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01, thl  other hand, the capacitor (which may be thought of as two rnetd plates 
sr.paratn1 by some insulator; in the water model it is a tank) impses the condition 

whcrt. C is a positive constant called the capacitance. 
We summarize our development so far: a state of our circuit is given by the nix 

numbers ( in,  ir, ic, U R ,  UL, vC) ,  that is, an element of R' X R'. These numbers are 
subject to three restrictions: Kirchhoff's current law, Kuchhoff's voltage law, and 
the resistor characteristic or "generalized Ohm's law." Therefore the space of 
physical states is a certain subset Z C R' X R'. The way a state changes in time 
is drtcmined by two differential equations. 

Srxt .  wr simplify the state space Z by observing that iL  and vc determine the 
other furrr coordinates, since in = i~  and ic = -ir. by KCL, vn = j ( id = j ( i r )  by 
tht, genc,mlizcd Ohm's law, and u~ = vc - vn = vc - f ( i r )  by KVL. Therefore 
a-1. rnrl use R'as the state space, interpreting the wrdinates as ( i ~ ,  U C ) .  Formally, 
we define a map r: R* X R' + IP, sending (i, v) E R* X R' to ( i r ,  vc). Then we 
set ra = rr I 2,  the restriction of r to 2 ;  this map ro: Z -+ R' is one-bone and onto; 
its inverse is given by the map 9 :  R' -+ Z, 

q ( i ~ ,  U C )  = ( i ~ ,  i ~ ,  - i ~ ,  j ( i ~ ) ,  vc - VC).  

It  is easy to check that 9(ir ,  vc) satisfies KCL, KVL, and the generaliaed Ohm's 
law, so s does map R' into Z;  i t  is also easy to see that r o  and 9 are inverse to each 
othrr. 

We therefore adopt R' as our statc space. The differential equations governing 
the change of state must be rewritten in te rn  of our new coordinates ( i ~ ,  V C )  : 

di, 
L -  = v 

dt 
L =  v c -  f ( i r ) ,  

For simplicity, since this is only an example, we make L = 1, C = 1. 
If we write z  = i ~ ,  y i. VC, we have as differential equations on the ( I ,  y) Csr- 

tcsian space: 

These equations are analyzed in the following seetion. 

$2. LVALYSIS OP THE CIRCUIT EQUATIONS 

PROBLEMS 

1. Find the differential equations for the network in Fig. D, where the resistor is 
voltage controlled, that is, the resistor characteristic is the graph of a C func- 
tion 0 :  R - R, g(vm) 9 iR.  

u 
FIG. D 

?. Show that the LC circuit consisting of one inductor and one capacitor wired 
in a closed loop aseillates. 

$2. Analyais of t h e  Ciwuit  Equations 

Here we begin a study of the phase portrait of the planar differentid equation 
derived from the circuit of the previous section, namely: 

Tlris in one form of Lienard's epuolion. If f ( z )  = 1' - I ,  then (1) is a form of 
Van der Pol's equalion. 

First consider the most simple case of linear f (or ordinary resistor of Seetion I ) .  
Let / ( I )  = Kz ,  K > 0. Then ( 1 )  takes the form 

The eigenvdues of A are given by X = 1 [ - K  f (K' - 4)'n]. Since h always 
has negative real part, the zero state (0.0) is an asymptotically stable equilibrium, 
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in isrt n sink. Every state tends to zero; physically this is the diiipative effect of 
thr r~sistot.. Furthermore, one can see that (0 ,  0 )  will be a spiral pink precisely 
nhr,n ti < 2. 

S w t  rvr consider the equilibria of ( 1 )  for a general C function f .  
Thrre is in fact a unique equilibrium i of ( 1 )  obtained by setting 

Tlre matrix of first partial derivatives of ( 1 )  a t  Z is 

whose rigrnvalu~a are given by 

A = t [ - f ( 0 )  (f'(0)' - 4)lnI. 

Wc conclude that this equilibrium satisfies: 

i is a sink if f(O) > 0, 
and 

i is asourceif f ' (0)  < 0  

(we Chaptrr 9). 
In particular for Van der Pol's equation ( f ( r )  = z' - z )  the unique equi- 

librium is a source. 
To analvae 1 1 )  further we define a function W: R' -t R' by  W ( z ,  y )  = t ( Z  + . . .  

y') ; thus W is half of the norm squared. The following is simple but 
important in the study of ( I ) .  

Proposition Lel z ( 1 )  = ( z ( l ) ,  y(1)) be a solulion c u m  of LMlard'a equation (1). 
Tlirri 

Proof.  Apply the chain rule to the composition 

J L R ~ I ~ R  
to obtain 

m p p d n g  1 ,  this is equal to 

z (u  - j ( z ) )  - yz = - r f ( z )  

by ( I ) .  Here J  could be any interval of real numbers in the domain of z. 
The statement of the proposition has an interpretation for the electric circuit 

that gave rise to ( 1 )  and which we will pursue later: energy decreases along the 
solution curves according to the power dissipated in the mistor. 

In  circuit theory, a &tor whcae characteristic is the graph of j:  R - R, is 
called paasive if its characteristic is contained in the set c o n s i s t i  of (0, 0 )  and 
the interior of the first and third quadrant (Fig. A for example). Thus in the ease 
of a passive resistor - r j ( z )  is negative except when r = 0 .  

FIG. A 

I'rom Theorem 2 of Chapter 9, Section 3, it follows that the origin is aqymptoti- 
cally stable and its bssin of attraction is the whole plane. Thus the word paMivc 
correctly describes the dynamics of such a circuit. 

$3. Van der  pol'^ Equation 

The goal here is to continue the study of Lienard's equation for a certain func- 
tion j. 
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FIG. A 

This is called Van der Pol's epuation; equivalently 

dy = - = ,  

dl 

In this case we can give a fairly complete phase portrait analysis 

Theorem There is one n o n t r i d  periodic aolulia of ( 1 )  and every nonequilibrium 
solulion tends Lo lhis periodic solution. "The system oscilloles." 

\Yt. knrm from thr previous section that (2) has a unique equilibrium at  (0 ,  01, 
nnrl it is :i source. Thr next step is to show that every nonequilibrium solution 
"rutatr,~" in a certain sense around the equilibrium in a clock\vise direction. TO 
this cnd \vc divide thc ( r ,  y) plane into four disjoint regions (open sets) A,  B, 
C, Ll in Fig. A. These regions make up the complement of the curves 

(3) Y - I (z)  = 0 ,  

-1  = 0 .  

Tlrcsr curves (3) thus form the boundaries of the four regions. Let us make this 
morr prc~.isr. Dcfinp four C U I V ~  

v+ = ( ( I ,  y) 1 y > 0 ,  r = 01, 
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These curves are disjoint; together uith the origin they form the boundaries of 
the four rqiuns. 

Next r e  see how the vector field (r ' ,  y') of (1) behaves on the boundary curves. 
I t  is clrsr that y' = 0 at  (0 ,O)  and on u+ U u, and nowhrre clsr; and i = 0 exactly 
on g+ U r U (0 ,  0 ) .  Furthermore the vcctor (L' ,  y') is horiwntal on o+ u tr and 
points right on u+, and left on w (Fig. B). And (z', y') is vertical on g+ u g-, point 
ing downward on g+ and upwanl on g. In  each region A, B, C. D the signs of 
z' and y' are constant. Thus in A, for example, we have z' > 0,  y' < 0,  and so the 
vector field always points into the fourth quadrant. 

The next part of our analysis concerns the nature of the flow in the interior of 
the regions. Figure B snggesta that trajeetoria spiral around the origin clockwise. 
The nrxt two propositions make this precise. 

FIG. B 

Proposition 1 Any 1rajech-y starting on u+ mlers A. Any trajedoq alartinq in A 
meek g+; furlhenore il meeta g+ before il meeta u, r or u+. 

Proof. See Fig. B. Let ( ~ ( t ) ,  ~ ( 1 ) )  be a solution curve to (1). If ( ~ ( 0 ) .  ~ ( 0 ) )  E 
v+, then z ( 0 )  = 0 and y(0)  > 0 .  Since ~ ' ( 0 )  > 0 ,  z ( t )  increases for small 1 and 
so z(1)  > 0 which implies that y ( t )  decreases for small 1. Hence the curve enters A.  
Before the curve leaves A (if it does), z' must become 0 again, ao the curve must 
crass g+ before it meets w, g- or u+. Thus the fvst and last statements of the propo- 
Bition are proved. 

I t  remains to show that if ( ~ ( 0 1 ,  ~ ( 0 ) )  f A then ( r ( l ) ,  y ( t ) )  t g+ for some 
t > 0 .  Suppase not. 

Let P C R' be the compact set bounded by (0 ,O)  and u+, g+ and the h e y  = y ( 0 )  
as in Fig. C. The solution curve ( r ( l ) ,  y ( l ) ) ,  0 5 t < 6 ia in P. From Chapter 8. 
it follows since ( r ( t ) ,  ~ ( 1 ) )  does not meet g+, it is defined for all t > 0 .  

Since z' > 0 in A, r(1)  > a for t > 0 .  Hcnce from ( I ) ,  y'(1) 5 -a for t > 0 .  
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FIG. C 

For these values of 1, then 

This is impossible, unless o w  trajectory meets g+, proving Proposition 1. 

Similar arguments prove (see Fig. D) : 

FIG. D. Trajectorie. apiral  clock^. 

Proposition 2 Every trajectory is &fined for (al leost) dl t > 0. Ezcepl for ( 0 ,  O),  
each lrajeclmy repealcdly CTOS6M Uu Cum8 +, p, r, g-, in dodrtcise mdcr, pas& 
among the regimw A ,  B, C, D i n  cloekluiae order. 

To analyze further the flow of the Van der Pol oscillator we d e h e  a map 

0 :  v+ - v+ 
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an follows. Let p E vf ;  the solution curve 1 + & ( p )  through p in defined for all 
t > 0. There will be a d e s t  t h ( p )  = h > 0 such that +,,(p) E VC. We put a ( p )  = 
+,,(p). Thus r ( p )  in the first point after p on the trajectory of p (for t > 0)  which 
in again on VC (Fig. E). The map p --r t ,(p) in continuous; while this ahould be 
intuitively clear, it follows rigorously from Chapter 11. Hence r in also eontinuoua. 
Note that r in one to one by uniqueness of solutions. 

The importance of thin &ion map  r :  v+ --r v+ comes from ita intimate relation- 
ship to the phase portrait of the Bow. For example: 

Proposition 3 LU p € v+. Then p is a W point of r (that is, r ( p )  - p)  i f  and 
~ J Y  i f p  is on a &ic a d u t i o n o f ( 1 )  (that is, 9 , ( p )  - P f o r m  t Z 0 ) .  M o r u ~ c r  
euery periodic solution NNC me& VC. 

Proof. If r ( p )  = p, then + , , ( p )  = p, where 1, = t , (p )  ia an in the debition 
of 0.  Suppose on the other hand that o(p) # p. Let v* = v+ u (0 ,O) .  We observe 
first that r extends to a map v* + v* which is again continuow and one to one, 
aending (0, 0 )  to itself. Next we identify v* with ( y  E R I y 2 0 )  by to 
each point ib y-eoordinate. Hence there in a natural order on P: ( 0 ,  y )  < ( 0 ,  r )  if 
y < z. It follows from the intermediate value theorem that a :  Z + P is ader 
prcaknq. If r ( p )  > P,  then d ( p )  > o ( p )  > p and by induetion e ( p )  > p, 
n = 1, 2, . . .. This means that the trajectory of p never c- tre again a t  p. 
Hence +,(p) # p for all t Z 0. A similar argument applies if r ( p )  < p. MOR 
if r ( p )  Z p, p in not on a periodic trajectory. The last statement of Pmpoeitinn 3 
follows from Proposition 2 which implies that every trajectory (except ( 0 ,  0 ) )  
meeta v+. 

For every point p € VC let k ( p )  = tr be the smallest 1 > 0 such that +,(p) € P. 

Define a continuous map 

a:u++r ,  

.(P) = +<.(P). 

I"- 
FIG. E. The map r :  .+ - @*. 



See Fig. F. The map a is a h  one to one hy uniqueness of solutions and thus mono- 
tone. 

Using the methods in the proof of Proposition 1  it can be shorn that there is a 
unique p i n t  f i  E v* ouch that the solution curve 

I+I (R)  I 0  S 1  S (Y(PO)I 

intersects the curve g+ at  the point ( 1 , O )  where g+ meets the z-axis. Let r = I PO I. 
Define a continuous map 

6 : v + - R ,  

6 ( p )  = '(1  a ( p )  1' - I p  1 2 )  
where I p  I means the usual Euclidean norm of the vector p. Further analysis of 
the ROW of (1) is based on the following rather delicate result: 

Proposition4 (a) 6 ( p )  > 0 i f 0  < 1 p  1 < r ;  
(b) 6 ( p )  decrcaa~a mmtdrmcly lo - m aa 1 p  1 --. m', 1 p  1 > r .  

Part of the graph of b ( p )  an a function of I p I is shown schematically in Fig. C. 
The intermediate value theorem and Proposition 4 imply that h e  w o uniw 
cl. E v+ m'lh 6(&) = 0 .  

We will prove Proposition 4 shortly; firat we uae it to complete the proof of the 
main thmrem of this seetion. We exploit the sknv symmetry of the vector field 

glrcn by the rlghthand slde of@), namely. 

c ( - z ,  - Y )  = -l7(z, Y ) .  

'l'hli rwnns that if 1 - ( r ( l ) ,  ~ ( 1 ) )  ia a solution curve, ao is t  - ( - I . ( ( ) ,  - y ( t ) ) .  
Cantiidcr the trajectory of the unique p i n t  rl. E v+ such that 6(q0) = 0 .  Thin 
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point hss the property that 1 a(*) I - I 4% 1, hence that 

+*.(4%) = -* 
From skew symmetry we have also 

+,,(-4%) = - (-4%) = 4%; 

hence putting = 2f, > 0 we have 

+r(a) = ch. 

Thus qe lies on a nontrivial periodic trajectory 7 .  
Since 6 is monotone, similar reasoning shows that the trajectory through q,, is 

the unique nontrivid periodic solution. 
To i n v d g a t e  other traiectoriea we define a map 0:  r - v*, sending each point 

of tr to the first intersection of its trajectory (for 1 > 0 )  with v*. By symmetry 

R ( P )  = -4-P). 
Note that e = 6. 

We identify the yaxia with tbe real numbers in the y-coordhte. Thus if p, 
q E v* U ir we write p  > q if p  is above q. Note that a and 0 reveme this ordering 
while n preserves it. 

Now let P E v+, P > qo. Since a ( & )  = -cl. we have a ( p )  < -4% and ~ ( p )  > p.. 
On the other hand, i ( p )  < 0 which means the same thing M a ( p )  > - p .  There- 
fore r ( p )  = 0 a ( p )  < p. We have ehom that p  > @ implies p  > o ( p )  > % S i -  
krly r ( ~ )  > $ ( p )  > ,and by induction r ' ( ~ )  > r S + l ( p )  > a, n = 1.2, . . .. 

The sequence ~ ' ( p )  has a limit q, 2 qo in uf. Note that q, ia a fixed point of r ,  
for by continuity of m we have 

r ( q d  - q ~  = lim r ( u " ( p ) )  - ql .-- 
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Since o has only one fixed point q, = po. Thi. ahow8 that the hrrjeCfmI 01 p +r& 
tmwrdTas  1- co. T h e m e  thiegis t rueifp < h;thedetsilsareleft  to the 
reader. Since every trajectory except (0,O) meeta u+, the prwf of the main theorem 
is complete. 

I t  remains to prove Proposition 4. 
We adopt the following notation, Let 7: [a, b] - R' be a C1 curve in the plane, 

written ~ ( 1 )  = ( ~ ( r ) ,  ~ ( 1 ) ) .  If F: R' - R is C', define 

I t  may happen that ~ ' ( 1 )  + 0 for a < 1 < b, so that dong 7,  y is a function of 
I, y = y (r). In this esae we can cbenge variables: 

hence 

Similarly if ~ ' ( 1 )  Z 0. 
Recall the function 

w(z ,  I) = ( ( 9  + 9). 
Let ~ ( t )  = (I({), y(t)), 0 5 1 $ h = h(p) be the solution curve joining p E u+ 
to a (p )  E r. By definition ((p) = W(z(f,), y(l2)) - W(r(O), ~ ( 0 ) ) .  Thus 

By the proposition of Section 2 we have 

.(, = C - ~ ( l ) ( I ( l ) ~  - z(l))  dl; 

6(p) = [ z(l)*(l - z(l)-) dl. 

ThL? im~ndiately proves (a) of Proposition 4 beeawe the i n w a n d  ia positive for 
0 < r(1) < 1. 

R e  may rewrite the Isst equality as 

We restrict attention to points p E u+ with ( p I > r. We divide the corresponding 

solution e w e  7 into three curves .rt, n, 7, as in Fig. H. Then 

6 ( ~ )  = 6 1 ( ~ )  + &(P) + &(P), 
where 

Notice that dong 72, y(l) is a function of ~ ( 1 ) .  Hence 

where f (z)  = i - z. An p movea up the yaxis, y - j ( r )  inrreases (for (z, y) 
on rd. Hence 61(p) decreases as 1 p I -. O .  Similarly &(p) d e e m  M I p I -r -. 

On n, I is a function of y, and z > 1. Therefore, since dy/O - -2, 

As I P I in-, the domain [y,, y.] of inkgration beurmes stadily w. 
The function y -r z(y) depmda on p;  we write it z.(u). An I p I iDcraseq tbs 
curves -n move to the right; hence z,(y) inc- and a, %(#)(I - z,(y)') de- 
creases. I t  follows that L(p) dee- as 1 p 1 inc-; and &tlv 
~I . I - .  &(P) = - O. Thi. completes the proof of Propmition 4 
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I .  Find 1 1 1 ~  phase portrait far the differential quation 

I' = Y -J (x) ,  J ( r )  = s, 
y' = -r. 

2 Give a proof of Proposition 2. 

3. (Hartmen [9. Chapter 7, Theorem 10.21) Find the phase portrait of the 
f,lllnaing diffrrential equation and in particular show there is a unique non- 
trlvi:~l prricdic solution: 

u' = -!Ax), 

rvhrrv all of the following are sssumed: 
( i)  J ,ga r rC1;  

( i i )  g ( - r )  = -g(r) and r g ( ~ )  > 0 for all z ;r 0;  
(iii) !(-I) = - j ( r ) a n d j ( r )  < O f o r O < z  < a ;  

iiv) for r > a, j ( r )  is positive and incressing; 
(v) / ( I )  - rn BS r -+ m. 

(H8,rl Imitate thr proof of the thcorem in Section 3.) 

4. (Hard!) Consider the equation 

z f = y - J ( z ) ,  J : R + R , C ,  

Given j, how many periodic solutions does thii system have? This would be 
interesting to know for many broad classes of functions J. Good results on this 
would probably make an interesting r w c h  article.' 

04. HOPP BIWRCAnON 

5. Consider the equation 

It has a unique nontrivial periodic solution 7, by Problem 3. Show that M 

p - -, tends to the cloaed cuwe consisting of two horizontal line segments 
and two a m  on y = i - r as in Fig. I. 

44. Hopf Bifurcation 

Often one encounters a differential equation wilh parameln. Precisely, one is 
given a C1 map g,: W -+ E where W is an open set of the vector space E and p is 
allowed to vary over some parameter space, say p E J = [ - I ,  I]. Furthermore 
i t  is convenient to suppose that g, is differentiable in p, or that the map 

J X W - E,  ( $ 8 ,  2) -+ Q,(z) 
is C1. 

Then one considers the differential equation 

(1) z '=g , (z )  on W. 

One is especially concerned how the phase portrait of (1) changer as p varies. 
A value w where there is a basic structural change in this phase portrait is called 
a bifurcation point. Rather than try to develop any sort of systematic bifurcation 
theory here, we will give one fundamental example, or a realmtion of what is 
called Hopf bifurcation. 

Return to the circuit example of Section 1, where we now suppose that the 
resistor characterietic depends on a parameter r and is denoted by J.: R - R, 
- 1 < p 5 1. (Maybe p is the temperature of the resistor.) The physical behavior 
of the circuit is then described by the difierential equation on R': 

Coneider as an example the special case where J. is described by 

Then we apply the results of Sections 2 and 3 to see what h a p p e ~  M r ia varied 
from - 1 t o l .  

For eaeb p, - 1 < p < 0, the resistor is passive and the proposition of Section 2 
implies that all solutions tend asymptotically to zero as t --r -. Physiully the 
circuit is dead, in that after a period of transition all the currents and volta@a , 
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I ~ $ 0  O < p r l  
FIG. A. Bifurostion. 

stag at 0 (or as close to 0 as we want). But note that as r c m  0, the circuit 
becornrs alive. I t  will begin to o8eillate. Thia follows from the fact that the analysis 
of Section 3 applies to (2) when 0 < r < 1; in this case (2) will have a unique 
periodic solution 7, and the origin becomes a source. In  fact every nontrivial 
wIut,inn tends to 7. as 1 -+ oo. Further elaboration of the ideas in Section 3 can be - -. - . - - - . -- .- 
u s e d t o s h o w t h a t r , ~ O a s ~ - t O , r > O .  

For (Z), p = 0 is the bifurcat~on value of the parameter. The basic structure of 
the phsse portrait changes as p passes through the value 0. See Fig. A. 

The mathematician E. Hopf proved that for fairly general one-parameter families 
of equations z' = j,(t), there must be a closed orbit for r > rr if the eigenvalue 
character of an equilibrium changes suddenly a t  )r from a sink to a source. 

PROBLEMS 

1. Find all values of r which are the bifurcation pointa for the linear differential 
r,q!l:ttion: 

2. Prove the statement in the text that r, + 0 as r + 0, r > 0. 

$5. More General Circuit Equation. 

I\.? ~ i v r  here a way of finding the ordinary differential equations for a class of 
clertrirnl nrtworka or circuits. We consider networks made up of resistors, capaci- 
tors, and inductom. b i e r  we discuaq briefly the nature of these objects, called the 
branches of the circuit; a t  p r w n t  it suffices to consider them as devices with two 
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terminals. The circuit ia formed by connecting together various taminah. The 
connection pointa are called nodca. 

Toward giving a mathematical description of the network, we detine in R' a 
linear vaph which corresponds to the network. This linear graph consists of the 
following data: 

a A finite net A of pointa (called nodes) in R'. The number of nodes is de- 
noted by a, a typical node by a. 

(b) A finite set B of line aegmenta in Ra (called branches). The end points of a 
branch must be nodes. Dietinct branches can meet only a t  a node. The number of 
branches is b; a typical branch is denoted by 8. 

We aasume that each branch 6 is mierUcd in tbe sense that one is given a daon 
from one terminal to the other, say from a ( - )  terminal ,r to a (+) terminal p. 
The boundary of 8 € B is the set a8 = BL U 6 

For the moment we ignore the exact nature of a branch, whether i t  is a rexktor, 
capacitor, or inductor. 

We suppose aLso that the set of nodes and the set of branches are ordered, a, 
that it makes sense to speak of the kth branch, and so on. 

A c u r d  alafe of the network will be some point i = (it, . . . , ir) E R'wbere 
i, r e p m t a  the current flowing through the kth branch a t  a certain moment. 
In this esse we will often write d for Rb. 

The Kirchhd m r r d  law or KCL s t a t e  that the amount of current Bowing 
into a node a t  a given moment is equal to the amount flowing wt. The water 
analogy of Section 1 makes this plausible. We want to express this condition in a 
mathematical way which will be especially convenient for our development. 
Toward this end we construct a linear map d: d + D where a is the Cartesian 
space R* (mall a ia the number of nodes). 

If i € d is a current atate and a ia a node we define the ath eoodhate  of d i  E o 
t o b e  

(di). = C f.bib, 
P € B  

where 
if #+=a, 

e 4 =  -1  11. if , r = a ,  
otherwise. 

One may interpret (di). as the net current flow into node a when the drmit is in 
the current state i. 

Tharrem 1 A c u w d  alate i E d sotisfica KCL if a d  aly if di  = 0. 

Prwf. It is auffrcient to check the condition for each node a E A. Thus (do. = 
0 if and only if 

CeJir = 0, 
LC B 


