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The properties of the Mathieu equation are reviewed in order to discuss some of the applications that 
have appeared in recent years. Those mentioned are: vibrations in an elliptic drum, the inverted 
pendulum, the radio frequency quadrupole, frequency modulation, stability of a floating body, 
alternating gradient focusing, the Paul trap for charged particles, and the mirror trap for neutral 
particles. © 1996 American Association of Physics Teachers. 

I. INTRODUCTION 

With few exceptions, notably Morse and Feshbach, 1 and 
Mathews and Walker, 2 most authors of textbooks on math­
ematics for science and engineering choose to omit any dis­
cussion of the Mathieu equation. Until recently, this omission 
could be justified on the basis that the Mathieu equation had 
only limited scientific application. However, in recent years, 
many new applications have arisen. We will discuss the 
equation briefly, and then describe some of the scientific ap­
plications. 

II. THE MATHIEU EQUATION 

The Mathieu equation is a special case of a linear second­
order homogeneous differential equation, such as occurs in 
many applications in physics and engineering. A variety of 
notations for the Mathieu equation exists in the literature, 
and we will adopt that of our primary reference, Abramowitz 
and Stegun,3 which contains an extensive bibliography of 
early papers and books on the subject. The Mathieu equation 
is 

d2Y 
dX2 +[a-2q cos(2X)]Y=O, (1) 

where "a" and "b" are real constants in physical appli­
cations. According to Floquet's theorem (proved in Refs. 1 
and 2) a solution exists to Mathieu's equation of the form 

Y y(X)=exp{iyX}P(X), (2) 

where y is a function of a and q, and P(X) is a periodic 
function with the same period as the trigonometric function 
in Eq. (1), namely 7T. Unless y is an integer, Y .y(-X) is 
independent of Y y(X) and constitutes the second solution of 
the equation. If y is an imaginary number, then the solution 
of Eq. ( 1) is unstable, i.e., infinite, at X= oo or at X= - oo. If 
y is a real number and is an integer, then the solution is 
periodic with period 7T or 27T; otherwise it is nonperiodic. 
However, if y is a proper fraction m 1 /m 2 , then the solution 
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is periodic of period at most 2 7Tm 2 , but not 7T or 27T. In 
physical situations, X is often an angular variable, in which 
case the solution is required to repeat at intervals of ±27T, 
thereby requiring y to be an integer. If y is an integer, then 
Y y(X) is proportional to Y y(-X), and a second independent 
solution is required mathematically. As discussed in Refs. 1 
and 3, the second solution in nonperiodic, and is therefore 
generally not useful in physical problems. The various types 
of solution correspond to different regions in (a,q) space. A 
plot of the latter is shown in Fig. 1, and other such plots are 
to be found in Refs. 1-3. By solving Mathieu's equation 
with q = 0, is easy to see that the entire positive "a" axis 
must be within the stable region of solution. The curves 
which separate the stable and unstable regions correspond to 
the solutions for integer values of y, i.e., the periodic solu­
tions for "a" as a function of "q", are indicated in Fig. 1 as 
a y for the even solutions, or bY for the odd solutions. Ref­
erence 3 discusses the computation of y, once a and q are 
known. 

The general periodic solution to Eq. (1) is found by sub­
stituting the trial function 

Y= 2: [Ak cos(kX) + Bk sin(kX)], 
0 

(3) 

with B 0 = 0. Then, after some manipulation, it will be evi­
dent that to satisfy the equation by making the coefficient of 
each cos(k.x), as well as of each sin(k.x), identically equal to 
zero, there must exist a three-term recursion relation for 
Ab 

(4) 

which holds for k-;:.3, 
(a-l)A 1-q(A 1 +A 3)=0, 
+A 4 )=0. 

together with aA 0 -qA 2 =0, 
and (a-4)A 2 -q(2A 0 

And similarly for B k, 

(a- k2)Bk-q(Bk-2 + Bk+z) = 0, (5) 
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Fig. 1. Mathieu equation parameters "a" vs "q" with unstable areas shaded. 
Periodic solutions are curves labeled "a;' and "b •. " 

which holds for k-;,:.3, together with (a-4)B 2 -qB4 ==0, 
(a -1)B 1 + q(B 1 -B3) == O,and(a-4)B2 -qB 4 ==0. 

Starting from the known values of A 2 I A 0 , 

A 3 !A 1 , B 4 /B 2, and B3 1Bt. Eqs. (4) and (5) may be 
solved as a continued fraction for "a" as a function of "q" 
by employing a method of successive approximations.1

•
2 Al­

though the method is tedious if applied by hand, the series 
data given in Ref. 3 can be obtained in this fashion. The 
required number of terms depends sensitively on the absolute 
value of q. Actually, both Eqs. (4) and (5) have multiple 
roots, depending on the value of k used to begin the contin­
ued fraction. For Eq. (4), the roots for a as a function of q are 
denoted as a 0 ,a 1 ,a2 , etc., and for Eq. (5) as b 1 ,b2 ,b3 , etc. 
For example, to find a0 , the continued fraction to be solved 
is 

a 2q 

(a-22)- q2 
--------~------

(a-42)- q2 

q 
(6) 

----.,....-----
(a-62)-··· 

Correspondingly, the value of a 1 is found by solving 

a-4 2q q 
-----==------.,.---------

(a-42)- q q a 
(7) 

----~----
(a-62)- q2 

-,-----.,.,.-----
(a-82)-··· 

By virtue of their symmetry properties, the various even 
and odd periodic solutions of Mathieu's equation are known 
as "Mathieu functions," and denoted as 

40 

00 

ce 2n(X,q)= L A 2k cos(2kX), 
0 

00 

ce 2n+t (X,q) = L A 2k+ 1 cos([2k+ 1]X), 
0 

00 

se 2n(X,q)== L B 2k sin(2kX), 
0 

se2n+t (X,q) = L B2k+t sin([2k+ 1]X). 
0 
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(8) 

Fig. 2. Constant-coordinate curves for elliptic cylinder coordinates. 

A. Vibrations in an elliptic drum 

Historically, it was Mathieu's investigations of vibrations 
in an elliptic dnim3 which led to interest in what is now 
termed "Mathieu's equation." Elliptic cylinder coordinates4 

are defined by the transformations 

x=p cosh(u)cos(v), y=p sinh(u)sin(v), z=z. 
(9) 

As shown in Fig. 2, the curves u==constant are confocal 
ellipses, and the curves v = constant are orthogonal hyperbo­
las. If the time dependence in the wave equation is elimi­
nated through the substitution 

r/J{ u,v ,z,t} = W{ u,v ,z}exp( ± ikt), (10) 

the result is a Helmholz equation of the form 

V 2W+k2W=O. (11) 

Substituting in Eq. (11) a solution of the form 

W{u,v,z} == f{u }g{v }¢{z} 

gives for the equations in f{ u} and g{ v} 

a= (l!f)d2f/du 2 + (k2-c )(p2/2)cosh(2u), 

a=- (l!g)d2g!dv 2+ (k2- c )(p2/2)cos(2v ), 

(12) 

(13) 

(14) 

where a and c are separation constants. Substitution in 
Eq. (13) of Y= f, X=u, and 2q=(~-c)p2/2, produces 
the modified Mathieu equation, i.e., 

d 2Y 
dX2 -[a-2q cosh(2X)]Y=O. (15) 

Equation (15) does not possess periodic solutions. 
Substitution in Eq. (14) of Y=g, X=v, and 2q=(~ 

-c)rl-/2 in Eq. (14) then produces the Mathieu equation, i.e., 
Eq. (1). Readers should be wary of errors in Eqs. (13) and 
(14) in original editions of Ref. 3 published by the .U.S. 
Govt. Printing Office. The Mathieu and the modified 
Mathieu equations can be expected to appear in any problem 
involving a Helmholtz equation expressed in elliptic cylinder 
coordinates. 

B. The inverted pendulum 

According to Phelps and Hunter, 5 the history of this device 
appears to date from circa 1960. If the point of suspension of 
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Fig. 3. Inverted pendulum showing point of suspension and center of mass. 

a pendulum is vibrated vertically, then under certain condi­
tions, the pendulum will execute stable oscillations about the 
vibrational axis, but with the center of mass always above 
the point of suspension. As shown in Fig. 3, the coordinates 
of the point of suspension are (x0 ,y0 ) at a given instant, and 
the pendulum, which is a uniform rod of mass m and length 
2s, points upward at an acute angle (} with the vertical. The 
corresponding coordinates of the pendulum center of mass 
are at ( x ,y). Following the derivation of Blitzer, 6 the equa­
tions of motion for the center of mass are 

(16) 

where F x and F y are forces acting at the point of suspension, 
and mg is the force of gravity acting at the center of mass. 
For rotation about the center of mass 

d2(} 
I c df2 =sF y sin( 8)- sF x cos( 8), (17) 

where I c is the moment of inertia of the rod about its center 
of mass. Eliminating the forces between Eqs. (16) and (17) 
gives 

d
2

(} (d
2
y ) . d

2
x 

Ic dt2 =ms dt2 +g sm((})-ms dt2 cos(8). (18) 

The center-of-mass coordinates in Eq. (18) can be eliminated 
through the relations 

x=x0 +s sin((}), y =Yo+ s cos( 8), (19) 

which when differentiated and substituted in Eq. (18), gives 
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Fig. 4. Radiofrequency quadrupole. Opposite electrodes are connected elec­
trically. 

(20) 

where I= I c + ms2is the moment of inertia about the point of 
suspension. Now, we will assume that the only motion of the 
point of suspension is vertical, which implies 
d 2x0 /dt2 =0.References 5 and 6 also discuss more general 
driving conditions. In our case, Eq. (20) becomes 

I (d2
(}) (d2

y0 ) . 
ms dt2 - dt2 +g sm(8)=0. (21) 

For a movement of the point of suspension, given by y0 
=A cos(wt), Eq. (21) becomes 

I ( d
2 

(}) 
ms dt2 +[w2A cos(wt)-g]sin(8)=0. (22) 

In the limit of small oscillations, i.e., sin(8)=8, and with 
the substitutions 2X= wt, Y=- (},a = 4msg/Iw2, and 2q 
=4msA/I, Eq. (22) becomes the Mathieu equation, i.e., Eq. 
(1). Phelps and Hunte~ proceed to determine the range of the 
amplitude A for stable oscillations, and the coefficients in the 
power series solution for 8(t). A practical embodiment of 
the inverted pendulum is also described by Phelps and 
Hunter.7 

C. Radio frequency quadrupole 

The radio frequency (rf) quadrupole8 is a device for both 
focusing and accelerating low-energy ion beams which are 
assumed to be traveling along the z axis. As shown in Fig. 4, 
the device appears as four hyperbolically shaped electrodes 
placed symmetrically about the ion beam, with the hyperbo­
las bisecting the x and y axes and extending to infinity along 
the lines y = x and y =-x. Opposite electrodes are con­
nected together electrically and between the pairs is im­
pressed a rf potential varying as sin( wt). Let "d" represent 
the minimum electrode-to-axis distance. Then if d<t.c/w, the 
fields behave as in the electrostatic limit. Ideally, in the space 
between the electrodes, the electrostatic potential satisfies the 
equation 

(23) 

where "d" is the minimum distance along an axis from the 
origin to an electrode, at which point the field is ±E. In the 
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Fig. 5. Floating vessel. Line" d" connects vessel center of mass to center of 
buoyancy. 

case of a rf electric field E = E 0 sin( wt), the force on a singly 
charged positive ion of mass m, in the x direction, is 

d
2
x (eEoX) . mdfl = -d- sm( wt) 

and in the y direction is 

d2
y (eEoY) . 

m dt2 =- -d- sm(wt). 

(24) 

(25) 

With the substitution in Eq. (24) of Y=x, 2X= 71"/2- wt, 
and 2q=(4eE0 !mw2d); and in Eq. (25) of Y=y, 2X 
= 71"/2 - wt, and 2q = -(4eE0 /mw2d), both equations be­
come the Mathieu equation, i.e., Eq. (1), with a=O. 

The quadrupole can be modified to provide acceleration in 
the z direction, as well as focusing in the x and y directions. 
If the distance d in the horizontal plane is modulated sinu­
soidally with spatial period D in the z direction, and modu­
lated similarly in the vertical plane, but 90° out of phase, 
then positive and negative traveling waves appear in the z 
direction. If the initial value of D is designed to match the 
incoming velocity of the particles, the latter are strongly 
coupled to the positive-traveling wave, and gain energy from 
it. The value of D is made to increase with length to keep the 
accelerating particle in phase, i.e., so that v = D w/2 7r. 

D. Frequency modulation 

McLachlan3 notes that a method of producing a 
frequency-modulated carrier from an audio signal is to use a 
capacitor microphone as part of the tuned circuit for the car­
rier. In one type of microphone, when an audio signal of 
frequency 2w impinges upon the diaphragm, the distance 
from the latter to the backplate varies as d = d0 [ 1 
- € cos(2wt)]. Then, since capacitance varies inversely with 
d, the tuned circuit equation, with resistance neglected, be­
comes 

d2Q ( Q ) 
dtz + (LCo) [1- € cos(2wt)]=O. (26) 

Letting Y=Q, X=wt, a=1/(LC0), and 2q=E/(w2LCo) 
then reproduces Mathieu's equation, i.e., Eq. (1). 
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Table I. Vector directions for a proton beam with B z positive. 

Position of ion Vp B<t> e(vpXB</>) 

Entering a hill with z>O +p -cp -z 
Exiting a hill with z>O -p +cp -z 
Entering a hill with z<O +p +p +z 
Exiting a hill with z<O -p -cp +z 

E. Stability of a floating body 

Allievi and Soudack9 consider the effect of wave motion 
on a floating vessel which has symmetry with respect to a 
vertical bisecting plane. Figure 5 depicts a vessel with a list 
wherein the aforementioned plane is inclined to the vertical 
by an angle (), the righting torque is, for small () 

M=-Wd=-Ws sin(O)=-Ws(), (27) 

where d is the horizontal distance from the vessel center of 
mass to the vertical through the center of buoyancy, i.e., the 
center of mass of the displaced water. The distance s is mea­
sured from the vessel center of mass, along the 8-inclined 
vessel symmetry axis, to the intersection of this axis with the 
vertical through the center of buoyancy. The point of inter­
section is termed the "transverse metacenter," which is in­
dependent of () in the absence of waves. The gravitational 
force is assumed to act vertically at the vessel center of mass. 

Allievi and Soudack next consider a two-dimensional 
wave which strikes the vessel and persists for a time T. They 
argue that such a wave will alter the distance ' 's' ' in a 
sinusoidal fashion so that the righting torque becomes 

M(t)=- W[s- (as/2)sin(2wt)] (), (28) 

where w= 271"/T. Under certain conditions, the wave can 
progressively augment the list angle (), thereby leading to an 
instability. This can be seen by writing the equation of mo­
tion for the amount of list, i.e., 

d 2 () d() 
I dtz +Ddt-M=O. (29) 

Combining Eqs. (28) and (29), and neglecting the damping, 
gives 

~:~ + ( ~)[ s- ( ~s) sin(2wt)] ()= 0. (30) 

Then, substituting Y = (), 2X = 71"/2 - 2wt, a = Ws/ (I w2
), 

and 2q = W as!(2I w2) leads to the Mathieu equation, i.e., 
Eq. (1). 

III. ALTERNATING GRADIENT FOCUSING 

In a fixed-field alternating-gradient cyclotron10 in which 
particles circulate in the x,y plane, the average magnetic 
field in the z direction, increases with radius in order to 
maintain constant frequency in the face of increasing mass. 
This results in axial, i.e., z direction, defocusing of the beam. 
Without compensation, the beam would soon expand and 
collide with the accelerating electrodes (the "dees"). Such a 
calamity can be prevented by an azimuthal variation of the 
magnetic field, as first pointed out by L. H. Thomas in 1938. 
The variations can be considered hill-valley combinations, 
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Fig. 6. Paul trap for charged particles. Electrodes comprise a cylindrical 
shell and two end caps connected electrically. 

with at least three such combinations being required for sta­
bility. In one form of the design/1 the field variation can be 
considered as harmonic, i.e., 

Bz{p,cp} =B0{p}[1 + f{p}sin(N cp)], (31) 

where N is the number of hill-valley combinations and p is 
the radius. For a particular p, the larger B z in the hill regions 
causes the orbits to resemble N-fold polygons with rounded 
comers. Focusing in the z direction is determined mainly by 
B .p , which is given approximately by 

B.,=-g{p}zcos(Ncp). (32) 

As indicated in Table I, particles are focused in the z direc­
tion both in entering and in leaving a hill region, and suffi­
ciently so to overcome the defocusing effect of B 0 which 
increases with p. 

The equation of motion in the z direction is, for protons, 

~-(e:P)B.p=O. (33) 

Combining Eqs. (32) and (33) under the approximation of 
constant p, and substituting cp = wt, Y = z, 2X 
=Nwt, and -2q=4ev~l(mN2w2) produces the Mathieu 
equation, i.e., Eq. (1) with a= 0. In modern cyclotrons, the 
azimuthal variation is achieved with spiral-shaped wedges, 
rather than by continuously tapered pole pieces producing a 
harmonic variation. The orbits can then be analyzed10 by 
paraxial-ray theory, based on wedge-focusing parameters. 

A. The Paul trap for charged particles 

A very efficient trap for charged particles, devised b~ W. 
Paul, has been described by Winter and Ortjohann.1 As 
shown in Fig. 6, the trap consists of a cylindrical electrode 
plus end-cap electrodes at both ends. All three electrodes are 
hyperbolically shaped. Between the end caps, which are con­
nected together electrically, and the cylindrical electrode, is 
impressed a combination of a de and an ac potential. For 
some measurements, a magnetic field along the cylinder axis 
is also used. Dehmelt13 has termed the latter configuration "a 
Penning trap" although the original use of the latter name 
referred to a geometry in which the cylindrical electrode was 
merely a ring, and the end caps were flat. A "modified Paul 
trap" would be a preferable designation in Dehmelt's case. 
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Depending on the sign of the ac potential, the Paul-trap 
electric field is such as to produce stable oscillations in the z 
direction and unstable motion in the p direction, or vice 
versa. The combined effect of the ac is to produce confine­
ment in both the z and p directions. Dehmelt13 has made use 
of the Paul trap, modified to include a magnetic field, to 
confine electrons, positrons, and atomic ions, and thereby has 
measured their gyromagnetic ratios. The same positron was 
observed in a trap by Dehmelt and co-workers for a period of 
three months. For the positron, Dehmelt measured the gyro­
magnetic ratio to a precision 30 000 times more than had 
been previously observed. In 1989, Paul and Dehmelt were 
awarded the Nobel prize in Physics for their combined con­
tributions. 

Referring to our previous discussion of the rf quadrupole, 
we will assume that Ez and EP are given by the relations: 

av [Vdc- V.c cos(wt)]z 
E =--= (34) 

z az z
0 

- aV +[Vdc- Vac cos(wt)]p 
E =--= ----.,..----

P ap Po 
(35) 

Since V must satisfy Laplace's equation, this implies that 

p~ = 2z~. (36) 

Then, by assuming that the cylindrical electrode is grounded, 
and integrating dV from [Vdc- Vac cos(wt)]/2 to [Vdc 

- v.c cos(wt)], the curves for the endcaps turn out to be 

z2 =z~- p2/2 (37) 

and by integrating dV from [ V de- v.c cos( wt) ]/2 to 0, the 
curve for the cylindrical electrode comes out to be 

zz=(pz-p~)/2. (38) 

The general integral for dV gives 

V{z,p}= [Vdc- Vac cos( wt) ]( 4z~) - 1[2z2 + (p~- p2
)]. 

(39) 

The equations of motion for a particle of charge e and mass 
m, in this field, become 

d
2
z (e) [Vdc- Vac cos(wt)]z 

J.Z+ - =0. 
dt m z0 

(40) 

(41) 

Then, substituting Y=z, 2X=wt, a=4eVdcl(mz~w2), 
and 2q=4eVdcl(mz~w2) into Eq. (40); and substituting Y 
=p, 2X=wt, a=-2eVdcl (mz~w2), and 2q=-2eVdcl 
(mz~w2) into Eq. (41), converts both equations into the 
Mathieu equation, i.e., Eq. (1). 

B. The mirror trap for neutral particles 

A trap for neutral particles, analogous to the modified Paul 
trap for charged particles, has been proposed by Lovelace 
et al., and described by Sackett et a/..14 Whereas the Paul 
trap couples to the particle's charge, the Lovelace design acts 
on the particle's magnetic dipole moment. The Lovelace de­
sign, modified by the addition of a steady axial magnetic 
field, has been used successfully to trap groups of cesium 
atoms, followed by laser cooling of the trapped particles. 
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The Lovelace design is simply a loop placed in the x ,y 
plane, with its center at the origin. A combination of a steady 
plus a harmonically varying current I is made to flow in the 
loop. If R denotes the radius of the loop, and p denotes a 
radius in the x ,y plane, close to the origin, and z denotes a 
point on the z axis, also close to origin, then 

Bz{p,O}= [p.o/RI( 47T)]2 tr dc/J[R- p cos( c/J) ]/ 

[p2 +R2 -2pR cos(c/J)] 312 

and since p/ R <{ 1 

Bz{p,O}=[p.o//(2R)][ 1 + 3p2
/( 4R 2

) + · · ·]. 

Similarly 

and since z/R<{1 

Bz{O,z}=[p.o//(2R)][1-3z2/(2R 2)+ · · ·]. 

(43) 

(44) 

(45) 

In view of Eqs. (43) and (45), it is reasonable to assume that, 
close to the origin 

Bz{p,z}=[p.o//(2R)][1 + 3p2
/( 4R 2

)- 3z2/(2R 2
) ]. 

(46) 

With the addition of the large steady field B oz , the magnetic 
field is predominantly Bz{p,z,t}, where 

B z{p,z,t} = Boz + [JLoU de+ I ae cos( Ot) )/(2R)] 

X [1 + 3p2/( 4R 2)- 3z2/(2R 2)]. (47) 

At this point, we shall assume that the trapped dipole is 
aligned with its magnetic moment parallel to B z , and that the 
gradient of B zthen serves to move the dipole with respect to 
the origin. The equations of motion are 

d
2
p =(~)(-a(-p.Bz)), 

dt2 m ap (48) 

d
2
z = (~) (-a(- p.Bz))' 

dt2 m az 
where JL is the dipole moment. Letting 
+I ae cos(Ot)] gives 

d
2
p ( 3p.p.0 ) 

dtz =+ (4mR3) [Ide+Iae cos(Ot)]p, 

(49) 

/=[Ide 

(50) 

(51) 

Thus, for I ae = 0, the motion is bounded in z and unbounded 
in p, and the effect of I ae is to reverse this trend periodically 
so that the overall motion is bounded in both coordinates. 

In Eq. (50), letting 2X=Ot, Y=p, 
a= -3p.JLolde!(02mR 3

), and 2q=3p.JLolae1 (02mR 3
) 

then gives the Mathieu equation, i.e., Eq. (1). Similarly, 
in Eq. (51), letting 2X=Ot, Y=z, a=6p.JLoldel 
(02mR 3

), and 2q = -6p.JLolae1(02mR 3
) then also gives 

the Mathieu equation. 

IV. CONCLUSION 

The applications of the Mathieu equation discussed above 
probably only scratch the surface of what might be said in 
this regard. Phelps and Hunter7 mention several others, i.e., 
pulsating flow superimposed on a steady flow, and elastic 
oscillations of a ferromagnetic substance. In view of the 
number of new applications described or mentioned above, it 
appears that the Mathieu equation deserves the attention of 
the authors of future textbooks on mathematics for scientist 
and engineers. 
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MECHANICAL APTITUDE 
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I'd always been good in math, but when it came to mechanical things I was less than gifted. In 
high school I tried to rebuild the engine on my minibike after it froze when I let the oil get too low, 
but that project ended in my taking the minibike to the lawnmower shop. The model rocket I built 
in sixth grade went up 6 inches, veered to the right, and crashed. 
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