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Geophysical turbulence is observed to self-organize into large-scale flows such as
zonal jets and coherent vortices. Previous studies of barotropic B-plane turbulence
have shown that coherent flows emerge from a background of homogeneous turbulence
as a bifurcation when the turbulence intensity increases. The emergence of large-scale
flows has been attributed to a new type of collective, symmetry-breaking instability
of the statistical state dynamics of the turbulent flow. In this work, we extend the
analysis to stratified flows and investigate turbulent self-organization in a two-layer
fluid without any imposed mean north—south thermal gradient and with turbulence
supported by an external random stirring. We use a second-order closure of the
statistical state dynamics, that is termed S3T, with an appropriate averaging ansatz that
allows the identification of statistical turbulent equilibria and their structural stability.
The bifurcation of the statistically homogeneous equilibrium state to inhomogeneous
equilibrium states comprising zonal jets and/or large-scale waves when the energy
input rate of the excitation passes a critical threshold is analytically studied. Our
theory predicts that there is a large bias towards the emergence of barotropic flows.
If the scale of excitation is of the order of (or larger than) the deformation radius,
the large-scale structures are barotropic. Mixed barotropic—baroclinic states with jets
and/or waves arise when the excitation is at scales shorter than the deformation radius
with the baroclinic component of the flow being subdominant for low energy input
rates and insignificant for higher energy input rates. The predictions of the S3T theory
are compared with nonlinear simulations. The theory is found to accurately predict
both the critical transition parameters and the scales of the emergent structures but
underestimates their amplitude.
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1. Introduction

Robust zonal jets and large-scale coherent vortices are a common feature of the
turbulent state in planetary atmospheres and the Earth’s ocean (Ingersoll 1990;
Maximenko, Bang & Sasaki 2005; Chelton et al. 2007; Galperin et al. 2014).
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In order to understand the process of turbulence self-organization into these large-scale
structures, simplified theoretical models containing the relevant dynamics have been
studied for some years now. One of the simplest models that has been widely
studied is barotropic B-plane turbulence (Rhines 1975; Vallis & Maltrud 1993).
Following theoretical predictions by Farrell & Ioannou (2007), recent direct numerical
simulations of forced-dissipative barotropic turbulence on a B-plane indicated that
large-scale coherent flows emerge through a symmetry-breaking bifurcation of the
turbulent flow: as the dissipation or the turbulence intensity varies, the homogeneity of
the flow is broken by the spontaneous emergence of zonal jets and large-scale waves,
and these large-scale structures are supported at finite amplitude by the turbulent
eddies through shear straining (Srinivasan & Young 2012; Bakas & loannou 2013a;
Constantinou, Farrell & loannou 2014a). A recent extension of the barotropic studies
to a stratified two-layer B-plane setting without any imposed mean temperature
gradient, has indicated that the jets in regions of reduced dissipation assume a
universal barotropic structure (Farrell & loannou 2017). In this work, we extend the
analytic results from the barotropic set-up to stratified two-layer flows and provide the
theoretical arguments that address this finding by answering the following question:
in the absence of any imposed mean temperature gradient can externally forced
turbulence in a two-layer stratified flow support turbulent equilibria with large-scale
baroclinic coherent flows sustained at finite amplitude? Or are the large-scale flows
that emerge necessarily barotropic?

To address the emergence of large-scale structure as a bifurcation, a new point
of view was recently advanced. Through analysis of the statistical state dynamics
(SSD) of the flow, that is of the dynamics that governs the evolution of the flow
statistics, a new type of collective instability was revealed and it was proposed that
emergence of large-scale structure resulted from this symmetry-breaking instability
(Farrell & Ioannou 2003, 2007; Srinivasan & Young 2012; Bakas & loannou 2013a;
Parker & Krommes 2013, 2014). Although these instabilities manifest in single
realizations of the flow, their analytical representation requires a statistical framework.
The reason is that the cooperative phenomena at play involve Reynolds stresses with
large fluctuations. However, it is only the residual statistical mean of the stresses
that influences the mean flow coherently, which then modifies the statistics of the
distribution of the turbulent eddies. The stability of the large-scale structures is
therefore governed by the mean of these complex interactions and as a result, a
statistical framework is required in order to analytically express this dynamics.

Analysis of the SSD and the resulting instability is only possible through a closure
assumption for the dynamics, as a straightforward calculation leads to an infinite
hierarchy of equations for the moments and is therefore intractable (Hopf 1952;
Kraichnan 1964). There is now a large number of studies of barotropic turbulence
(Farrell & loannou 2007; Marston 2010; Srinivasan & Young 2012), shallow-water
turbulence (Farrell & Ioannou 2009a), baroclinic turbulence (DelSole 1996; Farrell
& Toannou 2008, 2019), turbulence in pipe flows (Constantinou et al. 2014b; Farrell
et al. 2016; Farrell, Gayme & loannou 2017), turbulence in convectively unstable
flows (Fitzgerald & Farrell 2014; Ait-Chaalal et al. 2016), turbulence in stably
stratified flows (Fitzgerald & Farrell 2018) and turbulence in plasma and astrophysical
flows (Farrell & Ioannou 2009b; Tobias, Dagon & Marston 2011; Parker & Krommes
2013; Constantinou & Parker 2018) providing evidence that whenever there is a
coherent flow coexisting with the turbulent field, the SSD can be accurately captured
by a second-order closure. Such closures of the SSD are either referred to as stochastic
structural stability theory (S3T) (Farrell & lIoannou 2003) or second-order cumulant
expansion (CE2) (Marston, Conover & Schneider 2008).
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At first sight the success of a second-order closure is surprising. Consider for
example the case of zonal jets supported by barotropic turbulence. The question
is whether the quasi-linear eddy-mean flow interaction, which captures shearing of
the eddies by the jet, dominates the eddy—eddy interactions that are represented
in the higher-order cumulants. Close to the bifurcation point of jet emergence, the
mean-flow shear is infinitesimal and presumably the eddy—eddy interactions dominate
and the quasi-linear interaction is presumed inadequate to form jets (Srinivasan &
Young 2012; Frishman & Herbert 2018). Also, in highly supercritical regimes and
in the limit of high turbulence intensity the eddy—eddy interactions may dominate
and the turbulence may become strongly diffusive (Held & Larichev 1996). However,
recent studies have provided evidence that the S3T dynamics is dominant both at the
bifurcation point and at reasonably high supercriticalities.

Close to the bifurcation point of jet emergence, a second-order closure was shown to
be extremely accurate if the dynamics of coherent large-scale waves that significantly
influence the flow is suppressed (Constantinou et al. 2014a) or is accounted for Bakas
& Toannou (2013a). In addition, Bakas & Ioannou (2013b) and Bakas, Constantinou
& Toannou (2015) studied in detail the eddy-mean-flow dynamics underlying jet
formation. They have shown that close to the bifurcation, when mean flows are very
weak and the eddies are dissipated before they are sheared over by the jet, the mean
induced fluxes are up-gradient, leading to a positive feedback loop and to exponential
growth of the mean jet. It is precisely the existence of this mean feedback of the
Reynolds stresses that underlies the exponential instability and overpowers over time
the fluctuations leading to the emergence of large-scale structure in single realizations
of the flow, in accordance with the predictions of S3T theory.

The regime far from the bifurcation points is characterized by the zonostrophic
parameter Ry, that measures the ratio of the Rhines scale over the scale where
the isotropic energy cascade gets anisotropized by S (Galperin et al. 2006). The
strongly nonlinear regime, referred to as zonostrophic, ensues when Rg 2 2 (Galperin
et al. 2014). Bakas & loannou (2019) performed numerical experiments within the
zonostrophic regime at Rg = 2.5 and demonstrated that the scale of the emergent
structures is well captured by a second-order closure despite some quantitative
differences in the intensity of the flows. This demonstrates that, even though the
eddy—eddy interactions are not negligible and may contribute to added eddy diffusion
in the mean-flow dynamics, they do not affect the S3T collective mechanisms that
support the large-scale flows. Scott & Dritschel (2012) performed simulations at
even higher values of Ry and demonstrated that well-formed potential vorticity (PV)
staircases arise when Ry > 10. The accuracy of S3T dynamics in the PV staircase
regime at these values of Ry has not been checked yet.

As discussed above, S3T has the important advantage that it allows for the
analytic treatment of the turbulence—mean-flow instabilities and can lead to a
more comprehensive understanding of turbulent bifurcations. For barotropic B-plane
turbulence it was shown that jets (Farrell & Ioannou 2007; Srinivasan & Young 2012)
and large-scale waves (Bakas & loannou 2014) emerge as the statistical equilibrium
of homogeneous turbulence becomes unstable. This instability, was shown to be the
generalization of modulational instability (Connaughton et al. 2010) in stochastically
forced dissipative flows (Bakas et al. 2015; Parker & Krommes 2015). In this work,
we undertake the task of presenting the analytical S3T theory for a stratified fluid on
a f-plane addressing the following question: what type of large-scale flows emerge
and are sustained at finite amplitude in a turbulent stratified atmosphere that is
homogeneous?
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We use a two-layer model on a S-plane that on the one hand allows analytic
treatment of the dynamics and numerical integration of the high-dimensional SSD of
the flow and, on the other hand, it is a model for both the barotropic and the first
baroclinic mode of a fluid of arbitrary depth and, therefore, it is the simplest model
that can address whether the dynamics favours formation of large-scale structures
that are deep or shallow. We choose to maintain this turbulent field in the simplest
manner by introducing (i) a homogeneous and isotropic stochastic excitation that
drives the turbulence and (ii) equal linear dissipation of potential vorticity in both
layers. The reason for this perfectly symmetric setting is that we want to address
whether coherent barotropic or baroclinic flows can arise inherently from turbulence
self-organization dynamics rather than through an asymmetric damping between the
two layers or through a mean baroclinic shear. That is, we would like to address
whether the intrinsic dynamics favours the establishment of arbitrarily deep barotropic
coherent structures or not. We first present direct numerical simulations of the
turbulent flow that demonstrate the regime transitions in the flow and identify the
scales and characteristics of the emergent structures. We then derive the SSD of
the flow under a second-order closure with the assumption that the average for
defining the statistical moments is coarse graining over fast time scales. We address
the instability of the homogeneous equilibrium of the SSD for a wide range of
parameters and the properties of the unstable modes that represent the emerging
structures. We then study the equilibration of the structure-forming instability, the
characteristics of the coherent structures supported at finite amplitude and compare
the predictions of the theory to the direct numerical simulations of the turbulent flow,
showcasing its validity. We finally discuss the implications of our results for the
large-scale structures in planetary flows.

2. Numerical simulations of turbulent flow

Consider a quasi-geostrophic baroclinic two-layer fluid on an infinite S-plane. The
upper and lower layers are denoted with subscripts 1 and 2, have equal depth, H/2,
and densities p; and p, with p, > p;. The quasi-geostrophic dynamics governing the

evolution of the barotropic ¥ = (Y + 1,)/2 and the baroclinic 6 = Uy — Yr0)/2
streamfunction is:

K+, &) + (0, A0) + By = —F¢ + &£V, 2.1

F+JW, 1) +JO, &) + BdsH =~ + &7, 2.2)

where A & 8)-3 + 8)2 is the horizontal Laplacian, J(f, g) &t (0 (958) — (95f)(3:g) 1is

the Jacobian, A, A 22, ¢ & AV is the barotropic vorticity, ﬁdZEf A, % and §

are the coordinates in the zonal and the meridional direction respectively and the tilde

denotes dimensional quantities (cf. Cehelsky & Tung 1991). The deformation radius is

1/A= /' (H]2)/fy, where g =2g(01 — 02)/(01 + 02) is the reduced gravity and f; is

the Coriolis parameter at the centre of the plane, 8 is the planetary vorticity gradient
and 7 is the coefficient of linear damping of potential vorticity.

We do not impose a temperature gradient across the channel, which through thermal
wind balance would impose a mean baroclinic shear. Instead of this large-scale forcing,
we impose random baroclinic and barotropic potential vorticity sources and sinks,
denoted £V and &° respectively. These sources and sinks represent barotropic and
baroclinic excitation of the fluid by sub-scale processes or by processes not included


https://doi.org/10.1017/jfm.2018.928
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

Downloaded from https://www.cambridge.org/core. Access paid by the UC San Diego Library, on 15 Jan 2019 at 15:33:56, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/jfm.2018.928

Is spontaneous generation of coherent baroclinic flows possible? 893

in the quasi-geostrophic dynamics such as convection. The random excitation is
assumed to have zero mean, to be temporally delta correlated and to be statistically
homogeneous in the horizontal. Under these assumptions, the excitations in the
upper layer, 51 (x, 7), and in the lower layer, §2(5c, 1), have the two-point, two-time
covariances:

(EFas T)E Ry, T)) = (&(Fay 1)E R, 1)) = 8 — Tp)Ay(Fa — Fp),  1,j=1,2, (2.3)

where ( - ) denotes an ensemble average over forcing realizations, X = (¥, y), and the
subscript denotes two different points a and b. Statistical homogeneity requires that
the covariances are symmetric to the exchange of points a and b and to the exchange
of the excitation of the two layers. Therefore the functions «; satisfy:

a1 =Ol22=2E, 1) = 0 =2312. (24a,b)

An important consequence of this symmetry is that the barotropic &V = (& + &)/2
and baroclinic £ = (&, — &,)/2 excitations are uncorrelated: (£V (x,, 7,)€% (X}, 7,)) = 0.
The barotropic and baroclinic component covariances of the forcing are:

(B Far TEY (@, 1)) = 80 — )5 Fa — %) + Ena(Fa — Fp)], 2.5)
(8" (Fa. 18" (B, 1)) = 80 — T)[E (Fa — %) — E@0 — ). (2.6)

If we assume a correlation between the layers =), = pZ&, positive definiteness of the
covariances implies that |p| < 1. We consider three values for p that exemplify opposite
limits. We consider the value p = 1 which corresponds to the case of imposing the
same excitation on the two layers (£, = &,). For this forcing, the baroclinic forcing
covariance is zero and represents at first sight the worst (best) case scenario for
the emergence of mean flows with strong baroclinic (barotropic) components. In the
second case we take the opposite limit of exciting only the baroclinic part of the
flow (p=—1) by imposing an anti-correlated excitation in the two layers (&, = —&).
This represents the best (worst) case scenario for the emergence of mean flows with
strong baroclinic (barotropic) components. Finally we take p = 0 and consider an
independent excitation of the two layers &, = 0. In that case, the barotropic and
baroclinic forcing covariances are equal:

(EV &y, 1)EV (Fp, b)) = (B (R, 1)EO (R, 1)) = 8(Fs — 1) B (R — %), (2.7)

In this work we address the following questions:

(i) For a given spatial structure of the homogeneous forcing =, do any coherent
structures with scales different than the ones we directly excite emerge in the
flow and what are their characteristics? We are particularly interested in whether
the structures that appear are baroclinic or necessarily barotropic.

(i) Can we develop a theory that is able to explain the emergence of coherent
structures and predict their characteristics?

To address the first question, we consider (2.1)—(2.2) in a doubly periodic channel
of size 21 x 27 and integrate the equations using a pseudo-spectral code and a fourth-
order Runge—Kutta time stepping scheme. For the spatial structure of the excitation,
we assume that the forcing injects energy in a thin ring in wavenumber space that has
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radius l~cf and width Al~cf (Lilly 1969). The power spectrum of the spatial covariance
of the forcing is:

g N T , for |k— k| < Ak
Zk)= B &, — e k@ = 0 Y SISO 2.8
® ;; (o = Xp)e 0. for i—Fl>ak, &P

where k = (l~<x, l~<y) is the wavevector with total wavenumber k = |k| and l~cx, I~cy assume
integer values. The amplitude

B ER (2 +22%)?
AR+ 2+ p) A+ 3R Ak,

as (2.9)

is chosen so that the forcing injects energy at a rate € in the flow. We use the modest
M =32 x 32 resolution and the rather low value I~cf =6 (Al;f =1). The reason is that
we would like to explain the phenomena observed in the direct numerical simulations
denoted as NL, with the statistical theory to be developed in §§ 3—5 that requires the
integration of the high-dimensional covariance matrix (for a grid with M points the
covariance has dimension 2M?). However, the low resolution results were compared
to higher resolution simulations and there were no significant differences found. In
one-layer flows, strong and persistent large-scale flows are produced when the non-
dimensional planetary vorticity gradient g = j /I;f? is large (Bakas & loannou 2014).

Taking into consideration these results we chose § =60 and 7=0.1 yielding the non-
dimensional value of g =100, which also roughly corresponds to values characteristic
of the atmospheres of the outer planets (Bakas & loannou 2014).

Previous studies on the emergence of large-scale structures in forced—dissipative
turbulence have used two indices to quantify the energy in the emerging large-scale
structures. The first is the zonal mean-flow (zmf) index

> E(k=0.k)

I;}V:I;y<kf—Akf
zmf = S , (2.10)
> Ek, k)
kky
with ;
E(k,, ky)=Tlim T/ (v >+ 10 di, (2.11)
— 00 0

the time averaged kinetic energy of the flow at wavenumbers (k,, l~cy). The zmf
index determines the ratio of the energy of the zonal component of the flow to the
total energy of the flow and was used by Srinivasan & Young (2012) to study the
emergence of jets in barotropic turbulence. The second is the non-zonal mean-flow
(nzmf) index:

Z E(i(x 7& O’ ic})

(2.12)
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FIGURE 1. (Colour online) The zmf and nzmf indices defined in (2.10) and (2.12)
respectively, as a function of the energy input rate & for the fully nonlinear (NL)
integrations (solid lines), the ensemble quasi-linear (EQL) integrations (dashed lines) and
the S3T simulations (open circles for the nzmf and stars for the zmf index). The latter two
are discussed in §§5 and 6. The critical energy input rate . for which the homogeneous
state becomes unstable is calculated from the S3T stability analysis (in §4) and the critical
energy input rate £, for which the travelling wave states become unstable with respect to
zonal perturbations is shown by the vertical thin line (see §5). The parameters values
are ;§ = 60, l~cf =06, Al}f =1, r=0.1, A= l~<f and the forcing between the two layers is
uncorrelated (p =0).

that determines the ratio of the energy in waves with scales larger than the scale of
the forcing (k < I~<f) to the total energy in the flow and was used by Bakas & Ioannou
(2013a) to study the emergence of large-scale waves. If the large-scale waves that
emerge are coherent, then these indices quantify their amplitude.

Figure 1 shows the dependence of the nzmf and zmf indices on the energy input
rate & for NL simulations with a Rossby radius of deformation comparable to the
forcing scale A :I~cf and an uncorrelated forcing between the two layers (p =0). We
observe that for & lower than the critical value &., which will be theoretically predicted
in §4, there are no large-scale structures in the flow. This can also be verified by the
kinetic energy power spectra of the barotropic part of the flow shown in figure 2(a),
as the spectra contain only the ring of forced wavenumbers. Therefore the flow is
dominated by the directly forced waves that obey the Rossby wave dispersion but are
phase incoherent. To quantify this we calculate the ensemble mean of the frequency
power spectrum of the streamfunction field at wavenumber (]NCX, I~cy):

Veor = {1 (ke Ky, D)), (2.13)
where
(ke ky, @) = / >y he R dr, (2.14)
Xy

for the barotropic part of the flow. Similarly we calculate 6,,, for the baroclinic part.
Travelling waves manifest as peaks at specific frequencies with phase coherence over
times proportional to the inverse of the half-width of their resonant peak. We consider
that the structure that emerges is phase coherent when its coherence time exceeds
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FIGURE 2. (Colour online) (a) Long-time average of the kinetic energy power spectra of
the barotropic part of the turbulent flow at statistical equilibrium obtained from an NL
simulation at & = &./2. (b) The ensemble mean frequency power spectrum ., (defined
in (2.13)) for the k= (1, 5) barotropic wave. The frequency power spectrum is normalized
to unit maximum amplitude for illustration purposes. The corresponding normalized V.,
for linear Rossby waves with the same wavenumber and stochastically forced by white
noise is also shown (dashed lines) for comparison.

the dissipation time scale, which is the time over which a linear wave stochastically
excited by white noise remains coherent. Figure 2(b) shows the barotropic frequency
power spectrum V., for one of the waves in the forced ring with wavenumbers
(kyr, ky) = (1, 5). The frequency power spectrum peaks at the Rossby wave frequency
w, = Bk /(2 + k;,), while comparison of its half-width with the corresponding
half-width of the power spectrum of stochastically forced linear Rossby waves
with the same wavenumbers shows that the coherence time for these waves is the
dissipation time scale.

The rapid increase in the nzmf index for & > &. shown in figure 1, signifies the
emergence of large-scale waves in the flow. The scales of the waves are shown in
figure 3 which illustrates the kinetic energy power spectra at statistical equilibrium
for € = 2¢.. We observe that the kinetic energy of the barotropic part of the flow
(cf. figure 3a) peaks at wavenumbers (|k.|, |k,|) = (1, 4) and (lk|, |k|) = (2, 4).
In figure 3(c) we plot the barotropic frequency power spectrum V., for the two
k= (1, 4) and k= (2, 4) dominant barotropic structures and compare them with
the corresponding power spectrum of stochastically forced linear Rossby waves
with the same wavenumbers. We observe that both the (1, 4) and the (2, 4) waves
remain phase coherent (over six and two dissipation time scales respectively) and
also satisfy to a good approximation the Rossby wave dispersion as ., peaks at
the corresponding Rossby wave frequencies for both wavevectors. In contrast, the
baroclinic component of the flow is very weak compared to the barotropic part (cf.
figure 3b) and the emergent structures have an incoherent baroclinic part. For example,
the wave with k = (4, 0) that achieves maximum kinetic energy for the baroclinic
component remains phase coherent for very short times (shorter than 1/7) as revealed
by its frequency power spectrum 6., that is shown in figure 3(d). We can therefore
conclude that large-scale, phase coherent, barotropic Rossby waves emerge in the
flow for & > £.. For larger energy input rates, the energy in these large-scale waves
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FIGURE 3. (Colour online) (a,b) Long-time average of the kinetic energy power spectra
of the (a) barotropic and (b) baroclinic part of the turbulent flow at statistical equilibrium,
obtained from an NL simulation at & = 2&.. Shown are the spectra in the region in
wavenumber space inside the forced ring. (¢) The ensemble mean frequency power
spectrum ., for the two k= (1, 4) and k= (2, 4) barotropic waves dominating the
kinetic energy power spectra in (a). The frequency power spectrum is normalized to unit
maximum amplitude for illustration purposes (as observed in (a) the k= (1,4) wave has
approximately twice the energy of the k=(2,4) wave). (d) The ensemble mean frequency
power spectrum 6., for the k = (4, 0) baroclinic wave dominating the kinetic energy
power spectra in (b). In (c,d) the corresponding normalized ¥, and 6., for linear Rossby
waves with the same wavenumbers and stochastically forced by white noise are also shown
(dashed lines) for comparison.

increases (increasing nzmf index in figure 1) as well as the scales of the dominant
waves.

When the energy input rate passes a second threshold &,;, which will be calculated
in §5, large-scale zonal jets emerge as signified by the increase of the zmf index
for € > &, shown in figure 1. The barotropic kinetic energy spectra for & = 60¢,
shown in figure 4(a), reveal that the zonal jet with (|l~cx|, |I~cy|) = (0, 2) dominates the

flow, while there is a secondary peak at the wave with (|l~<x|, |l~<y|) = (1, 3) that is
phase coherent (not shown). The baroclinic part of the spectrum fills the whole area
inside the ring of forced wavenumbers but is three orders of magnitude smaller. As
the energy input rate further increases, the energy being pumped into the barotropic
zonal jets increases, while the energy of the large-scale barotropic waves decreases
(cf. figure 1). The scales of both the jets and the waves also increase. In summary,
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FIGURE 4. (Colour online) Long-time average of the kinetic energy power spectra of
the (a) barotropic and (b) baroclinic part of the turbulent flow at statistical equilibrium
obtained for & = 60¢,.

there are two regime transitions in the flow as the energy input rate of the forcing
increases. In the first transition, phase coherent, large-scale Rossby waves emerge and
break the homogeneity of the turbulent flow and in the second transition large-scale
barotropic zonal jets emerge.

For lower values of the Rossby radius of deformation A, the bifurcation diagram is
similar with the two regimes of large-scale waves and large-scale jets evident when
the energy input rate passes a critical value. However, the structures that dominate the
flow have a baroclinic component as well. Figure 5 shows the kinetic energy power
spectra for 1= l~<f /6 and two values of the energy input rate above the critical threshold
&.. For low energy input rates (cf. figure 5a,b), the flow is dominated by a barotropic
wave with (|k| |k ) = (1, 4) and a baroclinic wave with (|k| |k D =(1,3) and an
amplitude for the baroclinic streamfunction approximately half of the amplitude of the
barotropic streamfunction. Calculation of the frequency power spectra ¥, and 6.,
reveals that both of these waves follow the Rossby wave dispersion and remain phase
coherent over times longer than the dissipation time scale (not shown).

At larger energy input rates (cf. figure 5c,d), the flow is dominated by a barotropic
jet accompanied by a baroclinic wave. This state was found to exhibit significant
variability at long time scales of the order of 10/7. Figure 6(a) shows the evolution
of the zmf and nzmf indices. We observe a low frequency variability of the two
indices that are anti-correlated, with time periods of stronger jets/weaker waves and
time periods of weaker jets/stronger waves. Similar variability is observed in the
baroclinicity measure:

D (K +22)0 (k)|
Ry="Y (2.15)
> k!

ke ky

that is shown in figure 6(b), where the periods of stronger waves are accompanied by
higher values for the flow baroclinicity. Therefore, we observe an energy exchange
between the barotropic zonal jet and the large-scale baroclinic wave. For larger
energy input rates, the baroclinic part of the flow weakens along with the amplitude
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FIGURE 5. (Colour online) (a,b) Long-time average of the kinetic energy power spectra of
the (a) barotropic and (b) baroclinic part of the turbulent flow at statistical equilibrium for
a NL simulation with & =10g,. (¢,d) The same as (a,b) but for £ =40¢,. The deformation
radius is 1 =4;/6 and the rest of the parameter values are the same as in figure 1.

of this low frequency variability. As a result, for geophysical flows that are highly
supercritical with respect to the structure-forming instability such as the Jovian
atmosphere, the baroclinic component of the flow is expected to be very weak.

We now test the sensitivity of the obtained results to the forcing correlation between
the two layers. The barotropic forcing (p = 1) presents at first sight the worst case
scenario for symmetry breaking by baroclinic structures since only barotropic eddies
are injected in the flow. However, the regime transitions observed for uncorrelated
forcing as well as the characteristics of the emergent structures remain the same.
In contrast, the baroclinic forcing (p = —1) presents at first sight the worst case
scenario for the emergence of barotropic flows. For A =k;/6 and 1=k, the regime
transitions are the same as in the case of uncorrelated forcing (p = 0) and are not
shown. The only difference is that the phase coherent barotropic waves that emerge in
the case of A =l~<f have scales comparable to the forcing scale l~cf. A slightly different
picture emerges when energy is injected at scales larger than the deformation radius
as the wave regime is absent. For example, when 1 = 21~<f there is only one regime
transition in the turbulent flow as the energy input rate of the forcing is increased
with the emergence of zonal jets breaking the translational symmetry in the flow.
Figure 7 illustrates the kinetic energy power spectrum of the barotropic part for two
supercritical values of the energy input rate. For low energy input rates shown in
figure 7(a) (¢ =4¢.), the jets have scales comparable to the deformation scale as the
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FIGURE 6. (Colour online) (a) Evolution of the zmf (solid) and nzmf (dashed) indices
(thin lines). The thick lines show the low pass filtered time series of the indices. (b)
Evolution of the baroclinicity ratio (thin line). The thick line shows a low pass filtered
time series of R,. The energy input rate is &€ =40¢,, the deformation radius is 2:79«/6
and the rest of the parameters are as in figure 1.
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FIGURE 7. (Colour online) Long-time average of the kinetic energy power spectra of the
barotropic part of the turbulent flow at statistical equilibrium for (a) &€ = 10é. and (b)
& = 60¢,. The forcing is baroclinic (p=—1), /~l=2kf and the rest of the parameter values
are the same as in figure 1. These simulations were performed with a 64 x 64 resolution.

power spectra peak at |l~cy| =31/4. For larger energy input rates shown in figure 7(b)
the jets obtain larger scales and as the energy input rate is further increased the
energy is pumped into larger- and larger-scale jets.

To summarize, when the energy injection scale is comparable to the Rossby
radius of deformation, the homogeneity of the flow is broken by the emergence
of large-scale barotropic waves and large-scale zonal jets as the energy input rate
passes certain thresholds. When the energy injection scale is smaller than the Rossby
radius of deformation, both barotropic and baroclinic large-scale waves emerge in
the flow and for large energy input rates the barotropic part of the flow is zonated


https://doi.org/10.1017/jfm.2018.928
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

Downloaded from https://www.cambridge.org/core. Access paid by the UC San Diego Library, on 15 Jan 2019 at 15:33:56, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/jfm.2018.928

Is spontaneous generation of coherent baroclinic flows possible? 901

and becomes dominant. These results are in general independent of the correlation
of the excitation between the two layers with minor exceptions (for example the
absence of the wave regime when the energy injection scale is larger than the Rossby
radius of deformation). In the following sections we develop a theory that explains
the emergence of large-scale flows as a bifurcation and is also able to predict the
characteristics of the emergent structures.

3. Stochastic structural stability theory

In order to analyse the transition from a statistically homogeneous to a statistically
inhomogeneous turbulent state, we consider the statistical state dynamics (SSD) of
the two-layer model (2.1)-(2.2) which comprises the dynamics of the cumulants of
the flow. Due to the infinite hierarchy of the resulting equations, this system has
to be closed at a certain order through an approximation or assumption. We follow
previous studies and consider a second-order closure that is called S3T or CE2
(Farrell & Ioannou 2003; Marston et al. 2008). The cumulants are defined by using
a proper averaging operator (cf. Monin & Yaglom 1973) that captures the emergent
large-scale structure (e.g. zonal jet or planetary-scale wave) and additionally satisfies
the ergodic property that the second-order cumulants are equal to the ensemble
average over forcing realizations under the same first cumulant. In order to address
the emergence of both zonal jets and coherent waves in this work, we employ the
ensemble average and interpret it as an average over an intermediate time scale
which is long compared to the time scale of the evolution of the incoherent flow but
short compared to the time scale for the evolution of the mean. Similar assumptions
for the average separating fast from slow motions or large-scale from small-scale
motions were also made in previous studies (Bernstein & Farrell 2010; Bakas &
Toannou 2014; Constantinou, Farrell & Ioannou 2016; Marston, Chini & Tobias 2016;
Bouchet, Marston & Tangarife 2018).

In order to formulate the theory for the two-layer flow, we first non-dimensionalize
(2.1)-(2.2) by choosing the damping relaxation time scale, 1/7, as the characteristic
time scale and the scale of the excitation, 1/k;, as the characteristic length scale.
The non-dimensional variables are: [¢, 9] =[¢, #1/7, [V, 01=[V, 01k}/F, £V, &°] =
(€7, €))7, e =&k2/P, B =PB/(k¥), 1= A/k; and r= 1. Thus, the non-dimensional
version of (2.1)—(2.2) lacks all tildes and has r = 1. We also approximate the ring
forcing spectrum (2.8) with a forcing covariance that is isotropic and injects energy
in a delta ring in wavenumber space of radius 1:

A e(1 4 22%)?
B = 2(1 +(2+p)/14+3/12)8(k_ D- G-1)

Again, the amplitude is chosen to yield an energy injection rate ¢.

The first cumulant of the barotropic and baroclinic streamfunctions are ¥ (x, f) e

(¥) and O(x, 1) &f (0), while the eddy field is denoted with dashes and defined as

v, ) =v — (Y), 0/, 1 Ly (0). In order to derive the S3T system we first

derive from (2.1)—(2.2) the equations for the mean and the eddies:
WZ+JW,2)+J(O, AO)+ Bo¥ =—(J(¥', )+, A)) - Z, (3.2)
OH+JW, H)+J(©,2)+ o0 =—(J' n)+JO" ) —H, (3.3)
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0 +IW, Y +IW, Z)+J(O, A0)+ (0, AO) + Y
=W, ) +JO, A0)) — W', ¢+ IO, A8)) ¢+ &7, (3.4)

-~

Ny

o' +JW, ) +JW' H) +J(O, )+, Z) + pa.b’
=JW ) +J0O ) - U@ ) +I0 ) '+ (3.5)

Ny

Neglecting the eddy—eddy nonlinear terms N, and Ny in (3.4)—(3.5), we can obtain
the quasi-linear approximation for the eddies:

WL 1 =AlL 01" + 18, €T, (3.6)
where
A% (AUYA'—UY) -V — B A —1 —U’ - VAAT' + AU’ -V AL
U -V4+AU0-VAT! (AUY A —UY) -V —BaA —1)°
(3.7)

is the linear operator governing the evolution of the eddies about the instantaneous
mean flow [UY, U’]", T denotes the matrix transpose and A~', A7' are the integral
operators that invert ¢’ and 7’ into the barotropic and baroclinic streamfunction
fields. Equations (3.2)-(3.3) and (3.6) constitute the ensemble quasi-linear (EQL)
approximation to the fully nonlinear dynamics.

The S3T system is then obtained by first expressing the eddy fluxes forcing the
barotropic and baroclinic flow in terms of the second cumulant

Ciy Cup
> = of om , (3.8)
that is the covariance matrix of the eddy fields ¢’, n’. In (3.8) we use the shorthand

¢l =1¢'(x,, 1), to refer to the value of the relative barotropic vorticity at the specific
point x, (and similarly for n’). Defining the streamfunction covariance matrix

et DA AN Gy AL AL CY
SCa X)) =S =1 oy o | = R 1 A=1 | ° (3.9
Sab Sab A/l,aAﬂ C b A/LaA/l,b Cab

a

C(xa, xb) = Cab =

def ((C;fﬁ) (Comp)
Mgy (nimy)

we can express the Reynolds stress divergences as:

RUC) & W, )+, 20)) =0, [5(=,,4, = 0, A) S +Sip)]

Xa=Xp

0 [ 20,40+ 0, AW +SI)] (3.10)
Xq=Xp
R'C) € g, n)+J@,¢))
= 00 [3(=8,, 400 = 8, A0S0 + 3(=0,,4,— 8,4,
Xq=Xp
1 Ve | 1 Oy
+ ay [2(8)(“ A/Lb + abea)Sab + B (8xa Ap+ ax;; A/La)Sab :| ’ (31 1)
Xq=Xp
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where the subscripts a denote the action of the differential operators on x,, and x,=x,
denotes that the function of the two points x, and x, is to be evaluated at the same
point. The first cumulant therefore evolves as:

0, +U" - VYZ+ U’ -V)AO + VY =RY(C) — Z, (3.12)
@,+U"-VYH+ (U’ -V)Z+ BV’ =R’(C) — H, (3.13)

and in the limit of an infinite ensemble, the second cumulant C evolves according to
the free-of-fluctuations time-dependent Lyapunov equation:

0,Cup = A,Cyp, + (AhCZb)T + Qup, (314)
with
€rely o ((1 +P)E (X, — X)) 0 )
b = “ = , 3.15
o ( 0 (g 0 (-pEe—xp) 1Y

the homogeneous spatial covariance of the stochastic forcing. The subscript a in A
denotes that the differential operators in A act on the variables x, of C, and also
that the functions in A are evaluated at x,. Equations (3.12)—(3.14) form the S3T
dynamical system which governs the joint evolution of the large-scale flow field
described by [Z, H]T and the covariance C of the eddy field and is a second-order
closure of the SSD, as the quasi-linear approximation to the dynamics amounts to
ignoring the third- and higher-order cumulants in the SSD.

4. S3T stability of the homogeneous equilibrium

The statistical stationary states of the turbulent flow are manifestations of the fixed
points of the SSD. If the fixed points are stable then the turbulent flow is expected
to remain close to this stationary state. If the fixed points are unstable, then the
instability manifests as a transition in the turbulent flow and the new fixed points that
result from the equilibration of the SSD instability correspond to the new attractor in
the flow. Therefore the regime transitions from the homogeneous turbulent flow that
are observed as the energy input rate increases should correspond to the instability
of a homogeneous fixed point of the SSD and the dominant structures should be
manifestations of the new fixed points.

Under homogeneous excitation, the state with no mean flow [Z, H]T = 0 and
homogeneous covariance Crp = Q/2, with Q the excitation covariance (3.15), is a
fixed point of the S3T system (3.12)—(3.14). This is the homogeneous statistical
equilibrium of the two-layer fluid. We study the stability of this equilibrium as
the energy input rate of the excitation, &, is increased. The linear stability is
addressed by performing an eigenanalysis of the S3T system linearized about this
equilibrium. The eigenfunctions have both a mean-flow component and a perturbation
covariance component. The homogeneity of the equilibrium implies that the mean-flow
component consists of sinusoidal functions:

[8¥, 801" =[ay, ay]" e"*e”, (4.1)

and the covariance component also consists of sinusoidal functions of the form:

ein((atxp)/2)+ot  poo OO A ~ A :
[88VV, 887, 887, 68" =~ —— / / [§77, 870, 8%, §% Tk e) Pk,
—00 J —00

27
4.2)
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with n = (n,, n,) the wavevector of the eigenfunction, and n = |r| the total wavenumber.
The inhomogeneity of the covariance eigenfunction is revealed by its dependence on
the mean position (x, + x,)/2. The eigenvalue o associated with n governs the
stability of perturbation (4.1), (4.2) to the homogeneous equilibrium state; the growth
rate of this perturbation is arnge(G) and its frequency is a,»dzeflm(o*).

It is shown in appendix A that the eigenfunctions are either purely barotropic
(ay #0, ay =0) or purely baroclinic (a, =0, ay # 0). The barotropic modes satisfy
the dispersion relation:

o +1—iBn,/n*=f,(0), (4.3)

while the baroclinic modes satisfy:
o+ 1—ipn./ni=f(0), (4.4)
with nﬂ «/ n* +2A%. The terms f,, f; represent the eddy acceleration feedback on the

barotropic and baroclinic mean flow induced upon perturbing the equilibrium by the
mean-flow eigenfunction. These feedbacks are shown in appendix A to be:

o oo _ 2012 _ 12 2N A
fi(0) = 1+P/ / (nyk, — neky)? (k3. — k(1 —n* /) E £

4nn? oo (O +2)KKE | +iB(kek? | — ke k?)
% (nyky — nky)2 (K2, — K2 1 —n2/kE
/ / (ny n2 ) ( ++. )2( n°/ 4)2 Sk @45)
47”12 w (0 +2k3k5,  +iBlkky, . — ko i k3)
and
14 © (nyk, — nk,)2 (K2, — k) (1 — /K E
foo) = P/ / y ek A+ - ﬂ/ . 2k
47[”4 oo (@ + 2Kk +ipkekiyy — ket k?)
/ /oo (nyk, — ”va)z(kif/kﬁ — (k> — nz)zE &k, 4.6)
47[”/1 00 (U + 2)k/lk3-+ + lﬁ (kxk?H_ - kx++k/l)
with the notation: k3 =1+21%, kyy =k +n,, k3, =|k+n|* and k3, , =|k+n|> +22°.

Both f;, and f, are linear functions of the energy input rate ¢ and the S3T
homogeneous equilibrium becomes unstable when these feedbacks have positive real
part and the energy input rate, ¢, exceeds a critical value ¢.. The critical value, ¢, is
obtained by first determining the energy input rate &,(n) for which the eigenfunction
n is neutral (satisfying o,(n) =0), and then determining the barotropic or baroclinic
eigenfunction n that achieves neutrality with the least energy and set ¢, = min(e,(n)).

For a single-layer fluid, the dispersion properties were found to depend on the
value of the non-dimensional planetary vorticity gradient §. For 8 < O(1) stationary
zonal jets grow at the fastest rate, while for 8 >> 1 non-zonal westward propagating
structures are more unstable. The same behaviour is observed for the two-layer fluid
as well.

We first consider 8 = 100 and an uncorrelated forcing between the two layers
(p = 0). For 4 > 0.68 only barotropic modes become unstable when the energy
input rate passes a critical value, while baroclinic modes are stable for all values
of &. Therefore the absence of baroclinic structures when 1 = l}f (A=1) in the NL
simulations is due to the stability of the homogeneous equilibrium to baroclinic
perturbations. The growth rate and frequency of the unstable barotropic modes as
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FIGURE 8. (Colour online) Dispersion properties of the unstable barotropic modes for
B =100, 1=1. (a,c) Growth rate o, of the most unstable modes for (a) ¢ =10¢. and (c)
e = 100¢.. (b,d) Ratio of the frequency of the most unstable modes over the barotropic
Rossby wave frequency R; =o;/og, for (b) € =10¢. and (d) € =100¢.. The forcing in the
two layers is uncorrelated (p =0).

a function of the mean-flow wavenumber n are shown in figure 8 for two values
of ¢ (¢ =10¢, and ¢ = 50¢.) and for 4 = 1. At low supercriticality (cf. figure 8a)
only non-zonal modes (n, # 0) are unstable with two branches of instability: one
at meridional scales comparable to the forcing scale (n, ~ 1) and one at larger
meridional scales, with the most unstable modes having larger scales than that of the
excitation. The frequencies of the unstable modes are very close to the frequencies of
the free barotropic Rossby waves oy, = Bn,/n>. This can be quantified by values of
one for the ratio R; = 0;/0k,, which is plotted in figure 8(b). At larger supercriticality
(cf. figure 8c) the two branches merge, stationary (o; = 0) barotropic zonal jet
eigenfunctions (n, =0) become unstable and there is an additional branch of unstable
non-zonal modes with zonal wavenumbers comparable to the excitation wavenumber
(n, ~ 1) with the frequency of these modes departing substantially from the Rossby
wave frequency (cf. figure 8d). However, the large-scale non-zonal structures, remain
the most unstable modes.

When A < 0.68, baroclinic modes become S3T unstable and have for small values
of A comparable growth rate to the barotropic modes (or nearly equal in the case
A& 1). The growth rate and frequency of the most unstable barotropic and baroclinic
modes are shown in figures 9 and 10 for 4=0.1 and two values of the energy input
rate. The barotropic and baroclinic modes have similar growth rates as a function of n.
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FIGURE 9. (Colour online) Dispersion properties of the unstable modes for g8 = 100,
A=0.1 and ¢ = 10¢,.. (a,c) Growth rate o, of the most unstable (a) barotropic and (c)
baroclinic modes. (b,d) Ratio of the frequency of the most unstable (b) barotropic modes
over the corresponding barotropic Rossby wave frequency R; = o;/0k and (d) baroclinic
modes over the corresponding baroclinic Rossby wave frequency Ry =o;/0og.. The forcing
is uncorrelated (p =0).

Their dispersion properties resemble the large-scale branch of the unstable barotropic
modes at larger values of A, with the frequencies of the large-scale modes following
the dispersion of the barotropic og, and baroclinic og. = Bn,/n; Rossby waves as
shown in figure 9(c,d). At larger supercriticalities, stationary barotropic and baroclinic
zonal jet eigenfunctions are unstable but the non-zonal modes have larger growth rates
(cf. figure 10).

We now consider 8 = 1. Baroclinic modes are unstable for 4 < 0.37 instead of
A < 0.68 at B = 100 and the baroclinic unstable modes have lower growth rates
than the barotropic modes. This is illustrated in figure 11 where the growth rate and
frequency of the unstable barotropic and baroclinic modes are shown for A=0.1. As in
a one-layer fluid, the most unstable modes are stationary zonal jets for 8 = O(1). For
A > 0.37 the dispersion properties of the barotropic unstable modes are similar and
are not shown.

We finally test the sensitivity of the dispersion properties of the unstable modes to
the forcing correlation between the two layers. Consider first the barotropic forcing
(p=1). In this case the flux feedbacks arise only from the first terms in (4.5)-(4.6),
that is only from the organization of the barotropic turbulent eddies by the mean flow.
For A4 = O(1) the baroclinic modes are stable and the dispersion properties of the
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FIGURE 10. (Colour online) The same as figure 9 but for ¢ = 100e,.

barotropic modes are similar to the ones shown in figure 8 with the only significant
difference being the absence of the upper branch. For lower values of A, the baroclinic
modes become unstable and have dispersion properties similar to the ones shown in
figures 9 and 10 for uncorrelated forcing despite the fact that small-scale incoherent
baroclinic eddies are not directly excited in this case (S} =0). Therefore the instability
of the baroclinic modes when excitation occurs at much smaller scales than the Rossby
radius of deformation is robust regardless of whether incoherent baroclinic eddies are
supported at the homogeneous equilibrium.

We then consider the baroclinic forcing (p = —1), in which case the flux feedbacks
arise only from the organization of the baroclinic turbulent eddies by the mean flow
(i.e. the second terms in (4.5)—(4.6)). For low values of A, the dispersion properties
of both the barotropic and the baroclinic modes are similar to the ones obtained for
uncorrelated forcing (p = 0) (shown in figure 9) and are not shown. The dispersion
properties at A =1 are shown in figure 12(a,b). We observe that barotropic modes
have faster growth rates and resemble the upper branch of figure 8, that is they have
small zonal scales and meridional scales comparable to the forcing scale (n, >~ 1).
The most unstable baroclinic modes, that are suboptimal compared to their barotropic
counterparts, have both zonal and meridional scales comparable to the forcing scale.
Interestingly, when we force at scales larger than the Rossby radius of deformation
(A > 1), the instability characteristics change. As illustrated in figure 12(c,d) showing
the dispersion properties at 4 =2, the most unstable modes are barotropic zonal jets
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FIGURE 11. (Colour online) Dispersion properties of the unstable modes for § =1, 1=0.1
and ¢ = 10¢.. (a,c) Growth rate o, of the most unstable (a) barotropic and (c) baroclinic
modes. (b,d) Frequency o; of the most unstable (b) barotropic and (d) baroclinic modes.

with scales comparable to the deformation scale, a characteristic that is also evident
at even larger values of A.

In summary, S3T predicts that the homogeneous statistical equilibrium of a two-
layer baroclinic flow becomes unstable at a critical value of the energy input rate,
&., whereupon large-scale mean flows emerge. Barotropic modes have larger growth
rates compared to their baroclinic counterparts for all values of 8 and A regardless of
the characteristics of the eddies supported at statistical equilibrium. When energy is
injected at a length scale close to the deformation radius, barotropic modes following
the Rossby wave dispersion have in general the largest growth rate for large values of
B and stationary zonal jets have the largest growth rate for 8 = O(1). When energy
is injected at scales much smaller than the deformation radius, both barotropic and
baroclinic large-scale flows emerge with the barotropic modes having slightly larger
growth rates.

5. Equilibration of the SSD instabilities and comparison to NL simulations

In this section we examine the equilibration of the SSD instabilities by numerical
integrations of the S3T dynamical system. The goal is twofold. The first is to
determine the non-homogeneous fixed points of the S3T dynamical system with the
largest domain of attraction that a random perturbation will likely end up at. For
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FIGURE 12. (Colour online) Dispersion properties of the unstable modes for baroclinic
forcing (p=—1) at 8 =100 and ¢ = 10g,. (a,b) Growth rate o, of the most unstable (a)
barotropic and (b) baroclinic modes for A =1. (¢,d) Growth rate o, of the most unstable
(c¢) barotropic and (d) baroclinic modes when A =2.

example, we saw in the previous section that when the non-dimensional radius of
deformation is smaller than a critical value, barotropic and baroclinic modes have
comparable growth rates. Therefore there is the question of whether the equilibrated
state will consist of both barotropic and baroclinic components. The second is to
compare the dominant structures in the turbulent flow with the equilibrated states
in the S3T system and to investigate whether the characteristics of the dominant
structures in the NL simulations are predicted by S3T.

To integrate the S3T dynamical system, we discretize (3.12)—(3.14) in a doubly
periodic channel of size 2w x 2w using a pseudo-spectral code and a fourth-order
time stepping Runge—Kutta scheme. Due to the high-dimensionality of the covariance
matrix we use the modest M =32 x 32 resolution. To facilitate the comparison with
the NL simulations, we apply the same ring forcing (3.1) and consider the same
parameters § = 60, 7 = 0.1, k; = 6 and Ak; = 1. Because the S3T simulations are
computationally expensive, we also utilize for comparison purposes simulations of the
ensemble quasi-linear system (EQL) defined in (3.2), (3.3) and (3.6). The EQL system
is the finite ensemble version of the deterministic S3T dynamical system and the EQL
simulations converge to the S3T integrations as the number of ensemble members
N..s used to calculate the mean increases. The emergent structures and the statistical
turbulent equilibria predicted by the S3T system manifest in the EQL integrations with
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FIGURE 13. (Colour online) Contours of mean-flow barotropic streamfunction ¥ at
equilibrium for (a) &€ =2¢&, and (b) &€ = 60¢.. The parameters values are the same as in
figure 1.

the addition of noise from stochastic forcing fluctuations, which for any finite N,,; do
not average to zero. A disadvantage of this method is that due to thermal noise from
the excitation, only the equilibria with the largest domain of attraction will emerge.
Previous studies have investigated the convergence of the EQL simulations to the S3T
integrations and determined that N,,;, = 10 ensemble members illustrate the relevant
dynamics with minimal computational cost (Bakas & Ioannou 2014). We therefore
make the same choice. o
Consider first the case of uncorrelated forcing between the layers (p=0) and A =k;.
The critical energy input rate &. that renders the homogeneous S3T equilibrium
unstable is obtained from the discrete version of (4.3)-(4.4). We investigate the
equilibration of the SSD instability for supercritical values of & through S3T
integrations. For & = 2¢., the barotropic perturbation with (7., n,) = (1, 4) has
the largest growth rate, while the baroclinic perturbations are S3T stable at this value
of 1 for all values of &. At r =0, we introduce a small random perturbation, with
both barotropic and baroclinic mean-flow components. The baroclinic part of the
flow diminishes while the barotropic part of the flow grows exponentially with the
predicted growth rate, and the flow finally equilibrates to a westward propagating
wave. The barotropic streamfunction at equilibrium, shown in figure 13(a), has
Fourier components primarily with wavenumbers (|l~<x|, |I~cy|) = (1, 4) and secondarily

with wavenumbers (|I~cx|, |1~<y|) = (2, 4). Investigation of the propagation properties
of the wave shows that the phase speed of each wave component is very close
to the phase speed of the unstable modes that themselves are nearly equal to the
Rossby wave phase speed for each component. The finite amplitude state of the SSD
consisting of the propagating waves becomes itself secondarily unstable at larger
energy input rates to zonal jet perturbations. This secondary SSD instability has
already been discussed in the context of a single layer barotropic flow on a g-plane
by Bakas & Ioannou (2014) and for the chosen parameters it occurs at &, = 15&.. The
flow then transitions to a new equilibrium state such as the one shown in figure 13(b)
for the case &€ = 60¢.. This state consists of a zonal jet with an embedded propagating
wave of lower amplitude, as in single-layer barotropic flows (Bakas & Ioannou 2014;
Constantinou et al. 2016).

We now investigate how these results relate to the regime transitions and to the
characteristics of the dominant structures in the turbulent flow. The rapid increase of
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FIGURE 14. (Colour online) (a) Kinetic energy power spectrum of the barotropic part of
the eddy covariance k28¥V. (b,c) Total kinetic energy power spectrum of the (b) barotropic
(EXy;) and (c) baroclinic (Ef,,) part of the flow for & =2&.. (d—f) The same as in (a—c)
but for & = 608..

the nzmf index in the NL simulations when the energy input rate passes the critical
value &. calculated from the stability analysis of the homogeneous fixed point of the
SSD shows that the bifurcation point for the emergence of large-scale waves in the
turbulent flow is accurately predicted by S3T. The same holds for the increase of the
zmf index observed in figure 1 for & Z 12&., which shows that zonal jets emerge in
the flow approximately at the stability threshold &, of the finite amplitude travelling
wave states. The small quantitative discrepancy observed should be attributed to both
the thermal noise in the NL simulations and in the quasi-linear approximation of
the dynamics. The scales and phase speeds of the dominant large-scale structures in
the NL simulations also match the scales and phase speeds of the equilibrated SSD
instabilities in S3T. This is illustrated by comparing the distinct peaks in the kinetic
energy power spectra in the NL simulations and the frequency power spectrum of the
wave components shown in figures 3 and 4 to the scales of the emergent structures in
the S3T simulations shown in figure 13 and their phase speed. In order to compare
the amplitude of the emergent structures we calculate the equivalent kinetic energy
power spectra

EL () =RP(P PP+ 8",  El.(k) =k(6) +57), (5.1a,b)

where §¥Y and $% are the power spectra of the eddy covariances S¥¥ and S%
respectively. For the barotropic part, the eddy power spectrum SY¥ shown in
figure 14(a d) is two orders of magnitude smaller than |2, so the equivalent power
spectrum ES3T shown in figure 14(b,e) is dominated by the spectrum of the coherent
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part of the flow. This should come as no surprise, since the dominant structures in
the turbulent flow are phase coherent and should therefore be a manifestation of the
coherent part of the flow. For the baroclinic part, ® =0, so E%, that is shown in

figure 14(c,e) coincides with the eddy power spectrum 500, Comparison of the spectra
obtained from the NL simulations (figures 3 and 4) and the equivalent spectrum
shown in figure 14 shows that the amplitude of the emergent structures differs by
a factor of two for & = 2¢. and by approximately 20 % for & = 60g.. To facilitate
comparison of the amplitude of the emerging structures for a wide range of values
for £, we utilize the EQL simulations and calculate the zmf and nzmf indices that are
shown in figure 1. We observe that, apart from the quantitative disagreement at low
supercritical energy input rates for the amplitude of the emergent waves, the EQL
dynamics fairly reproduces the amplitude of the emergent structures. Similar results
regarding the comparison of the S3T predictions with NL simulations were found
for barotropic turbulence (Bakas & Ioannou 2014), showing that the quasi-linear
dynamics close to the bifurcation point captures the emergence of flows in contrast
to the physical intuition on the importance of the nonlinear terms as also discussed
in the introduction. _

Consider now A =k;/6 (1=1/6) for which the S3T stability analysis predicts the
existence of both barotropic and baroclinic unstable S3T modes. We have identified
in this case three attracting equilibrium states with finite amplitude mean flows. The
first is a purely barotropic equilibrium, to which all purely barotropic perturbations
are attracted. Note that purely barotropic perturbations do not produce any baroclinic
fluxes even in their nonlinear stage of evolution and as a result, the mean flow
remains barotropic. An example of such an equilibrated state is shown for & = 10é,
in figure 15(a), where again the large-scale flow is a westward propagating wave.
However this equilibrium is secondarily unstable to baroclinic mean-flow perturbations.
We illustrate this by perturbing the barotropic equilibrium, shown in figure 15(a), with
a small baroclinic mean flow perturbation. Figure 15(b) shows the evolution of the
baroclinicity measure (2.15) in which 1//} =¥ and § = O are the Fourier components
of the barotropic and baroclinic mean-flow streamfunction respectively. We observe
that the baroclinic mean-flow component grows exponentially at first and as soon as
it reaches a finite amplitude, the flow transitions to the second non-zonal equilibrium
with both barotropic and baroclinic components and baroclinicity R, ~ 1/4. The
structure of these components is shown in figure 15(c,d).

The third equilibrium is also a westward propagating wave with both barotropic
and baroclinic components and similar scale as the one shown in figure 15(c,d) but
is more baroclinic (R, >~ 2). However, this equilibrium has a very small domain
of attraction and it can be approached only if the initial perturbation is baroclinic.
(Specifically, this equilibrium is approached only if the initial perturbation has a
baroclinicity ratio larger than 10%) As a result, we do not expect this equilibrium
to manifest in noisy simulations of the turbulent flow in which both baroclinic and
barotropic perturbations inevitably arise. Therefore, at low supercriticalities the S3T
instabilities equilibrate to the finite amplitude mixed barotropic—baroclinic travelling
wave shown in figure 15(c,d) with baroclinic to barotropic streamfunction amplitude
ratio of approximately one half.

Again, at higher supercriticality the traveling baroclinic wave states of the SSD
become secondarily unstable to zonal perturbations. However, only the barotropic
part of the flow is zonated. This is shown in the numerical integration for & = 40¢,
illustrated in figure 16. In this experiment the mixed barotropic—baroclinic traveling
wave state, shown in the upper inset of figure 16, is perturbed by a zonal mean flow
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FIGURE 15. (Colour online) (a) Contours of mean-flow barotropic streamfunction ¥
for the pure barotropic equilibrated state. () Evolution of the baroclinicity ratio after
inserting a baroclinic mean-flow perturbation to the barotropic equilibrium shown in (a).
(c,d) Contours of mean flow (c) barotropic ¥ and (d) baroclinic ® streamfunction for
the mixed barotropic—baroclinic equilibrium state. & = 10¢,, ;lzl}f/6 and the rest of the
parameters are as in figure 13.

perturbation with both barotropic and baroclinic components. The energy of the zonal
part of the flow, E., grows exponentially and the flow transitions to the state shown
at the lower inset that consists of a zonal barotropic flow and a travelling baroclinic
wave. This is a time-dependent state as shown in figure 17. The energy of the zonal
part of the flow and the baroclinicity R, oscillate and are anti-correlated, revealing
that the large-scale flow vacillates between the state shown in figure 18(a,b) where
the barotropic zonal jet is dominant and the state shown in figure 18(c,d) where the
baroclinic wave is dominant. At even higher energy input rates the large-scale flow
exhibits the same time dependence but with weaker fluctuations due to the weakening
of the baroclinic wave component.

Comparison of the dominant structures in the NL simulations (cf. figures 5
and 6) to the equilibrated states in S3T with the largest domain of attraction (cf.
figures 15-18) demonstrates that the scales of the phase coherent large-scale waves in
the turbulent flow are predicted by S3T. Figure 19 shows the equivalent spectra which
are dominated in this case as well by the coherent part of the flow. Comparison to the
spectra obtained from the NL simulations (cf. figure 5) shows quantitative differences
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FIGURE 16. (Colour online) Evolution of the energy of the zonal part of the flow when a
zonal mean-flow perturbation is imposed on the finite amplitude equilibrium state shown
in the upper insets. The lower insets show the barotropic and baroclinic streamfunction of
the mean flow at 7= 130. The energy input rate is & =408,., and the rest of the parameters
are as in figure 15.

of the order of 20% for the amplitude of the emergent structures. Differences on
the exact points of transition from the wave attractor to the jet attractor are found
in this case as well. But even nuances of the dynamics, such as the long-time
variability of the turbulent flow at & = 40, with a vacillation between a state with
stronger barotropic jet/weaker baroclinic wave and a state with a stronger baroclinic
wave/weaker barotropic jet, are captured in S3T with approximately the same time
scale as revealed by comparison of figures 6 and 17.

We now consider the equilibration of the S3T instabilities for the other two cases
of forcing correlation, that is exciting only the barotropic (p = 1) and the baroclinic
(p = —1) eddies. For the case of barotropic forcing, the instability characteristics as
well as their equilibration are similar to the case of uncorrelated forcing between
the two layers and are not shown. For the case of baroclinic forcing, structures with
small meridional scales are predicted to initially emerge and the low resolution of the
S3T calculations is not adequate to resolve these scales. For this reason we choose
to study the equilibration of the instabilities with ensemble quasi-linear simulations
(EQL) governed by (3.2)—(3.3) and (3.6) at higher resolution (64 x 64). Consider
first 1= l~<f (1=1). At low supercriticality (¢ < 5¢.), the baroclinic modes are stable
and barotropic Rossby waves that have the largest growth rate equilibrate at finite
amplitude as in the case of uncorrelated forcing. The only difference in this case is
that these waves have meridional scales comparable to the forcing scale (the most
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FIGURE 17. (Colour online) (a) Evolution of the mean-flow energy (dotted), the energy
of the zonal part (solid) and the energy of the non-zonal part (dashed) of the flow.

(b) Evolution of the baroclinicity R,. The vertical lines denote the times at which the
snapshots shown in figure 18 are taken.

unstable mode has (|n,|, [n,]) = (1, 6)). As a result the flow equilibrates to this
barotropic travelling wave state. For higher supercriticality (¢ > 5&.), baroclinic modes
are rendered unstable as well. However, the finite amplitude equilibria have very weak
baroclinicity with the baroclinic streamfunction being one order of magnitude smaller
than the barotropic part of the flow that has been zonated through the secondary SSD
instability.

Consider now the larger value 1 = 2k (4 =2) for which linear stability analysis
predicts that barotropic stationary zonal jets with scales close to the Rossby radius
of deformation have the largest growth rate. The equilibrated structure for & = 10¢,
that is shown in figure 20(a) indeed consists of a small-scale barotropic jet with
a scale comparable to the deformation radius (7, = 31/4). At larger supercriticality,
the equilibrated jets assume larger scales (figure 20b). For all energy input rates the
baroclinic streamfunction is orders of magnitude smaller and is therefore not shown.
Finally we note that at ;l=kf/ 6 the equilibrated structures are similar to the case of
uncorrelated forcing and are not shown.

Comparison of the coherent structures in figure 20 with the emergent structures in
the NL simulations in figure 7 reveals that again the scales of the emergent flows are
accurately captured by S3T, while their amplitude is slightly underestimated.

6. Conclusions

The emergence of coherent structures in stratified turbulent flows with turbulence
supported by external sources was investigated in this work. A two-layer model on
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FIGURE 18. (Colour online) (a,b) Snapshot of the mean flow (a) barotropic ¥ and (b)
baroclinic @ streamfunction at 7= 270. (c,d) The same as in (a,b) but for a snapshot at
1=325.

a f-plane channel was considered under the influence of homogeneous and isotropic
stochastic forcing and linear damping of potential vorticity. No mean thermal gradient
was imposed in the flow. The goal was to extend the analysis of studies in barotropic
turbulence which found that (i) coherent flows emerge out of a background of
homogeneous turbulence as a bifurcation when the turbulence intensity increases and
(ii) these turbulent bifurcations can be attributed to a new type of collective instability
of the statistical state dynamics of the turbulent flow. The question addressed was the
following: in the absence of temperature gradients can externally forced turbulence in
a stratified flow support turbulent equilibria in which large-scale baroclinic coherent
flows are sustained at finite amplitude? Or are the large-scale flows that emerge
barotropic?

Direct nonlinear simulations show two major flow transitions as the energy input
rate of the forcing increases. In the first transition large-scale Rossby waves that
remain phase coherent over long time scales emerge in the flow. As the energy input
rate increases, the scales of these waves and their energy increases as well. In the
second transition, zonal jets emerge instead while the energy in the large-scale waves
decreases. Regarding the vertical structure of the emergent flows, the large-scale
waves and jets are barotropic when energy is injected at scales comparable to the
Rossby radius of deformation. When the energy is injected at smaller scales, the
waves that emerge have comparable barotropic and baroclinic streamfunctions. After
the second transition, the barotropic part of the flow is zonated and the turbulent
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FIGURE 19. (Colour online) (a) Kinetic energy power spectrum of the barotropic part
of the eddy covariance k*S¥¥. (b) Equivalent kinetic energy power spectrum £l of the
barotropic part of the flow. (¢) Kinetic energy power spectrum of the baroclinic part of
the eddy covariance k*8” and (d) equivalent kinetic energy power spectrum Ef, of the
baroclinic part of the flow for & = 10¢,.

flow exhibits variability on long times scales with time periods of stronger barotropic
jet and time periods of stronger baroclinic waves. For larger energy input rates
the barotropic jet dominates. These results were found to be independent of the
correlation of the excitation between the two layers as two extreme cases (forcing
only baroclinic eddies and forcing only barotropic eddies) produced qualitatively
similar results to the case of uncorrelated forcing between the two layers. That is,
even though the forcing might inject only barotropic eddies in the flow, these eddies
are organized to support coherent baroclinic waves. Similarly, in the case in which
we inject only baroclinic eddies in the flow, the prevalence of barotropic coherent
structures remains.

We then developed a theory to explain the emergence of coherent flows and
predict their characteristics. The theory is based on a second-order closure of the
statistical state dynamics (SSD) of the turbulent flow (S3T). The fixed points of
the S3T dynamical system for the joint evolution of the coherent flow and the eddy
covariance define equilibria, the manifestations of which are the states of the turbulent
flow at statistical equilibrium. Instability of these fixed points and equilibration into
new steady states manifest as regime transitions in the turbulent flow with the
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FIGURE 20. (Colour online) Contours of the barotropic ¥ streamfunction of the
equilibrated state for a baroclinic forcing (p = —1) and 1= 2k; at (a) &€ = 10¢, and
(b) € =60¢.. The flows are obtained from EQL integrations at a 64 x 64 resolution and
N.,s = 10 ensemble members.

emergence of new attractors. The linear stability of the homogeneous equilibrium
with no coherent structures was examined analytically for a wide range of forcing

scales 1 /l~<f relative to the deformation radius 1/1 and a wide range of values for
the non-dimensional planetary vorticity gradient 8 = B?/kf, where 1/7 is the linear

dissipation time scale. The equilibrium was found to be unstable for all A when the
energy input rate of the forcing exceeds a critical value.

When turbulence is injected close to the Rossby radius of deformation or at
larger scales, baroclinic waves are either stable or grow at a lower rate compared
to barotropic waves. For large values of 8, westward propagating barotropic waves
that follow the barotropic Rossby wave dispersion grow the most, while for values
of B =0(1) or lower stationary zonal jets have faster growth rates. The equilibration
of the incipient instabilities was then studied for large values of 8 through numerical
integrations of the S3T dynamical system. The flow was found to equilibrate for
low supercriticality at finite amplitude travelling wave states that approximately have
the same dispersion properties as the unstable modes. For larger supercriticality, the
travelling wave states become S3T unstable with respect to zonal jet perturbations.
The flow then equilibrates at mixed jet-travelling wave states with lower amplitude
travelling waves embedded within strong zonal jets. This dynamics is similar to
barotropic turbulence organization that was investigated in earlier studies (Bakas &
TIoannou 2014; Constantinou et al. 2016).

When turbulence is injected at scales much smaller than the deformation radius,
barotropic and baroclinic modes have comparable growth rates with barotropic modes
growing at slightly faster rates and having dispersion properties similar to the ones
for larger values of the deformation radius. For low supercriticalities, the flow
equilibrates at mixed barotropic—baroclinic travelling wave states with the barotropic
streamfunction having a larger amplitude compared to the baroclinic streamfunction.
For higher supercriticalities, a secondary S3T instability of the travelling wave state
similar to the one discussed above zonates the barotropic part of the flow. As a result
the flow transitions to a mixed barotropic—baroclinic jet-wave state where a weaker
baroclinic wave is embedded in a stronger barotropic jet. This state is time dependent
with the amplitudes of the barotropic jet and the baroclinic wave oscillating in time
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as the jet intensifies the wave for half a cycle and the wave intensifies the jet in the
next part of the cycle giving the excess energy back to the jet. For highly supercritical
regimes, the baroclinicity and this vacillation are much weaker. Finally, it was found
that the characteristics of the emergent structures are not sensitive to the correlation
of the forcing in the two layers (with small exceptions in the case of baroclinic
forcing).

The predictions of the theory were then compared to the results obtained in direct
numerical nonlinear simulations. First of all, the absence of baroclinic structures
in the turbulent flow when the energy is injected at scales comparable to the
deformation radius, is attributed to the stability of the homogeneous equilibrium
to baroclinic modes. The critical threshold above which non-zonal structures are
unstable according to the stability analysis was found to be in excellent agreement
with the critical value above which the large-scale waves acquire significant power
in nonlinear simulations. The scale and phase speed of the dominant structures in
the nonlinear simulations were also found to correspond to the coherent structures
predicted by S3T including the existence or not of a baroclinic component for the
flow. However, the amplitude of the emerging waves is underestimated. In addition,
the critical turbulence intensity threshold for the emergence of zonal jets, which is
identified in S3T as the energy input rate at which the secondary instability of the
finite amplitude travelling wave states appears, was also found to roughly match the
corresponding threshold for jet formation in the nonlinear simulations. The emerging
jet scale is accurately predicted by S3T, while its amplitude is underestimated by
approximately 20 %. However, it is surprising that even nuances of the statistical
state dynamics such as the time-dependent mixed barotropic—baroclinic jet-wave state
have a manifestation in the turbulent flow. We also note that the predictions of the
second-order closure of the SSD are accurately reflected in single realizations of the
turbulent flow with the large-scale structure emerging as predicted even for parameters
close to the bifurcation points, when the flows are relatively weak.

In summary, in stratified flows with no mean thermal gradient imposed, there is
a large bias towards the emergence of barotropic flows from the organization of
both barotropic and baroclinic turbulent eddies. This tendency for deep barotropic
flows was observed in recent work addressing the dynamics of jets in the gaseous
planets. Farrell & Ioannou (2017) used a second-order closure of the SSD for the QG
dynamics of a two-layer model with bottom friction and found that, in the limit of
small friction, the zonal jets assume a universal barotropic structure. Liu & Schneider
(2015) used a realistic model of the circulation in the Jovian atmosphere driven
by large-scale thermal heating and dissipated by magnetohydrodynamic drag at the
bottom of the domain and found the same tendency for barotropic structures in the
limit of small drag. This tendency is also observed in very recent observational results
of the Juno mission obtained by measurements of the asymmetries in the gravity field
of Jupiter, which indicated that the Jovian jets reach a depth of approximately 3000
km (Kaspi et al. 2018).
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Appendix A. Stability equation

It can be shown, as in the barotropic case (Bakas & Ioannou 2014), that due to the
homogeneity of the forcing covariance, the state with zero coherent flow [Z, H]T =0
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and a homogeneous covariance Crp = Q/2 is a fixed point of the S3T dynamical
system. The linear stability of the homogeneous equilibrium is assessed by considering
the joint evolution of barotropic and baroclinic mean-flow perturbations [§¥, §@]T
and covariance perturbations §C. The linearized equations governing the evolution of
the mean-flow perturbations are:

9 ASY + BOSW =5f, — ASY, (A1)
9,A,80 + B8O = 8f, — N80, (A2)

where 8f;, = RY (§C) and &f; = R’ (§C) are the perturbation eddy stress divergences
which depend on the components of 6C. The components of §C evolve according to:

3,8CE = —28C5 — B [6& (A n %Z) — 28;‘1“] 5SYV — (8UY — sUY) - V ALY
— (AU — A8UY) - VASYY, (A3)

JSC = —[(8U° - VYAA—(ASU° - V) ASY + [(SU - VYA —(A,,8U1 - V) AISEY
28¢5 — B [%af (A A+ %Z) (A — A+ 2F)] 55", (A4)

A8C™ = [(BU, - V)AL, — (48U} - V)AISY — [(BU; - V)A® — (4,80 - V) AIS”
60— [0 (A+ A+ 1) = oAy - A+20)] 557, (A5)

38C™ = —[(BUY —8U}) - VA2 — (AU — AU} - 159

B |0 (A+14) = 20T | 65" —2 [ (4, + 14 5 (4+12) - r]ss”.

(A6)

where I''& 82~ <t 82) 5» and operators with tildes and overbars indicate differentiation
with respect to X =x, —x, and X = (x, +x,,)/2 respectively.

Because of the statistical homogeneity of the equilibrium state, the eigenfunctions
are sinusoidal. The coherent flow component of the eigenfunctions and the covariance
component are given by (4.1) and (4.2) respectively. Inserting the eigenfunction into
(A3)—(A6), we determine the perturbation covariance amplitudes in terms of the
amplitudes of the perturbation mean flow. They are given by:

oo ke Gy xR NS ayhe e xmiZGE NS
= — . a
(0 +2)kik2 +ip (kK3 — ki k2) (0 +2)k3h2 + 1Bk KS — ki k2)
o aot e (ky x WK (K2 —n)SEY ap? - (k_ x m)k2_ (k2 — n*)8%¢
T (ORI ik I~k k) (0 + 2R+ Bk k2 — ko k)
(A7b)
cou _ Aok (ke xR, (B —n)SY,  and- (ke xmk (R —m)SyY
(0 + I3 K2 +iB ke ki, —keik2) (0 + 2K K2 +iB(k, K3, — x+ka’ )
Tc
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o ayhe (e x w2 (K2, — n)S, ayt - (k- x m)k>_(k2_ — n?)8%
(0 + 2R+ iBk ki, — ko KR) (0 + 2K K 4Bk k2, — ko K3)
(A7d)
with the notation kr =k +n/2, k% = |k+|?, k2, = |ko|> 4242, ny=n>+22%, Syl (k) =
(1+p) & (ky)/2kL, 8% (k)= (1 —p) & (ky)/2k*, and % the unit vector representing the
vertical direction.

The perturbation eddy stress divergences can then be determined as a function of
the perturbation coherent flow and the spectrum of the excitation. They are:

[8fy. 8fal" = lay (Fyy+ — Fyu—)s as(foor — foo)1"e™™, (A8)

d’k

s = 1 /°° /°° 2[Rk xn) — K (ky x m)Z - (ke x K2, (K2, — n®)8%,
E T an ) ) (0 + DI K +iBk 3, — ke k)

L /°° /°° 2[R (k- xn) — K> (ky x m)]Z+ (ke x m)K2 (K3 — N?)SpY .
4n —oo J —o0 (G + Z)kikz + lﬂ(kx—ki - x+k2,) '
(A9)
fos = 1 /°° /06 B[~k (ke x 1) + K (ke X W2+ (ke x K2 (K2 — m2)SEY 2
RE 3V (0 +DRKE +iB kK2 — keikE)

d’k.

s /°° /002- [—K2 (ks x 1) + K2, (kg x m)12 - (s X K2, (K2 — n?)SEY,
4 —00J —00 (G + 2)k3+k2_ + lﬂ (kxfk%+ - x+k2_)
(A 10)

Note that when there is no correlation of the barotropic and the baroclinic
streamfunction at equilibrium (Sg6 = f;'/' = (), perturbations to the homogeneous
equilibrium with no temperature difference across the channel have the property that
barotropic mean flow perturbations induce only barotropic mean-flow accelerations
and baroclinic mean flow perturbations induce only baroclinic mean-flow accelerations
decoupling the barotropic and baroclinic mean-flow tendencies.

A further reduction in the above expressions can be achieved, as noted by Srinivasan
& Young (2012), by utilizing the exchange symmetry of the covariance C(x,, x;) =
C(x;, x,)", by changing the sign of k in the integrals to obtain

Jove ==Fou—r  Soor = —Joo- (Alla,b)

Introduction of (A 11a,b) into (A 8) and the change of variables k — k + nr/2, in the
integrals yields the more compact representation of the eddy stress divergences:

[8fy, 8fsl" = Layfy (0), asfy(o)]"e™™, (A12)

with f, (o) and fy(o) being given by (4.5) and (4.6) respectively. Because the
barotropic and baroclinic perturbation components decouple upon substitution
of (A12) in (A2) we obtain that either o satisfies (4.3) and the eigenfunction
is purely barotropic with ay, # 0 and ay = 0, or that o satisfies (4.4) and the
eigenfunction is purely baroclinic with a;, =0 and ay #0.
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