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The no-slip boundary condition results in a velocity shear forming in fluid flow near a
solid surface. This shear flow supports the turbulence characteristic of fluid flow near
boundaries at Reynolds numbers above ≈ 1000 by making available to perturbations
the kinetic energy of the externally forced flow. Understanding the physical mechanism
underlying transfer of energy from the forced mean flow to the turbulent perturbation
field that is required to maintain turbulence poses a fundamental question. Although
qualitative understanding that this transfer involves nonlinear destabilization of the
roll-streak coherent structure has been established, identification of this instability has
resisted analysis. The reason this instability has resisted comprehensive analysis is that
its analytic expression lies in the Navier–Stokes equations (NS) expressed using statistical
rather than state variables. Expressing NS as a statistical state dynamics (SSD) at second
order in a cumulant expansion suffices to allow analytical identification of the nonlinear
roll-streak instability underlying turbulence in wall-bounded shear flow. In this nonlinear
instability the turbulent perturbation field is identified by the SSD with the Lyapunov
vectors of the linear operator governing perturbation evolution about the time-dependent
streamwise mean flow. In this work the implications of the predictions of SSD analysis that
this parametric instability underlies the dynamics of turbulence in Couette flow and that
the perturbation structures are the associated Lyapunov vectors are interpreted to imply
new conceptual approaches to controlling turbulence. It is shown that the perturbation
component of turbulence is supported on the streamwise mean flow, which implies optimal
control should be formulated to suppress perturbations from the streamwise mean. It is
also shown that suppressing only the top few Lyapunov vectors on the streamwise mean
vectors results in laminarization. These results are verified using DNS.
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1. Introduction

Analogy with the conventional interpretation of the dynamics of isotropic homogeneous
turbulence forced stochastically at large scale suggests that in the turbulence of wall
bounded shear flows nonlinearity leads to a cascade of energy from the large scales, where
energy is input by pressure gradients or boundary motions, to small scales, where it is
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dissipated, and that the turbulence field should be essentially structureless. However,
experimental studies (Kline et al. 1967; Bakewell Jr. & Lumley 1967; Kim et al. 1971;
Blackwelder & Eckelmann 1979; Robinson 1991; Adrian 2007) and analysis of direct
numerical simulations (DNS) (Kim et al. 1987; Jiménez & Moin 1991), have revealed
distinct coherent structures in wall-turbulence which are believed to be essential to the
process maintaining the turbulence by some form of nonlinear regeneration cycle (Kim et al.
1971; Jiménez 1994; Hamilton et al. 1995). This cycle involves a specific coherent structure
rather than unstructured fluctuations and is referred to as the self-sustaining process
(SSP) (Hamilton et al. 1995; Waleffe 1997; Jiménez & Pinelli 1999). These coherent
structures are streaks, that is localized regions of increased or decreased velocity in the
streamwise direction, and quasi-cylindrical vortices with axis oriented in the streamwise
direction, called rolls, which are collocated with the low and high speed streaks. The
SSP is associated with the low-speed streak which is produced by lift-up of low speed
fluid by the roll resulting in streaks which vacillate in space and time†. Mechanistic
explanations for this process posit either that a component of the perturbations from
the streamwise mean flow directly comprise the roll that forces the streak (Jiménez &
Pinelli 1999; Schoppa & Hussain 2000, 2002; Adrian 2007) or alternatively the roll is
forced by perturbation Reynold’s stresses that induce torques collocated correctly to
maintain the rolls that in turn force the streaks through the lift-up process (Hamilton
et al. 1995). A number of physical mechanisms have been invoked to address the origin
of the perturbations and their mechanism of action in producing this cycle. In one view
the perturbations arise due to hydrodynamic instability of the streak (Waleffe 1997) in
another they are ascribed to growth of highly amplifying transient perturbations in the
flow (Schoppa & Hussain 2002). However, simply invoking such mechanisms by itself
only allows qualitative descriptions to be made for hypothesized processes rather than
constituting an analytical formulation that would provide a theory based directly on
the equations of motion with the property of making specific testable predictions for
observational correlates.

Another approach invokes exact static and periodic solutions of the Navier–Stokes
equations (Waleffe 1998, 2001; Kawahara & Kida 2001). These solutions have been found
at low Reynolds numbers and shown to be at times approached by turbulent state
trajectories (cf. Budanur et al. (2017)). They provide heuristic examples of the SSP
process but these solutions are not themselves fully turbulent states and they are not
physically realizable as they are unstable and their physical significance to fully developed
turbulence has not been established.

The SSP was isolated recently directly from the equations of motion by showing it to be
inherent to and contained in a highly simplified second order closure of the Navier–Stokes
equations for wall-turbulence (Farrell & Ioannou 2012; Farrell et al. 2017). This SSD
isolates the nonlinear instability that underlies the SSP and the turbulence that develops
under this second order closure has been demonstrated to be realistic and to capture the
large scale dynamics of Navier–Stokes turbulence (Thomas et al. 2014, 2015; Bretheim
et al. 2015; Farrell et al. 2016, 2017; Pausch et al. 2018). This closure constitutes a
quasi-linear dynamics that greatly simplifies analysis while having the attribute of not
only allowing identification of the dynamics supporting the large scale roll-streak coherent

† For the purpose of formulating the SSD used in this work we partition the flow into its
streamwise mean component and perturbations. In this streamwise mean partition the roll-streak
structure is included in the mean flow. From the point of view of a partition into time or
ensemble means the roll-streak would be included with the perturbation field. However, the latter
partitions do not result in expression in their associated SSD of the fundamental dynamics of
wall-turbulence.
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[Lx, Lz]/h Nx ×Nz ×Ny Reτ [L+
x ,L+

z ]

[1.75π , 1.2π] 33× 33× 35 48.8 [268, 184]

Table 1: [Lx, Lz]/h is the domain size in the streamwise, spanwise direction. Nx, Nz are
the number of Fourier components after dealiasing with the 1/3 rule and Ny is the number
of equally spaced points in the wall-normal direction. Reτ = uτh/ν is the Reynolds
number based on the friction velocity uτ = ν du/dy|y=h, and [L+

x ,L+
z ] is the channel size

in wall units ν/uτ .

structures but also analytically characterizing the perturbation structures responsible for
maintaining the cycle. This closure constitutes a theory for wall-turbulence in the sense
that it is derived from the NS, allows identification of and analytical solution for the
dynamical mechanism underlying the turbulence as well as making verifiable predictions
for the structure of both the mean flow and perturbations as well as their specific roles in
the turbulence dynamics.

In this paper we verify that the perturbation structure predictions of this second
order closure using DNS and show that these analytically characterized perturbations
are responsible for maintaining the turbulent state and as well as that their removal
leads to laminarization. One remarkable aspect of this identification of the perturbation
structure in NS turbulence is that it is contrary to the common assumption that the bulk
of the perturbation variance arises in association with an energy cascade to small scale.
We show that the perturbation structures can be identified with the analytically fully
characterized Lyapunov vectors sustained by the parametric growth process associated
with the fluctuating mean flow.

2. Formulation

We illustrate these results using DNS for the case of Couette flow turbulence at Reynolds
number R = 600 (R = Uwh/ν, where ±Uw is the velocity at the channel walls at y = ±h
and ν is the coefficient of kinematic viscosity). The laminar Couette flow is in the x-
direction (the streamwise direction) and is given by u = (Uwy/h, 0, 0), y, the second
component, is the cross-stream direction, and z, the third component, is the spanwise
direction. The details of the direct numerical simulation are given in Table 1.

We formulate the second order SSD equations by decomposing the flow field into its
streamwise mean component, denoted by 〈·〉x or alternatively by capital letters, and
the deviations from the streamwise mean, referred to as perturbation components and
denoted with a dash, or equivalently into the kx = 0 and the kx 6= 0 components of the
Fourier decomposition of the flow field, where kx is the streamwise wavenumber:

u = U(y, z, t) + u′(x, y, z, t) , U(y, z, t)
def
= 〈u〉x . (2.1)

The Navier–Stokes equations for incompressible flow expressed using this mean and
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perturbation partition are:

∂tU + U · ∇U +∇P/ρ− ν∆U = −〈u′ · ∇u′〉x , (2.2a)

∂tu
′ + U · ∇u′ + u′ · ∇U +∇p′/ρ− ν∆u′ = − (u′ · ∇u′ − 〈u′ · ∇u′〉x )︸ ︷︷ ︸

N

, (2.2b)

∇ ·U = 0 , ∇ · u′ = 0 , (2.2c)

where P is the pressure and ρ the constant density. We study a turbulent Couette flow
confined in a doubly periodic channel in x and z satisfying no-slip boundary conditions in
the cross-stream direction: U(±h, z, t) = (±Uw, 0, 0), u′(x,±h, z, t) = (0, 0, 0). The mean
velocity has three components U(y, z, t) = (U, V,W ), with the cross-stream velocity V
and spanwise velocity W expressible by a streamfunction as V = −∂zΨ , W = ∂yΨ .

The SSD we use is closed at second order by simply setting the third cumulant to zero
which is equivalent to ignoring the perturbation-perturbation nonlinearity, N , in (2.2b)
when formulating the SSD (Herring 1963; Farrell & Ioannou 2003). If the same term is
ignored in the partition of the NS into mean and perturbations this produces what is
referred to as the restricted nonlinear (RNL) system (Thomas et al. 2014; Farrell et al.
2017):

∂tU + U · ∇U +∇P/ρ− ν∆U = −〈u′ · ∇u′〉x , (2.3a)

∂tu
′ + U · ∇u′ + u′ · ∇U +∇p′/ρ− ν∆u′ = 0 (2.3b)

∇ ·U = 0 , ∇ · u′ = 0 . (2.3c)

This RNL system has the same quasi-linear structure as the second order SSD and can be
regarded as an approximation to the second-order SSD in which one ensemble member
is used to obtain the second cumulant and it has a number of interesting properties
(Farrell & Ioannou 2017). One of these is that this system supports realistic turbulence
despite the absence of nonlinearity N , which provides a constructive proof that this
explicit perturbation nonlinearity is not responsible for maintaining turbulence. A second
remarkable implication is that analytical identification of the perturbation structure and
dynamics follows directly from analysis of (2.3b). Consider a self-sustaining turbulent
solution of (2.3) with mean flow U(y, z, t). The associated perturbation field consistently
satisfies (2.3b) with this U(y, z, t), which means that the perturbations evolve according
to the time-dependent linear operator (2.3b), or symbolically: ∂tu

′ = A(U)u′, with A this
time dependent linear operator. This allows complete identification of the perturbation
field with the Lyapunov vectors of A(U). Moreover, because the turbulence supported by
(2.3b) is bounded and nonzero it follows that u′ must lie in the restricted subspace spanned
by the Lyapunov vectors of A(U) with zero Lyapunov exponent because if the Lyapunov
exponent is positive the associated vector would become unbounded and if negative it
would vanish. Integration of the RNL system (2.3) reveals that even at moderately high
Reynolds numbers this subspace is supported by a small set of streamwise harmonics †,
and consequently RNL turbulence is supported solely by these few harmonics, which
provides a constructive identification of the active subspace underlying this turbulence.
For example, the RNL turbulence of Couette flow at R = 600 in the present channel is
supported by a single Lyapunov vector with the gravest non-zero streamwise wavenumber
kx = 2π/Lx (Farrell & Ioannou 2017). Consistently, in a realization of RNL turbulence
only this perturbation component survives. In summary, we have obtained a full analytic

† Because U is independent of x each Lyapunov vector is supported by a single streamwise
wavenumber. For a discussion of the streamwise harmonic support of the Lyapunov vectors cf.
(Thomas et al. 2015; Farrell et al. 2016).
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Figure 1: Time evolution of the contribution of the torques arising from the Reynolds
stresses produced by u′< to maintenance of Ψ2, which largely consists of the rolls (blue).
The torques from u′> (red) make no net contribution to the rolls in this measure. Their
time mean is indicated with dashed lines. This figure identifies the perturbation subspace
responsible for maintaining the roll against dissipation to be the subspace spanned by the
four least stable LVs.

characterization of the perturbation field that sustains RNL turbulence: it is the subspace
of the Lyapunov vectors of A(U) with zero Lyapunov exponent. It is important to
note that each of the ingredients of this turbulence are characterized: the coherent
structures are the streamwise mean streaks, defined as the streamwise mean velocity

that obtains after removal of its spanwise average: Us
def
= U(y, z, t) − 〈U(y, z, t)〉z, the

rolls with streamfunction Ψ collocated with the streaks and finally the Lyapunov vectors
of operator A(U) with zero exponent, which are analogous to neutral modes of a time
independent linear operator. In RNL removal of the subspace of the Lyapunov vectors
of A(U) with zero Lyapunov exponent leads immediately to laminarization ‡. We now
show that removing only a few of the least stable LVs of the streamwise mean flow in a
DNS suffice to laminarize the turbulence in our channel at R = 600.

3. Results

The six least stable LVs of the linear operator A about of the mean flow U(y, z, t) of
the turbulent state at R = 600 have Lyapunov exponents:

(0.02, 0.007,−0.0002,−0.0056,−0.013,−0.017)Uw/h .

The Lyapunov vectors and exponents are calculated by evolving in parallel with the DNS
simulation Eq. (2.3b) with the U(y, z, t) obtained from the DNS. Using the standard
power method and successive orthogonalizations using the energy inner-product we obtain
the Lyapunov vectors of the U(y, z, t) and their characteristic exponents.

As in the RNL turbulence all of these least stable LVs are found to be supported by the
gravest streamwise wavenumber permitted in the channel kx = 2π/Lx †. The perturbation

‡ Note that these are not the Lyapunov vectors of the trajectory of the full non-linear system
governing the mean and the perturbations
† Although in RNL the Lyapunov exponents are necessarily 6 0 when (2.3b) is used with the
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structure in a DNS can be projected on the basis of the orthogonalized LVs. Doing so we
find that the perturbations in the DNS have significant projection on the first LV (11%
on average) and about 20% on average on the subspace spanned by the four least stable
LVs. These least stable Lyapunov vectors also dominate the others in the rate of energy
extraction from the streamwise flow U(y, z, t), so we anticipate that removal of these
vectors should produce a severe restriction of the flow of energy from the mean flow to
the perturbations. More remarkable for our study than dominance of the energetics of the
perturbations by these four least stable LVs is that they account fully for the forcing of
the roll and therefore the SSP cycle. In order to assess the contribution of the Lyapunov
vectors to the roll forcing consider the equation for the streamwise component Ωx = ∆hΨ

with ∆h
def
= ∂2y + ∂2z , of the mean vorticity equation:

∂tΩx = − (V ∂y +W∂z)Ωx︸ ︷︷ ︸
A

+ ν∆hΩx︸ ︷︷ ︸
D

−
[
(∂2y − ∂2z )〈vw〉x + ∂yz

(
〈w2〉x − 〈v2〉x

)]︸ ︷︷ ︸
GΩx

, (3.1)

Terms A and D represent advection and dissipation of Ωx in the (y − z) plane and if
it were not acted upon by the streamwise mean torque from the perturbation Reynolds
stresses, GΩx , the roll would decay. The contribution of perturbation Reynolds stresses
to the rate of change of the normalized streamwise square vorticity can be measured by
λΩx =

∫
V
ΩxGΩxdV /(2

∫
V
Ω2
xdV ), and similarly, if more emphasis is to be given to the

large scales, we could use as a measure the contribution of the perturbation Reynolds
stresses to the maintenance of the square of the streamfunction. This normalized measure

of contribution to Ψ2 is λΨ =
∫
V
ΨGΨdV /(2

∫
V
Ψ2dV ), where GΨ

def
= ∆−1h GΩx and ∆−1h is

the inverse cross-stream/spanwise Laplacian. In this work we decompose the perturbation
field u′ into its component, u′<, projected on the subspace spanned by the 4 least damped
energy orthonormal LVs, denoted u′i, i = 1, 2, 3, 4 and the projection on the complement
u′>:

u′<
def
=

4∑
i=1

(u′ · u′i)u′i , u′>
def
= u′ − u′< , (3.2)

and estimate GΨ produced by u′< and u′>. The contribution of these subspaces to λΨ is
shown in Fig. 1. It can be seen that the first four least stable LVs contribute 100% on
average to the roll maintenance†.

This identification of a small subset of the least stable LVs as the perturbation structures
that support the SSP anticipates laminarization of the turbulence in the DNS upon removal
of this subspace. A long integration of the DNS of Couette turbulence at R = 600 has
been used to obtain the converged structures of the four least stable LVs. At a specified
time the perturbation field, u′, of the DNS is projected on the u′<. We remove this
component of the perturbation field at an increasing rate f(t) so that the perturbation
field at each time step becomes u′−f(t)δtu′<, where δt is the integration time step. In the
example shown in Fig. 2 this process of gradual removal of the first four Lyapunov vectors
starts at t = 100h/Uw, so that f(t) = 0 for t < 100h/Uw and the rate f(t) increases
linearly from 0 to 1 at t = 300h/Uw, with f = 1 after this time. With the gradual
removal of this subspace the entire perturbation field as well as the rolls decay leading to

U of the RNL, inclusion of the N term in (2.3b) produces a small component of energy loss
by these vectors so that consistently the top Lyapunov exponent exceeds zero by this amount
(Nikolaidis et al. 2018).
† The first LV contributes to λΨ on average 60%, while inclusion of the second LV adds another

26%. The corresponding contribution to λΩx by u′
< is 20% consistent with more emphasis being

placed on small scale vorticity by the square vorticity measure.
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Figure 2: (a): Evolution of the streak energy Estreak =
∫
V
U2
s dV/2, of the roll energy

Eroll =
∫
V

(V 2 +W 2)dV/2 (multiplied by 5). At t = 100h/Uw the component, u′<, that
projects on the subspace spanned by the four least stable LVs is gradually removed.
(b): Evolution of the perturbation energy Epert =

∫
V
|u′|2dV/2 and the energy of the

component that lies in the subspace of the four least stable LVs E< =
∫
V
|u′<|2dV/2. All

energies are normalized by the energy of the laminar Couette flow, Ec.

laminarization. The streak is seen to increase in magnitude before eventually decaying, as
is typical of laminarization events due to the energy extraction from the streak having
been suppressed by the loss of the perturbations while the roll remains relatively more
effective at continuing the lift-up process forcing the streak. An alternative experiment
was performed in which the complement u′> of the four least damped Lyapunov vectors
was removed with the same protocol and the turbulence was shown to sustain in DNS
with the perturbation structure thus constrained to lie in the subspace of the four least
damped LVs. The corresponding evolution of the energies of this experiment are shown
in Fig. 3. The turbulence that results approaches the corresponding RNL turbulence,
differing only in that the perturbation-perturbation nonlinearity introduces an additional
sink for the perturbation energy. The perturbation field collapses to the single top LV of
the fluctuating mean flow, as is the case for RNL turbulence in the same channel and
Reynolds number (Farrell & Ioannou 2017). The turbulence that results supports rolls of
approximately the same magnitude while the streaks become stronger as the streak is
embedded in an environment of reduced eddy viscosity with the removal of the higher
LVs. In the supplemental material we have included video showing the turbulence of Fig.
3 and the laminarization of Fig. 2.

4. Conclusions

In this work we have verified in a DNS of turbulent Couette flow a number of the
predictions of a second order SSD comprising the streamwise mean flow and the second
cumulant of the perturbation field closed by neglecting the third cumulant. These
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Figure 3: (a): Same as Fig. 2 but now the complement u′> is removed with the same
protocol. The turbulence sustains in DNS with the full perturbation field converging to a
single Lyapunov vector of the fluctuating mean flow.

predictions include identification of the mean and perturbation structures as well as of the
physical mechanism supporting the mean flow and the perturbations. The mechanistic
component of the SSP that is responsible for supporting the perturbation field and
collocating it with the streak so as to maintain the fluctuating streak SSP is identified
with the parametric instability of the fluctuating streak and while the first four Lyapunov
vectors of this instability have been verified to account for 20 % of the energy of the
perturbation field it is more significant for our purposes that they account for all of the
torque supporting the roll component of the roll-streak structure underlying the SSP
maintaining the turbulence. Consistently, removal of this small subset of structures is
verified to laminarize the turbulence in the DNS.

It is a common assumption that the structure and maintenance of the perturbation field
at scales smaller than the integral can be ascribed to a nonlinear cascade and therefore
that these scales can be characterized solely by their spectrum. In this work we have
shown that in Couette flow turbulence this is not the case and that these perturbations
are primarily maintained by parametric interaction with the mean flow and that their
structure rather than being random can be identified with the Lyapunov vectors associated
with this parametric growth process.

These results imply that optimal control strategies based on linearization about the time-
dependent streamwise mean flow, which is the first cumulant of the RNL statistical state
dynamics, should present substantial advantage over previous optimal control strategies
that were based on the instantaneous streamwise and spanwise mean flow (Bewley & Liu
1998; Hogberg et al. 2003a,b; Högberg et al. 2003; Kim & Bewley 2007). This implication
is strengthened by simulations confirming that turbulence is not supported when the
fluctuating streaks that are present in the streamwise mean flow are suppressed (Jiménez
& Pinelli 1999). Perhaps most remarkable is the result that a very small subspace of
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perturbations are responsible for supporting the roll circulation required for maintaining
the turbulence. This subspace is much smaller than that maintaining the perturbation
variance demonstrating that suppression of a small subspace of the entire perturbation
field is sufficient to laminarize the turbulence.
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