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Abstract where D is the dispersion relation. Due to dispersion, the beat 
mode (U, + w Z ,  k l  + k z )  may not satisfy the dispersion Iori acoustic solitorls in a plasma: a review o f  their experimental properties 

and related theories. M. Q. Tran (Plasma Physics Laboratory, Department 
of Physics, University of California a t  Los Angles, Calif. 90024, U.S.A.). 
Physica Scripta (Sweden) 20, 311-321, 1919. D(W1 + Wz , k l  + k2)  # 0 ( 2 )  

A review of experiments and theories on  ion acoustic solitonsispresented. 
Taking into account quadratic nonlinearity in the fluid equations leads 
to  the Korteweg-de Vries (KdV) equation which predicts the existence 
of solitons. Experimental confirmation of their existence came with the 
availability of plasmas with large Te/C which allows us to minimize 
damping. However, the experimental datas on the dependency of Mach 
number vs. soliton amplitude clearly shows a discrepancy with the 
prediction of the KdV equation. The recent theories do include the 
effects of finite ion temperature and those due to the trapped electron 
population. The inclusion of nonlinearity of order higher than quadratic 
leads to the notion of dressed solitons the dynamic of which has been 
studied numerically. A discussion of other nonlinear equations describing 
ion acoustic waves will also be presented. 

and therefore is not a normal mode of the system. The non- 
linear coupling t o  a higher order mode is thereby stopped. 
Nonlinearity and dispersion are the necessary ingredients to  
obtain soliton solution for a nonlinear wave. However. although 
nearly all types of waves in plasma present dispersion. and the 
plasma itself behaves like a nonlinear medium, only a restricted 
number of waves is known to admit soliton solution. Konlinear 
ion acoustic waves do exhibit soliton solutions and have been 
well investigated both theoretically and experimentally. The 
present report tries to  summarize the studies which have been 
performed in this domain. 

1. Introduction 2. The Korteweg--de Vries (KdV) equation 

The linear properties of waves in a plasma were for a long period 
sufficient t o  explain adequately the observed phenomena. How- 
ever, it was soon perceived that a nonlinear treatment of the basic 
equations could provide a much richer harvest of results. Parallel 
progress in numerical simulations and experimental techniques 
allows us to  confirm the theory and gives a strong stimulation 
to  the study of nonlinear properties of waves in a plasma. 

In this report we would like t o  discuss the properties of ion 
acoustic solitons. A soliton is a nonlinear perturbation that 
exhibits a remarkable and characteristic property: after a 
collision, the emerging solitons have the same shape they had 
before the collision. By analogy with other quantum quantities 
which are also conserved, the name soliton was coined to  define 
any nonlinear perturbation that exhibits this property. For 
simplicity, we shall also admit that the soliton has a non-vanish- 
ing amplitude only over a limited range [ 1 ] . 

A soliton results from the balance of two effects: nonlinearity 
and dispension. Nonlinearity by coupling together different 
modes (a1, k l ) ( w z ,  k , )  gives rise to higher order modes 
(0, t w 2 ,  k ,  + k z ) ,  This process leads t o  the well known 
wave steepening phenomena: the leading edge of the wave 
steepens as the perturbation moves (Fig. 1). Would it not be 
stopped by some other physical phenomena, the wave steepen- 
ing leads to  wave breaking: at one position x,  the wave ampli- 
tude becomes multi-value, a situation which is nonphysical. 
Dispersion is one of the phenomena which prevents the wave 
breaking, as is explained below. Let us consider two normal 
modes of the plasma, (a1, k l )  and ( W Z  , kz) .  

The fluid model of the plasma can be used to  describe the ion 
acoustic soliton [2. 31. The one dimensional basic equations 
are: 

~ the ion continuity and momentum equations: 

an, aniui -+- = 0 
a t  ax 

au, all, 
- + + U , -  = E 
a t  ax 

( 3 )  

(4) 

~ ~ the momentum equation for the electrons. As the electron 
mass me is negligible, the right hand side of the equation is 
negligible: 

0 = neE--  ane 
ax 

- the Poisson equation: 

- ni-rzn, 
aE _ -  
ax 

In eqs. (3)-(6).  ni. U,. ne  refer respectively t o  the ion density 
and velocity, and the electron density. E is the electric field. 
Distances are normalized t o  the Debye length Ade ,  densities t o  
the unperturbed density and velocity to  the ion acoustic speed 
(re/Mi)':2. 

D(01,z ,k1 ,2: l  = 0 (1) Fig. 1. Wave steepening process. [ 5 ]  
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3 18 M. Q. Tran 

In the linear approximation, eqs. (2)-(6) give the well known 
dispersion relation 

w = kjl-;) (7) 

which shows that for large k,  ion acoustic waves are dispersive. 
For perturbations of small but finite amplitude, Washimi and 
Taniuti [2] introduce the following development: 

ne,i = 1 + En$ + c2nk:)i + . . . 
= € u p  + E%{,') + . . . ui 

. . .  E = E 3 / 2 $ 1 )  + E5/2@'(2)  + 

and the stretched coordinates: 

( = ?(x - t )  
q = E3'2X 

where E is an ordering parameter. 
In the first order in E ,  the set of fluid equations give: 

which can be integrated to yield: 
n(l) = (1) = (1) 

e ni ui 
In second order in c we get 

Eliminating second order terms and n!') and U!')  we obtain an 
equation for nonlinear ion acoustic perturbation 

It is to be noted that eq. (19) can also be derived from the fluid 
equations (3) through (6) using the stretched coordinates 

( = (x - t ) P  

and 

7 = E 3 9  (20) 
The detailed derivation using these last stretched coordinates 
will be given in Section 7 of this review. 

Equation (19) is the well known Korteweg-de Vries (KdV) 
equation [4] ,  and describes the nonlinear behaviour of ion 
acoustic waves. The convective term nil) ank"/at describes the 
nonlinearity, and the third derivative term a3 nL1)/at3 reflects 
the dispersion. An inspection of eq. (13) shows that the KdV 
equation is not invariant under the change nil) + -nil). More 
precisely, an initial depression of density will evolve into a wave 
train whereas a density compression (n!$ > 0) will break up 
into solitons [3, 5-81. The ion acoustic soliton is a com- 
pressional pulse whose spatio-temporal dependence is given by: 
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Fig, 2. Time evolution of a nonlinear compressional perturbation 
measured at different positions according to  [ 9 ] .  The perturbation first 
steepens, then breaks into solitons. 

where M is the Mach number equal to the ratio of the soliton 
velocity to the ion acoustic speed. The amplitude the width D 
and the Mach number M are related through: 

M-1  = 6 4 3  (22) 

D = ( 6 / 6 r ~ ) " ~  (23) 

The first experimental observation of ion acoustic soliton has 
been made by Ikezi et al. [9] in a Double Plasma (DP) device 
[ l o ] .  The principal features of the DP device are the high 
electron to ion temperature ratio Te/T  (TJT lCrl.5) and 
its capability of exciting large amplitude ion waves without 
generating pseudo-waves [ 1 11. A high temperature ratio Te/T 
ensures that an initial perturbation can propagate and break into 
solitons that are only slightly damped. The absence of pseudo- 
waves simplifies the interpretation of the experimental data. In 
the Ikezi et al. experiment [9], a large positive potential pulse is 
applied to the source plasma giving rise to a compressional 
pulse at the boundary x = 0 of the target plasma. As this 
perturbation propagates, its leading edge steepens as a result 
of nonlinearity. On the trailing edge a structure starts to form 
and finally breaks into a succession of compressional pulses 
(Fig. 2). Their velocity is higher than the ion acoustic speed 
C, and, consequently, the Mach number M is greater than 1. 
The Mach number increases while the width D of each individual 
pulse decreases with its amplitude 6n. A qualitative agreement 
between the experimental values and those derived from eq. 
(22) and (23) was found. In particular, the measured values of 
M in function 6n are larger than those inferred from eq. (22) 
(Fig. 3). More elaborate theories, which will be discussed 
provide a better quantitative agreement between theory and 
experiment. 

The dependence of M and D on 6n suggest that each individual 

0 0 2  0 ,  an  
-T 

Fig. 3. Dependency of the Mach number M vs. the  soliton amplitude 
according to [9]. M is defined as the ratio of the soliton velocity to  the 
velocity of a linear ion acoustic perturbation. The straight line is the 
theoretical dependency obtained from the Korteweg-deVries equation. 
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Fig. 4. Evolution of the shape of two colliding solitons before and aftei 
the collision [ 9 ] .  The shapes of the two solitons emerging after the col. 
lision is identical to those they respectively have before the collision. 

pulse is a soliton. By converting the DP into a Triple Plasma, 
Ikezi et al. [9] provide direct experimental confirmation of 
their nature. Solitons were generated at the two ends of the 
target plasma and interact at the center. After the collision the 
two emerging pulses retain their original shape (Fig. 4). This 
experimental evidence undoubtedly confirms that the observed 
nonlinear structures are solitons. It is also worth noting that, 
in agreement with the prediction of the KdV equation (19), 
only compressional pulse breaks into solitons. A large negative 
voltage pulse applied t o  the source plasma will produce a wave 
train in the target plasma. i.e.. a perturbation, the amplitude of 
which swings from positive t o  negative. 

The number of solitons which evolve from a given initial 
perturbation has been studied by numerous authors [ 1 1- 141 . 
According to the inverse scattering method [6] which is used 
to  solve analytically the KdV equation (19), the number of 
solitons is given by the number of bound states of the associated 
Schroedinger equation: 

a* $ 
- + [E - V ( ( ,  Q = O ) ]  I) = 0 
3 t 2  
The potential V ( [ ,  Q = 0) is related to  the perturbation at 
x = 0 by 

v($, t7 = 0 )  = --dnL’)(g, Q = 0 )  (25) 

In Hershkowitz et al. [ l  11 experiment, a square voltage pulse 
was applied to  the source plasma: the determination of the 
number of  bound state of eq. (24) is just a classical problem of 
quantum mechanics. However, a square pulse is seldom used 
experimentally: coupling problems distort the applied signal. 
Usually a sinusoidal voltage pulse is applied t o  the source 
plasma. An analytical solution t o  this problem has been dis- 
cussed by Ikezi [12] .  A qualitative agreement was found: 
the higher the amplitude of the initial perturbation, the larger 
the number of solitons. However, the number of observed 
solitons is higher than the one predicted theoretically. A better 
agreement between theory and experiment can be found if ion 
temperature effects are included in the KdV equation [13] .  

Although many of the previously mentioned experiments 
[9, 1 1, 12,  141 involve the use of DP device, nonlinear ion 
acoustic perturbation can be launched by other methods. Cohn 
and MacKenzie [15] used photoionization t o  produce a large 
localized density perturbation in a background plasma. Watanabe 
[13] launches large amplitude perturbation using the con- 
ventional grid excitation. In both cases, an initial compressional 
pulse was observed t o  break into solitons. 

Fig. 5. Recurrence of the initial waveform [12] .  The initial wave-form 
reappears as the wave propagates. 

Waveforms other than a sinusoidal pulse can also be used 
t o  produce solitons. Ikezi [12] has shown that a sinusoidal 
nonlinear acoustic wave also gives solitons. Furthermore, the 
recurrence phenomena were also observed. The wave first 
breaks into solitons. However, at further distances the original 
wave form was restored (Fig. 5 ) .  A train of solitons can also 
be obtained in the target plasma of a DP device when a ramp 
excitation [16] is applied to  the source plasma. For small 
applied voltage, the resulting structure looks like a collisionless 
shock [17] ,  with a “shock front” and an oscillatory train. 
However, it has been verified numerically by Tran et al. [18] 
that under experiment conditions of [ 161 , the so called 
“laminar shock” is in fact a train of solitons. A similar con- 
clusion was reached by Gurevich and Pitaevski 1191, who have 
studied analytically the solution of the KdV equation with a 
step function as an initial perturbation. 

In conclusion, many experimental results did confirm the 
prediction of the simple KdV equation. However, quantitiative 
discrepancies exist between theory and experiment. The differ- 
ent theoretical models which will be reviewed in the next 
chapters give a closer agreement. 

3. Finite ion temperature effects on solitons 

In a real plasma, the effect of finite ion temperature cannot be 
neglected: in a DP device, the electron t o  ion temperature is 
of the order of 10-20. These effects can be described by either 
a fluid or a kinetic theory. In the fluid model, the momentum 
equation (4) is modified t o  

where an adiabatic equation of static for the ion was assumed. 
By the same method as the one used t o  derive the KdV equation 
(19), a KdV equation with modified coefficient is readily 
obtained [20, 21 J .  

where [‘ is defined by (x - d l  - 3TJTe t ) .  

amplitudes is now given by: 
The relation between the Mach number M and the soliton 

1 6 n ( l  + 6Ti/Te) M = 1 + -  
3 (1 + 3Ti/Te)3’2 

For a typical value of Te/Ti 10- 15, eq. (28) gives only a slight 
increase of M and does not account for the observed discrepancy 
between theory and experiment. 

Sakananka [22] has proposed another approach to  treat 
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the nonlinear equations (3), (19), ( 5 ) ,  and (6). The method was 
originally used by Moiseev and Sagdeev 1171 in their treatment 
of soliton and collisionless shock waves. Instead of looking for 
a nonlinear equation for space and time evolution of the pertur- 
bation, it is much simpler to search only for a stationary soliton 
of the fluid equations in a frame moving at a certain velocity 
M. No development in power series [cf. eqs. (8&(10)] is per- 
formed. The solutions, when they exist, are therefore valid 
up to amplitudes much larger than those described by the KdV 
equation. However, no information about the space-time 
evolution of an initial perturbation can be obtained. 

In a frame moving with velocity M ,  the ion density ni is 
given by 

1”’ 1 ‘ I 2  (29) 

In eq. (29), @ is the potential associated with the perturbation 
and is normalized to (Te/e). The Poisson equation (6) combined 
with eqs. ( 5 )  and (29) yields 

- -  - exp {a) - ni(@) 
aza 
ax2 

A first integration of (30) gives 

J(aip/ax)2 = -U(@) (31) 

where U(@) is defined by 

Equation (32) has a mechanical interpretation. It describes the 
motion of a particle in the potential U(@): in this analogy, @ 
represents the particle position and x the time. Integrating eq. 
(31) then gives @ as a function of x. The dependence of M 
vs. the soliton amplitude is given by 

The use of relation (33) gives a better fit between theory and 
experiment as shown in Fig. 6 [ 131. 

Many effects of finite ion temperature cannot be described 
by a fluid model. Kinetic effects have been discussed by various 
authors [23-261. Ion Landau damping [25] as well as electron 
Landau damping [23] contribute to damp out the soliton. Due 
to the distribution in energy of the ion, ions with a kinetic 
energy less than the potential energy of the perturbation will be 
reflected. Experimentally, a precursor or reflected ion is observed 
in many experiments [9, 12-15]. A detailed discussion of the 
importance of ion Landau damping and ion reflection can be 
foundin [25] and [26]. 

4. Trapped electron effect 

The electron behaviour is also strongly modified by the non- 
linear potential of the soliton. It is usually assumed that elec- 
trons are isothermal during the passage of solitons [cf. eq. ( 5 ) ] .  
This assumption is only valid if they can be thermalized by 
collisions with the wall of the device [9]. If this constraint is 
released, electron trapping in the soliton potential may well 
occur, provided the bounce period vbl is smaller than the 
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Fig. 6. Comparison between the experimental dependency of the Mach 
number on the soliton amplitude 6n and the prediction of different 
models which takes into account finite ion temperature effects [ 131. The 
dots (.) are the experimental points, the solid line (-) is the prediction 
of the KdV equation, the line (--) is the values obtained from eq. (21) 
and the line (--) is the values from eq. (26) .  

transverse transit time v i ’  between the center of the machine 
to its wall: 

(34) 

L is the radius of the machine, h the width of the soliton, and 
@ the potential associated with the soliton. The condition (34) 
is met in most experiments [27]. Experimentally a flat topped 
electron distribution function, characteristic of the presence of 
trapped electrons [28-301 has been observed in an ion acoustic 
soliton [27]. Figure 7 shows the electron distribution in a 
soliton and outside a soliton. It is clearly apparent that inside a 
soliton, the distribution function presents a plateau at low 
energy. 

The electrons can now be separated into two categories: the 
free electrons and the trapped electrons. To describe the electron 
density, Schamel [31,32] used the following expression 

Fig. 7. Measured electron distribution function inside a soliton (curve 1) 
and outside a soliton (curve 2) according [ 2 7 ] .  Note the flattening of the 
distribution function a t  low energy when it is measured in a soliton. This 
phenomena is characteristic of the presence of trapped particles. Curve 3 
is the electron distribution function in the absence of any perturbation. 
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In eq. (35), Tef and Tet are respectively the temperature of 
free and trapped electrons. is a parameter equal to  1 for 
solitary waves. Using Washimi and Taniuti’s method [ 2 ] ,  
Schamel [32] derives a modified KdV equation for the potential 
perturbation; 

asp. 1 a3@ 
a t  ax 2 ax3 

-+- -  = o  (36) 

Equation (36) admits soliton solution [32] 

@(x) = 6 @  s e ~ h ~ [ x / [ 1 5 n ” ~ / ( 6 @ ” ~ ( 1  - Tef/Tet))] liZ] (37) 
The relation between the soliton amplitude and the Mach 
number is now given by 

The relation (38) has been plotted by Ichikawa and Watanabe 
[33] for different ratio refire, (Fig. 8). It appears that an 
adequate choice of Tef/Tet can provide a good fit between 
theoretical and experimental results. 

5. Effect of higher order nonlinearity 

In the preceding sections, attempts to  interpret experimental 
data by including effects such as finite ion temperature Ti or 
electron trapping in the soliton potential were presented. More 
recently an attempt t o  interpret the data by  including both high 
order nonlinearity and finite ion temperature has been proposed 
[341. 

The basic equations are: 
- Vlasov equation for the ion. 

- Boltzmann’s equations 

(39) 

- and Poisson’s equation 

a 2 @  
ax 
- = n e - / f d v  

f(x, v, t) is the ion distribution. The procedure is t o  look for 
a stationary solution of eq. (39) t o  (41) in a frame moving with 
velocity M .  Defining: 

x = (x - M t )  

densify perturbation 6n no 

Fig. 8. Comparison between the measured values of the Mach number M 
for different soliton amplitude and theoretical predictions from Schamel’s 
theory [ 321 as reported in [ 331. The broken line with dot ( -.-) is from 
KdV equation. The dotted lines are curves calculated from Schamel’s 
theory with arbitrary parameter p = T,f/Tet. The bars are experimental 
results from [ 9 ] .  The solid curves (-) are derived from a more recent 
theory that took into account three waves coupling and ion temperature 
effect [47] .  

eqs. (39) and (41) reduces to  

(42) 
af 
av  

- (M - v) f ’(v, x) - sp.’(x) - = 0 

@”(X) = ne - f dv (43) 

where the prime denotes differentiation with respect t o  X. 
Separating the distribution function f(v, X) into two parts 

f (v ,  x) = fo(v> + f I ( ?  x) (44) 
where fo(v) is time and space independent and f l (v ,X)  the 
dependent part, equation (42) becomes 

-(M-v)f;(v,x)-@’(x) -+- = 0 [2 3 (45) 

The solution of (45) is obtained by iteration. In the lowest 
order (45) gives 

which can be integrated with respect to  X t o  yield 

(47) 

Equation (47) is then substituted for afl/av term in eq. (45) t o  
give fi  (v, x) in the second order. 

The procedure can be repeated to  any order. Expanding now 
(40) in power series of Q, and substituting in (43) gives 

= aG2 + b@’ + ca4 + da5 (49) 

where: 

dz 
d t  

a = - ( T e / 2 z ) - + 1  

b = (1/6)(Te/2T)2 d3Z/dC3 - 1/3  

c = (1/96)(Te/2z)3 d5Z/dC5 - 1/12 

d = (1/2880)(Te/2Ti)4 d7Z/dC7 - 1/60 (53) 

5 is the ratio of the perturbation velocity t o  the ion thermal 
velocity and Z(C) the Fried and Conte function. 

Putting b = c = d = 0 just gives the kinetic dispersion relation 
of ion waves. For the rest of the discussion it was assumed that 
T e / z  is high so that the imaginary part of Z could be neglected 
compared t o  the real part. This assumption is consistent with 
the experimental observation that ion acoustic soliton exist only 
if damping or resonant wave particle interactions are not too 
strong. 

Equation (49) just gives the soliton solution if c = d = 0. The 
relation between amplitude and Mach number also agrees with 
the stationary solution of the KdV equation when = 0 
[27 ,28]  . Including in eq. (49) only the cubic nonlinear term 
(i.e., c # 0, d = 0) we obtain as the following stationary solution 
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Fig. 9. The velocity ( U )  and width of an ion acoustic soliton in depen- 
dence of density perturbation n/no [34]. Bars (-) are experimental data 
from [12 ]  and open circle ( 0 )  from [13]. The solid lines are computed 
from eq. (54) which takes into account cubic nonlinearity as well as 
finite ion temperature. Dotted lines is obtained from KdV equation ion. 

For the case abcd # 0, no analytic solution has been found and 
eq. (49) has to be solved numerically. However for experi- 
mentally observed soliton (CP<30%) an expansion up to the 
cubic term is accurate enough [34].  

Watanabe [34] has plotted the Mach number dependency 
vs. soliton amplitude for different cases: Te/Ti = m, KdV 
equation with finite ion temperature and results from eq. (54) 
(Fig. 9). As we have already noticed, neither the KdV equation 
with # 0 cannot account for the measured values. 
The velocity predicted from eq. (54) is however in good agree- 
ment with the experimental datas. 

= 0 nor 

6 .  Ion acoustic solitons in a multi-ion plasma 

The introduction of a second ion species in a plasma modifies 
the ion acoustic wave properties in the linear as well as in the 
nonlinear regime. In the linear regime, there now exist two ion 
acoustic modes [35],  called the light and heavy ion modes; they 
are the modification of the modes which exist in the plasma of 
one component, respectively of light ion and heavy ions. Experi- 
mental studies of linear ion waves [36-371 confirm the existence 
of the two ion wave modes. The measured dispersion relation 
showed a good agreement between theory and experiment. 

In the nonlinear regime, White et al. [38] have discussed the 
stationary solutions of the fluid equation which describes a 
two component plasma, for example an Ar-He plasma. Two 
different types of structure were found, depending on the 
amplitude of the nonlinear perturbation. In a one component 
plasma, the fluid equations admit soliton solution only if the 
kinetic energy of the ions is sufficient to allow them to over- 
come the potential hill @ of the soliton. In a two component 
plasma, soliton solutions are found, provided @ is small enough 
so that both the light and heavy ions can overcome the potential 
hill. In contrast to the one component case, stationary solitons 
still exist in the case where CP is high enough to reflect the light 
ions but not the heavy ions. The latter type of solution is not 
a soliton but a collisionless shock wave since the upstream 
region has different characteristics than the downstream one. 
In the upstream region, the shock pushes ahead all the light 
ions, which are consequently absent in the downstream region. 
Figure 10 shows the domain of concentration a of light ions 
Physica Scripta 20 
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Fig. 10. Domain of existence of soliton and collisionless shock in a two 
component plasma [ 381. 

where solitons or shock can be found. It also gives the range of 
Mach number over which these solutions exist. [In [38] the 
Mach number is defined as the soliton or shock velocity divided 

As in a one component plasma, nonlinear acoustic pertur- 
bation can be described by a KdV equation [39]. The fluid 
equations for two component plasmas are: 

by (kB TeIMheavy ' I z  I 

anj anjuj - 
at ax 
-+- - 0 j = 1 , 2  

- -neE _ -  ane 
ax 

aE - = 1 nj-ne 
ax j = 1  

( 5 5 )  

( 5  7) 

In the preceeding equation, j denotes the ion species, 1-1 the mass 
ratio M 2 / M 1  > 1 and a the light ion concentration (a = no l  Inoe). 
Time t is normalized to w i t  = [noe2(1 - a + ap)/eoM2] - ' I2 

and velocity to the actual sound velocity in a two component 
plasma C, = [kBTe(l - a  + ap)/M2] ' I 2 .  This normalization 
allows us to use the stretched coordinates defined by eqs. (1 1) 
and (12). 

Using the same method as the one used in Chapter 2, we find 
the following relation for the first order terms: 

nil) 
l - a + a / J  = - a  + ,(l) = 

1 Pa 1 - a  
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L- e , -  

Eliminating second order terms in eq. (60) to (65) with (59) we 
get the KdV equation for a two component plasma with = 0 

Soliton solution of eq. (66) presents an amplitude 6n given by 

3(1 - - C Y  + (~l.1') 

(1 - a  + cup) 
6n = 6(M- 1) 

In eq. (67), M is defined as the soliton velocity divided by 
the ion acoustic velocity (C,) in the two component plasmas: 

-a+cup)-  kbTel M2 1'2 

Plot of Sn/(M - 1) vs. (Y is reported in Fig. 11. Compared to the 
case of one component plasma (a= 0% or cu = 100%) it is 
evident from Fig. 11  that the introduction of the second ion 
species reduces the soliton amplitude a for a given M .  

Extensions of Tran and Hirt's work [39]  have been performed 
by Tran [40] to include ion temperature effect, by Tagare [41] 
who took into account the effects of multi-species of positive as 
well as negative ions. 

An experimental investigation of the properties of ion 
acoustic soliton in an Ar-He plasma has been performed by 
Tran and Hollenstein [42].  It was shown that in an Ar plasma 
the introduction of a few percent of light ion is sufficient to 
prevent the soliton formation (Fig. 12). Ion Landau damping 
and ion reflection by the potential hill have both increased 
since the added He ions are resonant with the perturbation: 
these two processes are responsible for the non-formation of the 
soliton. The introduction of Ar ions in an He plasma affects the 
soliton formation much less. Experimentally solitons were ob- 
served in He plasma containing up to 30% of Ar. The detailed 
study of the relation between M and Sn leads to the conclusion 
that fluid models such as the KdV equation cannot fit the 
experimental data. A kinetic treatment which correctly describes 
the reflected ions has been used by Tran and Hollenstein [42] 
to interpret their data. 

7. Dressed soliton 

The KdV equation (1 9) accounts for nonlinear quadratic effects. 
It is legitimate to wonder about effects of higher order terms 

+ 
'C', 2 2 . .  IC'. &:.. 5C'. m... -0.:. 8C.I. 9 0 %  '00''. 

Fig. 11. Variation of the ratio of the soliton amplitude 6 n  to  (M - 1) in 
dependency of the concentration of light ion [39]. The Mach number M 
is defined as the ratio of the soliton velocity t o  the ion acoustic velocity 
in a two component plasma. f i  is the ion mass ratio. 

't ,\ a=l% 

Fig. 12. Evolution of a soliton in Ar/He plasma [43]. cy is the He ion 
concentration. 

in the expansion [eq. (8) and (lo)].  In Section 5 we have shown 
that stationary solutions of kinetic equations for ion waves 
in the limit T, S did exhibit different properties whether or 
not terms of order higher than quadratic were included. The 
limitation of the method presented in Section 5 is obvious: it 
does not allow us to study the evolution of an initial perturbation 
nor the interaction of many solitons. Indeed, recent theories 
[43-451 did allow us to predict the evolution of an initial 
perturbation when higher order terms of the expansion (8)-(10) 
are used. In the following we shall present the discussion of 
Ichikawa et al. 1431 on the effect of the cubic term. 

The basic equations are the usual fluid equations, that we 
shall recall for clarity: 

an  a 
at ax 
- + -(niui) = 0 

a aui a@ 
at ax ax 
-U. + U .  - = -- 

We shall also introduce the stretched coordinates = E'" 

(x - t) and r = ~ ~ ' ~ t  and we also expand ni,  ui, ne and @ in 
series of power 

(73) 

(74) 

= ,@(I) + + E3 @[3) + . . . (75) 

The first order term in e of eqs. (69)-(72) just gives the relation 
[eq. ( 1 4 ~  
@(I) = (1) = (1) = np 

U1 n1 

In second order E, we get 

Together with relation (14), eqs. (76 t (78)  yield the wellknown 
KdV equation 
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In third order in E ,  we obtain 

In this approximation, the perturbed potential @ results from 
two contributions 
@ = @(1) + @(2) 

where solution of the KdV equation (79), describes the 
fundamental nonlinear effect and a('), solution of eq. (83), the 
interaction of the fundamental nonlinear wave and higher order 
dispersion. Steady solution of the coupled equation (79) and 
(83) has been computed by Ichikawa et al. [43]. In a frame 
moving with velocity M ,  stationary solutions are given by 

@(x -Mt )  = 3(M-  1) sech' [ i"; - (x -MO] 

1 9 
4 

+ -(M - 1)' sech' 

1 x ( M -  l)(x -Mt)  tanh i 
- 8 + 7 sech' p- 1); -""I] 

Figure 13 shows the shape the solution (84) for a M - 1 = 0.1. 
The broken line shows the core as derived from the KdV equation 
and the full line the solution obtained from eq. (84). We saw 
that the higher order clouds did lower the amplitude of the 
perturbation. This new perturbation is known as dressed soliton. 

A numerical study of the set of equations (79) and (83) has 
been performed by Konno et al. [46]. The evolution of an 
initial perturbation given by: 

0.3 I 
'9 o . 2 i J  

0 1  
, 

'. 
-2 -I 0 * I  ' 2  

02 
Fig. 13. Plot 'of a dressed soliton given by eq. (84) with M -  1 = 0.1. 
The dotted line is the core, solution of the KdV equation. [43] 
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Fig. 14. Evolution of the shape of a dressed soliton. The initial potential 
is a KdV soliton. The thin line represents the KdV soliton. The second 
order clouds represented by broken lines develop around the KdV core. 
Simultaneously a wave train is emitted behind the soliton. [46] 

@([, 7 = 0) = @by[, 7 = 0) (85) 

where @ & I ) @ ,  r = 0) is a soliton solution of the KdV equation, 
is presented in Fig. 14. It is observed that around the KdV core, 
the clouds develop and that a sinusoidal wave train is emitted. 
Turning now to the head on collision of two solitons, one must 
notice that in contrast to the case of the KdV equation where, 
aside from some phase shift, the soliton velocities are conserved, 
there exist now an acceleration of the smaller soliton and a 
deceleration of the larger one (Fig. 15). In another case where 
the amplitude of the two colliding solitons are similar, it was 
observed that the clouds rearrange themselves to equalize the 
amplitude of the colliding pairs. 

8. Other equations describing nonlinear ion waves 
8.1. The Boussinesg type of equation [47] 
The dispersion relation for ion acoustic waves is given by 

k2 
0 2  = - 

1 + k Z  

It can be approximated by o = k[ l  - k2/2] and the KdV 
equation (19) has been derived under this assumption. Another 
equation, the improved Boussinesg equation, could be derived 
for waves which have a linear spectrum given by [eq. (86)]. As 

632.5 I )!(I 

W 
I . #/ + 316.2 

9 3 . 2  0 63 2 
E 

Fig. 15. Interaction of two dressed solitons represented by the thick line. 
The KdV solitons are drawn by the thin line and the second order cloud 
by the broken line. The trajectories of the two colliding solitons are also 
represented. (Thick line: trajectories of the dressed soliton, thin line: free 
motion of the soliton and broken line: KdV soliton trajectories). The 
small soliton is accelerated while the larger one is decelerated during the 
colision. [46] 
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Makhankow has shown in an elegant way [47], the dispersion 
relation (86) could be written as 

w2(1 + k 2 )  = k 2  (87) 
or in the operation form 

A nonlinear equation can then be written simply by adding t o  
eq. (87) a nonlinear term a/ax(@)" which is similar to  the non- 
linear term in the KdV equation: 

or equivalently 

Equation (88) approaches the usual Boussinesg equation in the 
limit of long wave length k < 1 : 

The linear part of eq. (89) leads t o  the dispersion relation 

w 2  = k*(1 - k 2 )  (91) 

which also approximates the dispersion relation (86) in the 
limit k < 1. Numerical solutions of eq. (89) have been computed 
by Bogolubsky [48]. Contrary t o  the KdV equation, the 
solution of which has a direction of propagation, solutions of 
eq. (88) are symmetric, i.e., solitons do move in opposite 
directions. Solitons shape and amplitude are not preserved 
after a collision. 

8.2.  The Benjamin-Bona-Mahony equation 
Broer and Sluijter [49] have presented a new method to  obtain 
an equation for nonlinear ion waves. This method is based on 
the use of an approximate Hamiltonian. Basically, first one 
proves that the fluid equations (69)-(72) are equivalent t o  a 
Hamiltonian system derived from an Hamiltonian H .  Once the 
existence of a Hamiltonian H is proven, we can use a more trac- 
table approximate Hamiltonian Ha. In fact, the exact form o f H  
is not required: it is sufficient t o  prove its existence only. 

For waves of short wavelength, an approximate Hamiltonian 
Ha can be selected as 

Ha = dx[;(l + V ) U ; + ~ ( V ) - ~ ( V ) ~ ]  

where Vis defined by 

The canonical equations now become: 

a av  1 a3v 
at 2 a t a 2  ax 

- .- -- ( U i  + uiv)  

a aui 1 a%, 
a t  2 atax2 ax 

- - -- ( V - i P +  $24 ; )  

(93) 

(94) 

Equations (93) and (94) can be reduced to  a Benjamin-Bona- 
Mahoney type of equation [SO] 

aui 1 asui a = -- [u i+Qu;]  a t  2 a t a x 2  ax 
This equation is much less known than the KdV equation (19). 
However as noticed by Broer and Sluijter [49] it describes much 
better the behaviour of wave with large k. Therefore the approxi- 
mate Hamiltonian Ha has a larger domain of validity than the 
one which would lead t o  the KdV equation. 

8.3. Effect o f  dissipation 
The KdV equation (19) and the various other equations we 

have just discussed did not include any dissipation. As it has 
been shown [51], dissipation did lead to  new phenomena in 
soliton formation: not only does the soliton amplitude decrease 
while it propagates, but also a tail is formed behind it.  

The two equations which were solved numerically in [51] 
were KdV-Burgers equation: 

and a KdV equation for an ion acoustic soliton in presence of 
weak ion neutral collision (28) 

aui aui 1 aui  
- + t i - + - - + + * u i  = 0 ar  a t  2 at3 (97) 

Numerical solutions for eqs. (96) and (97) have been obtained 
for a KdV soliton initial condition and are presented on  Fig. 16. 
As expected the amplitude of the soliton decreases while it 
propagates. Another feature is the formation of a tail, the ampli- 
tude of  which grows gradually. The structure of the tail is differ- 
ent for the solution of eqs. (96) and (97): its amplitude is posi- 
tive for the first equation while it is negative for the second one. 
Multi-soliton solutions and collision of solitons have also been 
investigated in [51]. Modified conservations laws can also be 
found in the same reference. Karpman and Maslov [52] have 
also presented an analytical formalism which allows us to study 
solution of perturbed KdV equation such as the KdV-Burgers 
equation. 

8. Spherical and cylindrical solitons 

Using the fluid equations written in cylindrical geometry: 

0 ICC 

NSTAHCE 

Fig. 16. Evolution of an initial soliton perturbation in presence of ion 
neutral collision [Eq. ( 9 7 ) ] .  The soliton amplitude decreases while a 
negative tail is formed. In the case of the KdV-Burgers equation (96) a 
positive tail is formed. Note also change in soliton velocity. [Sl] 
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a 
ar 

r-l - (rE) = ni - n e  

(99) 

Maxon and Vicelli [53] have derived a modified KdV equation 
for ion acoustic solitons in cylindrical geometry: 

The stretched coordinates t and 77 are defined by 

= - P ( r  + t )  (103) 

7 = E 3 / 2 t  (104) 

In spherical coordinates, eq. (39) is only slightly modified into 
(Maxon and Vicelli [54]): 

The method used to derive eqs. (102) and (1 05) is analogous to 
that used by Washimi and Taniuti [2] to derive the KdV 
equation in the one dimensional case. 

The evolution of a cylindrical soliton is reported in Fig. 17. 
The main difference between the one dimensional soliton and a 
cylindrical or spherical one is the presence of a residue which is 
left behind the advancing spherical or cylindrical solution. 
Characteristic properties of one dimensional solitons have also 
been found in cylindrical or spherical solitons: the shape of 
cylindrical or spherical solitons is conserved after a collision. It 
was also verified that compressional pulse did break into many 
solitons and a wave train. 

A theoretical study of the properties of cylindrical solitons in 

- 2 5  0 20  4 0  5" 80 

- 2 1 . 6  

10 

5 

-20 0 20 A0 60 80 

Fig. 17. Evolution of a cylindrical soliton. Note the residue left after the 
soliton [53] .  
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a two component plasma has also been performed by Maxon 
[55]. As for one dimensional solitons, it was found that the 
introduction of a second ion species reduces the soliton ampli- 
tude. 

To verify the existence of cylindrical solitons, Hershkowitz 
and Romesser [56] built a modified DP device, with a geometry 
that allows the excitation of cylindrical ion acoustic pertur- 
bations. As in the one dimensional case, only a compressional 
pulse evolves into solitons. 

9. Conclusion 

As in other fields of physics, the study of solitons in plasma 
physics has received a great interest from both theoreticians and 
experimentalists. Narrowing our field of study to only one type 
of wave in plasma, the ion acoustic wave, we have presented a 
review of theories and experimental measurements on ion 
acoustic solitons. From a theoretical point of view, it appears 
that the dynamics of dressed solitons as well as the study of tail 
formation are now the two main fields of interest [33, 571. 
However, from the experimental side [58, 591, no clear cut 
experiments have been performed to determine what are the 
most important effects which affect the ion acoustic soliton 
behaviour. As we have seen, many candidates have been pro- 
posed: trapped electrons in the potential of the soliton, finite 
ion temperature with or without effect of cubic or higher order 
nonlinearity, ion reflection by the potential and Landau damp- 
ing. We believe that all of these effects play some role in the 
soliton dynamic and that, in contrary to what has been done, 
one should try to formulate a theory which would include them 
all. 
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