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ABSTRACT

Understanding of the stability of deterministic and statltadynamical systems has evolved recently from a trathtio
grounding in the system’s normal modes to a more comprefefmiindation in the system’s propagator and especially
in an appreciation for the role of non-normality of the dyreathoperator in determining the system’s stability as adve
through the propagator. This set of ideas which approadfilisgaanalysis from a non-modal perspective will be reéatr

to as Generalized Stability Theory (GST). Some applicat@mrGST to deterministic and statistical forecast are dised

in this review. Perhaps the most familiar of these applicetis identifying initial perturbations resulting in gtest error

in deterministic error systems which is in use for ensemhbt&targeting applications. But of increasing importance is
elucidating the role of temporally distributed forcing madpthe forecast trajectory and obtaining a more compretensi
understanding of the prediction of statistical quantitieyond the horizon of deterministic prediction. The optima
growth concept can be extended to address error growth @utonomous systems in which the fundamental mechanism
producing error growth can be identified with the necessarymormality of the system. The influence of model error
in both the forcing and the system is examined using the rdstbbstochastic dynamical systems theory. In this review
deterministic and statistical prediction, that is fore@awl climate prediction, are separately discussed.

1 Introduction

The atmosphere and ocean are constantly evolving and the presentfdtateeosystems while notionally
deterministically related to previous states in practice becomes exponentiallydifimtdt to predict as time
advances. This loss of predictability of the deterministic state is describexhsaisige dependence on initial
conditions and quantified by the asymptotic exponential rate of divergafnoéially nearby trajectories in
the phase space of the forecast system (Lorenz, 1963) given KystHeyapunov exponent (Lyapunov, 1907;
Oseledets, 1968). Moreover, the optimality of the Kalman filter as a state idatiifianethod underscores
the essentially statistical nature of the prediction problem (Ghil & MalanottedRjz1991; Berliner et al.
1999). The initial state is hecessarily uncertain but so is the forecast itelband the system is subject to
perturbations from extrinsic and sub grid scale processes. Giverea# timcertainties the notion of a single
evolving point in phase space is insufficient as a representation ofrmwvl&dge of forecast dynamics and
some measure of the uncertainty of the determination of the system state amdltii®®e of this uncertainty
must be included in a comprehensive forecast system theory (Ep681,Bhrendorfer, 2005; Palmer, 2005).

The appropriate methods for studying errors in deterministic and statistieglfst are based on the system’s
propagator and proceed from advances in mathematics (Schmidt, 19G&yMif60; Oseledets, 1968) and
dynamical theory (Lorenz, 1963, 1965, 1985; Farrell, 1988, 19@@arra & Talagrand, 1988; Molteni &
Palmer, 1993; Penland & Magorian, 1993; Buizza & Palmer, 1995; F&rmannou, 1996a,b; Moore &
Kleeman, 1996, Kleeman & Moore, 1997; Palmer, 1999; DelSole & Hoa$0 Ehrendorfer, 2005; Palmer,
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2005; Timmermann & Jin, 2005).

We review recent advances in linear dynamical system and stability thedlewant to deterministic and statisti-
cal forecast. We begin with deterministic error dynamics in autonomous anrdutonomous certain systems
and then address the problem of prediction of statistical quantities beyendieterministic time horizon;
finally, we study model error in certain and uncertain systems

2 Deterministic predictability of certain systems
The variables in a certain forecast model are specified by the finite dirmahstate vectoy which is assumed
to evolve according to the deterministic equation:

dy
i fy) . 1)

Consider a solution of the forecast equatigfty starting from a given initial state. Sufficiently small forecast
errorsx = 8y are governed in the linear limit by the tangent linear equations

dx
= = A 2
5 = ADX. (2)
in which the Jacobian matrix e
A)= —-| (3)
9 ly()

is evaluated along the known trajectorit) and is considered to be known.

The matrixA(t) is time dependent and in general its realizations in general do not commu#e(ti.gA (t,) #
A(t,)A(t,). Itfollows that the evolution of the error field can not be determined froadysis of the eigenvalues
and eigenfunctions oA, as would be the case for time independent normal matrices, but insteaubilisis
must be made using the methods of Generalized Stability Theory (GST) (évieawsee Farrell & loannou,
1996a,b). GST concentrates attention on the behavior of the propa@t6j which is the matrix that maps
the initial errorx(0) to the error at timé:

X(t) = d(t,0) x(0) . (4)

Once the matribA(t) of the tangent linear system is available the propagator is readily calculatetsider

a piecewise approximation of the continuous operat(n: A(t) = A; whereA; is the mean ofA(t) over
(i—1)t <t < it for small enoughr. Attimet = nt the propagator is approximated by the time ordered
product:

n
d(t,0) = [ M. (5)
f
If A is autonomous (time independent) the propagator is the matrix exponential
D(t,0) = et . (6)
Deterministic error growth is bounded by the optimal growth over the int¢ovgl

[Ix(®)]|
x|

[|®(t,0)]| = max, o (7
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Figure 1: The upper curve gives the optimal growth as fumctid time for the simple matrixgj. The
optimal growth is given by the norm of the propagat6f.eThe lower curve shows the evolution of the
amplitude of the least damped eigenmode which decays a¢ ®fatl.

This maximization is over all initial errors(0). The optimal growth for eachis the norm of the propagator
||®(t,0)||. The definition of the optimal implies a choice of norm. In many applicalir(t)||? is chosen to
correspond to the total perturbation energy.

We illustrate GST by applying it to the simple autonomous Reyriatustrix A:

-1 100
A_<0 _2). ®)

Consider the model tangent linear system:

dx

i AX. 9)
Traditional stability theory concentrates on the growth associated with theumststble mode which in this
example gives decay at ratel suggesting that the error decays exponentially at this rate. While this idnde
the case for very large times, the optimal error growth, shown by the wojpee in Fig.1, is much greater at
all times than that predicted by the fastest growing mode (the lower curve.id)-ighe modal prediction fails

to capture the error growth becausés non-normal i.eAAT £ ATA and its eigenfunctions are not orthogonal.
The optimal growth is calculated as follows:

_Ix®IP _ x®(t) _ x(0)eM'etx(0)

© = IXOIE = x07x(©0) ~  x(0)x(0)

(10)

This Rayleigh quotient reveals that the maximum eigenvalue of the positi\m'telﬂsﬁatrixe/“eAt determines

the square of the optimal growth at tiheThe corresponding eigenvector is the initial perturbation that leads
to this growth, called the optimal perturbation (Farrell, 1988). Alternatiwegdycan proceed with a Schmidt
decomposition (singular value decomposition) of the propagator:

M = usvT (11)

Litis called the Reynolds matrix because it captures the emergence aftiblitee dimensional boundary layers that are responsible
for transition to turbulence.
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with U andV unitary matrices ans the diagonal matrix with elements the singular values of the propagator,
g;, which give the growth achieved at timéoy each of the orthogonal columns ¥f The largest singular
value is the optimal growth and the corresponding colum¥ @ the optimal perturbation. The orthogonal
columns,v;, of V are called optimal vectors (or right singular vectors), and the orthdgohamns,u;, of U

are the evolved optimal vectors (or left singular vectors) becausetfrer8chmidt decomposition we have

ou, = My, . (12)

The forecast system has typical dimension’ 46 we can not calculate the propagator directly as)nir
order to obtain the optimal growth. Instead we integrate the system:

dx
Z A 13
at X (13)
forward to obtairx(t) = €\'x(0) (or its equivalent in a time dependent system), and then integrate the adjoint
system:

dx

= = —AT 14

at X (14)
backward in order to obtaie“T‘x(t) = eATteAtx(O). We can then find the optimal vectors (singular vectors) by
the power method (cf Moore & Farrell, 1993; Molteni & Palmer, 1993; Exrit997). The leading optimal
vectors are useful input for selecting the ensemble members in ensendggado(Buizza, 2005; Kalnay et
al, 2005) because they span and order in growth the initial error (cfrGeataal, 1998). They also identify
sensitive regions that can be targeted for further observation (€& Retersen, 2005).

We have remarked that optimal growth depends on the norm. The choicerofis dictated by the physical
situation; we are usually interested in growth in energy but other norms e&aelbcted to concentrate on
the perturbation growth in other physical measures such as growth inessuidace pressure, or in square
potential vorticity (for a discussion of the choice of the inner producPsgmer et al, 1998; for a discussion of
norms that do not derive from inner products see Farrell & loan?@0dQ). Formally for autonomous operators
there exist “normal coordinates” in which the operator is rendered nphoaever this coordinate system is
not usually physical in the sense that the inner product in these cotasliisanot usually associated with a
physically useful measure. But a more deeply consequential reagdhet@ncept of “normal coordinates ”
is not useful is that time dependent operators, such as the tangentfinezast system, are inherently non-
normal, in the sense that there is no transformation of coordinates tha&rsemdenerah(t) normal at all
times. It follows that analysis of error growth in time dependent systemssauly proceeds through analysis
of the propagator in the manner outlined above.

The tangent linear forecast system is generally assumed to be asymptatitstiyple in the sense that the
Lyapunov exponent of the tangent linear system is positive. Lyapshowed that for a general class of time
dependent but bounded matrické) the perturbations(t) grow at most exponentially so thak(t)|| O et
ast — o, whereA is the top Lyapunov exponent of the tangent linear system which canltdatad by

evaluating the limit:

) = i, MXOI (15)

This asymptotic measure of error growth is independent of the choicerof, fio||.

Itis of interest and of practical importance to determine the perturbati@pagk that supports this asymptotic
exponential growth of errors. Because this subspace has a much stirakersion than that of the tangent
linear system itself a theory that characterizes this subspace can leamhtorecal truncations of the tangent
linear system. Such a truncation could be used in advancing the errotacmeof the tangent linear system
which is required for optimal state estimation. We now show that the inheremtomality of time dependent

4
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Figure 2: The parametric instability of the harmonic osaithr governed by 18) is caused by the non-
normality of the time dependent operator. So long as theirsisantaneous growth and the time dependent
operators do not commute asymptotic exponential growthirscéor this exampley, = 1/2 andw, = 3.

operators is the source of the Lyapunov instability which underlies thenexyial increase of forecast errors
and that understanding the role of nonnormality is key to understandiogggowth.

Consider a harmonic oscillator with frequerwy In normal coordinates (i.e. energy coordinatgsy, [wx,v]T,
wherex is the displacement and= X, the system is governed by:

dy
a0 Ay, (16)
with
0 1
A:w(_l 0> . (17)

This is a normal systetAAT = ATA and the system trajectory lies on a constant energy surface which is a
circle. In these coordinates the perturbation amplitude is the radius of the aird there is no growth.

Assume now that the frequency switches periodically betwegand w,: T, = 1/(2w,) units of time the
frequency isw, and T, = 1/(2w,) units of time the frequency i&,. There is no single transformation of
coordinates that renders the matdxsimultaneously normal whew = w; and whenw = w, so we revert to
the statey = [x,v]" with dynamical matrices:

0 1
A L,= . (18)
o (5 )
When the frequency ie), the statey traverses the ellipses of Fig.that are elongated in the direction of the
x axis and when the frequency és, it traverses the ellipses of Fig that are elongated in theaxis (both
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Figure 3: Left panels : the mean flow velocity as a functionatitude for the Rayleigh stable example.
Right panel: the associated mean vorticity gradient-3 —U”, with . = 10.

marked with dots). The dynamics of this system can be understood by edngithe evolution of the initial
conditiony(0) = [1,0] marked with 1 in Fig2. Initial condition 1 goes to 2 at time= T, under the dynamics
of A,, then the dynamics switch 4, taking the system from 2 to 3 at timie= T, + T,; reverting back to
A,, the system advances from 3 to 4tat T, 4+ 2T,, and then undeA, 4 goes to 5 at timé=2(T, +T,)
with coordinatey/(2(T, +T,)) = [36,0]. As times advances the trajectory clearly grows exponentially as this
cycle is repeated despite the neutral stability of the system at each instamteof How is this possible?
The key lies in the inherent non-normality of the operator in time dependsterag. If the operator were
time independent and stable transient growth necessarily gives way rituaveecay. In contrast, a time
dependent operator reamplifies the perturbations that would have @bel@cayed. This process of continual
rejuvenation producing asymptotic destabilization is generic and doespetdien the stability properties of
the instantaneous operator state (cf Farrell & loannou, 1999).

As a further example consider harmonic perturbatigtig t)e¥* on a time dependent barotropic mean flow
U(y,t) in aB plane channel-1 <y < 1. The perturbations evolve according to:

dw
g = ADWY, (19)
with time dependent operator:
2
A = 02 (—ikU(y,t)DZ—ik<B—dL;—g’t)> ) , (20)

in which discretized approximations of the operators on the RHS is implied.rdicgpto Rayleigh’s theorem
(cf Drazin & Reid, 1981) this flow can not sustain growth unless the medicitp gradientQy, = 3 —U"”
changes sign. Let us consider only flows that are asymptotically stabldiaies by Rayleigh theorem, and
for simplicity that the mean velocity switches periodically between the two flomashio the left panels of
Fig. 3. The corresponding mean vorticity gradient is shown in the right pangleafame figure. Despite the
asymptotic stability of each instantaneous flow the periodically varying flowyisyptotically unstable. The
Lyapunov exponent of the instability as a function of the switching periodasva in Fig.4.

This instability arises from sustaining the transient growth of the operatoughrtime dependence. The very
same process is operative when the flow is varying continuously in time. thieebyapunov exponent for
given statistically stationary fluctuations in operator structure can be stwdepend on two parameters: the

6
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Figure 4: Lyapunov exponent as a function of switching gbfiofor the example shown in Fi@. The time
dependent flow results from periodic switching every T timiéstbetween the Rayleigh stable flow profiles
shown in Fig.3. The zonal wavenumber isklandf = 10.
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Figure 5: For a continuously varying barotropic flow, the wtture of the stateP(y,t)eikX in the zonal (x),
meridional (y) plane at four consecutive times separate@toyautocorrelation time I The r.m.s. velocity
fluctuation is0.16 and the noise autocorrelation time is = 1. The zonal wavenumber isk2, 8 =0, and the
Reynolds number is Re 800 The Lyapunov exponentis = 0.2. At first (top panel) the Lyapunov vector is
configured to grow producing an increase overot 1.7, in the next period the Lyapunov vector has assumed a
decay configuration (second panel from top) and suffers eedse 0f0.7, subsequently (third panel from top)

it enjoys a slight growth o1.1, and finally (bottom panel) a growth y8. Further details can be found in
Farrell & loannou (1999).
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Figure 6: Top panel: Mean and standard deviation of the prtfn of the Lyapunov vector on the optimal vectors
of the mean flow calculated for a time interval equal ¢arthe energy norm. Bottom panel: The mean projection
and standard deviation of the Lyapunov vector on theviolved optimal vectors of the mean flow in the energy
norm.

fluctuation amplitude and the autocorrelation timg,of the fluctuations (cf Farrell & loannou, 1999). Snap-
shots of the perturbation structure revealing the process of accumulatiamsient growth by the interaction
of the perturbations with the time dependent operator in a continuously gditgim are shown in Fi¢. This
mechanism of error growth predicts that the perturbation structure spoojlelct most strongly on the sub-
space of the leading optimal (singular) vectors. This is indeed the casmdm®cseen in the example in Fig.
6.

Study of the asymptotic error structure in more realistic tangent linear systarfisns the conclusions pre-
sented above (cf Gelaro et al, 2002). We conclude that error steuctéorecast systems projects strongly on
the optimal vectors. This result is key for dynamical evolution of the erogagance which is required for
optimal state estimation (cf Farrell & loannou, 2001).

3 Modd error in deterministic forecast

We have already discussed methods for determining the impact of uncegtaintiee initial state on the
forecast, however, as the initialization of forecast models is improved witladlkient of new data sources
and the introduction of variational assimilation methods, the medium rangea&inedl become increasingly
affected by uncertainties resulting from incomplete physical parametengatitd numerical approximations
in the forecast model, and by the necessarily misrepresented subdeaisaatic processes such as cumulus
convection which act as temporally stochastic distributed forcing of thedsterror system. These influences,
referred to collectively as model error, conventionally appear astenre forcing in the forecast error system
(cf Allen et al, 2005).

Improving understanding of model error and specifically identifyingifays that lead to the greatest forecast
errors is centrally important in predictability studies. In analogy with the optireaiupbations that lead
to the greatest forecast error in the case of initial condition error treg@aous error sources will be called
optimal distributed forcings. In an approach to this problem D’Andrea ét&fd (2000) obtained approximate
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optimal temporally distributed deterministic forcings of the forecast erraesyéwhich they refer to as forcing
singular vectors) and Barkmeijer et al. (2003) obtained the optimal tempdistiibuted deterministic forcing
of the forecast error system over fixed spatial structures. We hesrerile the method for determining the
general optimal forcing in both the forecast and assimilation systems.

The underlying theory for determining the optimal forcing in the deterministie sasased on analysis of the
dynamical system as a mapping from the space of input forcings to the spatates at later time. We seek
the deterministic forcing(t) of unit norm ont € [0, T] producing the greatest state norm at tinée. that
maximizes the square norm of the stak&éT ) ||?, assuming the state is initially zerg(0) = 0, and thak obeys
the tangent linear forecast equation:

% =A(t)x+f(t). (21)
The forcingf(t) over the interval0, T] is measured in the square integral norm:
T
I, = [ ot (22)
while the statex is measured in the vector square norm:
[1X[[> = x"x.. (23)

The use of alternative inner products can be easily accommodated.
The optimal forcingf(t), is the forcing that maximizes the final state at timéhat is maximizes the quotient:
x(T)||?
Ry = IXTIE. 24)
172

It can be shown (Dullerud & Paganini, 2000; Farrell & loannou, 2QQ&t this intractable maximization over
functions,f(t), can be transformed to a tractable maximization over statds, Specifically the following
equality is true:

IX(T)I? IX(T)I2
max———> = MaX——a7—— , (25)
i [FOIZ, X x(T)TCX(T)
whereC is the finite time state covariance matrix at tifieinder the assumption of temporally white noise
forcing with unit covariancé. The covariance can be obtained by integrating ftea0 tot = T the Lyapunov
equation:
dC "
e At C+CA'(t)+1, (26)
with the initial conditionC(0) = 0. Note that the form of the second optimization &5) is reminiscent
of the covariance or Mahalanobis metric used in predictability analysis (P&tredr 1998) suggesting the
interpretation of optimals weighted by the Mahalanobis metric as structureséhabat easily forced.

Quotient £5) is maximized for unit forcing by the state:

Xopt(T) = \/)Tlvlv (27)

where], is the maximum singular value @ andv; is the corresponding singular vector©f(v, is conven-
tionally called the top Empirical Orthogonal Function (EOFX®)f It can be shown (Farrell & loannou, 2005)
that the optimal forcing and the associated state of the system can be olsiamdtdneously by integrating
the following coupled forward and adjoint systems backwards over tlie firierval from timet = T to the
initial timet = 0:

dx

P A(t)x+f

af ¥

o = Ao (28)
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with X(T) = \/A,v, andf(T) = v,/,/A;. The initial statex,;(0) = 0 is recovered as a consistency check.

4 Prediction of statistics of certain systems

Beyond the limit of deterministic forecast it is still possible to predict the statigticaderties which constitute
the climate of a system. Consider the perturbation strucxmroduced by the forced equation:

dx
— = AX + Fn(t). (29)
dt
Here A may be the deterministic linear operator governing evolution of large scdleripations about the
mean midlatitude flow, anin(t) an additive stochastic forcing with spatial structBreepresenting neglected
nonlinear terms. For simplicity we assume that the componentstpfare white noise with zero mean and
unit variance. We wish to determine the perturbation covariance matrix (sitgenatrix):

C(t)=<xx" >, (30)

where < - > denotes the ensemble average over the realizations of the fdfaiftgy If a steady state is
reached< - > is also the time mean covariance. We argue (Farrell & loannou, 1993p[@el896, 1999,
2001, 20043 that the midlatitude jet climatology can be obtained in this way because the trasisietblogy

in the midlatitudes is the statistical average state resulting from random evecyslofienesis. Because
cyclogenesis is a rapid transient growth process primarily associated @itlothnormality ofA, it's statistics

are well approximated by the structure of the linear operatoiThe diagonal elements of the steady state
covarianceC are the climatological variance &f and they locate the storm track regions. All mean quadratic
fluxes are also derivable fro@ from which the observed climatological fluxes of heat and momentum can be
obtained. In this way we obtain a theory for the climate and can addresesyitally statistical predictability
guestions such as: how to determine the sensitivity of the climate, thatJs tof changes in the boundary
conditions and physical parameters which are reflected in changes in #reoperatoA and the forcing
structure matrix-.

If n(t) is a white noise process it can be shown (cf Farrell & loannou, 1996&)
t
Ct) = / PSQeh’s ds, (31)
0

where
Q=FF", (32)

is the covariance of the forcing. It can be also shown that the ensembleaoeariance evolves according to

the deterministic equation:

(jj—?:AC+CAT+QEHC+Q, (33)

whereH is an? x n® matrix if C is an x n covariance matrix. It should be noted that the above equation is also
valid for non-autonomouA (t). If A is time independent the solution of the above equation is:

t
c(t) = e c(o) + (/ eH(‘S)ds> Q =¢€"co +H1("-1Q. (34)
0
Ast — o0 and assuming the operatéris stable a steady state is reached, which satisfies the steady state

Lyapunov equation:
AC®+C°AT = —Q. (35)

2See also the related linear inverse model perspective (Penland & lagb®93; Penland & Sardeshmukh, 1995)

10
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This equation can be readily solved fof from which ensemble mean quadratic flux quantities can be derived.

Interpretation ofC requires care. The asymptotic steady state ensemble av€agis,the same as the time
averaged covariance and can be obtained from a single realizatidi)dfy averaging the covariance over
a sufficient long interval. However, the time depend@(it) can not be associated with a time averaget
rather is necessarily an ensemble average. With this consideration inGttinérom (34) is appropriate for
evolving the error covariance in ensemble prediction as will be discuss$le irext section. In this section we
consider a time independent and stabland interpret the steady stdi€ as the climatological covariance.

It has been demonstrated that such a formulation accurately models the midlatitadtology (Farrell &
loannou, 1994, 1995; DelSole, 1996, 1999, 2001, 2004; Whitak&a&leshmukh, 1998; Zhang & Held,
1999) and reproduces the climatological heat and momentum fluxes. yingtasic covariance captures the
distribution of the geopotential height variance of the midlatitude atmosphevrelless the distribution of heat
and momentum flux in the extratropics.

The algebraic equatiorBH) gives C* as an explicit functional of the forcing covarian@and the mean
operatolA, which is in turn a function of the mean flow and the physical process paeasndhis formulation
permits systematic investigation of the sensitivity of the climate to changes in thega@nd structure of the
mean flow and parameters.

We first address the sensitivity of the climate to changes in the forcing whedexssumption that the mean
state is fixed.

We determine the forcing structuife given by a column vector, that contributes most to the ensemble average
variance< E(t) >. This structure is the stochastic optimal (Farrell & loannou, 1996a; Kleetnkloore,
1997; Timmermann & Jin, 2005).

The ensemble average variance produced by stochastically forcingrtiatuse (i.e. introducing the forcing
fn(t) in the r.h.s. of 29)) can be shown to be:

<E(t)> = <x'x> = fIB(t)f, (36)

whereB(t) is the stochastic optimal matrix:

t
B(t) = / eA'sehs ds. @37)
0
The stochastic optimal matrix satisfies the time dependent back Lyapunavoegaaalogous to33):
Z—?:BA+ATB+I. (38)

If A is stable the statistical steady stB(€ satisfies the algebraic equation:
B®A + ATB® =—1, (39)

which can be readily solved f@&”.

Having obtained3” from (36) we obtain the stochastic optimal as the eigenfunctioB®fwith the largest
eigenvalue. The stochastic optimal determines the forcing strudtutieat is most effective in producing
variance. Forcings will have impact on the variance according to thenfgsgrojection on the top stochastic
optimals (the top eigenfunctions Bf°).

3Under certain conditions it can be associated with a zonal mean, forsdisauand physical application of this interpretation see
Farrell & loannou (2003).

11
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As another application the sensitivity of perturbation statistics to variations iméa® state can be obtained.
Assume for example that the mean atmospheric Bois changed byU inducing the chang@A in the mean
operator. The statistical equilibrium that results satisfies the Lyapunatiegu

(A+8A)(C*+38C”)+(C*+6C”)+(A+3A) = —Q, (40)

under the assumption that the forcing covariaQclkas remained the same. Beca@sesatisfies the equilib-
rium (35) the first order correctiodC* is determined from

ASC® +3C”AT = —(3AC®+C*5A™). (41)

From this one can determine a bound on the sensitivity of the climate by deterrttigichange in the mean
operator that will result to the largest chan®€”. This operator change leading to maximum increase in a
specified quadratic quantity is called the optimal structural change. Radednnou (2004) show that a single
operator change fully characterizes any chosen quadratic quantigngndn the sense that, if an arbitrary
operator change is performed, the quadratic tend@€y, is immediately obtained by projecting the operator
change on this single optimal structure change.

In this way the sensitivity of quadratic quantities such as variance, erargyfluxes of heat and momentum,
to change in the mean operator can be found. The mean operator cloaihdjanclude jet velocity, dissipation
and other dynamical variables and these jet structure changes as Wl egion over which the response
is optimized can be localized in the jet. The unique jet structure change [mgdihe greatest change in a
chosen quadratic quantity also completely characterizes the sensitivity giiditeatic quantity to jet change
in the sense that an arbitrary jet change increases the quadratic quaptityottion to its projection on this
optimal structure change. This result provides an explanation for vdigars that substantial differences in
quadratic storm track quantities such as variance occur in responspdreafly similar influences such as
comparable SST changes and moreover provides a method for obtainmgfithal structural change.

5 Prediction of statistics of uncertain systems

The sensitivity of forecasts to various aspects of the model can be degerimynperforming parallel com-
putations of the forecast system in which the uncertain aspects of the arededried. These integrations
produce an ensemble of forecasts (Palmer, 2005; Kalhay et al, 20@%a3 2005). The ensemble mean of
these predictions is for many systems of interest a best estimate of the fiatieré&auss, 1809; Leith, 1974).
These ensemble integrations also provide estimates of the probability demsitipfuof the prediction. The
covariance matrix of the predicted sta@s-< xx' >, where< - > signifies the ensemble mean, provides the
second moments of the probability density of the predictions and charastth&sensitivity of the prediction
to variation in the model. We wish to determine bounds on the error covariancix negulting from such
model uncertainties.

5.1 Thecase of additive uncertainty

Consider first a tangent linear system with additive model error. With thenastion that the model error can
be treated as a stochastic forcing of the tangent linear system the exotus &ccording to:
dx
dat
whereA (t) is the tangent linear operator which is considered cerkathe structure matrix of the uncertainty
which is assumed to be well described by zero mean and unit covariarieeneise processayt). Such

A(t)x + Fn(t) , (42)

12
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X (0)

Figure 7: Schematic evolution of a sure initial conditiefD) in an uncertain system. After time t the evolved states
X(t) lie in the region shown. Initially the covariance mat@X0) = x(0)x"(0) is rank 1, but at time t the covariance
matrix has rank greater than 1. For example if the final statesex;(t) (i = 1,---,4) with equal probability, the
covariance at time tC(t) = %Zﬁ:l X; (t)xi’r(t) would be rank 4, representing an entangled state. In cottias

certain systems the degree of entanglement is invarianagngte state evolves to a pure state.

systems are uncertain and as a result a single initial state maps to a varietgobsta later time depending
on the realization of the stochastic procest). This is shown schematically in Figl for the case of four
integrations of the model.

Let us assume initially that the ensemble had model error covar@te At a timet later the error covariance
is given by 84). The homogeneous part d4) is the covariance resulting from the deterministic evolution
of the initial C(0) and represents error growth associated with uncertainty in specificdtiba mitial state.
Predictability studies traditionally concentrate on this source of error grovtih inhomogeneous part &4)
represents the contribution of additive model error.

The deterministic part of the growth of the error covariance at any time isdsiby the growth produced
by the optimal perturbation. The forced error growth at any time on the bidned is bounded by the error
covariance at time forced by the quite different stochastic optimal that is determined as thefeigtion
with largest eigenvalue of the stochastic optimal matrix

L
B(t) — /OeASeASds. 43)

at timet. Given an initial error covarianc€(0), and a forcing covarianc€), it is of interest to determine the
time at which the accumulated covariance from the model error exceedsdn@®duced by uncertainty in
the initial conditions. As an example consider the simple sys&mAssume that initially the state has error
such that traceC(0)) = 1 and that the additive model error has covariance {@ge- 1. The growth of errors
due to uncertainty in the initial conditions is plotted as a function of time in 8igAfter approximately unit
time the error covariance is dominated by the accumulated error from mocktaimty.

From this simple example it is realized that in both stable and unstable systemsiaisidhstate is more
accurately determined error growth will inevitably be dominated by modet.ektgresent the success of the
deterministic forecasts and increase in forecast accuracy obtainexti®ading initial state error suggest that
improvements in forecast accuracy are still being achieved by redu@ngnttertainty in the initial state.

13
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Figure 8: Error variance resulting from free evolution oftloptimal unit variance initial covariance and evolution
of error variance forced by additive uncertainty with urgrding variance. The operatoh is the simple2 x 2
Reynolds operator given ii8).

5.2 The case of multiplicative uncertainty

Consider now a forecast system with uncertain parameterizations (Pa888r,Sardeshmukh et al., 2001,2003)
so that the tangent linear system operator itself is uncertain and for simplicity tlae form:

A) = A+ Bn(t) . (4)

wheren (t) is a scalar stochastic process with zero mean and unit varian@&iardixed matrix characterizing
the structure of the operator uncertainty, &nd a scalar amplitude factor.

A most important property of these multiplicative uncertain systems is thatetiffeealizations produce highly
disparate growths. Fix the inner product with which the perturbation magnisudeasured and concentrate on
calculation of the error growth. Because of the uncertainty in the opeddterent realizationsy), will result

in different perturbation magnitudes and because the probability densittida of; is known, perturbation
amplitudes can be ascribed a probability. A measure of error growth is pleettion of the growths:

<g>= /P(w))g(w)dw, (45)

wherew is a realization of, P(w) is the probability for its occurrence, agdw) the error growth associated
with this realization of the operator. Because of the convexity of the exjactidie r.m.s. second moment
error growth exceeds the amplitude error growth, i.e.

V<E>><g> . (46)

It follows that in uncertain systems different moments generally have diftegrowth rates and the Lyapunov
exponent of an uncertain system may be negative while higher momentsséable. This emphasizes the fact
that rare or extreme events that are weighted more by the higher momentrenaga difficult to predict are
potentially highly consequential.

As an example consider two classes of trajectories which with equal pliobagive growth in unit time of
g=2org=1/2. What is the expected growth in unit time? While the Lyapunov growth rate éc@use:
_ <logg> log2 log(1/2)

2 =ty =0, (47)

14
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the second moment growth rate is positive:

2
A, = 09<0 > Iog<%x4+%x%> — 075, (48)
proving that the error covariance increases exponentially fast amairgdy that uncertain systems may be
Lyapunov (sample) stable, while higher order moments are unstable. ttedsmoment measures include
the energy, so that this example demonstrates that multiplicative uncertaimsyste be Lyapunov stable
while expected energy grows exponentially with time. In fact if the uncertan@aussian there is always a
higher moment that grows exponentially (cf. Farrell & loannou, 2002b)

One implication of this property is that optimal error growth in multiplicative unéesgstems is not derivable
from the norm of the ensemble mean propagator. To obtain the optimal gragrtieitessary to first determine
the evolution of the covariand® =< xx' > under the uncertain dynamics and then determine the optimal
C(0) of unit trace that leads to greatest treCé)) at later times.

Consider the multiplicative uncertain tangent linear system:

% = AX + en(t)Bx, (49)
whereA is the sure mean operator aBds the structure of the uncertainty in the operator aftd is its time
dependence. Take(t) to be a Gaussian random variable with zero mean, unit variance and aataton
timet.. Define®(t,0) to be the propagator for a realization of the operdtor en(t)B. For that realization
the square error at tintds:

x(t)™x(t) = x(0)T®T(t,0)d(t,0)x(0) (50)

wherex(0) is the initial error. The optimal initial error, i.e. the initial error that leads to treatest variance
at timet, for this realization is the eigenvector of:

H(t) = ®'(t,0)®(t,0) (51)
with largest eigenvalue.

For uncertain dynamics we seek the greatest expected varianbg determining the ensemble average
<H(t) >= (®7(t,00®(t,0)) . (52)

The optimal initial error is identified as the eigenvectorkoH (t) > with largest eigenvalue. This eigenvalue
determines the optimal ensemble expected error growth. This gives adiv&noroof of the remarkable fact

that there is a single sure initial error that maximizes expected error grovah imcertain tangent linear

system, that is, the greatest ensemble error growth is produced whesethkele integrations are initialized
with the same state.

To quantify the procedure one needs to obtain an explicit form of thevdriseaverage< H(t) > in terms of
the statistics of the uncertainty. It turns out that this is possible for Gausstanations (cf Farrell & loannou,
2002c,d), in that case H(t) > evolves according to the exact equation:

d<d$ —  (A+€EMB) <H(t)> + <H(t)> (A+eEt)B) + 53
+ (E')<H>B + Bl <H>E(®) 54)
where
t
EW) — | e*Beieds . 55
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For autocorrelation times of the fluctuations small compared to the time sca#leéhefabove equation reduces
to:

22
v

d<H>

Bf<H>B . 56
gt <H> (56)

2 N\T g2
= <A+VBZ> <H(t) >+ <H(t) > (A+VBZ> -

As an example application of this result, the ensemble for an uncertain tadimgartsystem arising from a
forecast system with Gaussian statistical distribution of parameter valisgiearcould be constructed from
this basis of optimals, i.e. the optimalsafH >.

6 Conclusions

GST is required for a comprehensive understanding of error growtlet@rministic autonomous and non-
autonomous systems. In contrast to the approach based on normal md@as3 iapplied to deterministic
systems attention is concentrated on the optimal perturbations obtained blasirajue analysis of the prop-
agator or equivalently by repeated forward integration of the systenwfetldoy backward integration of the
adjoint system. The optimal perturbations are used to understand anck jeredr growth and structure and
for such tasks as building ensembles for use in ensemble forecast. itiomadhdis approach provides the-
oretical insight into the process of error growth in both autonomous aneéantonomous systems. In the
case of non-autonomous systems the process of error growth is idewiiineithe intrinsic non-normality of a
time dependent system and the unstable error is shown to lie in the sub$plaedeading optimal (singular)
vectors.

Beyond the deterministic time horizon GST can be used to address questmeaslictability of statistics and
of sensitivity of statistics to changes in the forcing and changes in the sygterator. As an example of the
power of these methods, the sensitivity of a statistical quantity is found toldtedeo a single structured
change in the mean operator.

Finally, we have seen how GST addresses error growth in the presébogh additive and multiplicative
model error. In the case of multiplicative model error the role of rare ti@jies is found to be important
for the stability of higher statistical moments including quadratic moments which rsdat@le stability to
stability in energy.
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