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collimations 109-209-209-209 we obtained a wavevector resolution of

dQ=Q � 0:0020.

Inelastic neutron scattering. A 50-g powder sample was sealed with 4He

exchange gas in a thin-walled aluminium can for the inelastic neutron-

scattering experiments at the NIST centre for neutron research. For energy

transfers ,40 meV we used a direct geometry time-of-¯ight (TOF) spectro-

meter in the neutron energy gain mode with a PG(002) double crystal

monochromator set at Ei � 3:55 meV and a cooled beryllium ®lter in the

incident beam. The elastic energy resolution was 0.2 meV. Low temperature

(10 K) neutron energy gain data served as a direct measure of the background.

For energy transfer from 40 to 200 meV we used a ®lter analyser (FA) spectro-

meter with a Cu(220) monochromator surrounded by 609-409 horizontal

collimation and combined with a cooled polycrystalline beryllium ®lter as

the analyser. The relative energy resolution of this instrument was ,8% in the

energy range probed. The fast neutron background in the FA experiment was

measured and subtracted. We also subtracted a constant background arising

from the ®nite transmission through the FA of elastically scattered thermal

neutrons. The scale factor between the TOF and FA data was determined by

comparing the integrated intensity associated with the 37-meV peak in the

phonon spectrum of ZrW2O8 (Fig. 1). Absolute normalization of the TOF data

was accomplished by measuring the count rate associated with incoherent

elastic scattering from a known amount of vanadium.

Analysis of neutron scattering data. In the limit of large wavevector transfer,

Q, the one-phonon double differential scattering cross-section can be

approximated9,10 by:
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Here the sum is over all atoms in one unit cell, k and k9 are the initial and ®nal

neutron wavevectors, respectively, bi is bound coherent neutron scattering

length, Mi is the atomic mass, Zi(q) is the contribution of atom i to the phonon

density of states and n�q� � �exp�~q=kBT�2 1�2 1 is the Bose population

factor. The Debye±Waller factor, exp(-2Wi(Q)), is related to the mean-

square atomic displacements given by Evans et al.11 The quantity which can

be extracted from inelastic neutron scattering is the so-called generalized

phonon density of states g(q) de®ned by:
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Concerning the relationship between g(q) and Z(q) we note that for ZrW2O8,

the neutron scattering lengths of the different atoms are very similar, and the

differences in the atomic masses are partially compensated by the Debye±

Waller factors. Nevertheless, we expect that vibrations of the lighter oxygen

atoms are weighted more heavily in g(q) than in the true state density, Z(q).
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The Mathieu equation1 governs the forced motion of a swing2, the
stability of ships3 and columns4, Faraday surface wave patterns on
water5,6, the dynamics of electrons in Penning traps7, and the
behaviour of parametric ampli®ers based on electronic8 or super-
conducting devices9. Theory predicts that parametric resonances
occur near drive frequencies of 2v0=n, where v0 is the system's
natural frequency and n is an integer >1. But in macroscopic
systems, only the ®rst instability region can typically be observed,
because of damping and the exponential narrowing10 of the
regions with increasing n. Here we report parametrically excited
torsional oscillations in a single-crystal silicon microelectromech-
anical system. Five instability regions can be measured, due to the
low damping, stability and precise frequency control achievable in
this system. The centre frequencies of the instability regions agree
with theoretical predictions. We propose an application that uses
parametric excitation to reduce the parasitic signal in capacitive
sensing with microelectromechanical systems. Our results suggest
that microelectromechanical systems can provide a unique testing
ground for dynamical phenomena that are dif®cult to detect in
macroscopic systems.

The micromachining ®eld has been given the generic name
microelectromechanical systems. This ®eld is quite broad, and

Figure 1 Scanning electron microscope image of the torsional oscillator. This

oscillator is the out-of-plane motion actuator for arrays of scanning tunnelling

microscopes12. A typical device covers an area of ,150 mm2. The relevant

parameters for this device are: k < 2:75 3 102 8 Nm, I � 2:12 3 102 19 kg m2,

g � 1:216 3 102 12 NmV2 2 and Q < 3000 (see text for de®nition of symbols).

The maximum signal amplitude applied to the device was 38V. The device is

fabricated using conventional integrated-circuit technology from single-crystal

silicon.
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includes integrated microsensors, microactuators, microinstru-
ments11, micro-optics and micro¯uidics. Applications include
accelerometers to deploy an air bag in a car; ink-jet printer heads;
an array of movable mirrors for colour projection displays; and
atom probes for imaging and transporting atoms12,13. Microinstru-
mentation for micrometre/nanometre scale ¯uidics14, when coupled
with microanalytical instrumentation, offers possibilities in char-
acterizing mechanical and rheological properties of biological
molecules. Microelectromechanical systems typically use silicon as
a structural material, and the devices are fabricated using con-
ventional integrated-circuit technology.

The devices we consider here are microelectromechanical probes
used for scanned-probe microscopy, including scanning tunnelling

microscopy and atomic force microscopy. They are fabricated from
single-crystal silicon. As shown in Fig. 1, the device consists of a
cantilevered beam connected to a torsion bar. Attached to the
cantilevered beam are an atomically sharp tip for the probe and
comb capacitive transducers for sensing and actuation. The same
capacitive transducer design, which is the source of the parametric
excitation in this system, can be used either for sensing displace-
ments or for inducing motion. As an actuator, the interdigitated
capacitive plates used here allow for a wide range of motion and
reasonably high amplitudes without failure. This type of actuator
generates out-of-plane motion forces due to a phenomenon known
as comb-drive levitation15. In this technique, a voltage is applied
to the ®xed electrodes, while the silicon substrate and movable
electrodes are grounded. This causes asymmetrical fringing electric
®elds between the movable and ®xed electrodes, and these ®elds
induce motion in the movable electrodes, one of which is illustrated
in a cross-sectional view in Fig. 2a.

To estimate the out-of-plane forces and torques generated by the
comb-drive levitation effect, we have performed a three-dimen-
sional electrostatic simulation using COULOMB16, an electrostatic
boundary element method solver. A graph of the computed electro-
static torque versus angle of rotation for one movable electrode is
shown in Fig. 2b.

The operational mode of the device is an out-of-plane torsional
vibration. Although the system is continuous, much of its
behaviour can be understood by a simpli®ed one-degree-of-free-
dom model that treats the torsional mode separately. The equation
of motion is:

I Èv � c Çv � kv � M�t; v� �1�

where v is the rotation angle of the torsion bar (the overdot denotes
differentiation with respect to time), I is the mass moment of inertia
of the torsional cantilever, c is the torsional damping constant, k
is the torsional stiffness, and M is the applied torque. As a ®rst
approximation, we assume that the damping and restoring
forces are linear. For the torsional members used here, made of
single-crystal silicon, the quality factor Q has been measured to
be ,3,000 at 18 mtorr. The torque is M�t; v� � V 2f�v�, where V
is the applied voltage and f(v) gives the angular dependence of
the torque generated by comb-drive levitation. Applying a voltage
V � �ADC � AACcosqt�1=2 yields M�t; v� � �ADC � AACcosqt�f�v�,
where ADC and AAC are the magnitudes of the direct current and
alternating current of the input signal, respectively. From results of
the simulations shown in Fig. 2b, f(v) can be approximated as linear
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Figure 2 Comb-drive levitation of torsional oscillator. a, Schematic of comb-drive

levitation with one movable electrode and two ®xed electrodes. The actual device

has a total of 16 movable electrodes on each side. In modelling, we assumed that

the metal-coated interdigitated ®ngerswere perfect conductors. The beams were

modelled as 1 mm wide, 20 mm long and 10 mm deep, with a 2 mm gap between

electrodes and a distance of 5 mm between the device electrodes and the

substrate. The simpli®ed model consisted of one movable electrode between

two ®xed ones. The results were then generalized to include all 32 actuation

electrodes in the particular device being studied. b, Torsional simulation results:

torque generated versus angle of rotation for one movable electrode and two

®xed electrodes. Displacement of the end of the cantilever is also displayed on

the top axis. During device operation, the maximum rotation obtained is 0.017 rad.

This shows that for the region of operation we are concerned with, the torque

generated versus angle rotated curve can be approximated as linear (R � 0:997).

The region of possible operation on this curve is highlighted, to show that the

linear approximation is suitable in this case.
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Figure 3 Theoretical prediction and experimental measurements of the

frequency ratio for the centre of the nth parametric resonance region. Results

for ®ve regions are shown. The instability frequencies match theoretical values to

within 0.7%. Reasons for error between predicted values and actual instabilities

include errors in the calculated device parameters, errors in the force simulation

(geometrical assumptions) and in the ability to accurately locate the `centre'of the

instability region, as the regions tend to be asymmetric due to damping effects.
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if we assume small-angle rotations: f�v� � 2 gv. In actual opera-
tion, the device rotates a maximum of 0.017 rad, making the small-
angle approximation appropriate. Using this approximation and
de®ning t � qt, the equation of motion becomes:

v0 �
c

qI
v9 �

1

q2I
�k � gADC � gAACcost�v � 0 �2�

where prime denotes differentiation with respect to t.
Equation (2) is a damped Mathieu equation of the form

v0 � av9 � �b � dcost�v � 0 �3�

where a � c=qI, b � �k � gADC�=q
2I, and d � gAAC=q

2I. The theory
developed for the Mathieu equation allows us to predict the
frequencies where parametric resonances will occur. Assuming
weak periodic forcing and negligible damping, ®rst-order perturba-
tion theory predicts instabilities centred at b � n2=4, for
n � 1; 2; ¼. This result implies that parametric resonance occurs
at drive frequencies q � 2q0=n, where q0 denotes the natural
frequency of the torsional mode.

To test these predictions experimentally, we used an unusual
technique in which a laser vibrometer is mounted on an optical

microscope. The laser beam is sent through the microscope and
focused on the movable microelectromechanical device. This
enables nanometre-scale displacements of the device to be accu-
rately resolved. After a preliminary estimate of the frequency of the
®rst Mathieu instability, given by q � 2q0 � 2

������
k=I

p
, an experimen-

tal frequency sweep was used to establish q0 more precisely. Then
the formula q � 2q0=n predicted the drive frequencies where the
other Mathieu instabilities should be centred.

Five Mathieu instabilities predicted by equation (3) were experi-
mentally observed. Figure 3 plots the frequency ratio q0/q for the
observed Mathieu instabilities, along with the theoretical prediction
q0=q � n=2. The agreement is within 0.7% at all points.

The theory of the Mathieu equation shows that each resonance
occurs within a `tongue' in the (b, d) parameter space for equation
(3). The shape and position of the tongues are affected by damping
of the system. Damping has the stabilizing effect of `raising' the
tongue higher up in the parameter space, as well as narrowing the
unstable regions. Because of the extreme narrowness of high-order
tongues, they are hard to resolve and are rarely observed in
macroscopic systems. In our system, several Mathieu tongues
could be mapped experimentally, due to the device's low damping,
the precise and stable frequency control on the drive, and the
sensitivity of the laser vibrometer technique. Figure 4 is a plot of
the instability regions for n � 1±4, including magni®ed views of the
tongues for n � 1 and n � 3. Upper limits in d for each instability
are not absolute; they are merely where each experiment was
stopped in order to limit the voltage amplitude to the device. The
measured boundaries between stability and instability are linear for
n � 1, which is predicted for the damped Mathieu equation.

The parametric resonances reported here suggest a way to reduce
the parasitic signals in capacitive sensing with microelectromecha-
nical systems. The motion of many such systems can be detected as
changes in the capacitance between movable and ®xed elements.
Unfortunately, parasitic signals can be a problem; because the
devices are small, and the electrical isolation is not perfect, there
is some coupling of the actuating drive signal to the sensing
capacitors. This stray signal can easily overshadow any change in
capacitance due to the motion of the system in question.

The idea is to separate the drive and sense signals by paramet-
rically exciting the device far from its natural frequency. This is only
possible in systems governed by Mathieu-type equations, due to the
unique way energy is transferred during parametric excitation. For
example, we consider a given device with a natural frequency of
q0 � 57 kHz driven at the frequency q corresponding to the ®rst
Mathieu instability (n � 1); here q � 2q0=n � 114 kHz. The para-
sitic signal from the incoming drive will also be at 114 kHz.
However, the device will still vibrate torsionally at its natural
frequency of 57 kHz, so the capacitive sensing signals of interest
will also be at 57 kHz. With this separation in frequency, it is
straightforward to ®lter out the parasitic 114-kHz signal, thereby
revealing the 57-kHz sensing signal.

Additionally, when operated in the ®rst instability region, the
device can be used to increase sensitivity in atomic force microscopy
(AFM) measurements. In conventional AFM, high Q leads to higher
sensitivity, at the expense of bandwidth. By utilizing the parametric
resonance instability, the effect of Q can be decoupled from
sensitivity. At the edge of the instability region, the device has a
0.001 Hz in 114 kHz turn-on (that is, a shift of 10 parts per billion
will move the response from stable to unstable). This is a much
sharper transition than obtainable with high-Q cantilevers used in
present resonance mode AFM techniques. M
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Figure 4 Instability map for n � 1±4. The top panel shows a general view of this

map. When studying parametric resonance in such systems, it is useful to

consider only those instabilities that correspond to odd n. When using comb-

drive levitation for actuation, there is a small asymmetry in the torqueversus angle

function (see Fig. 2b). This asymmetry directly adds an additional driving term to

the right-hand side of equation (1). For driving frequencies which are not integer

multiples of the natural frequency of the device, the term will not affect the

Mathieu response of the system. However, when the natural frequency is an

integer multiple of the drive frequency (that is, n � 2, 4) the driving term on the

right-hand side will have fundamental and/or harmonic components which are at

the natural frequency of the device, therefore driving it into resonance and

coupling with any parametric resonance also present. As the ®rst and third

regions can be directly compared to theory, experimental plots of these regions

are magni®ed to show more detail (bottom two panels). Of considerable interest

is the linear shape of the n � 1 boundary as predicted from theory. The bottom of

the curve rounds off due to damping. The boundaries for the third instability

region are not linear. This is also predicted from theory1. Differences between the

mathematical prediction of the shape and the actual shape of the region are

primarily due to imperfect stability of the testing set-up. Localized laser heating,

drift of the laser spot on the device, room conditions, and variable conditions in

the vacuum chamber also contribute to small shifts in the instability boundaries.

For higher-order stability maps (n > 3), the tests can take up to 36 hours to run.

Stability over time becomes an issue, as small changes in the system cause the

instability boundary to shift.
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Surfactants have been shown to organize silica into a variety of
mesoporous forms, through the mediation of electrostatic, hydro-
gen-bonding, covalent and van der Waals interactions1±8. This
approach to mesostructured materials has been extended, with
sporadic success, to non-silica oxides5±17, which might promise
applications involving electron transfer or magnetic interactions.
Here we report a simple and versatile procedure for the synthesis
of thermally stable, ordered, large-pore (up to 140 AÊ ) mesoporous
metal oxides, including TiO2, ZrO2, Al2O3, Nb2O5, Ta2O5, WO3,
HfO2, SnO2, and mixed oxides SiAlO3.5, SiTiO4, ZrTiO4, Al2TiO5

and ZrW2O8. We used amphiphilic poly(alkylene oxide) block
copolymers as structure-directing agents in non-aqueous solu-
tions for organizing the network-forming metal-oxide species, for
which inorganic salts serve as precursors. Whereas the pore walls
of surfactant-templated mesoporous silica1 are amorphous, our
mesoporous oxides contain nanocrystalline domains within rela-
tively thick amorphous walls. We believe that these materials are
formed through a mechanism that combines block copolymer
self-assembly with complexation of the inorganic species.

In a typical synthesis, 1 g of poly(alkylene oxide) block copolymer
HO(CH2CH2O)20(CH2CH(CH3)O)70 (CH2CH2O)20H (designated
EO20PO70EO20; Pluronic P-123, BASF) was dissolved in 10 g of
ethanol (EtOH). To this solution, 0.01 mol of the respective inor-
ganic chloride precursor (Table 1) was added with vigorous stirring
for 1/2 h. The resulting sol solution was gelled in an open Petri dish
at 40 8C in air for 1±7 days, during which the inorganic precursor
hydrolyses and polymerizes into a metal oxide network. Alterna-
tively, the sol solution can be used to prepare thin ®lms by dip
coating. All as-made samples are transparent except for the samples
derived from WO3, which are dark blue. The as-made bulk samples
or thin ®lms were then calcined at 400 8C for 5 h in air to remove the
surfactant species. Figure 1a shows typical X-ray diffraction (XRD)
patterns for mesostructured zirconium oxides before and after
calcination. The as-made zirconium inorganic/polymer mesostruc-

ture shows three diffraction peaks with lattice spacings d � 115, 65
and 59 AÊ . After calcination, the diffraction peaks appear at higher 2v
angles with d � 106, 60 and 53 AÊ . Both sets of diffraction peaks can
be indexed as the (100), (110) and (200) re¯ections from two-
dimensional hexagonal mesostructures with lattice constants
a � 132 and 122 AÊ , respectively.

When HO(CH2CH2O)106(CH2CH(CH3)O)70(CH2CH2O)106H
(abbreviated as EO106PO70EO106) and HO(CH2CH2O)75(CH2CH
�CH3CH2)O)45H (that is, EO75BO45) are used as the structure-
directing agents under the above conditions, cubic mesophases
are formed. Figure 1b shows the XRD patterns for the mesostruc-
tured TiO2 formed using EO75BO45. The low-angle XRD pattern for
the as-made samples shows six resolved peaks with d spacings of
100, 70, 58, 44, 41 and 25 AÊ . These peaks display d-value ratios of
Î2 : Î4 : Î6 : Î10 : Î12 : Î32, which are indexable as (110), (200),
(211), (310), (222) and (440) re¯ections respectively, in the cubic
Im3Åm space group. Following calcination of the sample at 400 8C,
three XRD peaks are observed with d spacings of 76, 53 and 43 AÊ

(ratios Î2 : Î4 : Î6), which are similarly indexable as (110), (200)
and (211) re¯ections of the cubic Im3Åm mesophase.

This synthetic procedure has been successfully applied to the
preparation of mesoporous TiO2, ZrO2, Al2O3, Nb2O5, WO3, HfO2,
SnO2, and mixed oxides SiAlO3.5, SiTiO4, ZrTiO4, Al2TiO5, ZrW2O8.
Table 1 summarizes the d100 values measured for these different
calcined oxides, along with other physical characteristics and
material properties. All calcined samples show ordering lengths
that are greater than 70 AÊ .

The appearance of low-angle diffraction peaks indicates that
mesoscopic order is preserved in the calcined metal oxide materials.
This is con®rmed by transmission electron microscopy (TEM)
images obtained from each of these samples. For example, Fig.
2a±f shows TEM images of mesoporous TiO2, ZrO2, Nb2O5 and
SiAlO3.5 recorded along the [110] and [001] zone axes of the
mesostructures. In each case, well-ordered large channels are clearly
observed to be arranged in hexagonal arrays. The pore/channel walls
are continuous and have thicknesses of ,40±70 AÊ (Table 1). In
addition, energy dispersive X-ray spectroscopy (EDX) measure-
ments and quantitative elemental analysis made on each of the
calcined samples show the expected primary metal element signals,
along with very weak Cl signals, which con®rm that the inorganic
walls consist of predominantly metal±oxygen networks. Local EDX

Figure 1 Powder X-ray diffraction patterns for mesoporous ZrO2 (a) and TiO2 (b).

Traces A and C are low-angle and wide-angle XRD patterns of the as-made

inorganic/EO20PO70EO20 composite mesostructures, which have amorphous

frameworks. Traces B and D are low-angle and wide-angle XRD patterns for the

same mesoporous oxides calcined at 400 8C for 5 h in air. The high-angle

diffractions are indexed according to their corresponding crystalline oxide

phases. The XRD patterns were obtained with a Scintag PADX diffractometer

using Cu Ka radiation.


