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In this paper, we use quantum-mechanical formalism to describe the time evolution of a classical dynamical
system with fluctuating parameters. By appropriate choice of “interaction picture representation,” and the use
of the Baker-Campbell-Hausdorff formula in the chronological time ordered evolution, we have obtained
analytical expressions for the Lyapunov exponent of the energy evolution of the dynamical system. Our
approach proved to be very powerful in handling either stochastic or highly correlated processes. The approach
lends itself to generalizations for use in a wide field of applications.
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I. INTRODUCTION

Lately, there is a growing interest for the so-called sto-
chastic resonances. Excitation effects of large amplitude are
induced not from harmonically periodic forcing like in the
usual resonance effects, but from small-amplitude noises.
These effects appear in a wide range of physical systems
�1–4�, from the pure quantum level �nuclear magnetic reso-
nance, quantum Hall effect, etc.� to macroscopic dynamical
systems �e.g., atmospheric disturbances �5�, catastrophe
theory, etc.�.

In the present paper, we analytically treat the time evolu-
tion of a simple classical dynamical system with fluctuating
parameters. Thus, the Hamiltonian of the system is described
by H0+hs�t�, where H0 is the Hamiltonian of the unperturbed
harmonic oscillator itself, while hs�t� is some generic pertur-
bative part of the Hamiltonian, which incorporates the time-
dependence of the parameters of the system. We attempt to
find an approximate analytic description for the time evolu-
tion of the system. We shall actually be mainly concerned
with the energy evolution of the system. Thus, we write the
quantum-mechanical analogue of the equation for the evolu-
tion of the system, and then we separate what we shall call
the “anti-Hermitian” part of the disturbance �to be defined
rigorously in Sec. II�, while incorporating the “Hermitian”
part of the disturbance into H0, which is by itself “Hermit-
ian”. Actually, aiming at the Lyapunov exponent for the en-
ergy evolution of the system, we shall make use of the
Baker-Campbell-Hausdorff formula rather than the usual per-
turbation expansion.

The commutativity or not of the Hamiltonian with itself at
different times is of major importance here. The chronologi-
cal evolution will depend, of course, on the exact expansion

with respect to the various orders of the correlation functions
of hs�t�. In the present paper, we shall be mainly concerned
with the stochastic time-dependence of the parameters of the
system.

Moreover, by interpreting the time variable as a coordi-
nate variable, the results of the present paper could be useful
in studying the band theory of amorphous materials, charac-
terizing various types of disorder by the corresponding types
of time noises.

The paper is organized as follows. In Sec. II we build the
mathematical formulation that describes our approximation
for the time evolution of a harmonic oscillator with time
varying parameters. To illustrate how good the approximate
scheme is, we use it in Sec. III to obtain an analytical ex-
pression for the Lyapunov exponent of the energy of an os-
cillator described by the Mathieu equation. The approximate
formula is compared with the exact numerical evolution with
excellent results. Then, in Sec. IV we perform the same kind
of comparison but with various types of stochastic fluctua-
tions describing the time varying parameters now. The ap-
proximate formula could be used to obtain analytical esti-
mates of the ensemble average of the Lyapunov exponent for
the energy. The corresponding comparisons with the exact
ensemble averages are, again, very promising. Finally, in
Sec. V we conclude by presenting a short review of applica-
tions of the approximate formula.

II. THE CLASSICAL OSCILLATOR IN
THE INTERACTION PICTURE

We will study the simplest dynamical system, the one-
dimensional classical harmonic oscillator. Even though we
treat a problem of classical mechanics, we find it useful to
use the quantum mechanical formalism. In this formalism the
equation of motion for the unperturbed oscillator takes the
following form:*Electronic address: fhatzi@phys.uoa.gr
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i
d

dt
��� = H0��� = − �0�0 − �

� 0
���� , �1�

where the state vector ��� corresponds to the phase-space
vector

��� =
1
	2

��0x

ẋ
� . �2�

In this description the conservation of energy of the classical
oscillator E= 1

2m��0
2x2+ ẋ2� corresponds to the conservation

of the quantum mechanical probability 
� ���, which is as-
sured by the Hermiticity of the quantum mechanical Hamil-
tonian H0=−�0�2, where �2 is the corresponding Pauli ma-
trix. Throughout we put m=1 for simplicity.

Let us now assume that the frequency of the oscillator
depends on time as ��t�. Then, the corresponding quantum
mechanical Hamiltonian turns out to be

H = − �0� 0 − �

�
�2

�0
2 0 � . �3�

This Hamiltonian is now non-Hermitian and the non-
Hermitian part of it leads to nonconservation of the energy.
Since in this paper we shall be interested on the evolution of
the energy of the classical system, we separate this time-
depending Hamiltonian into a Hermitian HH �still time-
depending� and an anti-Hermitian part HA. Thus,

H = HH + HA = − �0h�t��2 − �0g�t���1, �4�

where

h�t� =
1

2
��2�t�

�0
2 + 1� ,

g�t� =
1

2
��2�t�

�0
2 − 1� . �5�

The anti-Hermitian part of the Hamiltonian, HA, the term
proportional to ��1, is the one that leads to nonconservation
of the energy of the classical mechanical system. Hence, the
oscillator can either absorb or lose energy.

Now, in order to study the evolution of the energy of the
system, we shall use a new interaction picture where the
Hermitian part of the Hamiltonian, HH, of the dynamical
system, even though time-depending, will play the role of the
unperturbed Hamiltonian while the anti-Hermitian part of the
Hamiltonian, HA, will play the role of the interaction Hamil-
tonian. Thus,

���I�� = Te�0
t HH�t��dt���� . �6�

In this picture, the interaction Hamiltonian is

H�I� = �Te−�0
t HH�t��dt��†HA�Te−�0

t HH�t��dt�� . �7�

The time ordering product operator, denoted by T in the ex-
pressions above, could be omitted in our case since HH is
proportional to �2 only and, therefore, it commutes with it-
self at different times. Finally, the time evolution of ���I�� is
determined by the U�I��0,T� propagator which is given by

U�I��0,T� = Te−�0
TH�I��t�dt. �8�

In the expression above, T, the time ordering product opera-
tor, is necessary since H�I� does not commute with itself at
different times,

�H�I��t�,H�I��t��� � 0. �9�

Inserting the actual expressions for HH and HA that are pre-
sented in Eq. �4�, in the formula for the interaction Hamil-
tonian, we get

H�I� = − ��0g�t��− sin 2��t� cos 2��t�
cos 2��t� sin 2��t�

�
= ��0g�t���3 sin 2��t� − �1 cos 2��t�� , �10�

where

��t� = �0�
0

t

h�t��dt� = �0�t + �
0

t

dt�g�t��� . �11�

Now, the whole interaction Hamiltonian is purely anti-
Hermitian, as HA itself, and it is a linear combination of only
��1 and ��3. In order to compute the propagator U�I��0,T�
one proceeds in the usual way by dividing the time interval
�0,T� into infinitesimal time intervals �t1,�t2 , . . . ,�tN, where
�ti= ti− ti−1, t0=0, and tN=T. Then, expression �8� takes the
following form:

U�I��0,T� = T lim
N→�

�
i=1

N

e−�H�I��ti��ti. �12�

Based on the Baker �6�-Campbell �7�-Hausdorff �8� �BCH�
formula �see also Refs. �9–11� for recent alternative applica-
tions�,

exp�A�exp�B� = exp�A + B +
1

2
�A,B� + O�3�� , �13�

where O�3� denotes terms of order at least 3 with respect to
A and B, the product of any such successive exponential
terms is given by

exp��0gk�− ck�1 + sk�3���exp��0gk−1�− ck−1�1 + sk−1�3���

= exp�„− �0�gkck + gk−1ck−1��1 + �0�gksk + gk−1sk−1��3…�

− �0
2gkgk−1�skck−1 − cksk−1���2�2 + O��3�� , �14�

where gi ,ci ,si ,� are abbreviations for g�ti�, cos 2��ti�,
sin 2��ti�, �ti, respectively. By gathering all the first- and
second-order terms with respect to � in computing the whole
product of Eq. �8�, we obtain the following approximate for-
mula for the propagator �cf., Appendix A�:
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U�I��0,T� = Te−i0
TH�I�dt � U2

�I��0,T�

= exp�− �1�
0

T

A1�t��dt� + �3�
0

T

A3�t��dt�

− ��2�
0

T �
0

T

�A3�t��A1�t�� − A1�t��A3�t���

	
�t� − t��dt�dt�� , �15�

up to second-order correlations of the function g�t�, where

A1�t� = �0g�t�cos 2��t� ,

A3�t� = �0g�t�sin 2��t� , �16�

and 
�x� is the step function. At this point it should be noted
that even the first-order terms in the exponential include con-
tributions of all higher order correlations through the depen-
dence of ��t� on g�t�; the great power of the above analytical
formula is hidden right here. Alternatively, using basic for-
mulae of the Pauli matrices, the exponential expression in
Eq. �15� could be written in a more explicit form as

U2
�I��0,T�

=�cosh a + a3� sinh a

a
� − �a1 + a2�� sinh a

a
�

− �a1 − a2�� sinh a

a
� cosh a − a3� sinh a

a
� � ,

�17�

where

a1,3 = �
0

T

dtA1,3�t� ,

a2 = �
0

T

dt��
0

t�
dt��A3�t��A1�t�� − A1�t��A3�t��� ,

a = 	a1
2 + a3

2 − a2
2. �18�

The use of the complete BCH expansion formula is
equivalent to the complete perturbation expansion sum, if
everything converges nicely. However, when one uses partial
sums, it may be advantageous to use one or the other expan-
sion, depending on the special problem one is dealing with.
For example, if [�A ,B� ,A]= [�A ,B� ,B]=0, the approximate
formula exp�A�exp�B�=exp�A+B+ �1/2��A ,B�� becomes ex-
act. This is almost the case we are dealing with in our prob-
lem. A and B are � times quantities of order unity along with
Pauli matrices and thus �A ,B� is of order �2, which is almost
zero for small magnitudes of �. Thus, the assumed smallness
of g�t� in the expansions above justifies the use of the BCH
formula up to the lowest nonvanishing order term. In any
case, what we want to capture are the Lyapunov exponents in
the instability region. These are driven by the purely non-
Hermitian part of the Hamiltonian, and could be obtained

through the BCH formula. Actually, even the first order of
the BCH formula, in most of the cases that we have exam-
ined, is sufficient to yield very accurate results. There are
cases though, when considering periodic fluctuations of the
frequency �for example, in the Mathieu equation, cf. Sec.
III�, where the second-order term is the first nonvanishing
order term in the expansion of the BCH formula. This is
actually the reason why it is necessary to include the second
order term of BCH in our analysis.

At this point we should note that our method could also
be used in the case where dissipation is present as well. In
brief, the appearance of a dissipative factor −2�ẋ in the
equation of motion will cause, as expected, an overall expo-
nential decay of the energy of the form of e−2�t that will
compete any possible exponential growth of the energy due
to frequency fluctuations; if the Lyapunov exponent L is
greater than 2�, the energy will still grow exponentially. A
secondary effect of dissipation is to modify a bit the form of
the Lyapunov exponent due to the introduction of an ���3
term in the anti-Hermitian part of the Hamiltonian HA. Fi-
nally, the appearance of a � factor will shift the characteristic
frequency of the oscillator and, thus, this modified frequency
will determine the resonances of the fluctuations �in case of
periodic ones�.

In the following sections we will illustrate, by a few ex-
amples of g�t�, the usefulness and the power of the above
analytical formula. It should be noted that the parameter �0,
in all formulas above, could be set equal to 1 by rescaling the
time parameter as t→�0t and, thus, it will be omitted from
now on.

III. MATHIEU EQUATION

A simple example, where the power of the approximate
formula �15� shows up transparently, is the case of the
Mathieu equation. In the following, we shall analyze the so-
lution of the Mathieu equation

d2y

dx2 + �a − 2q cos�2x��y = 0, �19�

not by the usual power expanding technique �cf., Ref. �12��,
but with our approximate formula.

Following the transformation t=	ax, the Mathieu equa-
tion takes the form

d2y

dt2 + �1 − � cos�t��y = 0, �20�

where ��2q /a and �2/	a. This is exactly the form of a
harmonic oscillator with a harmonically varying frequency
around unity. Thus, in the language used to describe the os-
cillator in the previous section, �0=1 and g�t�=−�� /2�
	cos�t�.

Since g�t� is a periodic function, correlations of order
higher than two, we have omitted in our approximation, are
not negligible. Therefore, we anticipate the faithfulness of
the approximate formula �15� to become worse as time
passes. On the other hand, the periodicity of g�t� assures that,
if we include in the propagator for one period of g�t�, that is
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for P=2� /, the rotating phase that corresponds to this pe-
riod,

U2�0,P = 2�/� = e−�0
PHHdtU2

�I��0,P� , �21�

then we shall obtain a rather accurate estimate of the evolu-
tion of the energy of the system. Equation �21� gives the
propagator in the Schrödinger picture and is obtained di-
rectly by inverting Eq. �6�. Although, the inclusion of the
rotating phase in the propagator seems unimportant due to its
Hermitian character, it is actually essential since the succes-
sive operation of the non-Hermitian propagator interferes
with the starting phase of the system either constructively or
destructively, since the absorption of energy of the oscillator
depends on its initial phase. Thus, in case of periodic fluc-
tuations of the frequency, at each period one must supply the
phase shift to get the overall evolution of the energy. The
extra factor exp�−�0

PHHdt� in Eq. �21� has a group-theoretic
origin. It corresponds to the e�ka of Bloch electron band
theory in a periodic potential. In the next section, where the
stochastic case of g�t� is explored, the relation between the
phase of the system and the non-Hermitian propagator is
further clarified.

The propagator of Eq. �21� gives the evolution of the
system at any time, that is an integer multiple of the period,
since it is repeated as it is at every period. The rotating phase
part is

e−�0
PHH�t�dt = � cos�2�/� sin�2�/�

− sin�2�/� cos�2�/�
� , �22�

while the propagator U2
�I� is given in Eq. �17� with T= P. The

integrals represented by the ai’s of Eqs. �18� cannot be com-
puted analytically. For small values of �, though, we can
express the ai’s as power series of �,

a1 = �
sin 4�/

2 − 4
+

�2

8

sin 4�/

2 − 1
+ O��3� , �23�

a3 = 2�
sin2 2�/

2 − 4
+

�2

4

sin2 2�/

2 − 1
+ O��3� , �24�

a2 = −
�2

2�2 − 4���


+

2 sin 4�/

2 − 4
� + O��3� . �25�

Each order at the series expansion of a1, which is of order �n,
yields its maximum absolute value at frequency =2/n,
where n is the order of the term itself. The corresponding
order terms of a3 are of one order of magnitude, with respect
to the mismatch of frequency to =2/n, lower than the
terms of a1. Finally, the lowest order term of a2 �the �2 term�
are of order unity at each of these frequencies �even for 
=2 as one can easily check directly by expanding the term
around that frequency�. These special features of the above
order terms, especially of a1, around the frequencies 
=2/n, brings out directly the characteristic resonances of the
Mathieu equation. On the other hand the nonvanishing �2

term of a2 for all the resonant frequencies justifies the inclu-
sion of the second-order term in the use of the BCH formula
in our analysis in the first place. Moreover, our approximate

formula gives correctly the Lyapunov exponents around
these frequencies as well. The eigenvalues �± of the propa-
gator of the system U2�0, P� are related to the Lyapunov
exponent of the system by

L =
log�max �±�

P
. �26�

Here we are going to use our approximate propagator in-
stead. The eigenvalues �± of the approximate propagator U2
are the roots of the binomial

�2 − �R + D = 0, �27�

where R is the trace of the propagator, and D is its determi-
nant, here equal to 1 due to the special form of the two
matrices of Eqs. �22� and �17�. Thus, the Lyapunov exponent
that our approximate formula yields for the system is

L =
log��R/2� + 	�R/2�2 − 1�

2�/
, �28�

where R /2 yields the following form for our propagator:

R
2

= cos�2�


�cosh a + sin�2�


�a2

sinh a

a
. �29�

Let us first focus our interest in the region of frequencies
around the basic parametric resonance =2+�, where �� �
�1. By expanding all quantities involved to the lowest order
with respect to � and � the expression for the Lyapunov
exponent yields

L =
1

2
	� �

2
�2

− �2. �30�

This is exactly what one gets from a straightforward analysis
of the exact problem �see Ref. �13��. In Fig. 1 we have plot-
ted a comparative diagram of the exact evolution of the
Mathieu equation along with the one computed with our ap-
proximate formula �15�, for a few characteristic parameter
values. It is obvious from this graph that the approximate
formula is very faithful in a much wider region than the one
we have checked analytically �� � , �� � �1 around the para-
metric resonance frequency =2. This was more than it was
anticipated since the correlations of order higher than two of
the Mathieu equation are not negligible and the approximate
formula was built under the assumption that higher order
correlations are of no importance. However, the dependence
of ��t� on g�t� �cf., Eq. �11�� brings contributions of higher
order correlations at lower order terms; this justifies the great
power of our approximation.

Next we test the faithfulness of our approximate formula
in the neighborhood of the second parametric resonance, 
=1+�, with �� � �1. Based on the periodicity of the propa-
gator of the Mathieu equation, it could be shown �see Refs.
�14,15��, by expanding � as �0+�1�+�2�2+¯ and searching
for marginally periodic solutions in the form of powers of �:
y0�t�+�y1�t�+�2y2�t�+¯, that the boundary lines that sepa-
rate stable and unstable solutions of Mathieu equation is
given by
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�0+
��1� = �1+

��1� = 0, �2+
��1� =

1

24
,

�0−
��1� = �1−

��1� = 0, �2−
��1� = −

5

24
. �31�

Of course the method mentioned above could be used to
determine the unstable region around any resonant fre-
quency, =2/n. However, our approximate analytical for-
mula �15� not only leads to exactly the same boundaries for
the unstable region of this resonant frequency, but it yields
the corresponding Lyapunov exponent as well:

L =	− �2 −
��2

6
+

5�4

16 · 36
=	� �2

24
− ���5�2

24
+ �� .

�32�

The expression above is given at the lowest order of �, and �.
In the series expansion of a1 ,a3 ,a2 we have kept only terms
that are of order �2, which is the lowest order showing up,
and in the series expansion of cos�2� /� and sin�2� /� we
have kept only the first nonconstant terms. Note that, while

for n=1, the term � is of the same order as � �see Eq. �30��,
for n=2,3 , . . . ,� is of higher order than � �cf. Figs. 20.8–
20.10 of Ref. �12��.

The examination of the first two resonance bands, �2
and �1, suggest that our approximate analytical formula
describes very faithfully the evolution of the Mathieu equa-
tion in the region of every resonant frequency, at least for
low values of �.

Another periodic case that is of special physical impor-
tance is the case of a periodic two-valued frequency change
around a central value �0

2. Imagine that the frequency of the
oscillator is given by

�2 = �0
2 + � 	 �−

1

T
if �n − 1�T � t � nT − �

�1

�
−

1

T
� if nT − � � t � nT , �

�33�

where the three parameters �, �, and T control the strength,
the width of the pulses, and the period of the frequency fluc-
tuations, respectively, and n is any integer number. A poten-
tial with periodic spatial dependence �instead of temporal
dependence� like that describes the so-called Kronig-Penney
model of a periodic lattice. Actually, the Schrödinger equa-
tion of such a potential has exactly the same form of our
harmonic oscillator equation of motion, with time variable t
being replaced by the spatial variable x. Thus we could use
this well-known quantum-mechanical problem to check once
again our approximative formula. We will specialize our in-
vestigation in the case of small � values where our approxi-
mate method is to be trusted, and a short � time-parameter so
that the pulses of large frequency shifts could be considered
as delta functions �for which case analytical results could be
derived for the Kronig-Penney potential�.

The systematic analysis of the Kronig-Penney potential in
the latter case ends up in a transcendental equation for the
determination of the allowed energy levels of the system.
The gaps between them give the forbidden energy bands
which are restricted by the following �-dependent intervals:

2

n
�1 −

�

2�n�0
� �

2�

T�0
�

2

n
�1 +

�

2�n�0
� , �34�

at first order with respect to � �and for ��T�. The n is any
positive integer number that characterizes the order of the
resonant frequency. Following exactly the same procedure as
with the Mathieu case, we find that at the lowest order with
respect to � and � the Lyapunov exponent for the energy of
this periodic problem is given by

L =	� �

2�0T
�2

− �n�

T
− �0�2

. �35�

The term inside the last parentheses measures the deviation
of the frequency of the fluctuations from the 2�0 /n resonant
frequencies. The estimated Lyapunov exponent becomes
zero at exactly the boundaries of the “forbidden bands” that
were shown above. Thus, once again our approximate
method not only gives the exact analytical result of the

FIG. 1. �Color online� Comparison between the exact time evo-
lution of the Mathieu equation and the analytical evolution pre-
dicted by the approximate formula of Eq. �15�. There are four pairs
of curves. For every pair the �blue� solid line shows the exact evo-
lution, while the �black� dashed one shows the approximate evolu-
tion. All graphs depict the evolution of the energy of the system for
a total time that corresponds to 20 cycles of the periodic term in Eq.
�20�. All cases shown here correspond to such values of parameters
 ,� that the energy grows exponentially �within an unstable re-
gion�. Only cases around the first two resonant frequencies �=2
and =1� are shown here. For frequencies around =2 the ap-
proximate solutions �dotted curves� match almost perfectly the cor-
responding exact solutions �solid curves�, even at values of � as
large as 0.5! The match is not so perfect for the higher order fre-
quencies at large values of � ��=0.5� but it is still very good as long
as � is smaller than 0.2. It should be noted that the approximate
solutions plotted here have been computed by alternating the rotat-
ing phase matrix of Eq. �22� and the propagator U2

�I� of Eq. �17� at
every period 2� /�.
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boundaries themselves, but it also provides an analytical ex-
pression of the Lyapunov exponent within the whole region
of these bands. In the analysis that leads to the results given
in Eq. �35� we have used the Kronig-Penney potential with a
small but definite � value, since the use of delta functions
instead would lead to ill-defined mathematical formulation of
the approximate analysis.

IV. NOISE INDUCED PARAMETRIC RESONANCE

Now, based again on the approximate formula of Eq. �15�,
we will examine what kind of stochastic functions g�t�, de-
scribe noisy fluctuations of the parameters of the dynamical
system, will lead to exponential growth of the energy of the
system. The energy of the system at time T will be given by

E�T� = 
�0��U2
�I��T��†U2

�I��T���0� . �36�

The Hermitian part of the Hamiltonian, as was discussed
above, does not change the energy, therefore there is no dif-
ference in using the U2

�I� or the U2 propagator. In the previous
section, in the analysis of the Mathieu equation, the period-
icity of g�t� gave us the advantage of computing everything
up to one period of the frequency parameter, and then repeat
the same propagator for the subsequent periods. In that case,
the inclusion of the rotating phase, that relates the U2 with
the U2

�I�, was essential, since the effect of the periodically
varying frequency on the system depends on the phase dif-
ference between the varying frequency and the system itself.
For the accuracy achieved in the Mathieu case it was impor-
tant to include the rotating phase after each period. Now, the
stochastic character of g�t� lacks periodicity and makes it
useless to include any rotating phase in the expression for the
energy evolution.

If we substitute the components of the matrices in Eq.
�36� we get

E = cosh�2a� + 2a2
2� sinh a

a
�2

+ cos�2�0 − ��a1,a3,a2��

	
2 sinh a

a
	�a1

2 + a3
2��cosh2 a + a2

2sinh2 a

a2 � , �37�

where the a1 ,a2 ,a3 ,a are the integrals given at the end of
Sec. II, and �0 is the initial phase of the oscillator, while
��a1 ,a2 ,a3� is a complicated function of ai’s. This expres-
sion shows that the average value of the energy 
E��0

, over
all initial phases, is given by the first two terms which are
greater than �or equal to� 1, and they will grow larger and
larger with time if a is a monotonic growing function of
time,


E��0
= cosh�2a� + 2a2

2� sinh a

a
�2

. �38�

Moreover, if we neglect the a2 terms, which are of higher
order with respect to the magnitude of g�t�, compared to the
a1 ,a3 terms, then 
E��0

, given by Eq. �38�, simplifies to


E��0
= cosh�2a� , �39�

where

a2�t� = �
0

t �
0

t

dt1dt2g�t1�g�t2�cos�2�t1 − t2� + 2�
t2

t1

g�t��dt�� .

�40�

Before proceeding to use the above formula to make predic-
tions about the statistics of the evolution of the energy, we
compare the evolution described by this simple integral ver-
sus the real evolution of the energy of the system to test the
validity of our approximation. Stochastic fluctuations of
quite large magnitude �with variance ��2 =0.2� lead to almost
unnoticeable discrepancies, even for long times compared to
the oscillator’s period �see Fig. 2�. This justifies the various
approximations used up to this point �that is neglecting the
higher than third order of correlations, and omitting the a2
terms in Eq. �38��. We have actually tested the significance
of the a2 terms in our final expression for the average energy,
and it was always so tiny that you could not discern the
corresponding curve from the one with that term omitted.

Now that we have an analytical formula in our hand, we
could get an estimate for an ensemble average evolution of
the energy of the system under a stochastic fluctuation of its
frequency with specific characteristics. Looking for the low-

FIG. 2. �Color online� In this diagram we test the faithfulness of our approximate formula �Eq. �38�� for the energy evolution of the
system averaged over its initial phase, for three different realizations of stochastic fluctuations of its frequency parameter �2. In all cases the
�black� solid curve represents the exact average energy vs time, while the �blue� dashed one depicts the output of Eq. �38� computed for the
corresponding stochastic realization. Diagram �a� corresponds to a fractional Gaussian stochastic variable with Hurst parameter 0.85,
diagram �b� corresponds to an autoregressive stochastic variable with parameter a�0.80, and diagram �c� corresponds to a random tele-
graphic stochastic variable with average pulse length equal to ten steps. More information about the three kinds of stochastic variables
considered are presented in the text. All cases considered have been normalized to have the same standard deviation ��2 =0.2.
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est order, with respect to g, expressions of the average �over
initial phase� time evolution of the energy, we could omit the
integral of g�t� inside the cosine term of the formula above.
In the following subsections we show that this approxima-
tion is valid for sufficiently small magnitude of fluctuations
of g�t�. What remains is a simple integral whose value de-
pends on the statistics of g�t1�g�t2�. For stationary stochastic
functions the integrand is simply a function of t1− t2, since
for stationary stochastic functions 
g�t1�g�t2��= 
g��t1+ t2� /2
+ �t1− t2� /2�g��t1+ t2� /2− �t1− t2� /2�� does not depend on �t1

+ t2� /2 and is an even function of t1− t2:


g�t1�g�t2��ensemble = A��t1 − t2�� . �41�

Under these quite general assumptions


a2�t��ensemble � 2�
0

t

ds�
s/2

t−s/2

dxA�s�cos�2s�

= 2�
0

t

ds�t − s�A�s�cos�2s� . �42�

Thus, we are led to the following simple prediction:

�� cosh−1
E��0

2
�2�

ensemble
� 2�

0

t

dsA�s�cos�2s��t − s�

= F�t� . �43�

At this point we should point out that for stochastic functions
that are Gaussian, the omitted term in the argument of cosine
of Eq. �40� could be actually taken into account in the aver-
aging procedure and thus one could use the expression given
by Eq. �42� with a slightly different function for A�s� from
the one given in Eq. �41�:

A�s� = exp�− 2
�2���
g�0�g�s�� − 4
g�0���
g�s���� ,

�44�

where ����0,s�=0
sg�t�dt �for the derivation see Appen-

dix B�. The new function is still an even function. We have
confirmed, though, that practically it does not yield any es-
sential modifications to the results.

The function F�t� depends on the kind of stochastic func-
tion assumed, serves as a bulk estimate of the time-evolution
of the average energy. The exact evolution of the average
energy itself is very difficult to calculate since we then need
to know all the moments of g besides the second one, in
order to compute the average value of the hyperbolic cosine
of this quantity. Furthermore, such information is not of great
use since the variation of the energy grows usually even
faster than the average energy itself. In spite of this, the
concavity of the function f�x�=cosh�2	x� �that is f��x��0�,
ensures that


f�x�� � f�
x�� . �45�

Thus, we are ensured that the growth rate of the average
energy of the system is at least as large as the following
simple estimate:


E��0,ensemble � cosh�2	F�t�� . �46�

Therefore, generally, stochastic fluctuations of the dynamical
parameters of the system that are characterized by a function
F�t� of the form of Eq. �43�, that has an overall positive rate
with time, will lead, on average, to exponential increase of
the energy of the system.

In order to illustrate the above statement with a few ex-
amples, we have constructed a set of long data series of
stochastic variables of various types, with given specific pa-
rameters, that characterize each specific type of stochastic
variables. We then used them to evolve numerically the har-
monic oscillator with an exact propagator assuming that the
square of its frequency �2 is varying discontinuously and
according to the successive values of each data set in time
steps �. The assumed time steps � were small with respect to
the unperturbed period of the oscillator T ���T /200�, while
in all cases studied the variance of the stochastic variable
was ��2 =0.2. Then the evolution of the energy of the oscil-
lator was monitored for a large number of initial phases of
the oscillator, and for a large number of noise realizations, of
the same type. The average 
�cosh−1
E��0

/2�2�ensemble was re-
corded for a few periods of the oscillator, and finally, it was
compared with the corresponding analytical form given by
Eq. �42�. In the following examples the accuracy of the ap-
proximation of our method and its power as an analytical
forecast of the evolution of the energy of the system is pre-
sented.

Let us use as a first example of g�t� a fractional Gaussian
noise �FGN� variable �see Ref. �16�� with variance � and
Hurst parameter H �0�H�1�. The FGN’s autocorrelation
function is given in Appendix C, along with other useful
expectation values for that kind of Gaussian stochastic vari-
able. From them we could write an expression for F�t� in
terms of a sum over integers �see Appendix B�. In Fig. 3 we
have plotted the numerically computed F�t� alongside the
numerically computed ensemble average of �1/4�
	�cosh−1
E��0

�2 for a few Hurst parameters. The accuracy is
quite good, although it seems to be deteriorating with time.
However, this is mainly caused by the fact that statistical
dispersion grows exponentially with time as well and, hence,
the statistical expectation values should not be trusted a lot at
late times. The comparative diagrams suggest that one could
rely on the analytical forms for F�t� to get a gross estimate of
the Lyapunov exponent of the energy of the system.

As a second example we have used a stationary autore-
gressive �AR� variable �see Ref. �17�� with variance � and
parameter a ��a � �1�. In this case, again, the comparison
between analytical and statistical numerical results that are
plotted in Fig. 4 are quite satisfactory. Predictions for the
average energy evolution could be based on our analytical
formula for F�t�. It should be pointed out again that the com-
parative diagrams for the cases of FGN and AR, which are
shown in Figs. 3 and 4, are based on the approximation of
negligible contribution of the integral term inside the cosine
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argument of Eq. �40�, although a much more accurate—
though complicated—formula could be written for the aver-
age evolution of the energy in case of Gaussian stochastic
variables �cf., Appendix C�.

Finally, a non-Gaussian stochastic variable has been
tested against our approximate estimate, namely the case of a
random telegraphic signal �RTS� has been used to describe
the fluctuations of the oscillator’s frequency. The magnitude
of the square pulse is assumed to be � while the character-
istic time �0 for a pulse is assumed to be a few tens of
numerical time steps �, which is the parameter adjusting the

rate at which all our noise variables are assumed to vary. As
we said previously, since this kind of noise is not Gaussian
we cannot compute the expectation value of the whole inte-
grand of Eq. �40�. The best we can do to get an analytical
expression that approximately describes the average evolu-
tion of the energy is to neglect the g-dependence of the co-
sine term and use the expectation value of the remaining
expression. Once again the predicted average compares very
well with the actual average, as shown in Fig. 5.

FIG. 3. �Color online� Three diagrams �computed from 100 FGN realizations� that depict the average energy growth of the system when
its frequency fluctuates according to an FGN variable with Hurst parameter �a� H=0.3, �b� H=0.6, and �c� H=0.9. In all cases, the �red�
dashed highly fluctuating curve at the top represents, at each time moment, the maximum energy of the system among all the FGN
realizations used; this is indicative of the variance of the average value. The remaining two curves represent the analytic function F�t� �solid
thin blue curve�, and the ensemble average value for the quantity �cosh−1
E��0

�2 /4 �thick dot-dashed magenta curve�, which is a bold
estimate for one fourth of the square of the Lyapunov exponent for the energy. The agreement between the theoretical prediction and the
actual ensemble average is moderately good; moreover, the theoretical prediction reproduces the wiggly fine structure along the evolution
that is present at high values of the parameter H, as well.

FIG. 4. �Color online� A comparative diagram, like the ones of
Fig. 3, for the case of an autoregressive type of stochastic fluctua-
tions of the oscillator’s frequency with parameter a=0.5. The solid
thin �blue� line represents the analytical approximate evolution,
while the thick dot-dashed �magenta� curve represents the average
evolution of 100 noise realizations.

FIG. 5. �Color online� A comparative diagram, like the ones of
Fig. 3, for the case of a random telegraphic square signal that de-
scribes the fluctuations of the oscillator’s frequency. The average
length of the square pulses is assumed to be ten times the charac-
teristic time step used in frequency renewal. The solid thin �blue�
line represents the analytical approximate evolution, while the thick
dot-dashed �magenta� curve represents the average evolution of 100
noise realizations.
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Finally, we could use our analytical expressions to inves-
tigate what is the effect of the characteristic time step at
which the fluctuations occur to the overall exponent that the
energy of the system evolves. From Eq. �C4�, which de-
scribes how the integral that yields the function F�t� should
be computed, it is clear that for sufficiently fast decreasing
A�k� �which was always the case in all the examples that we
have explored�, as � goes to zero it leads to a vanishing F�t�
for any given time t, although not in a linear manner due to
the complicated �-dependence of the sum itself. This nonlin-
ear � behavior is depicted in Fig. 6.

V. GENERAL CONCLUSIONS

In this paper, we have developed a formalism of quantum
mechanical “inspiration” to describe the time evolution of a
classical oscillatory system with fluctuating parameters. By
an appropriate choice of the quantum mechanical interaction
picture representation, we have obtained an expression for
the Lyapunov exponent of the energy evolution of the dy-
namical system. Our approach proved to be very powerful in
handling even highly correlated processes, such as in the
case of the Mathieu equation or the quantum mechanical
problem of the Kronig-Penney potential in solid state phys-
ics. We made it possible to determine not only the unstable
region around any resonant frequency �=2/n, but gave ana-
lytical expressions for the Lyapunov exponent as well �cf.
Eqs. �30� and �32��. Also, in the case of Gaussian fluctuations
of the parameters, we could derive analytical expressions not
only for the approximate form of Eq. �40�, when the g�t�

term in the argument of cosine has been omitted, but also for
the whole form, showing directly that our approximation in
neglecting the g�t� term is legitimate. However, the expres-
sion �44� may prove useful elsewhere in the theory of sto-
chastic functions. Our method proved very good for all other
non-Gaussian cases treated. The approach lends itself to gen-
eralizations for use in a wide field of applications.
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APPENDIX A: COMPUTING THE TIME
ORDER PRODUCT

Here we present, in a more scholastic manner, the com-
putations that led to the final expression for the propagator of
the oscillator in the interaction picture, given by Eq. �15�. Let
us start from ordering the terms of two successive propaga-
tors of infinitesimal duration �, using the Baker-Campbell-
Hausdorff formula to express them as a single exponential

U�tk,tk + ��U�tk−1,tk−1 + ��

= e−��H�I��tk�e−��H�I��tk−1�

= exp�− ���H�I��tk� + H�I��tk−1��

−
�2

2
�H�I��tk�,H�I��tk−1�� + O��3�� . �A1�

Now, by writing down the explicit form of the interaction
Hamiltonian �see Eq. �10�� it is straightforward to compute
our two-step time-ordered propagator

U�tk−1,tk+1� = exp���0„− �gkck + gk−1ck−1��1

+ �gksk + gk−1sk−1��3…

− �2�0
2gkgk−1�skck−1 − cksk−1���2 + O��3�� ,

�A2�

where the indices refer to discrete time moments, e.g.,
gk=g�tk�, while the c’s and s’s are abbreviations for cos 2�
and sin 2�, respectively. Next our aim is to use this ordering
with respect to the infinitesimal time � to construct a single
exponential expression for the whole finite-time propagator
U�0,T�. Although even at this point, with only two succes-
sive propagator terms, it is rather obvious what will be the
general form, we will compute the product of three succes-
sive such terms to make it more clear. Indeed

FIG. 6. The value of dF /dt �for F�t� see Eq. �43�� has been
drawn for the case of FGN fluctuations with H=0.6, at some suffi-
ciently large values of t where F�t� is almost a linear function of t
vs the noise time renewal parameter �. As � goes to zero the slope
of F�t� goes to zero as well, but not in a linear way, due to
�-dependence of the summed up quantities in Eq. �C4�.
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U�tk−1,tk+2� = U�tk+1,tk+2�U�tk−1,tk+1� = exp���0gk+1�− ck+1�1 + sk+1�3��exp���0�− �gkck + gk−1ck−1��1 + �gksk + gk−1sk−1��3�

− �2�0
2gkgk−1�skck−1 − cksk−1���2 + O��3��

= exp���0�− �gk+1ck+1 + gkck + gk−1ck−1��1 + �gk+1sk+1 + gksk + gk−1sk−1��3� + �2�0
2�gk+1ck+1gksk + gk+1ck+1gk−1sk−1

+ gkckgk−1sk−1 − gk+1sk+1gkck − gk+1sk+1gk−1ck−1 − gkskgk−1ck−1���2 + O��3�� . �A3�

The above computation is straightforward and leads directly
to the general formula given in the text when one takes the
limit �→0,N→�. The actual expression of Eq. �15� is ap-
proximate since all terms arising from the �3 order terms
have been omitted. This is based on the assumption that g�t�
is of small magnitude, and that correlations of g�t� of order
higher than two are negligible. The types of g�t�’s that have
been used to check this approximate formula �cf., Secs. III
and IV� have verified that our approximation is quite accu-
rate.

APPENDIX B: COMPUTING THE AVERAGE EVOLUTION
OF THE ENERGY DUE TO A GAUSSIAN

STOCHASTIC NOISE

For a zero-mean Gaussian variable, X, with variance, �2,
the expectation value �average over ensemble� of e�X is �cf.,
Ref. �12��


e�X� = e−�2/2. �B1�

Since the above expression holds for any zero-mean Gauss-
ian variable, the expectation value of the actual function that
appears in the integral of Eq. �40� could be easily computed
from the statistics of suitable derivatives of the function

f�t1,t2� = e��2�t1−t2�+�1X1+�2X2+. . .+�nXn�, �B2�

where �1 ,�2 , . . . ,�n should all be set equal to 2� at the end,
and Xi=g(t2+ �i−1��), while � is the physical time step used
for the renewal of noise. In this notation X1=g�t2� and Xn

=g�t1�. The noise function is assumed to be given as a series
of numbers that change discontinuously at the integer mul-
tiples of �. Thus, g�t� is assumed to operate physically as

g�t� = g��t/��� , �B3�

where �a� denotes the integer value of a, and � is the time
step by which the noise function is assumed to renew. The
dependence of our conclusions on the magnitude of the time
step � have been investigated in Sec. IV. Hence,

g�t1�g�t2�cos�2�t1 − t2� + 2�
t2

t1

g�t�dt�
= − R� �2

��1 � �n
f�t1,t2��

�1=¯=�n=2�

, �B4�

where R�¯� denotes the real part of �¯�. However, the
expectation value of f could be obtained since the Xi’s are
zero-mean Gaussian variables. Thus


f�t1,t2�� = e2i�t1−t2�exp�−
1

2

��1X1

+ �2X2 + ¯ + �nXn�2�� . �B5�

Finally, by interchanging the order of the real value operation
and the derivatives with respect to �’s, and the computation
of the expectation value, we get

�g�t1�g�t2�cos�2�t1 − t2� + 2�
t2

t1

g�t�dt��
= cos�2�t2 − t1��exp�− 2
�2��

	�
g�t1�g�t2�� − 4
g�t1���
g�t2���� , �B6�

where ����t2 , t1�=t2
t1g�t�dt. Now, this is the general for-

mula one should use to evaluate the average time evolution
of the energy of the system, through Eq. �40�, for any kind of
zero-mean Gaussian variables. These should then be com-
pared to numerical averages to test the predictability of our
analytical formulas. As we have shown in the main text, the
output of the comparison was satisfactory in all cases, even
when the g-dependent argument of cosine in Eq. �40� was
omitted. It remains to show that taking into consideration the
nonzero � terms of Eq. �B6� leads simply to minor correc-
tions of the energy evolution that are still in good agreement
with the numerical examples, see Fig. 7. The result of Eq.
�B6� is therefore not of particular practical significance, and
has been given mainly for completion.

As one can tell from the form of Eq. �B6� the function
that has to be integrated over t1 , t2 to get the energy evolution
of the system depends again only on the difference t1− t2 and
not on the actual values of t1 and t2. This was to be expected
due to the stationarity of g�t�. Therefore we could simplify
the corresponding double integral of Eq. �40� into the single
integral


a2�t�� = 2�
0

t

ds�t − s�A�s�cos�2s� , �B7�

as in the approximate case assumed in the main text �cf., Eq.
�42��, but with a somewhat more complicated function for
A�s�:

A�s� � exp�− 2
��s�2���
g�0�g�s�� − 4�
g�0���s���2� ,

�B8�

with �=0
sg�x�dx, which is again an even function, whatever

kind of Gaussian variable is assumed for g�t�. Note that we
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have used the property that 
g�t1���t2 , t1��= 
g�t2���t2 , t1��.
As was pointed out in the previous paragraph, the simpler
form of function A�s� used in the main text is very accurately
describing the evolution of the system. In other words the
g-dependence in the phase term of Eq. �40� is really insig-
nificant, at least for the cases we have examined where ��2

does not exceed 0.4. As a matter of fact, even if the more
complicated form becomes important at higher variation val-
ues, it is not really useful since then we could not trust any-
more the approximation scheme itself that is described in this
paper. At least, from tests we have performed with high �
values ���2 =0.6� the contribution of the new terms in A�s�
“push” the energy-evolution curve towards the right direc-
tion with respect to the numerical averages of the exact evo-
lution behavior, even though the agreement between the ex-
act average and our approximate estimate deteriorates as was
expected to happen with large amplitude fluctuations.

APPENDIX C: USEFUL EXPECTATION VALUES
FOR FGN’S AND AR’S

First, we show how the integral that gives the average
energy evolution according to Eq. �42� should be computed
numerically. Remember that the functions used here for the
stochastic variable are discontinuous functions and thus the
integrals could be written alternatively as discrete sums.
Various parts of the explicit form of A�s� in Eq. �B8� �for the
case of a Gaussian stochastic variable� could then be written
as sums of the autocorrelation function of the stochastic vari-
able assumed. More specifically, if we define the autocorre-
lation function as

r�s� � 
g�0�g�s�� = r���s/���� = r�k� , �C1�

where k= ��s /� � � is the integer part of �s /��, then


�2�s�� = ��2�kr�0� + 2�
i=1

k−1

�k − i�r�i�� if k � 1,

0 if k = 0,
�
�C2�

and


��s�g�0�� = ���
i=0

k−1

r�i� if k � 1,

0 if k = 0.

�C3�

The reason that the sums are computed up to k−1, instead of
k, is that until the kth renewal time �t1= t2+k�� the integral
t2

t1g�t�dt is simply �(g�t2�+g�t2+��+ ¯g�t2�+ �k−1��). Fi-
nally, the following discrete analogue for the single integral
of Eq. �42� should be used:

F�t� = 2��
k=0

�t/��

�t − k��cos�2k���A�k� if k � 1

1

2
A�0� if k = 0 � .

�C4�

The 1/2 correction in the A�0� terms reflects the fact that
when we use the symmetry of A�s�=A�−s� we take the
double of the integral from 0 to k �this is where the overall 2
comes from�, but then we count twice the values arising from
A�0�.

The case of non Gaussian variables �e.g., the RTS ex-
ample of Sec. IV�, where we cannot write an analytic for-
mula for the expectation value of the whole integrand of Eq.
�40�, and thus we rely on the approximate formula that omits
the integral in the phase part �which is anyway practically
negligible, as we have remarked earlier, in all cases consid-
ered�, could be treated by exactly the same procedure as
before by simply replacing A�k� with r�k�, as in the main
text.

Second, we give the analytic results of the various sums
that A�k� consists of in all three cases of stochastic variables
used in the main text, namely, �1� fractional Gaussian noise
�FGN�, �2� autoregressive noise �AR�, and �3� random tele-
graphic signal �RTS�.

�1� For FGN Gaussian noises with variation �2 and Hurst
parameter H, the discrete expectation values mentioned
above are given by the following formulas

r�k� = 
g�0�g�k�� =
�2

2
„�k + 1�2H + �k − 1�2H − 2k2H

… ,

�C5�


g�0���k�� = 
g�k���k�� =
�2�

2
�k2H − �k − 1�2H + 1� ,

�C6�

FIG. 7. �Color online� Comparison between the full Eq. �B6�
�dot-dashed magenta curve� and the approximate one �solid blue
curve� that we used in the main text �the same formula �B6� but
with �=0�, for the case of FGN fluctuations with H=0.8 and ��2

=0.2. It is clear that the new complicated terms are of minor sig-
nificance and they do not alter our conclusions. The same very good
agreement between the accurate analytical expression for a2�t� and
the approximate one, where the integral in the argument of cosine in
Eq. �B6� has been omitted, shows up in all cases of Gaussian fluc-
tuations considered here, independently of the values of its
parameters.
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�2� = �2�2k2H, �C7�

where

k = � t1 − t2

�
� . �C8�

The first formula above comes from the definition of this
type of Gaussian noise �see Ref. �18��, while the rest are
computed from the corresponding sums.

�2� For stationary AR Gaussian noises with parameter a
��a � �1� the corresponding formulas are


g�0�g�k�� = �2ak, �C9�


g�0���k�� = 
g�k���k�� = ��21 − ak

1 − a
, �C10�


�2� =
�2�2

�1 − a�2„k�1 − a2� − 2a�1 − ak�… , �C11�

where, again,

k = � t1 − t2

�
� . �C12�

Again the formulas above have been computed from the
known correlation function of AR’s, Eq. �C9� �see Ref. �17��.

�3� For the RTS signals which are not Gaussian we only
give the correlation function �see Ref. �19��:


g�0�g�k�� = �2e−2k�/�0, �C13�

where �0 is the characteristic time for the RTS �the probabil-
ity of having a pulse of length t is equal to P�t�
= �1/�0�e−t/�0�.
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