(u,v), is given by  𝑢, 𝑣 = (−𝜕𝑦𝜓,𝜕𝑥𝜓), where ψ is the streamfunction. Relative vorticity ζ(x,

y, t) = Δψ, evolves according to the non-linear (NL) equation: 

 𝜕𝑡 + 𝐮 ∙∇ 𝜁 + 𝛽𝑣 = −𝑟𝜁 − 𝜈𝛥2𝜁 + 𝑓      (1)

where 𝛥 = 𝜕𝑥𝑥
2 + 𝜕𝑦𝑦

2  is the horizontal Laplacian, β is the gradient of planetary vorticity, r is the

coefficient of linear dissipation that typically parameterizes surface (Ekman) drag in planetary 
atmospheres and ν is the coefficient of hyper-diffusion that dissipates enstrophy flowing into 
unresolved scales. The exogenous forcing term f, parameterizes processes such as small scale 
convection or baroclinic instability, that are missing from the barotropic dynamics and is necessary to 
sustain turbulence in this simplified model that lacks vortex stretching. We assume that f is a 
temporally delta correlated and spatially homogeneous random stirring. We also assume that the 
forcing is isotropic, injecting energy at a rate ε in a narrow ring of wavenumbers with radius Kf.  

We assume a standard Reynolds decomposition of the vorticity field into an averaged field Z=T[ζ], 
defined as a time average over an intermediate time scale and deviations from the mean or eddies, 
ζ'=ζ-Z. The intermediate time scale is larger than the time scale of the turbulent motions but smaller 
than the time scale of the large scale motions. With this decomposition, (1) is written as: 

 𝜕𝑡 + 𝐔 ∙ ∇ 𝑍 + 𝛽𝑉 + 𝑟𝑍 + 𝜈𝛥2𝑍 = −∇ ∙ 𝑇[𝐮′ 𝜁 ′]      (2𝑎)

 𝜕𝑡 + 𝐔 ∙ ∇ 𝜁 ′ + 𝑣 ′ 𝛽 + 𝜕𝑦𝑍 + 𝑢′𝜕𝑥𝑍+ 𝑟𝜁 ′ + 𝜈𝛥2𝜁 ′ = 𝑓 + ∇ ∙  𝑇 𝐮′ 𝜁 ′ − 𝐮′ 𝜁 ′   2𝑏 

As in previous studies (Srinivasan and Young 2012), we neglect the eddy-eddy term  𝑇 𝐮′ 𝜁 ′ − 𝐮′ 𝜁 ′  
to obtain the quasi-linear system 

 𝜕𝑡 + 𝐔 ∙ ∇ 𝑍 + 𝛽𝑉 + 𝑟𝑍 + 𝜈𝛥2𝑍 = −∇ ∙ 𝑇[𝐮′ 𝜁 ′]      (3𝑎)
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𝜕𝑡𝜁
′ = 𝐴 𝐔 𝜁 ′ + 𝑓     3𝑏 

where 𝛢 = −𝐔 ∙ ∇ −  𝛽 + 𝜕𝑦𝑍 𝜕𝑥𝛥−1 + 𝜕𝑥𝑍𝜕𝑦𝛥−1 − 𝑟 + 𝜈𝛥2. Therefore the mean flow is forced by 

the time mean of the vorticity flux divergence, while the eddies evolve according to the linear 
dynamics about the instantaneous mean flow U. In order to obtain the statistical  dynamics of the 
quasi-linear system (3) we make the ergodic assumption that the time average over the intermediate 
time scale is equal to the ensemble average over the forcing realizations, an assumption used 
previously in studies of atmospheric blocking (Bernstein and Farrell, 2009). Under this assumption, 

the slowly varying mean flow Z is also the first cumulant of the vorticity 𝑍 =  𝜁 , where the brackets 
denote the ensemble average. In addition, the time mean of the vorticity flux is equal to the ensemble 

mean of the flux, 𝑇 𝐮′ 𝜁 ′ =  𝐮′ 𝜁 ′ , which can be expressed  as a linear function, R(C), of the eddy 
vorticity covariance between points 𝐱1 and 𝐱2, 𝐶(𝐱1 , 𝐱2) =  𝜁 ′ (𝐱1 ,𝑡)𝜁 ′ (𝐱2 , 𝑡) . The first cumulant, Z,
therefore evolves according to: 

 𝜕𝑡 + 𝐔 ∙∇ 𝑍 + 𝛽𝑉 + 𝑟𝑍 + 𝜈𝛥2𝑍 = −∇ ∙  𝐮′𝜁′ = 𝑅(𝐶)      (4𝑎)

Taking the time derivative of C and using (3b) we obtain the evolution equation for the second 
cumulant C: 

𝜕𝑡𝐶 +  𝐴1 + 𝐴2 𝐶 = 𝛯   (4𝑏)

where 𝛯(𝐱1 − 𝐱2) is the spatial covariance of the homogeneous stochastic forcing and the subscript in

A denotes that the coefficients of 𝐴 𝐔  are evaluated at 𝐱 𝑖 and that it acts only on the variable 𝐱 𝑖.

Equations (4) comprise the autonomous S3T system which constitutes a second-order closure for the 
flow statistics. Being autonomous it may possess statistical equilibria (Z

E
, C

E
) of the coherent 

structures with vorticity Z
E
, in the presence of an eddy field with covariance C

E
. If these equilibria are 

stable, we expect reflections of the coherent structures Z
E
 to appear in the nonlinear simulations of (1) 

and statistics of the eddies to be given by C
E
. If these equilibria are unstable, we expect that the 

turbulent attractor will change its structure and that different structures will emerge and dominate the 
flow. The S3T system (4) has for ν=0 the equilibrium Z

E
=0, C

E
=Ξ/2r, that has zero large scale flow 

and a homogeneous eddy field with the spatial covariance of the forcing. We will now investigate the 
stability of this equilibrium as a function of the energy input rate ε and the characteristics of the 
unstable structures. 

3. STABILITY ANALYSIS

The stability of the homogeneous equilibrium is assessed by introducing perturbations 𝛿𝑍 =

𝑒𝑖𝑛𝑥 +𝑖𝑚𝑦 +𝜎𝑡, 𝛿𝐶 = 𝑒𝑖𝑛 (𝑥1+𝑥2)/2+𝑖𝑚 (𝑦1+𝑦2)/2+𝜎𝑡, linearizing (4) about the homogeneous equilibrium 
and calculating the eigenvalues σ for each plane wave with wave-vector 𝒏 = (𝑛,𝑚). The resulting 
stability equation for σ(n) is: 

𝜎 + 𝑖𝜔𝒏 + 𝑟 =  
𝑑2𝒌

(2𝜋)2

 𝒌 × 𝒏 2 𝐾𝑠
2 − 𝐾2 (𝐾2 − 𝑁2)𝛯 (𝒌)

𝐾4𝐾𝑠
2𝑁2 𝜎 + 2𝑟 − 𝑖 𝜔𝒌 − 𝜔𝒌+𝒏  

∞

−∞

 (5) 

where the integral is over wavenumbers 𝒌 =  𝑘, 𝑙 , 𝐾 =  𝒌 , 𝑁 =  𝒏 , 𝐾𝑆 =  𝒌 + 𝒏 , 𝜔𝒌 = −𝛽𝑘/𝐾2 is 

the Rossby wave frequency and 𝛯  𝒌 = 4π𝜀𝐾𝑓 𝛿 𝛫 − 𝛫𝑓   is the Fourier transform of the isotropic 
ring forcing with spatial covariance Ξ  (Bakas and Ioannou 2014). For small values of the energy 

input rate of the forcing ε, the homogeneous state is stable. When ε exceeds a critical εc, the 

homogeneous flow becomes S3T unstable and coherent structures emerge. The critical energy input 

rate as a function of the planetary vorticity gradient β is shown in Fig. 1. For β<βmin, the most 

unstable structures are zonal jets that grow 
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in situ (i.e Im[σ(n)]=0). This is illustrated in Fig. 2 showing the growth rate and the frequency of the 
unstable structures as a function of the wavenumber. For β>βmin, non-zonal structures are more 
unstable than zonal jets (cf. Fig. 2). As a result, the non-zonal structures first emerge as ε increases 
(thick line in Fig. 1) and only at significantly higher energy input rates zonal jets are expected to 
appear (thin line in Fig. 1). The non-zonal structures are propagating (i.e Im(σi)≠0) (cf. Fig. 2) and for 
energy input rates close to the critical value, they propagate in the retrograde direction and follow the 
Rossby wave dispersion, that is Im[σ(n)]=ωn.  

Fig. 1. The non-dimensional critical energy input rate 𝜀𝑐
∗ = 𝜀𝑐𝐾𝑓

2/𝑟3 for the emergence of large-scale

structure (thick line) and the critical energy input rate for the emergence of zonal jets (thin line) as a 

function of non-dimensional planetary vorticity gradient 𝛽∗ = 𝛽𝛫𝑓 /𝑟. The asymptotic behavior of the

critical curve for β
*
>>1 and β

*
<<1 is also shown (dash-dot) and parameter values for the Earth's 

atmosphere, Earth's ocean and Jupiter's atmosphere are marked with stars.   

Fig. 2. Non-dimensional growth rate Re(σ/r) (contours) and frequency Im(σ/r) (shading) as a function 
of the integer valued non-dimensional wavenumbers (|n|,|m|)/Kf  of the emerging structure for  (a) 
β

*
=1 and (b) β

*
=1. The energy input rate in both panels is ε=2εc.
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4. EQUILIBRATION OF THE INSTABILITIES AND COMPARISON TO DNS

The equilibration of the instabilities is studied by numerically integrating the S3T system (4) in a 
doubly periodic 2π x 2π channel using finite differences for calculating the spatial derivatives and a 
fourth-order Runge-Kutta scheme for time stepping. We consider the parameter values Kf=10, β=10, 

r=0.01 and v=1.9x10
-6

 yielding a non-dimensional planetary vorticity gradient 𝛽 = 100. Therefore 
the integration is in the parameter region of Fig. 1 in which the non-zonal structures are more unstable 
than zonal jets. The eigenvalue relation can be readily derived for a periodic channel by substituting 

the integrals with summation over integer values of the wavenumber 𝒌 =  𝑖, 𝑗 , with 𝑖, 𝑗 ∈ ℤ. 

We first consider the energy input rate ε=4εc for which zonal jets are stable and the structure with 
n=(1, 5) is the most unstable. Starting from a small random perturbation, a checkerboard perturbation 
of the form  

𝑍 = cos 𝑥 cos 5𝑦  (6) 

emerges and grows exponentially dominating the flow. At this point the large scale flow gets attracted 
to the travelling wave finite-amplitude equilibrium structure shown in Fig. 3 that is very close in form 
to the checkerboard unstable harmonic eigenfunction (6). The Hovmoller diagram of ψ(x,y=π/4,t) also 

Fig. 3. (a) Streamfunction of the equilibrated structure for ε=4εc. (b)  Hovmoller diagram of 
ψ(x,y=π/4,t). The phase speed of the most unstable eigenfunction is also shown (dashed line). 

shown in Fig. 3 illustrates that the wave propagates in the retrograde with a speed approximately equal 
to the phase speed of the unstable eigenfunction. We next consider the case ε=30εc. For this highly 
supercritical value of the energy input rate the most unstable non-zonal structure grows but cannot 
equilibrate as the finite-amplitude non-zonal travelling equilibria become S3T unstable to zonal jet 
perturbations. This is illustrated in Fig. 4 showing the evolution of the harmonic function (5). After the 
saturation of the instability at about t=100, the flow transitions slowly from the traveling wave 
structure (shown in the left inset in Fig. 4) to the equilibrium state shown in the right inset in Fig. 4. 
The equilibrated structure is a mixed state consisting of a zonal jet with (|n|, |m|)=(0,5) and lower 
amplitude (|n|, |m|)=(1,5) westward propagating waves embedded in it. Therefore we expect two 
regime changes as the energy input rate increases. The first occurring at εc with the emergence of non-
zonal structures and the second with the dominance of the zonal jet-mixed states when the non-zonal 
structures become secondarily unstable. These two regime transitions can be clearly revealed by 
calculating two proxies for the amplitude of non-zonal structures and zonal jets, the zmf and nzmf 
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Fig. 4. Energy evolution of random initial conditions for ε=30εc. The insets show a snapshot of the 
streamfunction at t=200 (left) and t=2200 (right).  

indices defined as the ratio of the energy of zonal jets and non-zonal structures respectively with scales 
lower than the scale of the forcing over the total energy: 

𝑧𝑚𝑓 =
 𝐸 (𝑘 = 0, 𝑙)𝑙<𝐾𝑓

 𝐸 (𝑘, 𝑙)𝑘 ,𝑙

,      𝑛𝑧𝑚𝑓 =
 𝐸 (𝑘, 𝑙)𝑘 ,𝑙<𝐾𝑓

 𝐸 (𝑘, 𝑙)𝑘 ,𝑙

− 𝑧𝑚𝑓,     (7) 

where 𝐸 (𝑘, 𝑙) is the time averaged energy power spectrum of the flow and k , l are the zonal (x) and 
meridional (y) wave numbers, respectively.  These indices that are calculated for the S3T integrations, 
are shown in Fig. 5 as a function of the energy input rate ε. As the energy input rate increases, the non- 

Fig. 5. zmf and nzmf indices defined in (7) as a function of the energy input rate, for the NL and S3T 
integrations.  

zonal structures emerge for ε>εc  and equilibrate at larger amplitudes and nzmf increases. For ε/ εc>15 
the finite amplitude non-zonal equilibria are S3T unstable to zonal jet perturbations and the structures 
with the largest domain of attraction are the mixed states dominated by their zonal jet component 
resulting in an increase of zmf and a concomitant decrease of nzmf. 
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The results of the S3T analysis are now compared to Direct Numerical Simulations of (1). Equation 
(1) is solved using a pseudospectral code with a 128x128 resolution and a fourth-order Runge-Kutta 
scheme for time stepping and we choose the same parameters as in the S3T integrations. The zmf and 
nzmf indices calculated from long time averages after the system has reached a statistical equilibrium 
are shown in Fig. 5. We observe that the S3T stability analysis accurately predicts the critical εc for 
emergence of non-zonal structures in the DNS of the turbulent flow as well. The finite amplitude 
equilibria obtained when ε>εc also correspond to the dominant structures in the nonlinear simulations. 
For ε=4εc, the time averaged energy spectra shown in Fig. 6 exhibit significant power at (|k|,|l|)=(1,5), 
corresponding to the equilibrated S3T structure shown in Fig. 3. Remarkably, the phase speed of these 
waves observed in the nonlinear simulations and the amplitude of these structures as illustrated by the 

Fig. 6. (a) Time averaged energy power spectra obtained from the NL simulations for ε=4εc. (b) 
Hovmoller diagram of ψ(x,y=π/4,t). The phase speed of the most unstable S3T eigenfunction in this 
case is also shown (dashed line).  

nzmf index are approximately equal to the phase speed and amplitude of the corresponding S3T 
translating equilibrium structure (cf. Figs. 3, 6). An excellent agreement is also observed for the 
second regime as well in which zonal jets (mixed states) are the dominant structures. The energy 
spectra calculated at ε=30εc (not shown) exhibit a peak at the zonal mode with (|k|,|l|)=(0,5) but there 
is also finite power in the non-zonal structures with (|k|,|l|)=(1,5), that is the two constituents of the 
mixed state in the S3T integrations. The amplitude of both the zonal and non-zonal components is also 
in good agreement with the S3T integrations as revealed by the comparison of the zmf and nzmf 
indices with the corresponding indices obtained from S3T in this regime (cf. Fig. 5).   

5. CONCLUSIONS

In summary, we presented a theory for the emergence of zonal jets and non-zonal coherent structures 
in barotropic turbulence. Nonlinear simulations of a stochastically forced barotropic flow in a beta-
plane channel show two major flow transitions as the energy input rate of the forcing increases. In the 
first, the translational symmetry in the flow is broken with the emergence of propagating coherent 
non-zonal waves that approximately follow the Rossby wave dispersion. The power in these non-zonal 
structures increases with the energy input rate until the second transition occurs with the emergence of 
robust zonal jets. 

The two flow transitions and the characteristics of both the non-zonal structures and the zonal jets are 
investigated using S3T. In S3T, the turbulent flow dynamics and statistics are expressed as a 
systematic cumulant expansion which is truncated at second order. With the interpretation of the 
ensemble average as a Reynolds average over the fast turbulent eddies, the second-order cumulant 
expansion results in a closed, nonlinear dynamical system that governs the joint evolution of slowly 
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varying, spatially localized coherent structures with the second-order statistics of the rapidly evolving 
turbulent eddies.  

The linear stability of the homogeneous S3T equilibrium with no mean velocity was examined 
analytically. Structural instability was found to occur when the energy input rate is larger than a 
certain threshold. It was found that for weak (strong) planetary vorticity gradient β the maximum 
growth rate occurs for stationary zonal structures (propagating large-scale non-zonal structures). The 
equilibration of the unstable, exponentially growing coherent structures for large β was then studied 
through numerical integrations of the S3T dynamical system. When the forcing amplitude is slightly 
supercritical, the finite-amplitude travelling wave equilibrium has a structure close to the 
corresponding unstable non-zonal perturbation with the same scale. When the forcing amplitude is  
highly supercritical, the instabilities equilibrate to mixed states consisting of strong zonal jets with 
smaller-amplitude travelling waves embedded in them.  

The predictions of S3T were then compared with the results obtained in the nonlinear simulations. The 
critical threshold above which coherent non-zonal structures are unstable according to the stability 
analysis of the S3T system was found to be in excellent agreement with the critical value above which 
non-zonal structures acquire significant power in the nonlinear simulations. The scale, phase speed 
and amplitude of the dominant structures in the nonlinear simulations were also found to correspond to 
the structures predicted by S3T. In addition, the threshold for the emergence of jets, which is identified 
in S3T as the energy input rate at which an S3T stable, finite-amplitude zonal jet equilibrium exists, 
was found to roughly match the corresponding threshold for jet formation in the nonlinear simulations, 
with the emerging jet scale and amplitude being accurately obtained using S3T.  

In summary, S3T predicts the two regime transitions in the turbulent flow as the energy input rate is 
increased: the emergence of coherent, propagating non-zonal structures and the emergence of zonal 
jets. It also predicts the characteristics of the emerging structures (their scales and their phase speed), 
as well as their amplitude.  
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