214 10. DIFFERENTIAL EQUATIONS FOR ELECTRICAL CIRCUITS

On the other hand, the capacitor {which may be thought of as two metal plates
separated by some insulator; in the water model it is a tank) impbses the condition
dvc(t)

C dt = "C(t)s

where (7 is a positive constant called the capacitance.

We summarize our development 8o far: a state of our circuit is given by the six
numbers {ir, it, ig, ¥r, bz, te), that is, an element of R* X RY. These numbers are
subject to three restrictions: Kirchhoff’s current law, Kirchhoff’s voltage law, and
the resistor characteristic or “generalized Ohm's law.” Therefore the space of
physical states is a certain subset Z C R? X R% The way a state changes in time
is determined by two differential equations.

Noxt, we simplify the state space T by observing that iy and vc determine the
other four coordinates, since ig = i and 1¢ = —#c by KCL, e = f(ia) = f(ir) by
the generalized Ohm's law, and v, = v¢ — vz = t¢ — f(ir) by KVL. Therefore
we can use R? as the state space, interpreting the coordinates as (i, v¢). F ormally,
we define a map x: R? X R? — R?, sending (4, v) € R* X R? to (i, vc). Then we
set xo = 1| Z, the restriction of » to Z; this map »o: £ — R* is one-to-one and onto;
its inverse is given by the map ¢: R* — Z,

elin, ve) = (ir, iz, —iL, f(1L), ve — f{iL), ve).

It is easy to check that (i, v¢) satisfies KCL, KVL, and the generalized Ohm's
law, so ¢ does map R? into I; it is also easy to see that xy and ¢ are inverse to each
other.
We therefore adopt R? as our state space. The differential equations governing

the change of state must be rewritten in terms of our new coordinates (i, ve):

dﬁ, .

— = ve — f(i

L q vy = V¢ f ( 1'-)_9

CT‘? = fg ® —iL.

For simplicity, since thiz is only an example, we make L = 1, = 1.
If we write £ = i1, ¥ == v¢, we have as differential equations on the (z, y} Car-
tesian space:
d_x

dt ‘U"‘f(f).

dy
d

= —x

These equations are analyzed in the following section.
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PROBLEM S

I. Find the differential equations for the network in Fig. D, where the resistor is
voltage controlled, that is, the resistor characteristic is the graph of a (" func-
tion g: R — R, g(vg) = ip.

Rg | :J:c L

FiG. D

2. Show that the LC circuit consisting of one inductor and one capacitor wired

in a closed loop oscillates.

§2. Analysis of the Circuit Equations

I-.Iere we begin 8 study of the phase portrait of the planar differential equation
derived from the circuit of the previous section, namely:

(1) 2oy 1o,

dy
dt

This is one form of Liengrd’s equatton. If f(zr) = 2 — z, then (1) is a form of
Van der Pol’s equation.

= —zr

First consider the most simple case of linear f (or ordinary resistor of Section 1).
Let f(x) = Kz, K > 0. Then (1) takes the form

, -K )
z=Az,- A=[_l 0], z=(ry).

The eigenvalum of A are given by A = 4[—K + (K? — 4)'7]. Since A always
has negative real part, the zero state (0, 0) is an asymptotically stable equilibrium,
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in fact a sink. Every state tends to zerc; physically this is the dissipative eﬂ'e(‘:t of
the resistor. Furthermore, one can see that (0, 0} will be a spiral 'aink precisely
when K < 2,

Next we consider the equilibrin of (1) for a general C" function f.

There is in fact & unique equilibrium Z of (1) obtained by setting

y— flz) =0,
—z =0,

or
z = (0,1(0)).

The matrix of first partial derivatives of (1) at £ ia

[-f "(0) 1]
-1 o
whose eigenvalues are given by
x = 3[—f(0) £ (f(0)* — 4)'2].
We conclude that this equilibrium satisfies:
z  isagnkif F{e) > 0,
and

z isasourceif f{0) <0

{sec Chapter 9). ) ]
In particular for Van der Pol’s equation (f{(2) = r* — z) the unique equi-
librium is a source.
To analyze (1) further we define a function W: R* —» R by W‘_(z, y) = $(a* +
y*); thus W is hali of the norm squared. The following proposition is simple but
important in the study of (1).

Proposition Let z(f) = (z(), y(£)} be a solution curve of Lienard’s equation (1).
Then

L W) = —z0f()).
dt
Proaf. Apply the chain rule to the composition

JLR LR
to obtain

WD) = DWEWE®) = 2020 + vy ();
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suppressing ¢, this is equal to

z{y — f(©)) — yx = —zf(2)

by (1). Here J could be any interval of real numbers in the domain of z.

The statement of the proposition has an interpretation for the electric circuit
that gave rise to (1) and which we will pursue later: energy decreases along the
solution curves according to the power dissipated in the resistor.

In circuit theory, a resistor whose characteristic is the graph of f: R = R, is
called passive if its characteristic is contained in the set consisting of {0, 0) and
the interior of the first and third quadrant (Fig. A for example). Thus in the case
of a passive resistor —zf(z) is negative except when x = 0.

FIG. A

From Theorem 2 of Chapter 9, Section 3, it follows that the origin is asymptoti-
cally stable and its basin of attraction is the whole plane. Thus the word passive
correctly describes the dynamics of such a eireuit,

§3. Van der Pol’s Equation

The goal here ig to continue the study of Lienard’s equation for a certain func-
tion .

dr
(1) I

I

y_f(x)y f(x) =I‘—'1',

d
d_ .

d
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FIG. A

This is called Van der Pol's equation; equivalently
dz .

2 —_—=y— ,

(2) il + =z

dy

di

In this case we can give a fairly complete phase portrait analysis.

= —UI.

Theorem There is one nontrivial periodic solution of (1) and every nonequilibrium
solution tends to this periodic solution. “The system oscillates.”

We know from the previous section that (2) has a unigue equilibrium at (0, 0),
and it is a source. The next step is to show that every nonequilibrium solution
“rotates” in & eertain sense around the equilibrium in a clockwise direction. To
this end we divide the (r, ¥) plane into four disjoint regions {open sets) A, B,
C, D in Fig. A. These regions make up the complement of the curves

(3) y — f(x) =0,
—z =0

These curves (3} thus form the boundaries of the four regions. Tet us make this
more preeise. Define four curves

vt = {{z ) |y >0,z =0],
gt=1(rlz>0y =2 — 2z,
r = {(r,y) |y <0,z =0}
=iz <0y=2—z.

3. va 1 ]
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These curves are disjoint; together with the origin they form the boundaries of
the four regions. '

Next we see how the vector field (2, ¥') of (1) behaves on the boundary curves
It is clear that ' = 0 at (0, 0) and on v* Uy, and nowhere clse; and * = 0 emctlj;
on‘g+ U g U (0, 0). Furthermore the vector (', ¥') is horizontal on v+ U v~ and
Pomts right on #*, and left on v~ (Fig. B). And (', ¢') is vertical on gt U g, point~
ing downward on g+ and upward on g—. In each region A, B, C, D the ;igna of
z" and ¥ are constant. Thus in 4, for example, we have 2 > 0, ' < 0, and 8o the
vector field always points into the fourth quadrant, ,

The pext part of our analysis concerns the nature of the flow in the interior of
the regions. Figure B suggests that trajectories spiral around the origin clockwise
The next two propositions make this precise. -

v

FIG. B

Proposition 1 Any trajeclory starting on v+ enlers A. An; ] ing &
. . Any lrajeclory starling in A
meels gt ; furthermore it meels g+ before tt meets v—, g or v+, "

+Proof. See Fig. B. Let (z(t), y(¢}) be a solution curve to (1). If (x(0), y(0)) €
v+, then z(0) = 0 and y(0) > 0. Since 2'(0) > 0, z(1) increases for small ¢ and
80 z{¢) > 0 which implies that y(t) decreases for small . Hence the curve enters 4.
Before the curve leaves A (if it does), ' must become 0 again, 8o the eurve must
cross g* before it meets v—, g~ or v*. Thus the first and last statements of the propo-
sition are proved.

It remains to show that if (z(0), y{(0)) € A then (x({}, y{t)) € g* for some
t > 0. Suppose not.

I_et P C R be the compact set bounded by (0, 0) and v+, g+ and the line y = y(0)
as in Fig. C. The solution curve (z(t), y(t)),0 < t < 8isin P. From Chapter 8
it fc_ullows since (z{t), y(£)) does not meet g*, it is defined for all t > 0. .

Since 2’ > 0in 4, z(t) > a for ¢ > 0. Hence from (1), () < —afor¢ > 0.
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v
=

v

-
10y, yLOY

FIG.C
For these values of ¢, then
v = [ ) ds S YO — at.
This is impossible, unless our trajectory meets g+, proving Proposition 1.

Similar arguments prove (see Fig. D):

FIG. D. Trajectories apiral clockwise.

Proposition 2 Every lrajectory is defined for (at least) al.It 20 I'i‘zcept for (0, ?),
each trajectory repeatedly crosses the curves vt, g+, v, g~, in clockwise order, passing
among the regions A, B, C, D in clockwise order.

To analyze further the flow of the Van der Pol oscillator we define & map

oyt — vt
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as follows, Let p € v*; the solution curve { — ¢,(p} through p is defined for all
t 2 0. There will be a smallest ti(p} = t, > 0 such that ¢.,(p) € v*. Weput o(p) =
¢:,(p). Thus o (p) is the first point after p on the trajectory of p (for ¢ > 0) which
is again on v+ (Fig. E). The map p — #(p) is continuous; while this should be
intuitively clear, it follows rigorously from Chapter 11. Hence » is also continuous.
Note that o is one to one by unigueness of solutions.

The importance of this section map o: v+ — v+ comes from its intimate relation-
ehip to the phase portrait of the flow. For example:

Proposition 3 Let p € v*. Then p iz & fized point of o (that is, o(p) = p) if and
only if p is on a periodic solution of (1) (that is, ¢.(p) = p for some t # 0). Moreover
every periodic solution curve meets v+,

Proof. If o(p) = p, then ¢,(p) = p, where L = L(p) in a8 in the definition
of o. Suppose on the other hand that o(p) # p. Let v* = v* v (0, 0). We observe
firat that ¢ extends to & map v* — v* which is again continuous and one to one,
sending (0, 0) to itself. Next we identify v* with {y € R | y > 0} by assigning to
each point its y-coordinate. Hence there is a natural order on v*: (0, y) < (0, z) if
¥ < z. It follows from the intermediate value theorem that #: ¥* — v* is order
preserving. If o(p) > p, then ¢*(p) > o(p) > p and by induction +~{p) > p,
n = 1,2 ... This means that the trajectory of p never crosses v* again at p.
Hence ¢,(p) # p forall ¢ # 0. A similar argument applies if ¢(p) < p. Therefore
if #(p) # p, pis not on a periodic trajectory. The last statement of Proposition 3
follows from Proposition 2 which implies that every trajectory (except (0, 0))
meets vt

For every point p € v* let ts(p) = ¢, be the smallest ¢ > 0 such that ¢,(p) € v
Define & continuous map

a vt — v,

“(P) = ¢l|(p)-
vt

.Y S ¢*
por( p)

{0,0)

v

FIG. E. The map «: v* — v+,
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FIG. F. The map a: vt — v,

See Fig. F. The map a is also one to one by uniqueness of solutions and thus mono-
tone.

Using the methods in the proof of Proposition 1 it can be shown that there is s
unique point py € v* such that the solution curve

l¢dm) {0 <t < L(po)]

intersects the curve g* at the point (1, ) where g* meets the z-axis. Let r = | py|.
Define a continuous map
§:v1t - R,

3p) =|alp) ° - |p |?)

where | p | means the usual Euclidean norm of the vector p. Further analysis of
the flow of (1) is based on the following rather delicate result:

Proposition 4 (a) 3(p) > 00 <|p| <r;
{b) &(p) decrensrs monolonelylo —w as|p| — o, |p| > 1

Part of the graph of 3(p)} as a function of | p | is shown schematically in Fig. G.
The intermediate value theorem and Proposition 4 imply that there i3 a unique
qo € vt with 5(g) = 0.

We will prove Proposition 4 shortly; first we use it to complete the proof of the
main theorem of this section. We exploit the skew symmelry of the vector field

Q(I,y) =(y -7 + ¥, _x)
given by the right-hand side of (2), namely,
gl—z, —y) = —glz, ).

Thix means that if { = (z{t), y{&)) is a solution curve, sois t — (—z(t}, —y(8)).
Consider the trajectory of the unique point go € vt such that 3(g) = 0. This
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point has the property that | a{ge) | = | g |, hence that

$ul®) = —¢o
From skew symmetry we have also
bu(—@) = —(—p) = g
hence putting A = 26 > 0 we have

ain) = o

Thus ¢, lies on & nontrivial periodic trajectory v.

Since 8 is monotone, similar reasoning shows that the trajectory through g, is
the unique nontrivial periodic solution.

To investigate other trajectories we define a map 8: v~ — v*, sending each point
of v~ to the first intersection of ita trajectory {for { > 0) with v*. By symmetry

B(p) = —a{—p).
Note that ¢ = Ba.

We identify the y-axis with the real numbers in the y-coordinate. Thus if p,
¢ € v* Vv we write p > ¢ if p is above q. Note that a and 8 reverse this ordering
while o preserves it.

Now let p € vy, P > g0 Since a(g) = —¢go we have a{p)} < —gsand ¢(p) > gy
On the other hand, §(p) < 0 which means the same thing a8 a(p) > —p. There-
fore ¢ (p) = Ba(p) < p. We have shown that p > g, implies p > o{(p) > ¢s. Simi-
larly o(p} > o*(p) > go and by induction e*(p) > o**'(p) > g n = 1,2, .. ..

The sequence ¢~(p) has a limit g, > g, in #*. Note that ¢, is a fixed point of a,
for by continuity of ¢ we have

ol@) — @ = lim a(e™(p)) — @
=¢ — H = 0.
5(p)
(o) ;0 Iggl legl

FIG. G
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Since ¢ has only one fixed point ¢; = ¢. This shows that the trajectory of p spirals
toward v as § — o, The same thing is true if p < g¢o; the details are left to the
reader, Since every trajectory except (0, 0) meets v+, the proof of the main theorem
is complete.

It remains to prove Proposition 4.

We adopt the following notation. Let v: [a, b] — R? be a C? curve in the plane,
written v () = (z(t), ¥($)). If F: R — R is (", define

*
[Py = [ Fla®, v e
¥ -

It may happen that z'(t) » 0 for ¢ < { < b, so that along v, y is a function of
z, y = y(z). In this case we can change variables:

Ll

[ rew. 0 a = [ ey Lo

zla}

*® F(z, y(z))
LF(I, y) = [‘m m— dz.

hence

Similarly if y'(¢) = 0.
Recall the function

Wiz, ¥) =}z + ).

Let v{f) = (z(&), ¥{¢)), 0 € t < & = f(p) be the solution curve joining p € v*
to a(p) € v~ By definition &(p) = W(z(ts), y(ts)) — W(z(0), ¥(0}). Thus

13 d
i) = [ 5 WG, 50) &
°
By the proposition of Section 2 we have

80 = [~z - 20) &
°

3(p) = L "2 (M1~ 2(0) dt

This immediately proves (a) of Proposition 4 because the integrand is positive for
0<ri) <L

We may rewrite the last equality as
s = [ 20 - ).
R

We restrict attention to points p € v+ with | p | > r. We divide the corresponding
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Y

V' 4
alp)

FIG. H

solution curve ¥ into three curves v, vs, s 83 in Fig. H. Then

3(p) = &(p) + &(p) + &i(p),
where

s = [ 20~ i=123
Y.
Notice that along vy, ¥(!) is a function of z(¢). Hence

1 —
q(p) = [u %azi)dx

=I'M
[ - f(x)

where f(z) = 2 — z. As p moves up the y-axis, y — f(z) increases (for (z, p)
on n). Hence 8;(p) decreases as | p { — . Similarly &(p) decreases as | p | — .
On 4y, z i3 a function of y, and z > 1. Therefore, since dy/dt = —uz,

o) = [ —2)( - 2 @

= [T - zwm @y <.

As | p | increases, the domain [y, 2] of integration becomes steadily larger.
The function ¥ — z(y)} depends on p; we write it z,(y). Aa | p | increases, the
curves y: move to the right; hence z,(y) increases and so 1,(y) (1 — z,(3)?) de-
creases. It follows that &(p) decreases a8 |p| increases; and evidently
lim)yivu $(p) = — . This completes the proof of Proposition 4
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PROBLEMS

1. Find the phase portrait for the differential cquation
¥=y—fln, flr)=2

y" = =T

L&

Give a proof of Proposition 2.

3. (Hartman [9, Chapter 7, Theorem 10.27]) Find the phase portrait of the
following differential equation and in particular show there is a unique non-
trivial periodic solution:

=y~ f(z),
¥y o= —g(n),
where all of the following are assumed:
(i) f, gareCY
(iiy g(—xy = —g(r) and rg(s) > Oforall x = 0;

(i) fl—1) = —f(x) and f(5) < O0for0 < z < a;
(iv) for xr > a, f(r) is positive and increasing;
{(v] flz) = o asr— =,
{ Hint: Imitate the proof of the theorem in Section 3.)
4. (Hard!) Consider the equation
z’=y—f(:r), f:R—lR,C',
2.

= —z.

Given f, how many periodic solutions does this syastem have? This would be
interesting to know for many broad classes of functions f. Good results on this
would probsbly make an interesting research article.’

FIG. I
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5. Consider the equation

2 =ply - -2). wu>o0

¥ = —r
It has a unique nontrivial periodic solution v, by Problem 3. Show that as
&~ o, 7, tends to the closed curve consisting of two horizontal line segments
and two arcsony = * — rasin Fig. 1. -

§4. Hopf Bifurcation

Often one encounters s differential equation with parameler. Precisely, one is
given a C' map g,: W — E where W is an open set of the vector space E and 4 is
allowed to vary over some parameter space, say p € J = [—1, 1] Furthermore
it is convenient to suppose that g, is differentiable in g, or that the map

J x W_’ Ev (5"- I) "'GF(‘I)

is (1.
Then one considers the differential equation
(1 ' = gu(x) on W.

One is especially concerned how the phase portrait of (1) changes as u varies.
A value g, where there is a basic structural change in this phase portrait is called
a bifurcation point. Rather than try to develop any sort of systematic bifurcation
theory here, we will give one fundamental example, or & realization of what is
called Hopf bifurcation.

Return to the circuit example of Section 1, where we now suppose that the
resistor characteristic depends on a parameter ¢ and is denoted by f,: R — R,
—1 < g < 1. (Maybe x is the temperature of the resistor.) The physical behavior
of the circuit is then described by the differential equation on R3:

dr
{2) J =Yy - fp(‘t)r
j—:’ —
Consider as an example the special case where f, is described by
(2a) L(z) = 2 — ur.

Then we apply the results of Sections 2 and 3 to see what happens as y is varied
from —1 to 1.

Foreach u, —1 < u < 0, the resistor is passive and the proposition of Section 2
implies that all solutions tend asymptotically to zero as  — «. Physically the
circuit is dead, in that after a period of transition all the currents and voltages
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FIG. A. Bifurcation.

stay at O (or as close to 0 as we want). But note that as 4 crosses 0, the circuit
becomes alive. It will begin to oscillate. This follows from the fact.that the anal.ysw
of Section 3 applies to (2) when 0 < u < 1;in this case (2) will have a unique
periodic solution v. and the origin becomes s source. In fac_t every nontrivial
solution tends to v, 83 ¢ — «. Further elaboration of the ideas in Section 3 can be
used to show that v, — 0asp—0,u > 0. )

For (2), g = 0 is the bifurcation value of the parameter. The l?amc structure of
the phase portrait changes as s passes through the value 0. See Fig. A. -

The mathematician E. Hopf proved that for fairly general on&pzframete'r families
of equations ' = f,(z), there must be a closed orbit for u > e if the eigenvalue
character of an equilibrium changes suddenly at s from a sink to a source.

PROBLEMS

1. Find all values of x which are the bifurcation points for the linear differential

equation:
dr
di = ux + W
dy
=z -2y,
at y

9. Prove the statement in the text that v, = 0asp — 0, 0 > 0.

§5. More General Cirenit Equations

We give here a way of finding the ordinary differential equations for a class O.f
electrical networks or circuits. We consider networks made up of resistors, capaci-
tors, and inductors. Later we discuss briefly the nature of these objects, called the
branches of the circuit; at present it suffices to consider them as devices with two
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terminals. The circuit is formed by connecting together various terminals. The
connection points are called nodes.

Toward giving a mathematical description of the network, we define in R a
linear graph which corresponds to the network. This linear graph consists of the
following data:

(a) A finite set A of pointa (called nodes) in R, The number of nodes is de-
noted by a, a typical node by a.

(b) A finite set B of line segments in R? (called branches). The end points of a
branch must be nodes. Distinct branches can meet only at a node. The number of
branches is &; a typical branch is denoted by 8.

We assume that each branch § is eréented in the sense that one is given a direction
from one terminal to the other, say from a (—) terminal 8~ to a (4) terminal g+.
The boundary of ¢ Bistheset 98 = g+ U g

For the moment we ignore the exact nature of a branch, whether it is a resistor,
capacitor, or inductor.

We suppose also that the set of nodes and the set of branches are ordered, so
that it makes sense to speak of the kth branch, and so on.

A current stale of the network will be some point 1 = (i), ..., ) € R* where
1, represents the current flowing through the kth branch at a certain moment.
In this case we will often write 4 for R®,

The Kirchhoff current law or KCL states that the amount of current flowing
into a node at a given moment is equal to the amount flowing out. The water
analogy of Section 1 makes this plausible. We want to express this condition in a
mathematical way which will be especially convenient for our development.
Toward this end we construct a linear map d: § — D where © is the Cartesian
space R* (recall a is the number of nodes).

If £ € 4 i3 a current state and « is a node we define the ath coordinate of di € D
to be

(d‘.)l = Z eﬂﬂiﬂr

17
where
1 if gt =a,
s = 11 if g =a
0 otherwise.

One may interpret {df) . as the net current flow into node @ when the eireuit ia in
the current state i,

Theorem 1 A current slale © & 4 salisfies KCL if and only if di = 0.
Proof, 1t is sufficient to check the condition for each node a € A. Thus (di), =
0 if and only if
2 eatis = 0,

BchB



