
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 132.239.127.56

This content was downloaded on 03/05/2016 at 17:56

Please note that terms and conditions apply.

A POD-based analysis of turbulence in the reduced nonlinear dynamics system

View the table of contents for this issue, or go to the journal homepage for more

2016 J. Phys.: Conf. Ser. 708 012002

(http://iopscience.iop.org/1742-6596/708/1/012002)

Home Search Collections Journals About Contact us My IOPscience

iopscience.iop.org/page/terms
http://iopscience.iop.org/1742-6596/708/1
http://iopscience.iop.org/1742-6596
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


A POD-based analysis of turbulence in the reduced

nonlinear dynamics system

M-A Nikolaidis1, B F Farrell2, P J Ioannou1, D F Gayme3,
A Lozano-Durán4, J Jiménez4
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Abstract. The structure of turbulence in a reduced model of turbulence (RNL) is analyzed by
means of a Proper Orthogonal Decomposition (POD modes). POD analysis was carried out on
two different components of the flow, the roll/streak and the perturbation structure. The POD
structure in both RNL and direct numerical simulations (DNS) is similar and this correspondence
suggests that the dynamics retained in RNL are the essential dynamical ingredients underlying
the self-sustaining mechanism of the turbulent state.

1. Introduction
Proper Orthogonal Decomposition (POD) provides an orthogonal basis for the spatial structure,
each component of which is ordered according to its contribution to the variance of the flow. This
basis is optimally efficient for representing the variance in turbulent flows and allows a systematic
reduction in complexity of the representation of the flow. The POD analysis can be performed
separately on components of the flow in homogeneous directions including the streamwise-mean
component of the flow (with streamwise wavenumber kx = 0) and the streamwise-varying
components of the flow with kx 6= 0 [1–4]. In this work we exploit this freedom to efficiently
identify the structures that dominate the spatio-temporal variability of the streamwise-mean
flow as well as the structures that dominate the streamwise-varying kx 6= 0 components. POD
modes obtained from DNS are compared with those obtained from a closely related reduced
nonlinear (RNL) model [5]. The purpose of this comparison is in part to elucidate the similarities
and differences of the DNS with the RNL. The dynamics of RNL model turbulence involve
interaction of the streamwise mean flow with few, even as few as one, streamwise flow harmonic.
Despite this simplification, salient aspects of the turbulent dynamics are captured [6–8]. Given
the similarity between the structures that dominate the variance in DNS and RNL turbulence,
it is argued that RNL and DNS turbulence are sustained by a dynamically similar mechanism.
RNL turbulence self-sustains through interaction between the time-dependent kx = 0 roll/streak
structure with the streamwise varying flow components through a parametric time-dependent
instability mechanism. It is argued that the same type of dynamics are responsible for sustaining
DNS turbulence.
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Ŝ
y
C

k z
(T

av
)|
| 1

 

 

hkz = 2
hkz = 4
hkz = 6
hkz = 8
1/Tav

Figure 1. The 1-norm of the difference Ckz − ŜyCkz between the covariance matrix Ckz (6),
and the covariance of the reflected flow about the x− z plane (B.5), at the center of the flow
(y = 1) as a function of the averaging time, Tav, for hkz = 2, 4, 6, 8 (top to bottom). This plot
verifies that reflection symmetry about the centerline is a statistical symmetry of the flow and
that this symmetry is approached at the rate 1/Tav consistent with the law of large numbers for
quadratic statistics. Time is non-dimensionalized by h/U .

2. Procedure for obtaining the POD modes of the turbulent flow
Second-order statistics of flow structure can be obtained from the two-point same-time spatial
covariance of the flow-field variables. Adopting the notation 〈 · 〉 for the time average and ( · )T

for transposition we form the covariance of the kx = 0 components of the velocity,

C =
〈
UUT

〉
, (1)

in which
U = [Us, Vs,Ws]

T , (2)

is the column vector constructed of the deviations (Us(y, z, t), Vs(y, z, t),Ws(y, z, t)) of the
three components of the kx = 0 Fourier mode of the streamwise (x), cross-stream (y)
and spanwise (z) velocities (U(y, z, t), V (y, z, t),W (y, z, t)) from their spanwise averages,
([U ](y, t), [V ](y, t), [W ](y, t)).

In addition we form the covariance of the kx 6= 0 components of the flow field,

c =
〈
U ′U ′T

〉
, (3)

with
U ′ = [u, v, w]T , (4)

the column of the three components of the kx 6= 0 Fourier component of the flow velocity
expanded at all points of the domain.

The POD basis is obtained by eigenanalysis of the two-point covariances, C and c, of velocity
components. The resulting orthogonal set of eigenvectors is then ordered descending in the
magnitude of their eigenvalue to form the POD basis. The eigenvalue of each POD reveals its
time-averaged contribution to the energy of the flow.

We have chosen for the study a plane Poiseuille flow in a doubly periodic channel in the
streamwise, x, and spanwise, z, direction of size Lx/h = 4π, Lz/h = π, where h is the channel’s
half-width in the wall-normal direction, y, in which Reτ = 100 is retained in both the DNS and
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its reduced nonlinear model simulations (cf. Table 1). In order to obtain a converged POD basis a
very long time series of a turbulent flow field is required. This convergence is facilitated by taking
into account the statistical symmetries of the flow: homogeneity in the x and z direction, mirror
symmetry in y about the x−z plane at the center of the channel, and mirror symmetry in z about
the y − x plane at the center of the spanwise direction. The statistics of the turbulent flow have
been verified to asymptote to the above statistical symmetries as the averaging time increases;
convergence to the statistical symmetry is demonstrated for the case of the y mirror-symmetry in
Fig. 1. These statistical symmetries are not necessary consequences of the translation and mirror
symmetry of the NS equations in the periodic channel; the solutions may undergo symmetry
breaking and be inhomogeneous either in x or z or mirror asymmetric. An example of symmetry
breaking of the statistical homogeneity in the meridional direction is apparent in the nearly
time invariant zonal flows that are maintained in the turbulent atmosphere of Jupiter. This
symmetry breaking in the pipe flow would amount to a turbulent state with temporally constant
and spatially fixed streak structures that are aligned parallel to the streamwise axis (cf. Ref. [9]).

Statistical homogeneity in z implies that the eigenvectors of C are single harmonics of the
form:

Φkz =

 Akz(y)
Bkz(y)
Γkz(y)

 eikzz , (5)

where Akz(y), Bkz(y) and Γkz(y) are Ny dimensional column vectors, with Ny, the number of
discretization points in y [2]. At each time instant the 3Ny column vector of a kz 6= 0 Fourier
component, Ukz(t), of the instantaneous flow field U is obtained and used to form Nkz average
covariances:

Ckz =
〈
Ukz(t)U†kz(t)

〉
, (6)

where Nkz is the number of kz 6= 0 Fourier components retained in the simulation and † is the
Hermitian transpose. Eigenanalysis of these covariances determines 3Ny ×Nkz eigenvectors and
the POD orthogonal basis of the kx = 0 flow field is this basis ordered decreasing in eigenvalue.

The POD modes for the kx 6= 0 component of the flow are obtained similarly. The eigenvectors
of c are again single harmonics because of the statistical homogeneity in both x and z directions,
of the form:

φkxkz =

 αkxkz(y)
βkxkz(y)
γkxkz(y)

 ei(kxx+kzz) , (7)

where αkxkz(y), βkxkz(y) and γkxkz(y) are Ny dimensional column vectors. To obtain the POD
basis we determine at each instant the 3Ny column vector corresponding to the kx 6= 0, kz 6= 0
Fourier component of U ′kxkz(t), of the instantaneous flow field U ′ and then form Nkx×Nkz average
covariances:

ckxkz =
〈
U ′kxkz(t)U ′†kxkz(t)

〉
, (8)

where Nkx is the number of the kx 6= 0 Fourier components retained in the simulation.
Eigenanalysis of these covariances determines 3Ny × Nkx × Nkz eigenvectors and the POD
orthogonal basis of the kx 6= 0 flow field is this basis ordered decreasing in eigenvalue. A
simpler calculation was carried out in this study, restricting the kx 6= 0 components’ POD
analysis to a single plane, yn = 0.2066. Note that because the physical flow field is real the
Fourier components satisfy U−kz = U∗kz where ∗ denotes the complex conjugate. Consequently
Ckz = C∗−kz and covariances Ckz and C∗−kz have the same eigenvalues, as the covariances are
positive definite Hermitian matrices with real eigenvalues. Their corresponding eigenfunctions
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Table 1. Simulation parameters. [Lx, Lz]/h is the domain size in the streamwise, spanwise
direction. Nx, Nz are the number of Fourier components after dealiasing and Ny is the number
of Chebyshev components. Reτ is the Reynolds number of the simulation based on the friction
velocity.

Abbreviation [Lx, Lz]/h Nx ×Nz ×Ny Reτ Re

NS100 [4π , π] 128× 63× 97 100.59 1650
RNL100 [4π , π] 3× 63× 97 100.98 1950

are conjugate. This implies that the eigenvalues of the POD modes come in pairs corresponding
to the sin(kzz) and cos(kzz) POD structure. When presenting the POD modes for each kz only
one of this pair will be shown. Similarly for the POD modes of the kx 6= 0 flow field: there is a
four-fold degeneracy corresponding to the common eigenvalues of ckxkz , c−kxkz , ckx−kz , c−kx−kz
and the POD modes can be represented with (x, z) structure either in the checkerboard form
sin(kxx) sin(kzz), cos(kxx) sin(kzz), sin(kxx) cos(kzz),cos(kxx) cos(kzz), or in the oblique wave
form: sin(kxx+ kzz), cos(kxx+ kzz), sin(kxx− kzz),cos(kxx− kzz), which will be chosen in our
figures.

The complete set of POD modes form a basis orthogonal in the energy norm that spans the
three components of the flow field. Although the POD basis is optimally efficient for representing
perturbation energy, this basis is not optimal for representing the dynamics of the flow and care
must be exercised in relating them to the dynamics of the turbulent state (for a discussion of the
relation of the POD basis to the dynamics refer to Ref. [10]; construction of a basis for optimal
representation of flow dynamics refer to Ref. [11]). In addition to non-optimality of the POD
basis for representing dynamics is the potential for Galerkin projection of the dynamics using
this basis to produce dynamical interaction inconsistent with NS which leads inter alia to support
of unphysical instabilities [4]. What the POD basis does is to provide important information
about flow structure that can be used to reconsrtuct the velocity fields with significantly lower
degrees of freedom and therefore constrain the dynamics.

3. DNS and its RNL approximation

In this section we briefly describe the construction of the reduced nonlinear model (RNL)
of Navier-Stokes plane channel turbulence. The incompressible Navier-Stokes equations in a
constant mass-flux channel flow, with laminar flow in the streamwise x direction, is decomposed
into equations for the streamwise average flow, U, and the perturbations, u′, as follows:

∂tU + U · ∇U−G(t)x̂ +∇P − ν∆U = −u′ · ∇u′ , (9a)

∂tu
′ + U · ∇u′ + u′ · ∇U +∇p′ − ν∆u′ = −(u′ · ∇u′ − u′ · ∇u′) . (9b)

∇ ·U = 0 , ∇ · u′ = 0 . (9c)

The pressure gradient G(t) that drives the flow maintains constant mass flux. Quantities with an
overline u′ · ∇u′ imply averaging over x. Capital letters indicate streamwise averaged quantities.
No-slip, impermeable boundaries are placed at y = 0 and y = 2h.

The corresponding RNL equations are obtained by suppressing nonlinear interactions among
streamwise non-constant flow components in the perturbation equations resulting in the right
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Figure 2. Left panel: The mean velocity profile of the DNS and RNL simulations. Right panel:
The corresponding mean shear in the two simulations.

hand side of (9b) being set to 0. The RNL equations are:

∂tU + U · ∇U−G(t)x̂ +∇P − ν∆U = −u′ · ∇u′ , (10a)

∂tu
′ + U · ∇u′ + u′ · ∇U +∇p′ − ν∆u′ = 0 . (10b)

∇ ·U = 0 , ∇ · u′ = 0 . (10c)

Under this restriction, the perturbation field interacts nonlinearly only with the mean, U, flow
and not with itself. This quasi-linear restriction of the dynamics results in a turbulent state that
is supported by a greatly restricted subset of streamwise Fourier components. The components
that are retained by the dynamics identify the dynamically active components sustaining the
turbulence. These components reveal the subset of streamwise harmonics that are are energetically
active in the parametric instability that sustains the turbulent state [5–8].

Turbulence with realistic mean statistics is obtained with RNL dynamics even with the
perturbation field further truncated to comprise a single wavenumber component. Simulations
reported here retained only perturbations with streamwise wavelength λx/h = 4π, which
correspond to the gravest streamwise mode in our computational channel of streamwise length
Lx/h = 4π and spanwise width Lz/h = π. These RNL simulations are compared with DNS
simulations in this channel at Reτ = uτh/ν = 100 with uτ =

√
ν d[U ]/dy|w (d[U ]/dy|w is the

shear at the wall) is the friction velocity. In order for the single component RNL simulation
to obtain comparable Reτ with DNS the pressure gradient is increased appropriately. If the
perturbation field in the RNL were not constrained to a single streamwise component but were
allowed to evolve until its natural support in streamwise wavenumbers had been obtained, it
would have retained three streamwise components, with wavelengths λx/h = 4π, 2π, 4π/3, and
would sustain turbulence with the Reτ of the DNS without requiring adjustment of the pressure
gradient. Numerical details can be found in Appendix A and a summary of the parameters of
the simulations in Table 1. The time averaged streamwise mean flow [U ] and its associated shear
in the DNS is shown in Fig. 2.

4. DNS and RNL POD modes
The POD basis for the kx = 0 component of the flow in DNS and the RNL simulation will now
be described. As explained earlier because of the statistical homogeneity of the flow in the z
direction, these POD modes come in sin(kzz) and cos(kzz) pairs. The first 8 POD modes of the
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Figure 3. The first 8 POD modes of the turbulent channel flow. This basis has been obtained
from data of a 270k advective (ht/U) time units simulation by exploiting the full symmetries of
the flow as described in the text. There is a two-fold degeneracy such that each POD corresponds
to two identical structures in y with sin(kzz) and cos(kzz) structure in z. The contours show
levels of the streamwise U velocity and the arrows indicate the the vector velocity (V,W ). These
structures and this ordering was verified to be converged by doubling and quadrupling the
averaging time.

DNS simulation are shown in Fig. 3 and the corresponding POD modes for the RNL simulation
in Fig. 4. Shown are both the streak velocity and the corresponding (V,W ) velocity field for
each POD. Note that both the DNS and the RNL simulation produce rolls and streaks similarly
collocated and with similar structure. The percentage variance explained by the first POD modes
shown in Fig. 5 is similar in the DNS and RNL simulation.

Note that every POD component comes with its streamwise, wall-normal and spanwise velocity
component. There is no a priori reason that these fields should be systematically correlated.
However, a remarkable systematic correlation is seen between the wall-normal velocity V of
the roll and the streak velocity: positive V is correlated with low speed streaks (defects in the
streamwise flow) and vice versa. This correlation extends through to higher order POD modes.
Each POD shows this remarkable correlation which indicates that the rolls and the streaks form
a self-organized structure in which the lift-up mechanism is acting to maintain the streak. If
instead the streaks were maintained directly by Reynolds stress forcing from the perturbation
field no such systematic correlation between roll velocities and streak velocities would be expected.
Analysis of the self-sustaining process (SSP) in RNL reveals that the streak is maintained by
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Figure 6. The first 4 POD modes of the DNS simulation at constant y = 0.2066. Contours are
levels of the cross-flow velocity v′ on the plane, while the arrows indicate the vector velocity
(u′, w′) on the plane. Note that u′ > 0 is associated with v′ < 0 and vice versa an indication that
the underlying dynamics are the lift-up mechanism as it operates in kx 6= 0 perturbations.

the lift-up mechanism and that the eddies oppose the streak rather than maintain it. Note
that the first 6 DNS POD modes of the roll/streak structure are reproduced in the RNL model,
albeit with some reordering. The similarity of the RNL and DNS POD modes suggests that the
same dynamics is operating and that the rolls and streaks self-organize so that the rolls form
where the streaks are, in such a manner so as to reinforce the preexisting streak structure. This
mechanism is evidently scale independent given that all the POD modes have this roll/streak
velocity correlation. This scale independence suggests that the mechanism of maintaining the
roll/streak structure is also scale independent.

The wall-normal V velocities of the roll component of the POD modes are about 1/10 of the
streak velocity which, assuming an average non-dimensional mean flow shear of magnitude 2
(cf. Fig. 2) is consistent with the emergence of the streak through the lift-up mechanism over
an average 5 time units. Note that in the RNL the streak/roll velocity ratio increases, which is
to be expected because RNL turbulence is less disrupted due to having far fewer perturbation
structures and streaks can reach larger amplitude.

We now consider the kx 6= 0 POD modes of the flow. These assume the form of harmonics in
x and z given the statistical homogeneity in x and z and there is fourfold degeneracy in the POD
spectrum as each of the four combinations of waves (±kx,±kz) accounts for the same amount of
energy. These POD modes were calculated at y = 0.2066. A plane wave representative of the
top 4 POD quartets for the DNS and the RNL are shown in Fig. 6 and Fig. 7 and the variance
accounted by the POD modes is shown in Fig. 8. As the RNL simulation was restricted to a
single mode, hkx = 0.5, the RNL and DNS POD sets are not as similar as they would be if the
full support of RNL turbulence had been retained. Nevertheless, the first 4 POD quartets of
both the RNL and the DNS are hkx = 0.5 structures. For the RNL we can see in Table 3 that
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Figure 7. The first 4 plane POD modes of the RNL simulation as in Fig. 6.
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Figure 8. Left panel: Percentage energy (variance) of the kx 6= 0 flow explained by each POD
quartet in the DNS and RNL simulation. Right panel: The cumulative variance accounted for
by the POD modes in the DNS and RNL simulation as a function of the number of POD modes
included in the sum.

over 90% of the variance is explained by the first 4 modes, in fact the structure of the hkx = 0.5
mode formed by using the first ten POD modes explains 99% of the variance. As expected, the
DNS is more varied,with the hkx = 1 mode making a comparable contribution (cf. Table 2).

As in the the case of the POD’s at kx = 0 the velocities u′ and v′ are correlated indicating that
the lift-up mechanism is again at work, here however the lift-up mechanism is “supercharged”
by the Orr-mechanism, which creates enhanced wall-normal velocity as the perturbations are
sheared [12–15]. This supercharging mechanism associated with the eruptions in the flow does
not operate at kx = 0 and is distinct from the lift-up mechanism at kx = 0. This distinction
between the lift-up mechanisms operating at kx = 0 and kx 6= 0 is reflected in the ratio of the
u′/v′ of the POD modes being approximately double the U/V ratio in the kx = 0 POD modes.
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Table 2. POD modes of y = 0.2066 plane for DNS

Index (±)nx (±)nz Variance(%) Cumulative Variance(%)

1 1 3 15.06 15.06
2 1 2 13.69 28.75
3 1 4 7.66 36.41
4 1 1 6.57 42.98
5 2 3 5.67 48.65
6 2 2 4.40 53.05
7 2 4 4.04 57.09
8 1 5 3.37 60.46
9 3 3 2.60 63.06
10 2 1 2.21 65.27
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Figure 9. A segment of the energy time-series of hkx = 1 on the plane y = 0.2066.

Also note that because the supercharge lift-up mechanism operating in the kx 6= 0 perturbations
scales inversely with the square of the total wavenumber of the perturbations the induced u′ is
larger for the lower wavenumber POD modes (cf. Refs. [12, 15]).

Due to the statistical homogeneity, the kx 6= 0 POD modes of individual planes give information
only about the relations between the velocity fields in the assumed single wave harmonic form.
In order to obtain an understanding of the perturbation structure it is necessary to project the
instantaneous flow on the POD basis. The time evolution of the perturbation energy at the
y = 0.2066 plane for a segment of the DNS and RNL simulation is shown in Fig. 9. Figure 10
shows 2 instantaneous snapshots of the perturbation structure projected on the top 10 POD
modes of the hkx = 0.5 basis, at the start of an energy rising event in the DNS and RNL
simulation. Regions of u′v′ < 0 with alternating v′ and u′ signs are collocated with the most
prominent streak defects which in both cases are negative. On this plane the interaction of the
streak with the perturbations is connected with the product w′∂zUs, generating perturbation
velocity in the process. The perturbation structure consists of oblique waves at the wings of the
spanwise shear of the streak.
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Figure 10. Instantaneous velocity fields of DNS and RNL projected on the first 10 POD
quartets with hkx = 1,showing the onset of an energy growth event. The contours show levels
of the wall-normal velocity, the arrows the (u,w) vectors of the perturbation field on the plane
y = 0.2066. The black dashed line at x = π is the 0 of the streak, Us, at this plane and the black
solid line is 10 times the value of the streak velocity Us. DNS is taken from time= 356 and RNL
from time= 704. The corresponding perturbation energy is shown in Fig. 9.

Table 3. POD modes of y = 0.2066 plane for RNL

Index (±) nx (±) nz Variance (%) Cumulative Variance (%)

1 1 2 32.28 32.28
2 1 1 29.93 62.21
3 1 3 19.12 81.33
4 1 4 9.03 90.35
5 1 5 4.20 94.55
6 1 6 2.14 96.70
7 1 7 1.03 97.73
8 1 1 0.63 98.34
9 1 8 0.51 98.87
10 1 2 0.28 99.15

5. Further truncation of the RNL dynamics
The possibility of reducing the RNL dynamics support even further by using projection on
the POD’s will now be examined. Projection on a basis comprised of all three components
(Us, V,W ) is constraining the dynamics in an undesirable way, since the streak Us ≡ U − [U ] is
the result of the (V,W ) operating on the mean profile [U ] and the Us itself. Therefore the streak
dominated POD modes would not be able to correctly describe the roll dynamics since any roll is
instantaneously associated with a much bigger streak [4]. For this reason we calculate the POD
modes of only the streak portion of the flow and inquire whether we can obtain self-sustaining
turbulence with a low order POD representation of the streak structure. It could be argued that
a single pair of the POD basis cannot describe correctly the dynamics of the flow, since it would
enforce symmetry between high and low speed streaks, and the mean flow would be consequently
characterized by a nearly laminar unblunted profile.
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Figure 11. Friction Reynolds number Reτ as a function of advective time for simulations
truncating streak velocity Us to 6, 10, 12, 16, 20 and 24 POD pairs.

Figure 11 shows the time series of Reτ in simulations with a selection of POD pairs used
for the truncation. The RNL system is otherwise unmodified in comparison to the one used
for the calculation of the POD basis. When the lowest number of POD pairs is retained, the
simulation laminarizes without exhibiting any dynamical behavior. An increase in the number of
POD modes allows the system to retain its turbulent behavior. The lifetime of each simulation
appears to be uncorrelated with the increase of the POD pair number. This suggests that the
truncation likely does not cause relaminarization due to failure to represent the energy of the
streak, which would be expected to produce laminarization far more quickly.

6. Discussion
Numerical data were obtained from a DNS of a turbulent channel and the corresponding RNL
simulation. POD analysis was carried out on two different components of the flow, the roll/streak
and the perturbation structure. Striking resemblance of the relations between the velocity fields
was seen in the two simulations. This correspondence suggests a similar dynamics is at work in
maintaining turbulence in these systems. Remarkably, the mechanism maintaining turbulence
in the RNL system has been comprehensively characterized [5–8]. The close correspondence
in structure and dynamics between RNL and NS dynamics invites the exploitation of the
comprehensively characterized RNL turbulence to advance understanding of NS turbulence
in channel flow. In particular, the lift-up mechanism operating at kx = 0 and the associated
“supercharge” mechanism operating at kx 6= 0 have been clearly seen operating in both RNL
and DNS including using the POD projections. As a further probe of the mechanism of RNL
turbulence the POD modes were used to truncate the kx = 0 velocity fields in a different RNL
simulation, showing that the system sustains at a fairly low number of POD modes. This result
provides an even more reduced turbulent dynamics in terms of the dimension of its support than
the already highly reduced RNL turbulence which operates realistically supported by a single
streamwise wavenumber.

The purpose of this comparison is in part to elucidate the similarities and differences of the
DNS with the RNL. The dynamics of RNL model turbulence involve interaction of the streamwise
mean flow with few, even as few as one, streamwise flow harmonic. Despite this simplification
salient aspects of the turbulent dynamics are captured [5–8].
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Appendix A.
The data were obtained from a DNS of (10) and from the RNL that is directly associated with
the DNS. Both the DNS and its directly associated RNL are integrated with no-slip boundary
conditions in the wall-normal direction and periodic boundary conditions in the streamwise and
spanwise directions. The dynamics were expressed in the form of evolution equations for the
wall-normal vorticity and the Laplacian of the wall-normal velocity, with spatial discretization
and Fourier dealiasing in the two wall-parallel directions and Chebychev polynomials in the
wall-normal direction [16]. Time stepping was implemented using the third-order semi-implicit
Runge-Kutta method.

Appendix B. Calculating covariances for symmetrical states
Symmetries in reflections in y about the centerline x− z plane at y = 1 and reflections in z about
the y − x plane at z = π/2 add in the time series of the simulation 3 independent combinations
of Akz(y), Bkz(y) and Γkz(y) :

ŜyΦkz =

 Akz(−y)
−Bkz(−y)

Γkz(−y)

 eikzz , ŜzΦkz =

 A∗kz(y)
B∗kz(y)
−Γ∗kz(y)

 eikzz ,

ŜzŜyΦkz =

 A∗kz(−y)
−B∗kz(−y)
−Γ∗kz(−y)

 eikzz . (B.1)

To recalculate the additional covariances for the above arrangements of the velocity fields we
can use the following separation of the covariance

Ckz =

 Cuukz Cuvkz Cuwkz
Cvukz Cvvkz Cvwkz
Cwukz Cwvkz Cwwkz

 , (B.2)

with C
uiuj
kz

= (C
ujui
kz

)†. In the following the kz subscript will be omitted and instead of uiuj the
superscript ij will be used. So the covariance is written as:

C =

 C11 C12 C13

C21 C22 C23

C31 C32 C33

 . (B.3)

Reflections of the velocities in z result in the conjugation of each individual covariance, and
placement of a minus sign in the w components of the covariance, so that:

ŜzC =

 (C11)∗ (C12)∗ −(C13)∗

(C21)∗ (C22)∗ −(C23)∗

−(C31)∗ −(C32)∗ (C33)∗

 . (B.4)
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Reflections in y require to reverse the order of the row and column indexes in each individual
covariance and if this operation is noted as ŜyC

ij = CijR we have:

ŜyC =

 C11
R −C12

R C13
R

−C21
R C22

R −C23
R

C31
R −C32

R C33
R

 . (B.5)

Finally combined z and y reflections are obtained by the successive action of the individual
operators on the initial covariance, and thus:

ŜzŜyC =

 (C11
R )∗ −(C12

R )∗ −(C13
R )∗

−(C21
R )∗ (C22

R )∗ (C23
R )∗

−(C31
R )∗ (C32

R )∗ (C33
R )∗

 . (B.6)
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