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ABSTRACT

Understanding of the stability of deterministic and stochastic dynamical systems has evolved recently from a traditional
grounding in the system’s normal modes to a more comprehensive foundation in the system’s propagator and especially
in an appreciation for the role of non-normality of the dynamical operator in determining the system’s stability as revealed
through the propagator. This set of ideas which approach stability analysis from a non-modal perspective will be referred
to as Generalized Stability Theory (GST). Some applications of GST to deterministic and statistical forecast are discussed
in this review. Perhaps the most familiar of these applications is identifying initial perturbations resulting in greatest error
in deterministic error systems which is in use for ensemble and targeting applications. But of increasing importance is
elucidating the role of temporally distributed forcing along the forecast trajectory and obtaining a more comprehensive
understanding of the prediction of statistical quantitiesbeyond the horizon of deterministic prediction. The optimal
growth concept can be extended to address error growth in nonautonomous systems in which the fundamental mechanism
producing error growth can be identified with the necessary non-normality of the system. The influence of model error
in both the forcing and the system is examined using the methods of stochastic dynamical systems theory. In this review
deterministic and statistical prediction, that is forecast and climate prediction, are separately discussed.

1 Introduction

The atmosphere and ocean are constantly evolving and the present state of these systems while notionally
deterministically related to previous states in practice becomes exponentially moredifficult to predict as time
advances. This loss of predictability of the deterministic state is described as sensitive dependence on initial
conditions and quantified by the asymptotic exponential rate of divergenceof initially nearby trajectories in
the phase space of the forecast system (Lorenz, 1963) given by thefirst Lyapunov exponent (Lyapunov, 1907;
Oseledets, 1968). Moreover, the optimality of the Kalman filter as a state identification method underscores
the essentially statistical nature of the prediction problem (Ghil & Malanotte-Rizzoli, 1991; Berliner et al.
1999). The initial state is necessarily uncertain but so is the forecast model itself and the system is subject to
perturbations from extrinsic and sub grid scale processes. Given all these uncertainties the notion of a single
evolving point in phase space is insufficient as a representation of our knowledge of forecast dynamics and
some measure of the uncertainty of the determination of the system state and the evolution of this uncertainty
must be included in a comprehensive forecast system theory (Epstein, 1969; Ehrendorfer, 2005; Palmer, 2005).

The appropriate methods for studying errors in deterministic and statistical forecast are based on the system’s
propagator and proceed from advances in mathematics (Schmidt, 1906; Mirsky, 1960; Oseledets, 1968) and
dynamical theory (Lorenz, 1963, 1965, 1985; Farrell, 1988, 1990;Lacarra & Talagrand, 1988; Molteni &
Palmer, 1993; Penland & Magorian, 1993; Buizza & Palmer, 1995; Farrell & Ioannou, 1996a,b; Moore &
Kleeman, 1996, Kleeman & Moore, 1997; Palmer, 1999; DelSole & Hou, 1999a,b; Ehrendorfer, 2005; Palmer,
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2005; Timmermann & Jin, 2005).

We review recent advances in linear dynamical system and stability theory relevant to deterministic and statisti-
cal forecast. We begin with deterministic error dynamics in autonomous and non-autonomous certain systems
and then address the problem of prediction of statistical quantities beyond the deterministic time horizon;
finally, we study model error in certain and uncertain systems

2 Deterministic predictability of certain systems

The variables in a certain forecast model are specified by the finite dimensional state vectory which is assumed
to evolve according to the deterministic equation:

dy
dt

= f(y) . (1)

Consider a solution of the forecast equationsy(t) starting from a given initial state. Sufficiently small forecast
errorsx ≡ δy are governed in the linear limit by the tangent linear equations

dx
dt

= A(t) x , (2)

in which the Jacobian matrix

A(t) ≡
∂ f
∂y

∣

∣

∣

∣

y(t)
, (3)

is evaluated along the known trajectoryy(t) and is considered to be known.

The matrixA(t) is time dependent and in general its realizations in general do not commute, i.e.A(t1)A(t2) 6=
A(t2)A(t1). It follows that the evolution of the error field can not be determined from analysis of the eigenvalues
and eigenfunctions ofA, as would be the case for time independent normal matrices, but instead the analysis
must be made using the methods of Generalized Stability Theory (GST) (for a review see Farrell & Ioannou,
1996a,b). GST concentrates attention on the behavior of the propagatorΦ(t,0) which is the matrix that maps
the initial errorx(0) to the error at timet:

x(t) = Φ(t,0) x(0) . (4)

Once the matrixA(t) of the tangent linear system is available the propagator is readily calculated.Consider
a piecewise approximation of the continuous operatorA(t): A(t) = Ai whereAi is the mean ofA(t) over
(i − 1)τ ≤ t < iτ for small enoughτ. At time t = nτ the propagator is approximated by the time ordered
product:

Φ(t,0) =
n

∏
i=1

eAiτ . (5)

If A is autonomous (time independent) the propagator is the matrix exponential

Φ(t,0) = eAt . (6)

Deterministic error growth is bounded by the optimal growth over the interval[0, t]:

||Φ(t,0)|| ≡ maxx(0)

||x(t)||
||x(0)||

. (7)
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Figure 1: The upper curve gives the optimal growth as function of time for the simple matrix (8). The
optimal growth is given by the norm of the propagator eAt . The lower curve shows the evolution of the
amplitude of the least damped eigenmode which decays at a rate of−1.

This maximization is over all initial errorsx(0). The optimal growth for eacht is the norm of the propagator
||Φ(t,0)||. The definition of the optimal implies a choice of norm. In many application||x(t)||2 is chosen to
correspond to the total perturbation energy.

We illustrate GST by applying it to the simple autonomous Reynolds1 matrix A:

A =

(

−1 100
0 −2

)

. (8)

Consider the model tangent linear system:
dx
dt

= Ax . (9)

Traditional stability theory concentrates on the growth associated with the mostunstable mode which in this
example gives decay at rate−1 suggesting that the error decays exponentially at this rate. While this is indeed
the case for very large times, the optimal error growth, shown by the uppercurve in Fig.1, is much greater at
all times than that predicted by the fastest growing mode (the lower curve in Fig. 1). The modal prediction fails
to capture the error growth becauseA is non-normal i.e.AA† 6= A†A and its eigenfunctions are not orthogonal.

The optimal growth is calculated as follows:

G =
||x(t)||2

||x(0)||2
=

x(t)†x(t)
x(0)†x(0)

=
x(0)†eA†teAtx(0)

x(0)†x(0)
. (10)

This Rayleigh quotient reveals that the maximum eigenvalue of the positive definite matrixeA†teAt determines
the square of the optimal growth at timet. The corresponding eigenvector is the initial perturbation that leads
to this growth, called the optimal perturbation (Farrell, 1988). Alternatively,we can proceed with a Schmidt
decomposition (singular value decomposition) of the propagator:

eAt = UΣV† (11)

1It is called the Reynolds matrix because it captures the emergence of rollsin three dimensional boundary layers that are responsible
for transition to turbulence.
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with U andV unitary matrices and the diagonal matrix with elements the singular values of the propagator,
σi , which give the growth achieved at timet by each of the orthogonal columns ofV. The largest singular
value is the optimal growth and the corresponding column ofV is the optimal perturbation. The orthogonal
columns,vi , of V are called optimal vectors (or right singular vectors), and the orthogonal columns,ui , of U
are the evolved optimal vectors (or left singular vectors) because fromthe Schmidt decomposition we have

σiui = eAtvi . (12)

The forecast system has typical dimension 107 so we can not calculate the propagator directly as in (5) in
order to obtain the optimal growth. Instead we integrate the system:

dx
dt

= Ax (13)

forward to obtainx(t) = eAtx(0) (or its equivalent in a time dependent system), and then integrate the adjoint
system:

dx
dt

= −A†x (14)

backward in order to obtaineA†tx(t) = eA†teAtx(0). We can then find the optimal vectors (singular vectors) by
the power method (cf Moore & Farrell, 1993; Molteni & Palmer, 1993; Errico, 1997). The leading optimal
vectors are useful input for selecting the ensemble members in ensemble forecast (Buizza, 2005; Kalnay et
al, 2005) because they span and order in growth the initial error (cf Gelaro, et al, 1998). They also identify
sensitive regions that can be targeted for further observation (Thorpe & Petersen, 2005).

We have remarked that optimal growth depends on the norm. The choice of norm is dictated by the physical
situation; we are usually interested in growth in energy but other norms can be selected to concentrate on
the perturbation growth in other physical measures such as growth in square surface pressure, or in square
potential vorticity (for a discussion of the choice of the inner product seePalmer et al, 1998; for a discussion of
norms that do not derive from inner products see Farrell & Ioannou,2000). Formally for autonomous operators
there exist “normal coordinates” in which the operator is rendered normal, however this coordinate system is
not usually physical in the sense that the inner product in these coordinates is not usually associated with a
physically useful measure. But a more deeply consequential reason that the concept of “normal coordinates ”
is not useful is that time dependent operators, such as the tangent linearforecast system, are inherently non-
normal, in the sense that there is no transformation of coordinates that renders a generalA(t) normal at all
times. It follows that analysis of error growth in time dependent systems necessarily proceeds through analysis
of the propagator in the manner outlined above.

The tangent linear forecast system is generally assumed to be asymptoticallyunstable in the sense that the
Lyapunov exponent of the tangent linear system is positive. Lyapunovshowed that for a general class of time
dependent but bounded matricesA(t) the perturbationsx(t) grow at most exponentially so that||x(t)|| ∝ eλ t

as t → ∞, whereλ is the top Lyapunov exponent of the tangent linear system which can be calculated by
evaluating the limit:

λ = limt→∞
ln ||x(t)||

t
, (15)

This asymptotic measure of error growth is independent of the choice of norm, || · ||.

It is of interest and of practical importance to determine the perturbation subspace that supports this asymptotic
exponential growth of errors. Because this subspace has a much smallerdimension than that of the tangent
linear system itself a theory that characterizes this subspace can lead to economical truncations of the tangent
linear system. Such a truncation could be used in advancing the error covariance of the tangent linear system
which is required for optimal state estimation. We now show that the inherent non-normality of time dependent
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Figure 2: The parametric instability of the harmonic oscillator governed by (18) is caused by the non-
normality of the time dependent operator. So long as there isinstantaneous growth and the time dependent
operators do not commute asymptotic exponential growth occurs. For this exampleω1 = 1/2 andω2 = 3.

operators is the source of the Lyapunov instability which underlies the exponential increase of forecast errors
and that understanding the role of nonnormality is key to understanding error growth.

Consider a harmonic oscillator with frequencyω . In normal coordinates (i.e. energy coordinates),y = [ωx,v]T ,
wherex is the displacement andv = ẋ, the system is governed by:

dy
dt

= Ay , (16)

with

A = ω
(

0 1
−1 0

)

. (17)

This is a normal systemAA† = A†A and the system trajectory lies on a constant energy surface which is a
circle. In these coordinates the perturbation amplitude is the radius of the circle and there is no growth.

Assume now that the frequency switches periodically betweenω1 andω2: T1 = π/(2ω1) units of time the
frequency isω1 andT2 = π/(2ω2) units of time the frequency isω2. There is no single transformation of
coordinates that renders the matrixA simultaneously normal whenω = ω1 and whenω = ω2 so we revert to
the statey = [x,v]T with dynamical matrices:

A1,2 =

(

0 1
−ω2

1,2 0

)

. (18)

When the frequency isω1 the statey traverses the ellipses of Fig.2 that are elongated in the direction of the
x axis and when the frequency isω2 it traverses the ellipses of Fig.2 that are elongated in thev axis (both
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Figure 3: Left panels : the mean flow velocity as a function of latitude for the Rayleigh stable example.
Right panel: the associated mean vorticity gradient, Qy = β −U ′′, with β = 10.

marked with dots). The dynamics of this system can be understood by considering the evolution of the initial
conditiony(0) = [1,0] marked with 1 in Fig.2. Initial condition 1 goes to 2 at timet = T2 under the dynamics
of A2, then the dynamics switch toA1 taking the system from 2 to 3 at timet = T1 + T2; reverting back to
A2, the system advances from 3 to 4 att = T1 + 2T2, and then underA1, 4 goes to 5 at timet = 2(T1 + T2)
with coordinatesy(2(T1 +T2)) = [36,0]. As times advances the trajectory clearly grows exponentially as this
cycle is repeated despite the neutral stability of the system at each instant oftime. How is this possible?
The key lies in the inherent non-normality of the operator in time dependent systems. If the operator were
time independent and stable transient growth necessarily gives way to eventual decay. In contrast, a time
dependent operator reamplifies the perturbations that would have otherwise decayed. This process of continual
rejuvenation producing asymptotic destabilization is generic and does not depend on the stability properties of
the instantaneous operator state (cf Farrell & Ioannou, 1999).

As a further example consider harmonic perturbationsΨ(y, t)eikx on a time dependent barotropic mean flow
U(y, t) in a β plane channel−1≤ y≤ 1. The perturbations evolve according to:

dΨ
dt

= A(t) Ψ , (19)

with time dependent operator:

A = ∇−2
(

−ik U(y, t) ∇2 − ik

(

β −
d2U(y, t)

dy2

) )

, (20)

in which discretized approximations of the operators on the RHS is implied. According to Rayleigh’s theorem
(cf Drazin & Reid, 1981) this flow can not sustain growth unless the mean vorticity gradientQy = β −U ′′

changes sign. Let us consider only flows that are asymptotically stable at all times by Rayleigh theorem, and
for simplicity that the mean velocity switches periodically between the two flows shown in the left panels of
Fig. 3. The corresponding mean vorticity gradient is shown in the right panels ofthe same figure. Despite the
asymptotic stability of each instantaneous flow the periodically varying flow is asymptotically unstable. The
Lyapunov exponent of the instability as a function of the switching period is shown in Fig.4.

This instability arises from sustaining the transient growth of the operator through time dependence. The very
same process is operative when the flow is varying continuously in time. Thenthe Lyapunov exponent for
given statistically stationary fluctuations in operator structure can be shownto depend on two parameters: the
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Figure 4: Lyapunov exponent as a function of switching period T for the example shown in Fig.3. The time
dependent flow results from periodic switching every T time units between the Rayleigh stable flow profiles
shown in Fig.3. The zonal wavenumber is k= 1 andβ = 10.
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Figure 5: For a continuously varying barotropic flow, the structure of the stateΨ(y, t)eikx in the zonal (x),
meridional (y) plane at four consecutive times separated byan autocorrelation time Tc. The r.m.s. velocity
fluctuation is0.16and the noise autocorrelation time is Tc = 1. The zonal wavenumber is k= 2, β = 0, and the
Reynolds number is Re= 800. The Lyapunov exponent isλ = 0.2. At first (top panel) the Lyapunov vector is
configured to grow producing an increase over Tc of 1.7, in the next period the Lyapunov vector has assumed a
decay configuration (second panel from top) and suffers a decrease of0.7, subsequently (third panel from top)
it enjoys a slight growth of1.1, and finally (bottom panel) a growth by1.8. Further details can be found in
Farrell & Ioannou (1999).
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Figure 6: Top panel: Mean and standard deviation of the projection of the Lyapunov vector on the optimal vectors
of the mean flow calculated for a time interval equal to Tc in the energy norm. Bottom panel: The mean projection
and standard deviation of the Lyapunov vector on the Tc evolved optimal vectors of the mean flow in the energy
norm.

fluctuation amplitude and the autocorrelation time,Tc, of the fluctuations (cf Farrell & Ioannou, 1999). Snap-
shots of the perturbation structure revealing the process of accumulation of transient growth by the interaction
of the perturbations with the time dependent operator in a continuously varying flow are shown in Fig.5. This
mechanism of error growth predicts that the perturbation structure shouldproject most strongly on the sub-
space of the leading optimal (singular) vectors. This is indeed the case as can be seen in the example in Fig.
6.

Study of the asymptotic error structure in more realistic tangent linear systems confirms the conclusions pre-
sented above (cf Gelaro et al, 2002). We conclude that error structure in forecast systems projects strongly on
the optimal vectors. This result is key for dynamical evolution of the error covariance which is required for
optimal state estimation (cf Farrell & Ioannou, 2001).

3 Model error in deterministic forecast

We have already discussed methods for determining the impact of uncertainties in the initial state on the
forecast, however, as the initialization of forecast models is improved with theadvent of new data sources
and the introduction of variational assimilation methods, the medium range forecast will become increasingly
affected by uncertainties resulting from incomplete physical parameterizations and numerical approximations
in the forecast model, and by the necessarily misrepresented subgrid scale chaotic processes such as cumulus
convection which act as temporally stochastic distributed forcing of the forecast error system. These influences,
referred to collectively as model error, conventionally appear as an external forcing in the forecast error system
(cf Allen et al, 2005).

Improving understanding of model error and specifically identifying forcings that lead to the greatest forecast
errors is centrally important in predictability studies. In analogy with the optimal perturbations that lead
to the greatest forecast error in the case of initial condition error these continuous error sources will be called
optimal distributed forcings. In an approach to this problem D’Andrea & Vautard (2000) obtained approximate
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optimal temporally distributed deterministic forcings of the forecast error system (which they refer to as forcing
singular vectors) and Barkmeijer et al. (2003) obtained the optimal temporallydistributed deterministic forcing
of the forecast error system over fixed spatial structures. We here describe the method for determining the
general optimal forcing in both the forecast and assimilation systems.

The underlying theory for determining the optimal forcing in the deterministic case is based on analysis of the
dynamical system as a mapping from the space of input forcings to the space of states at later time. We seek
the deterministic forcingf(t) of unit norm ont ∈ [0,T] producing the greatest state norm at timeT i.e. that
maximizes the square norm of the state||x(T)||2, assuming the state is initially zero,x(0) = 0, and thatx obeys
the tangent linear forecast equation:

dx
dt

= A(t)x+ f(t) . (21)

The forcingf(t) over the interval[0,T] is measured in the square integral norm:

||f||2L2
=

∫ T

0
f†(t)f(t)dt , (22)

while the statex is measured in the vector square norm:

||x||2 = x†x . (23)

The use of alternative inner products can be easily accommodated.

The optimal forcing,f(t), is the forcing that maximizes the final state at timeT that is maximizes the quotient:

Rd =
||x(T)||2

||f||2L2

. (24)

It can be shown (Dullerud & Paganini, 2000; Farrell & Ioannou, 2005) that this intractable maximization over
functions,f(t), can be transformed to a tractable maximization over states,x(T). Specifically the following
equality is true:

max
f(t)

||x(T)||2

||f(t)||2L2

= max
x(T)

||x(T)||2

x(T)†C−1x(T)
, (25)

whereC is the finite time state covariance matrix at timeT under the assumption of temporally white noise
forcing with unit covarianceI. The covariance can be obtained by integrating fromt = 0 tot = T the Lyapunov
equation:

dC
dt

= A(t)C+CA†(t)+ I , (26)

with the initial conditionC(0) = 0. Note that the form of the second optimization in (25) is reminiscent
of the covariance or Mahalanobis metric used in predictability analysis (Palmeret al, 1998) suggesting the
interpretation of optimals weighted by the Mahalanobis metric as structures that are most easily forced.

Quotient (25) is maximized for unit forcing by the state:

xopt(T) =
√

λ1v1, (27)

whereλ1 is the maximum singular value ofC andv1 is the corresponding singular vector ofC (v1 is conven-
tionally called the top Empirical Orthogonal Function (EOF) ofC). It can be shown (Farrell & Ioannou, 2005)
that the optimal forcing and the associated state of the system can be obtainedsimultaneously by integrating
the following coupled forward and adjoint systems backwards over the finite interval from timet = T to the
initial time t = 0:

dx
dt

= A(t)x+ f

df
dt

= −A†(t)f , (28)
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with x(T) =
√

λ1v1 andf(T) = v1/
√

λ1. The initial statexopt(0) = 0 is recovered as a consistency check.

4 Prediction of statistics of certain systems

Beyond the limit of deterministic forecast it is still possible to predict the statisticalproperties which constitute
the climate of a system. Consider the perturbation structure,x, produced by the forced equation:

dx
dt

= Ax + Fn(t) . (29)

HereA may be the deterministic linear operator governing evolution of large scale perturbations about the
mean midlatitude flow, andFn(t) an additive stochastic forcing with spatial structureF, representing neglected
nonlinear terms. For simplicity we assume that the components ofn(t) are white noise with zero mean and
unit variance. We wish to determine the perturbation covariance matrix (or density matrix):

C(t) =< xx† > , (30)

where< · > denotes the ensemble average over the realizations of the forcingFn(t). If a steady state is
reached< · > is also the time mean covariance. We argue (Farrell & Ioannou, 1993; DelSole, 1996, 1999,
2001, 2004)2 that the midlatitude jet climatology can be obtained in this way because the transientclimatology
in the midlatitudes is the statistical average state resulting from random events ofcyclogenesis. Because
cyclogenesis is a rapid transient growth process primarily associated with the non-normality ofA, it’s statistics
are well approximated by the structure of the linear operatorA. The diagonal elements of the steady state
covarianceC are the climatological variance ofx, and they locate the storm track regions. All mean quadratic
fluxes are also derivable fromC from which the observed climatological fluxes of heat and momentum can be
obtained. In this way we obtain a theory for the climate and can address systematically statistical predictability
questions such as: how to determine the sensitivity of the climate, that is ofC, to changes in the boundary
conditions and physical parameters which are reflected in changes in the mean operatorA and the forcing
structure matrixF.

If n(t) is a white noise process it can be shown (cf Farrell & Ioannou, 1996a)that:

C(t) =
∫ t

0
eAsQeA†s ds, (31)

where
Q = FF† , (32)

is the covariance of the forcing. It can be also shown that the ensemble mean covariance evolves according to
the deterministic equation:

dC
dt

= AC + CA† + Q ≡ HC + Q , (33)

whereH is an2×n2 matrix if C is an×n covariance matrix. It should be noted that the above equation is also
valid for non-autonomousA(t). If A is time independent the solution of the above equation is:

C(t) = eHt C(0) +

(

∫ t

0
eH(t−s)ds

)

Q = eHt C(0) + H−1(

eHt − I
)

Q . (34)

As t → ∞ and assuming the operatorA is stable a steady state is reached, which satisfies the steady state
Lyapunov equation:

AC∞ +C∞A† = −Q . (35)

2See also the related linear inverse model perspective (Penland & Magorian, 1993; Penland & Sardeshmukh, 1995)
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This equation can be readily solved forC∞ from which ensemble mean quadratic flux quantities can be derived.

Interpretation ofC requires care. The asymptotic steady state ensemble average,C∞, is the same as the time
averaged covariance and can be obtained from a single realization ofx(t) by averaging the covariance over
a sufficient long interval. However, the time dependentC(t) can not be associated with a time average3 but
rather is necessarily an ensemble average. With this consideration in mindC(t) from (34) is appropriate for
evolving the error covariance in ensemble prediction as will be discussed inthe next section. In this section we
consider a time independent and stableA and interpret the steady stateC∞ as the climatological covariance.

It has been demonstrated that such a formulation accurately models the midlatitude climatology (Farrell &
Ioannou, 1994, 1995; DelSole, 1996, 1999, 2001, 2004; Whitaker &Sardeshmukh, 1998; Zhang & Held,
1999) and reproduces the climatological heat and momentum fluxes. The asymptotic covariance captures the
distribution of the geopotential height variance of the midlatitude atmosphere aswell as the distribution of heat
and momentum flux in the extratropics.

The algebraic equation (35) gives C∞ as an explicit functional of the forcing covarianceQ and the mean
operatorA, which is in turn a function of the mean flow and the physical process parameters. This formulation
permits systematic investigation of the sensitivity of the climate to changes in the forcing and structure of the
mean flow and parameters.

We first address the sensitivity of the climate to changes in the forcing underthe assumption that the mean
state is fixed.

We determine the forcing structure,f, given by a column vector, that contributes most to the ensemble average
variance< E(t) >. This structure is the stochastic optimal (Farrell & Ioannou, 1996a; Kleeman & Moore,
1997; Timmermann & Jin, 2005).

The ensemble average variance produced by stochastically forcing this structure (i.e. introducing the forcing
fn(t) in the r.h.s. of (29)) can be shown to be:

< E(t) > = < x†x > = f† B(t) f , (36)

whereB(t) is the stochastic optimal matrix:

B(t) =
∫ t

0
eA†seAs ds. (37)

The stochastic optimal matrix satisfies the time dependent back Lyapunov equation, analogous to (33):

dB
dt

= BA + A†B + I . (38)

If A is stable the statistical steady stateB∞ satisfies the algebraic equation:

B∞A + A†B∞ = − I , (39)

which can be readily solved forB∞.

Having obtainedB∞ from (36) we obtain the stochastic optimal as the eigenfunction ofB∞ with the largest
eigenvalue. The stochastic optimal determines the forcing structure,f, that is most effective in producing
variance. Forcings will have impact on the variance according to the forcing’s projection on the top stochastic
optimals (the top eigenfunctions ofB∞).

3Under certain conditions it can be associated with a zonal mean, for discussion and physical application of this interpretation see
Farrell & Ioannou (2003).
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As another application the sensitivity of perturbation statistics to variations in themean state can be obtained.
Assume for example that the mean atmospheric flowU is changed byδU inducing the changeδA in the mean
operator. The statistical equilibrium that results satisfies the Lyapunov equation

(A+δA)(C∞ +δC∞)+(C∞ +δC∞)+(A+δA)† = −Q , (40)

under the assumption that the forcing covarianceQ has remained the same. BecauseC∞ satisfies the equilib-
rium (35) the first order correctionδC∞ is determined from

AδC∞ +δC∞A† = − (δAC∞ +C∞δA†) . (41)

From this one can determine a bound on the sensitivity of the climate by determiningthe change in the mean
operator that will result to the largest changeδC∞. This operator change leading to maximum increase in a
specified quadratic quantity is called the optimal structural change. Farrell& Ioannou (2004) show that a single
operator change fully characterizes any chosen quadratic quantity tendency, in the sense that, if an arbitrary
operator change is performed, the quadratic tendency,δC∞, is immediately obtained by projecting the operator
change on this single optimal structure change.

In this way the sensitivity of quadratic quantities such as variance, energy, and fluxes of heat and momentum,
to change in the mean operator can be found. The mean operator change could include jet velocity, dissipation
and other dynamical variables and these jet structure changes as well asthe region over which the response
is optimized can be localized in the jet. The unique jet structure change producing the greatest change in a
chosen quadratic quantity also completely characterizes the sensitivity of thequadratic quantity to jet change
in the sense that an arbitrary jet change increases the quadratic quantity inproportion to its projection on this
optimal structure change. This result provides an explanation for observations that substantial differences in
quadratic storm track quantities such as variance occur in response to apparently similar influences such as
comparable SST changes and moreover provides a method for obtaining theoptimal structural change.

5 Prediction of statistics of uncertain systems

The sensitivity of forecasts to various aspects of the model can be determined by performing parallel com-
putations of the forecast system in which the uncertain aspects of the modelare varied. These integrations
produce an ensemble of forecasts (Palmer, 2005; Kalnay et al, 2005; Buizza, 2005). The ensemble mean of
these predictions is for many systems of interest a best estimate of the future state (Gauss, 1809; Leith, 1974).
These ensemble integrations also provide estimates of the probability density function of the prediction. The
covariance matrix of the predicted statesC =< xx† >, where< · > signifies the ensemble mean, provides the
second moments of the probability density of the predictions and characterizes the sensitivity of the prediction
to variation in the model. We wish to determine bounds on the error covariance matrix resulting from such
model uncertainties.

5.1 The case of additive uncertainty

Consider first a tangent linear system with additive model error. With the assumption that the model error can
be treated as a stochastic forcing of the tangent linear system the errors evolve according to:

dx
dt

= A(t)x + Fn(t) , (42)

whereA(t) is the tangent linear operator which is considered certain,F the structure matrix of the uncertainty
which is assumed to be well described by zero mean and unit covariance white noise processesn(t). Such
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Figure 7: Schematic evolution of a sure initial conditionx(0) in an uncertain system. After time t the evolved states
x(t) lie in the region shown. Initially the covariance matrixC(0) = x(0)x†(0) is rank 1, but at time t the covariance
matrix has rank greater than 1. For example if the final stateswerexi(t) (i = 1, · · · ,4) with equal probability, the
covariance at time t:C(t) = 1

4 ∑4
i=1 xi(t)x

†
i (t) would be rank 4, representing an entangled state. In contrast, in

certain systems the degree of entanglement is invariant anda pure state evolves to a pure state.

systems are uncertain and as a result a single initial state maps to a variety of states at a later time depending
on the realization of the stochastic processn(t). This is shown schematically in Fig.7 for the case of four
integrations of the model.

Let us assume initially that the ensemble had model error covarianceC(0). At a timet later the error covariance
is given by (34). The homogeneous part of (34) is the covariance resulting from the deterministic evolution
of the initial C(0) and represents error growth associated with uncertainty in specification of the initial state.
Predictability studies traditionally concentrate on this source of error growth. The inhomogeneous part of (34)
represents the contribution of additive model error.

The deterministic part of the growth of the error covariance at any time is bounded by the growth produced
by the optimal perturbation. The forced error growth at any time on the otherhand is bounded by the error
covariance at timet forced by the quite different stochastic optimal that is determined as the eigenfunction
with largest eigenvalue of the stochastic optimal matrix

B(t) =
∫ t

0
eA†seAs ds . (43)

at timet. Given an initial error covariance,C(0), and a forcing covariance,Q, it is of interest to determine the
time at which the accumulated covariance from the model error exceeds the error produced by uncertainty in
the initial conditions. As an example consider the simple system (8). Assume that initially the state has error
such that trace(C(0)) = 1 and that the additive model error has covariance trace(Q) = 1. The growth of errors
due to uncertainty in the initial conditions is plotted as a function of time in Fig.8. After approximately unit
time the error covariance is dominated by the accumulated error from model uncertainty.

From this simple example it is realized that in both stable and unstable systems as theinitial state is more
accurately determined error growth will inevitably be dominated by model error. At present the success of the
deterministic forecasts and increase in forecast accuracy obtained by decreasing initial state error suggest that
improvements in forecast accuracy are still being achieved by reducing the uncertainty in the initial state.
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Figure 8: Error variance resulting from free evolution of the optimal unit variance initial covariance and evolution
of error variance forced by additive uncertainty with unit forcing variance. The operatorA is the simple2× 2
Reynolds operator given in (8).

5.2 The case of multiplicative uncertainty

Consider now a forecast system with uncertain parameterizations (Palmer,1999; Sardeshmukh et al., 2001,2003)
so that the tangent linear system operator itself is uncertain and for simplicity takes the form:

A(t) = A + ε B η(t) , (44)

whereη(t) is a scalar stochastic process with zero mean and unit variance andB is a fixed matrix characterizing
the structure of the operator uncertainty, andε is a scalar amplitude factor.

A most important property of these multiplicative uncertain systems is that different realizations produce highly
disparate growths. Fix the inner product with which the perturbation magnitude is measured and concentrate on
calculation of the error growth. Because of the uncertainty in the operatordifferent realizations,η , will result
in different perturbation magnitudes and because the probability density function ofη is known, perturbation
amplitudes can be ascribed a probability. A measure of error growth is the expectation of the growths:

< g >=
∫

P(ω))g(ω)dω , (45)

whereω is a realization ofη , P(ω) is the probability for its occurrence, andg(ω) the error growth associated
with this realization of the operator. Because of the convexity of the expectation the r.m.s. second moment
error growth exceeds the amplitude error growth, i.e.

√

< g2 > ≥< g > . (46)

It follows that in uncertain systems different moments generally have different growth rates and the Lyapunov
exponent of an uncertain system may be negative while higher moments are unstable. This emphasizes the fact
that rare or extreme events that are weighted more by the higher moment measure while difficult to predict are
potentially highly consequential.

As an example consider two classes of trajectories which with equal probability give growth in unit time of
g = 2 org = 1/2. What is the expected growth in unit time? While the Lyapunov growth rate is 0 because:

λ =
< log g >

t
=

log2
2

+
log(1/2)

2
= 0 , (47)
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the second moment growth rate is positive:

λ2 =
log < g2 >

t
= log

(

1
2
×4+

1
2
×

1
4

)

= 0.75 , (48)

proving that the error covariance increases exponentially fast and showing that uncertain systems may be
Lyapunov (sample) stable, while higher order moments are unstable. The second moment measures include
the energy, so that this example demonstrates that multiplicative uncertain systems can be Lyapunov stable
while expected energy grows exponentially with time. In fact if the uncertaintyis Gaussian there is always a
higher moment that grows exponentially (cf. Farrell & Ioannou, 2002b).

One implication of this property is that optimal error growth in multiplicative uncertain systems is not derivable
from the norm of the ensemble mean propagator. To obtain the optimal growth itis necessary to first determine
the evolution of the covarianceC =< xx† > under the uncertain dynamics and then determine the optimal
C(0) of unit trace that leads to greatest trace(C(t)) at later times.

Consider the multiplicative uncertain tangent linear system:

dx
dt

= Ax + εn(t)Bx , (49)

whereA is the sure mean operator andB is the structure of the uncertainty in the operator andn(t) is its time
dependence. Taken(t) to be a Gaussian random variable with zero mean, unit variance and autocorrelation
time tc. DefineΦ(t,0) to be the propagator for a realization of the operatorA + εη(t)B. For that realization
the square error at timet is:

x(t)†x(t) = x(0)†Φ†(t,0)Φ(t,0)x(0) (50)

wherex(0) is the initial error. The optimal initial error, i.e. the initial error that leads to the greatest variance
at timet, for this realization is the eigenvector of:

H(t) = Φ†(t,0)Φ(t,0) (51)

with largest eigenvalue.

For uncertain dynamics we seek the greatest expected variance att by determining the ensemble average

< H(t) >=
〈

Φ†(t,0)Φ(t,0)
〉

. (52)

The optimal initial error is identified as the eigenvector of< H(t) > with largest eigenvalue. This eigenvalue
determines the optimal ensemble expected error growth. This gives constructive proof of the remarkable fact
that there is a single sure initial error that maximizes expected error growth inan uncertain tangent linear
system, that is, the greatest ensemble error growth is produced when all ensemble integrations are initialized
with the same state.

To quantify the procedure one needs to obtain an explicit form of the ensemble average< H(t) > in terms of
the statistics of the uncertainty. It turns out that this is possible for Gaussianfluctuations (cf Farrell & Ioannou,
2002c,d), in that case< H(t) > evolves according to the exact equation:

d < H >

dt
=

(

A+ ε2E(t)B
)†

< H(t) > + < H(t) >
(

A+ ε2E(t)B
)

+ (53)

+ ε2(

E†(t) < H > B + B† < H > E(t)
)

(54)

where

E(t) =
∫ t

0
e−AsBeAse−νs ds . (55)
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For autocorrelation times of the fluctuations small compared to the time scales ofA the above equation reduces
to:

d < H >

dt
=

(

A+
ε2

ν
B2

)†

< H(t) > + < H(t) >

(

A+
ε2

ν
B2

)

+
2ε2

ν
B† < H > B . (56)

As an example application of this result, the ensemble for an uncertain tangentlinear system arising from a
forecast system with Gaussian statistical distribution of parameter value variation could be constructed from
this basis of optimals, i.e. the optimals of< H >.

6 Conclusions

GST is required for a comprehensive understanding of error growth indeterministic autonomous and non-
autonomous systems. In contrast to the approach based on normal modes inGST applied to deterministic
systems attention is concentrated on the optimal perturbations obtained by singular value analysis of the prop-
agator or equivalently by repeated forward integration of the system followed by backward integration of the
adjoint system. The optimal perturbations are used to understand and predict error growth and structure and
for such tasks as building ensembles for use in ensemble forecast. In addition this approach provides the-
oretical insight into the process of error growth in both autonomous and non-autonomous systems. In the
case of non-autonomous systems the process of error growth is identifiedwith the intrinsic non-normality of a
time dependent system and the unstable error is shown to lie in the subspace of the leading optimal (singular)
vectors.

Beyond the deterministic time horizon GST can be used to address questions ofpredictability of statistics and
of sensitivity of statistics to changes in the forcing and changes in the systemoperator. As an example of the
power of these methods, the sensitivity of a statistical quantity is found to be related to a single structured
change in the mean operator.

Finally, we have seen how GST addresses error growth in the presenceof both additive and multiplicative
model error. In the case of multiplicative model error the role of rare trajectories is found to be important
for the stability of higher statistical moments including quadratic moments which relatesample stability to
stability in energy.
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