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the infrared as well as in the visible, and in consequence emit radiation at a much lower rate
than expected from the blackbody formula. (They would make fine windows for creatures
having infrared vision.) There is, in fact, a deep and important relation between absorption
and emission of radiation, which will be discussed in Section 3.5.

3.3 RADIATION BALANCE OF PLANETS

As a first step in our study of the temperature of planets, let’s consider the following
idealized case:

• The only source of energy heating the planet is absorption of light from the planet’s host
star.

• The planetary albedo, or proportion of sunlight reflected by the planet as a whole
including its atmosphere, is spatially uniform.

• The planet is spherical, and has a distinct solid or liquid surface which radiates like a
perfect blackbody.

• The planet’s temperature is uniform over its entire surface.
• The planet’s atmosphere is perfectly transparent to the electromagnetic energy emitted

by the surface.

The uniform temperature assumption presumes that the planet has an atmosphere or ocean
which is so well stirred that it is able to mix heat rapidly from one place to another, smooth-
ing out the effects of geographical fluctuations in the energy balance. The Earth conforms
fairly well to this approximation. The equatorial annual mean temperature is only 4% above
the global mean temperature of 286 K, while the north polar temperature is only 10% below
the mean. The most extreme deviation occurs on the high Antarctic plateau, where the
annual mean south polar temperature is 21% below the global mean. The surface tempera-
ture of Venus is even more uniform than that of Earth. That of Mars, which in our era has
a thin atmosphere and no ocean, is less uniform. Airless, rocky bodies like the Moon and
Mercury do not conform at all well to the uniform temperature approximation.

Light leaving the upper layers of the Sun and most other stars takes the form of black-
body radiation. It is isotropic, and its flux and flux spectrum conform to the blackbody law
corresponding to the temperature of the photosphere, from which the light escapes. Once
the light leaves the surface of the star, however, it expands through space and does not
interact significantly with matter except where it is intercepted by a planet. Therefore, it is
no longer blackbody radiation, though it retains the blackbody spectrum. In the typical case
of interest, the planet orbits its star at a distance that is much greater than the radius of
the star, and itself has a radius that is considerably smaller than the star and is hence yet
smaller than the orbital distance. In this circumstance, all the rays of light which intersect
the planet are very nearly parallel to the line joining the center of the planet to the center
of its star; the sunlight comes in as a nearly parallel beam, rather than being isotropic, as
would be the case for true blackbody radiation. The parallel-beam approximation is equiv-
alent to saying that, as seen from the planet, the Sun occupies only a small portion of the
sky, and as seen from the Sun the planet also occupies only a small portion of the sky.
Even for Mercury, with a mean orbital distance of 58 000 000 km, the Sun (whose radius is
695 000 km) occupies an angular width in the sky of only about 2 · (695 000/58 000 000)
radians, or 1.4◦.
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The solar flux impinging on the planet is also reduced, as compared with the solar flux
leaving the photosphere of the star. The total energy per unit frequency leaving the star is
4πr2�(πB(ν,T�)), where r� is the radius of the star and T� is the temperature of its photo-
sphere. At a distance r from the star, the energy has spread uniformly over a sphere whose
surface area is 4πr2; hence at this distance, the energy flux per unit frequency is πBr2�/r2,
and the total flux is σT4�r2�/r2. The latter is the flux seen by a planet at orbital distance r , in
the form of a beam of parallel rays. It is known as the solar “constant,” and will be denoted
by L�, or sometimes simply L where there is no risk of confusion with latent heat. The solar
(or stellar) “constant” depends on a planet’s distance from its star, but the luminosity of
the star is an intrinsic property of the star at any given stage of the star’s life. The stellar
luminosity is the net power output of a star, and if the star’s emission can be represented as
blackbody radiation, the luminosity is given by L� =4πr2�σT4�. In this book the terms “solar
constant,” “stellar constant,” “solar flux,” and “stellar flux” are all to be considered synony-
mous, and to refer to the parallel-beam flux from the star measured at any given position
in a planet’s orbit. Most of the time, the terms will be used to refer to the average flux over
the planet’s year, though in Chapter 7 we will be concerned with the seasonal variations of
the fluxes for planets in non-circular orbits. The term “solar constant” as used here must be
distinguished from the number L� which sometimes goes by the same name, and which is
an actual constant approximately equal to the Sun’s flux at the Earth’s mean orbit, averaged
over the 11-year solar cycle.

We are now equipped to compute the energy balance of the planet, subject to the
preceding simplifying assumptions. Let a be the planet’s radius. Since the cross-sectional
area of the planet is πa2 and the solar radiation arrives in the form of a nearly par-
allel beam with flux L�, the energy per unit time impinging on the planet’s surface is
πa2L�; the rate of energy absorption is (1 − α)πa2L�, where α is the albedo. The planet
loses energy by radiating from its entire surface, which has area 4πa2. Hence the rate of
energy loss is 4πa2σT4, where T is the temperature of the planet’s surface. In equilib-
rium the rate of energy loss and gain must be equal. After cancelling a few terms, this
yields

σT4 = 1
4

(1−α)L�. (3.6)

Note that this is independent of the radius of the planet. The factor 1
4 comes from the

ratio of the planet’s cross-sectional area to its surface area, and reflects the fact that the
planet intercepts only a disk of the incident solar beam, but radiates over its entire spherical
surface. This equation can be readily solved for T . If we substitute for L� in terms of the
photospheric temperature, the result is

T = 1√
2

(1−α)1/4
√

r�
r

T�. (3.7)

Formula 3.7 shows that the blackbody temperature of a planet is much less than that of
the photosphere, so long as the orbital distance is large compared with the stellar radius.
From the displacement law, it follows that the planet loses energy through emission at
a distinctly lower wavenumber than that at which it receives energy from its star. This
situation is illustrated in Fig. 3.3. For example, the energy received from our Sun has a
median wavenumber of about 15 000 cm−1, equivalent to a wavelength of about 0.7 μm.
An isothermal planet at Mercury’s orbit would radiate to space with a median emission
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Figure 3.3 The Planck density of radiation emitted by the
Sun and selected planets in radiative equilibrium with
absorbed solar radiation (based on the observed short-
wave albedo of the planets). The Planck densities are
transformed to a logarithmic spectral coordinate, and all
are normalized to unit total emission.

wavenumber of 1100 cm−1, corresponding to a wavelength of 9 μm. An isothermal planet at
the orbit of Mars would radiate with a median wavenumber of 550 cm−1, corresponding to
a wavelength of 18 μm.

Exercise 3.3 A planet with zero albedo is in orbit around an exotic hot star having a pho-
tospheric temperature of 100 000 K. The ratio of the planet’s orbit to the radius of the star
is the same as for Earth (about 215). What is the median emission wavenumber of the star?
In what part of the electromagnetic spectrum does this lie? What is the temperature of the
planet? In what part of the electromagnetic spectrum does the planet radiate? Do the same
if the planet is instead in orbit around a brown dwarf star with a photospheric temperature
of 600 K.

The separation between absorption and emission wavenumber will prove very important
when we bring a radiatively active atmosphere into the picture, since it allows the atmo-
sphere to have a different effect on incoming vs. outgoing radiation. Since the outgoing
radiation has longer wavelength than the incoming radiation, the flux of emitted outgoing
radiation is often referred to as outgoing longwave radiation, and denoted by OLR. For a
non-isothermal planet, the OLR is a function of position (e.g. latitude and longitude on an
imaginary sphere tightly enclosing the planet and its atmosphere). We will also use the term
to refer to the outgoing flux averaged over the surface of the sphere, even when the planet
is not isothermal. As for the other major term in the planet’s energy budget, we will refer
to the electromagnetic energy received from the planet’s star as the shortwave, solar, or
stellar flux. Most stars, our Sun not excepted, have their primary output in the visible, ultra-
violet, and near-infrared part of the spectrum, all of which are shorter in wavelength than
the thermal infrared – the OLR – by which planets lose energy to space. (See Fig. 3.1 for the
definitions of ultraviolet, near infrared, and thermal infrared.)

Formula 3.7 is plotted in Fig. 3.4 for a hypothetical isothermal planet with zero albedo.
Because of the square-root dependence on orbital distance, the temperature varies only
weakly with distance, except very near the star. Neglecting albedo and atmospheric effects,
Earth would have a mean surface temperature of about 280 K. Venus would be only 50 K
warmer than the Earth and Mars only 53 K colder. At the distant orbit of Jupiter, the black-
body equilibrium temperature falls to 122 K, but even at the vastly more distant orbit of
Neptune the temperature is still as high as 50 K. The emission from all of these planets lies
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Figure 3.4 The equilibrium blackbody temperature of
an isothermal spherical zero-albedo planet, as a func-
tion of distance from a Sun having a photospheric tem-
perature of 5800 K. The orbital distance is normalized
by the radius of the Sun. Dots show the equilibrium
blackbody temperature of the Solar System planets,
based on their actual observed albedos.
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in the infrared range, though the colder planets radiate in the deeper (lower wavenumber)
infrared. An exception to the strong separation between stellar and planetary temperature
is provided by the “roasters” – a recently discovered class of extrasolar giant planets with r

r�
as low as 5. Such planets can have equilibrium blackbody temperatures as much as a third
that of the photosphere of the parent star. For these planets, the distinction between the
behavior of incoming and outgoing radiation is less sharp.

It is instructive to compare the ideal blackbody temperature with observed surface tem-
perature for the three Solar System bodies which have both a distinct surface and a thick
enough atmosphere to enforce a roughly uniform surface temperature: Venus, Earth, and
Saturn’s moon Titan. For this comparison, we calculate the blackbody temperature using
the observed planetary albedos, instead of assuming a hypothetical zero albedo planet as
in Fig. 3.4. Venus is covered by thick, highly reflective clouds, which raise its albedo to
0.75. The corresponding isothermal blackbody temperature is only 232 K (as compared with
330 K in the zero albedo case). This is far less than the observed surface temperature of
740 K. Clearly, the atmosphere of Venus exerts a profound warming effect on the surface.
The warming arises from the influence of the atmosphere on the infrared emission of the
planet, which we have not yet taken into account. Earth’s albedo is on the order of 0.3, lead-
ing to a blackbody temperature of 255 K. The observed mean surface temperature is about
285 K. Earth’s atmosphere has a considerably weaker warming effect than that of Venus,
but it is nonetheless a very important warming, since it brings the planet from subfreezing
temperatures where the oceans would almost certainly become ice-covered, to temperatures
where liquid water can exist over most of the planet. The albedo of Titan is 0.21, and using
the solar constant at Saturn’s orbit we find a blackbody temperature of 85 K. The observed
surface temperature is about 95 K, whence we conclude that the infrared effects of Titan’s
atmosphere moderately warm the surface.

The way energy balance determines surface temperature is illustrated graphically in
Fig. 3.5. One first determines the way in which the mean infrared emission per unit area
depends on the mean surface temperature Ts ; for the isothermal blackbody calculation,
this curve is simply σT4

s . The equilibrium temperature is determined by the point at which
the OLR curve intersects the curve giving the absorbed solar radiation (a horizontal line
in the present calculation). In some sense, the whole subject of climate comes down to an
ever-more sophisticated hierarchy of calculations of the curve OLR(Ts); our attention will
soon turn to the task of determining how the OLR curve is affected by an atmosphere. With
increasing sophistication, we will also allow the solar absorption to vary with Ts , owing to
changing clouds, ice cover, vegetation cover, and other characteristics.
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Figure 3.5 Determination of a planet’s temperature by balancing absorbed solar
energy against emitted longwave radiation. The horizontal line gives the absorbed
solar energy per unit surface area, based on an albedo of 0.3 and a solar constant of
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curve assumes prad/ps =0.6, a value appropriate to the present Earth.

Temperature
ps ps

0

σT
ra

d4 σT
ra

d4

Pr
es

su
re

Pr
es

su
re

Prad1

Temperature

0

Prad2

Trad TradTs1 Ts1 Ts2Ts2

Figure 3.6 Sketch illustrating how the greenhouse effect increases the surface tem-
perature. In equilibrium, the outgoing radiation must remain equal to the absorbed
solar radiation, so Trad stays constant. However, as more greenhouse gas is added to
the atmosphere, prad is reduced, so one must extrapolate temperature further along
the adiabat to reach the surface.

We will now consider an idealized thought experiment which illustrates the essence of
the way an atmosphere affects OLR. Suppose that the atmosphere has a temperature pro-
file T (p) which decreases with altitude, according to the dry or moist adiabat. Let ps be
the surface pressure, and suppose that the ground is strongly thermally coupled to the
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atmosphere by turbulent heat exchanges, so that the ground temperature cannot deviate
much from that of the immediately overlying air. Thus, Ts =T (ps). If the atmosphere were
transparent to infrared, as is very nearly the case for nitrogen or oxygen, the OLR would be
σT4

s . Now, let’s stir an additional gas into the atmosphere, and assume that it is well mixed
with uniform mass concentration q. This gas is transparent to solar radiation but interacts
strongly enough with infrared that when a sufficient amount is mixed into a parcel of air,
it turns that parcel into an ideal blackbody. Such a gas, which is fairly transparent to the
incoming shortwave stellar radiation but which interacts strongly with the outgoing (gen-
erally infrared) emitted radiation, is called a greenhouse gas, and the corresponding effect
on planetary temperature is called the greenhouse effect. Carbon dioxide, water vapor, and
methane are some examples of greenhouse gases, and the molecular properties that make
a substance a good greenhouse gas will be discussed in Chapter 4. The mass of greenhouse
gas that must be mixed into a column of atmosphere with base of 1 m2 in order to make
that column act begin to act like a blackbody is characterized by the absorption coefficient κ,
whose units are m2/kg. Here we’ll assume κ to be independent of frequency, temperature,
and pressure, though for real greenhouse gases, κ depends on all of these. Since the mass of
greenhouse gas in a column of thickness Δp in pressure coordinates is qΔp/g, then the def-
inition of κ implies that the slab acts like a blackbody when κqΔp/g > 1. When κqps/g < 1
then the entire mass of the atmosphere is not sufficient to act like a blackbody and the
atmosphere is said to be optically thin. For optically thin atmospheres, infrared radiation
can escape from the surface directly to space, and is only mildly attenuated by atmospheric
absorption. When κqps/g�1, the atmosphere is said to be optically thick.

If the atmosphere is optically thick, we can slice the atmosphere up into a stack of
slabs with thickness Δp1 such that κqΔp1/g=1. Each of these slabs radiates like an ideal
blackbody with temperature approximately equal to the mean temperature of the slab.
Recall, however, that another fundamental property of blackbodies is that they are per-
fect absorbers (though if they are only blackbodies in the infrared, they will only be perfect
absorbers in the infrared). Hence infrared radiation escapes to space only from the topmost
slab. The OLR will be determined by the temperature of this slab alone, and will be insensi-
tive to the temperature of lower portions of the atmosphere. The pressure at the bottom of
the topmost slab is Δp1. We can thus identify Δp1 as the characteristic pressure level from
which radiation escapes to space, which therefore will be called prad in subsequent discus-
sions. The radiation escaping to space – the OLR – will then be approximately σT (prad )4.
Because temperature decreases with altitude on the adiabat the OLR is less than σT4

s to the
extent that prad < ps . As shown in Fig. 3.6, a greenhouse gas acts like an insulating blan-
ket, reducing the rate of energy loss to space at any given surface temperature. All other
things being equal the equilibrium surface temperature of a planet with a greenhouse gas
in its atmosphere must be greater than that of a planet without a greenhouse gas, in order
to radiate away energy at a sufficient rate to balance the absorbed solar radiation. The key
insight to be taken from this discussion is that the greenhouse effect only works to the extent
that the atmosphere is colder at the radiating level than it is at the ground.

For real greenhouse gases, the absorption coefficient varies greatly with frequency. Such
gases act on the OLR by making the atmosphere very optically thick at some frequencies,
less optically thick at others, and perhaps even optically thin at still other frequencies. In
portions of the spectrum where the atmosphere is more optically thick, the emission to
space originates in higher (and generally colder) parts of the atmosphere. In reality, then,
the infrared escaping to space is a blend of radiation emitted from a range of atmospheric
levels, with some admixture of radiation from the planet’s surface as well. The concept
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of an effective radiating level nonetheless has merit for real greenhouse gases. It does not
represent a distinct physical layer of the atmosphere, but rather characterizes the mean
depth from which infrared photons escape to space. As more greenhouse gas is added to
an atmosphere, more of the lower parts of the atmosphere become opaque to infrared,
preventing the escape of infrared radiation from those regions. This increases the altitude
of the effective radiating level (i.e. decreases prad ). Some of the implications of a frequency-
dependent absorption coefficient are explored in Problem 3.29, and the subject will be taken
up at great length in Chapter 4.

From an observation of the actual OLR emitted by a planet, one can determine an
equivalent blackbody radiating temperature Trad from the expression σT4

rad =OLR. This
temperature is the infrared equivalent of the Sun’s photospheric temperature; it is a kind of
mean temperature of the regions from which infrared photons escape, and prad represents
a mean pressure of these layers. For planets for which absorbed solar radiation is the only
significant energy source, Trad is equal to the ideal blackbody temperature given by Eq. (3.7).
The arduous task of relating the effective radiating level to specified concentrations of real
greenhouse gases is treated in Chapter 4.

Figure 3.7 illustrates the reduction of infrared emission caused by the Earth’s atmo-
sphere. At every latitude, the observed OLR is much less than it would be if the planet
radiated to space at its observed surface temperature. At the Equator the observed OLR
is 238 W/m2, corresponding to a radiating temperature of 255 K. This is much less than
the observed surface temperature of 298K, which would radiate at a rate of 446 W/m2

if the atmosphere did not intervene. It is interesting that the gap between observed OLR
and the computed surface emission is less in the cold polar regions, and especially small
at the winter pole. This happens partly because, at low temperatures, there is simply less
infrared emission for the atmosphere to trap. However, differences in the water content
of the atmosphere, and differences in the temperature profile, can also play a role. These
effects will be explored in Chapter 4.

Gases are not the only atmospheric constituents which affect OLR. Clouds consist of
particles of condensed substance small enough to stay suspended for a long time. They can
profoundly influence OLR. Gram for gram, condensed water interacts much more strongly
with infrared than does water vapor. In fact, a mere 20 grams of water in the form of liquid
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droplets of a typical size is sufficient to turn a column of air 500 m thick by 1 m square
into a very nearly ideal blackbody. To a much greater extent than for greenhouse gases, a
water cloud layer in an otherwise infrared-transparent atmosphere really can be thought
of as a discrete radiating layer. The prevalence of clouds in the high, cold regions of the
tropical atmosphere accounts for the dip in OLR near the Equator, seen in Fig. 3.7. Clouds
are unlike greenhouse gases, though, since they also strongly reflect the incoming solar
radiation. It’s the tendency of these two large effects to partly cancel that makes the problem
of the influence of clouds on climate so challenging. Not all condensed substances absorb
infrared as well as water does. Liquid methane (important on Titan) and CO2 ice (important
on present and Early Mars) are comparatively poor infrared absorbers. They affect OLR in
a fundamentally different way, through reflection instead of absorption and emission. This
will be discussed in Chapter 5.

In a nutshell, then, here is how the greenhouse effect works. From the requirement of
energy balance, the absorbed solar radiation determines the effective blackbody radiating
temperature Trad . This is not the surface temperature; it is instead the temperature encoun-
tered at some pressure level in the atmosphere prad , which characterizes the infrared opacity
of the atmosphere, specifically the typical altitude from which infrared photons escape to
space. The pressure prad is determined by the greenhouse gas concentration of the atmo-
sphere. The surface temperature is determined by starting at the fixed temperature Trad

and extrapolating from prad to the surface pressure ps using the atmosphere’s lapse rate,
which is approximately governed by the appropriate adiabat. Since temperature decreases
with altitude over much of the depth of a typical atmosphere, the surface temperature so
obtained is typically greater than Trad , as illustrated in Fig. 3.6. Increasing the concentration
of a greenhouse gas decreases prad , and therefore increases the surface temperature because
temperature is extrapolated from Trad over a greater pressure range. It is very important to
recognize that greenhouse warming relies on the decrease of atmospheric temperature with
height, which is generally due to the adiabatic profile established by convection. The green-
house effect works by allowing a planet to radiate at a temperature colder than the surface,
but for this to be possible, there must be some cold air aloft for the greenhouse gas to work
with.

For an atmosphere whose temperature profile is given by the dry adiabat, the surface
temperature is

Ts = (ps/prad )R/cp Trad . (3.8)

With this formula, the Earth’s present surface temperature can be explained by taking
prad/ps =0.67, whence prad ≈670 mb. Earth’s actual radiating pressure is somewhat lower
than this estimate, because the atmospheric temperature decays less strongly with height
than the dry adiabat. The high surface temperature of Venus can be accounted for by taking
prad/ps = 0.0095, assuming that the temperature profile is given by the non-condensing adi-
abat for a pure CO2 atmosphere. Given Venus’ 93 bar surface pressure, the radiating level is
880 mb which, interestingly, is only slightly less than Earth’s surface pressure. Earth radiates
to space from regions quite close to its surface, whereas Venus radiates only from a thin
shell near the top of the atmosphere. Note that from the observed Venusian temperature
profile in Fig. 2.2, the radiating temperature (253 K) is encountered at p = 250 mb rather
than the higher pressure we estimated. As for the Earth, our estimate of the precise value
prad for Venus is off because the ideal-gas non-condensing adiabat is not a precise model of
the actual temperature profile. In the case of Venus, the problem most likely comes from
the ideal-gas assumption and neglect of variations in cp , rather than condensation.
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Obs. OLR (W/m2) Abs. solar (W/m2) Trad (actual) Trad (solar)

Jupiter 14.3 12.7 126 K 110 K
Saturn 4.6 3.8 95 K 81 K
Uranus 0.52 0.93 55 K 58 K
Neptune 0.61 0.38 57 K 47 K

Table 3.1 The energy balance of the gas giant planets, with
inferred radiating temperature. The solar-only value of Trad

given in the final column is the radiating temperature that
would balance the observed absorbed solar energy, in the
absence of any internal heat source.

The concept of radiating level and radiating temperature also enables us to make sense
of the way energy balance constrains the climates of gas giants like Jupiter and Saturn,
which have no distinct surface. The essence of the calculation we have already done for
rocky planets is to use the top-of-atmosphere energy budget to determine the parame-
ters of the adiabat, and then extrapolate temperature to the surface along the adiabat.
For a non-condensing adiabat, the atmospheric profile compatible with energy balance
is T (p)=Trad (p/prad )R/cp . This remains the appropriate temperature profile for a (non-
condensing) convecting outer layer of a gas giant, and the only difference with the previous
case is that, for a gas giant, there is no surface to act as a natural lower boundary for the adi-
abatic region. At some depth, convection will give out and the adiabat must be matched to
some other temperature model in order to determine the base of the convecting region, and
to determine the temperature of deeper regions. There is no longer any distinct surface to be
warmed by the greenhouse effect, but the greenhouse gas concentration of the atmosphere
nonetheless affects T (p) through prad . For example, adding some additional greenhouse gas
to the convecting outer region of Jupiter’s atmosphere would decrease prad , and therefore
increase the temperature encountered at, say, the 1 bar pressure level.

The energy balance suffices to uniquely determine the temperature profile because the
non-condensing adiabat is a one-parameter family of temperature profiles. The saturated
adiabat for a mixture of condensing and non-condensing gases is also a one-parameter fam-
ily, defined by Eq. (2.33), and can therefore be treated similarly. If the appropriate adiabat
for the planet had more than one free parameter, additional information beyond the energy
budget would be needed to close the problem. On the other hand, a single-component con-
densing atmosphere such as described by Eq. (2.27) yields a temperature profile with no
free parameters that can be adjusted so as to satisfy the energy budget. The consequences
of this quandary will be taken up as part of our discussion of the runaway greenhouse
phenomenon, in Chapter 4.

Using infrared telescopes on Earth and in space, one can directly measure the OLR of
the planets in our Solar System. In the case of the gas giants, the radiated energy is sub-
stantially in excess of the absorbed solar radiation. Table 3.1 compares the observed OLR
to the absorbed solar flux for the gas giants. With the exception of Uranus, the gas giants
appear to have a substantial internal energy source, which raises the radiating tempera-
ture to values considerably in excess of what it would be if the planet were heated by solar
absorption alone. Uranus is anomalous, in that it appears to be emitting less energy than it
receives from the Sun. Uncertainties in the observed OLR for Uranus would actually allow
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the emission to be in balance with solar absorption, but would still appear to preclude any
significant internal energy source. This may indicate a profound difference in the internal
dynamics of Uranus. On the other hand, the unusually large tilt of Uranus’ rotation axis
means that Uranus has an unusually strong seasonal variation of solar heating, and it may
be that the hemisphere that has been observed so far has not yet had time to come into
equilibrium, which would throw off the energy balance estimate.

Because it is the home planet, Earth’s radiation budget has been very closely monitored
by satellites. Indirect inferences based on the rate of ocean heat uptake indicate that the
top-of-atmosphere radiation budget is currently out of balance, the Earth receiving about
1 W/m2 more from solar absorption than it emits to space as infrared.3 This is opposite
from the imbalance that would be caused by an internal heating. It is a direct consequence
of the rapid rise of CO2 and other greenhouse gases, caused by the bustling activities of
Earth’s human inhabitants. The rapid greenhouse gas increase has cut down the OLR, but
because of the time required to warm up the oceans and melt ice, the Earth’s temperature
has not yet risen enough to restore the energy balance.

Exercise 3.4 A typical well-fed human in a resting state consumes energy in the form of
food at a rate of 100W, essentially all of which is put back into the surroundings in the
form of heat. An astronaut is in a spherical escape pod of radius r , far beyond the orbit
of Pluto, so that it receives essentially no energy from sunlight. The air in the escape pod
is isothermal. The skin of the escape pod is a good conductor of heat, so that the surface
temperature of the sphere is identical to the interior temperature. The surface radiates like
an ideal blackbody.

Find an expression for the temperature in terms of r , and evaluate it for a few reasonable
values. Is it better to have a bigger pod or a smaller pod? In designing such an escape
pod, should you include an additional source of heat if you want to keep the astronaut
comfortable?

How would your answer change if the pod were cylindrical instead of spherical? If the
pod were cubical?

Bodies such as Mercury or the Moon represent the opposite extreme to the uniform-
temperature limit. Having no atmosphere or ocean to transport heat, and a rocky surface
through which heat is conducted exceedingly slowly, each bit of the planet is, to a good
approximation, thermally isolated from the rest. Moreover, the rocky surface takes very lit-
tle time to reach its equilibrium temperature, so the surface temperature at each point is
very nearly in equilibrium with the instantaneous absorbed solar radiation, with very little
day–night or seasonal averaging. In this case, averaging the energy budget over the planet’s
surface gives a poor estimate of the temperature, and it would be more accurate to com-
pute the instantaneous equilibrium temperature for each patch of the planet’s surface in
isolation. For example, consider a point on the planet where the Sun is directly overhead at
some particular instant of time. At that time, the rays of sunlight come in perpendicularly
to a small patch of the ground, and the absorbed solar radiation per unit area is simply
(1−α)L�; the energy balance determining the ground temperature is then σT4 = (1−α)L�,
without the factor of 1

4 we had when the energy budget was averaged over the entire surface
of an isothermal planet. For Mercury, this yields a temperature of 622 K, based on the mean

3 At the time of writing, top-of-atmosphere satellite measurements are not sufficiently accurate to
permit direct observation of this imbalance.
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orbital distance and an albedo of 0.1. This is similar to the observed maximum temperature
on Mercury, which is about 700 K (somewhat larger than the theoretical calculation because
Mercury’s highly elliptical orbit brings it considerably closer to the Sun than the mean orbital
position). The Moon, which is essentially in the same orbit as Earth and shares its solar con-
stant, has a predicted maximum temperature of 384 K, which is very close to the observed
maximum. In contrast, the maximum surface temperature on Earth stays well short of 384 K,
even at the hottest time of day in the hottest places. The atmosphere of Mars in the present
epoch is thin enough that this planet behaves more like the no-atmosphere limit than the
uniform-temperature limit. Based on a mean albedo of 0.25, the local maximum temperature
should be 297 K, which is quite close to the observed maximum temperature.

More generally speaking, when doing energy balance calculations the temperature we
have in mind is the temperature averaged over an appropriate portion of the planet and
over an appropriate time interval, where what is “appropriate” depends on the response
time and the efficiency of the heat transporting mechanisms of the planet under consider-
ation. Correspondingly, the appropriate incident solar flux to use is the incident solar flux
per unit of radiating surface, averaged consistently with temperature. We will denote this
mean solar flux by the symbol S. The term insolation will be used to refer to an incident
solar flux of this type, sometimes with additional qualifiers as in “surface insolation” to
distinguish the flux reaching the ground from that incident at the top of the atmosphere.
For an isothermal planet, S = 1

4 L�, while at the opposite extreme S =L� for the instantaneous
response at the subsolar point – the point on the planet at which the sun is directly overhead.
In other circumstances it might be appropriate to average along a latitude circle, or over a
hemisphere. A more complete treatment of geographical, seasonal, and diurnal temperature
variations will be given in Chapter 7.

Exercise 3.5 Consider a planet which is tide-locked to its sun, so that it always shows the
same face to the sun as it proceeds in its orbit (just as the Moon always shows the same
face to the Earth). Estimate the mean temperature of the dayside of the planet, assuming
the illuminated face to be isothermal, but assuming that no heat leaks to the nightside.

3.4 ICE-ALBEDO FEEDBACK

Albedo is not a static quantity determined once and for all time when a planet forms. In
large measure, albedo is determined by processes in the atmosphere and at the surface
which are highly sensitive to the state of the climate. Clouds consist of suspended tiny
particles of the liquid or solid phase of some atmospheric constituent; such particles are
very effective reflectors of visible and ultraviolet light, almost regardless of what they are
made of. Clouds almost entirely control the albedos of Venus, Titan, and all the gas giant
planets, and also play a major role in Earth’s albedo. In addition, the nature of a planet’s
surface can evolve over time, and many of the surface characteristics are strongly affected
by the climate. Table 3.2 gives the albedo of some common surface types encountered on
Earth. The proportions of the Earth covered by sea ice, snow, glaciers, desert sands, or
vegetation of various types are determined by temperature and precipitation patterns. As
climate changes, the surface characteristics change too, and the resulting albedo changes
feed back on the state of the climate. It is not a “chicken and egg” question of whether
climate causes albedo or albedo causes climate; rather it is a matter of finding a consistent
state compatible with the physics of the way climate affects albedo and the way albedo
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Table 3.2 Typical values of albedo for various
surface types. Surface type Albedo

Clean new H2O snow 0.85
Bare sea ice 0.5
Clean H2O glacier ice 0.6
Deep water 0.1
Sahara Desert sand 0.35
Martian sand 0.15
Basalt (any planet) 0.07
Granite 0.3
Limestone 0.36
Grassland 0.2
Deciduous forest 0.14
Conifer forest 0.09
Tundra 0.2

These are only representative values. Albedo
can vary considerably as a function of
detailed conditions. For example, the ocean
albedo depends on the angle of the solar radi-
ation striking the surface (the value given in
the table is for near-normal incidence), and
the albedo of bare sea ice depends on the
density of air bubbles.

affects climate. In this sense, albedo changes lead to a form of climate feedback. We will
encounter many other kinds of feedback loops in the climate system.

Among all the albedo feedbacks, that associated with the cover of the surface by highly
reflective snow or ice plays a distinguished role in thinking about the evolution of the Earth’s
climate. Let’s consider how albedo might vary with temperature for a planet entirely covered
by a water ocean – a reasonable approximation to Earth, which is 2

3 ocean. We will charac-
terize the climate by the global mean surface temperature Ts , but suppose that, like Earth,
the temperature is somewhat colder than Ts at the poles and somewhat warmer than Ts at
the Equator. When Ts is very large, say greater than some threshold temperature T0, the
temperature is above freezing everywhere and there is no ice. In this temperature range, the
planetary albedo reduces to the relatively low value (call it α0) characteristic of sea water. At
the other extreme, when Ts is very, very low, the whole planet is below freezing, the ocean
will become ice-covered everywhere, and the albedo reduces to that of sea ice, which we
shall call αi . We suppose that this occurs for Ts < Ti , where Ti is the threshold temperature
for a globally frozen ocean. In general Ti must be rather lower than the freezing tempera-
ture of the ocean, since when the mean temperature Ts =Tfreeze the equatorial portions of
the planet will still be above freezing. Between Ti and T0 it is reasonable to interpolate the
albedo by assuming the ice cover to decrease smoothly and monotonically from 100% to
zero. The phenomena we will emphasize are not particularly sensitive to the detailed form
of the interpolation, but the quadratic interpolation

α(T ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
αi for T ≤ Ti ,

α0 + (αi −α0) (T−T0)2

(Ti−T0)2 for Ti < T < T0

α0 for T ≥ T0

(3.9)
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qualitatively reproduces the shape of the albedo curve which is found in detailed
calculations. In particular, the slope of albedo vs. temperature is large when the tempera-
ture is low and the planet is nearly ice-covered, because there is more area near the Equator,
where ice melts first. Conversely, the slope reduces to zero as the temperature threshold for
an ice-free planet is approached, because there is little area near the poles where the last ice
survives; moreover, the poles receive relatively little sunlight in the course of the year, so
the albedo there contributes less to the global mean than does the albedo at lower latitudes.
Note that this description assumes an Earthlike planet, which on average is warmest near
the Equator. As will be discussed in Chapter 7, other orbital configurations could lead to the
poles being warmer, and this would call for a different shape of albedo curve.

Ice-albedo feedback of a similar sort could arise on a planet with land, through snow
accumulation and glacier formation on the continents. The albedo could have a similar
temperature dependence, in that glaciers are unlikely to survive where temperatures are
very much above freezing, but can accumulate readily near places that are below freezing –
provided there is enough precipitation. It is the latter requirement that makes land-based
snow/ice-albedo feedback much more complicated than the oceanic case. Precipitation is
determined by complex atmospheric circulation patterns that are not solely determined by
local temperature. A region with no precipitation will not form glaciers no matter how cold
it is made. The present state of Mars provides a good example: its small polar glaciers do
not advance to the Equator, even though the daily average equatorial temperature is well
below freezing. Still, for a planet like Earth with a widespread ocean to act as a source for
precipitation, it may be reasonable to assume that most continental areas will eventually
become ice-covered if they are located at sufficiently cold latitudes. In fairness, we should
point out that even the formation of sea ice is considerably more complex than we have
made it out to be, particularly since it is affected by the mixing of deep unfrozen water with
surface waters which are trying to freeze.

Earth is the only known planet that has an evident ice/snow-albedo feedback, but it is
reasonable to inquire as to whether a planet without Earth’s water-dominated climate could
behave analogously. Snow is always “white” more or less regardless of the substance it is
made of, since its reflectivity is due to the refractive index discontinuity between snow
crystals and the ambient gas or vacuum. Therefore, a snow-albedo feedback could oper-
ate with substances other than water (e.g. nitrogen or methane). Titan presents an exotic
possibility, in that its surface is bathed in a rain of tarry hydrocarbon sludge, raising the
speculative possibility of “dark glacier” albedo feedbacks. Sea ice forming on Earth’s ocean
gets its high albedo from trapped air bubbles, which act like snowflakes in reverse. The same
could happen for ices of other substances, but sea ice-albedo feedback is likely to require a
water ocean. The reason is that water, alone among likely planetary materials, floats when
it freezes. Ice forming on, say, a carbon dioxide or methane ocean would sink as soon as it
formed, preventing it from having much effect on surface albedo.

Returning attention to an Earthlike waterworld, we write down the energy budget

(1−α(Ts))
L�
4
= OLR(Ts). (3.10)

This determines Ts as before, with the important difference that the solar absorption on the
left hand side is now a function of Ts instead of being a constant. Analogously to Fig. 3.5, the
equilibrium surface temperature can be found by plotting the absorbed solar radiation and
the OLR vs. Ts on the same graph. This is done in Fig. 3.8, for four different choices of L�. In
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Figure 3.8 Graphical determination of the pos-
sible equilibrium states of a planet whose
albedo depends on temperature in accor-
dance with Eq. (3.9). The OLR is computed
assuming the atmosphere has no greenhouse
effect, and the albedo parameters are α0 =
0.1, αi =0.6,Ti =260 K, and T0=290 K. The
solar constant for the various solar absorption
curves is indicated in the key.
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this plot, we have taken OLR=σT4, which assumes no greenhouse effect.4 In contrast with
the fixed-albedo case, the ice-albedo feedback allows the climate system to have multiple
equilibria: there can be more than one climate compatible with a given solar constant, and
additional information is required to determine which state the planet actually settles into.
The nature of the equilibria depends on L�. When L� is sufficiently small (as in the case
L� =1517 W/m2 in Fig. 3.8) there is only one solution, which is a very cold globally ice-
covered Snowball state, marked Sn1 on the graph. Note that the solar constant that produces
a unique Snowball state exceeds the present solar constant at Earth’s orbit. Thus, were it not
for the greenhouse effect, Earth would be in such a state, and would have been for its entire
history. When L� is sufficiently large (as in the case L� =2865 W/m2 in Fig. 3.8) there is
again a unique solution, which is a very hot globally ice-free state, marked H on the graph.
However, for a wide range of intermediate L�, there are three solutions: a Snowball state
(Sn2), a partially ice covered state with a relatively large ice sheet (e.g. A), and a warmer
state (e.g. B) which may have a small ice sheet or be ice-free, depending on the precise value
of L�. In the intermediate range of solar constant, the warmest state is suggestive of the
present or Pleistocene climate when there is a small ice cap, and suggestive of Cretaceous-
type hothouse climates when it is ice-free. In either case, the frigid Snowball state is available
as an alternate possibility.

As the parameter L� is increased smoothly from low values, the temperature of the
Snowball state increases smoothly but at some point an additional solution discontinuously
comes into being at a temperature far from the previous equilibrium, and splits into a pair as
L� is further increased. As L� is increased further, at some point, the intermediate tempera-
ture state merges with the Snowball state, and disappears. This sort of behavior, in which the
behavior of a system changes discontinuously as some control parameter is continuously
varied, is an example of a bifurcation.

Finding the equilibria tells only part of the story. A system placed exactly at an equilib-
rium point will stay there forever, but what if it is made a little warmer than the equilibrium?
Will it heat up yet more, perhaps aided by melting of ice, and ultimately wander far from the

4 Of course, this is an unrealistic assumption, since a waterworld would inevitably have at least water
vapor – a good greenhouse gas – in its atmosphere.
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equilibrium? Or will it cool down and move back toward the equilibrium? Similar questions
apply if the state is made initially slightly cooler than an equilibrium. This leads us to the
question of stability. In order to address stability, we must first write down an equation
describing the time evolution of the system. To this end, we suppose that the mean energy
storage per unit area of the planet’s surface can be written as a function of the mean tem-
perature; let’s call this function E(Ts). Changes in the energy storage could represent the
energy required to heat up or cool down a layer of water of some characteristic depth, and
could also include the energy needed to melt ice, or released by the freezing of sea water.
For our purposes, all we need to know is that E is a monotonically increasing function of Ts .
The energy balance for a time-varying system can then be written

dE(Ts)
dt

= dE
dTs

dTs

dt
= G(Ts) (3.11)

where G= 1
4 (1−α(Ts))L�−OLR(Ts). We can define the generalized heat capacity μ(T )=dE/dT ,

which is positive by assumption. Thus,

dTs

dt
= G(Ts)
μ(Ts)

. (3.12)

By definition, G=0 at an equilibrium point Teq. Suppose that the slope of G is well-defined
near Teq – in formal mathematical language, we say that G is continuously differentiable at
Teq, meaning that the derivative of G exists and is a continuous function for Ts in some
neighborhood of Teq. Then, if dG/dTs < 0 at Ts , it will also be negative for some finite dis-
tance to the right and left of Ts . This is the case for points a and c in the net flux curve
sketched in Fig. 3.9. If the temperature is made a little warmer than Teq in this case, G(Ts)
and hence dTs

dt will become negative and the solution will move back toward the equilibrium.

If the temperature is made a little colder than Teq, G(Ts) and hence dTs
dt will become positive,

and the solution will again move back toward the equilibrium. In contrast, if dG/dTs > 0
near the equilibrium, as for point b in the sketch, a temperature placed near the equilibrium
moves away from it, rather than toward it. Such equilibria are unstable. If the slope hap-
pens to be exactly zero at an equilibrium, one must look to higher derivatives to determine
stability. These are “rare” cases, which will be encountered only for very special settings
of the parameters. If the d2G/dT2 is non-zero at the equilibrium, the curve takes the form

T

Net flux

Unstable equilibrium

Stable equilibrium

0 a b c

Figure 3.9 Sketch illustrating stable
vs. unstable equilibrium temperatures.
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of a parabola tangent to the axis at the equilibrium. If the parabola opens upwards, then
the equilibrium is stable to displacements to the left of the equilibrium, but unstable to
displacements to the right. If the parabola opens downwards, the equilibrium is unstable to
displacements to the left but stable to displacements to the right. Similar reasoning applies
to the case in which the first non-vanishing derivative is higher order, but such cases are
hardly ever encountered.

Exercise 3.6 Draw a sketch illustrating the behavior near marginal equilibria with
d2G/dT2 > 0 and d2G/dT2 < 0. Do the same for equilibria with d2G/dT2=0, having
d3G/dT3 > 0 and d3G/dT3 < 0.

It is rare that one can completely characterize the behavior of a nonlinear system,
but one-dimensional problems of the sort we are dealing with are exceptional. In the sit-
uation depicted in Fig. 3.9, G is positive and dT/dt is positive throughout the interval
between b and c. Hence, a temperature placed anywhere in this interval will eventually
approach the solution c arbitrarily closely – it will be attracted to that stable solution.
Similarly, if T is initially between a and b, the solution will be attracted to the stable
equilibrium a. The unstable equilibrium b forms the boundary between the basins of attrac-
tion of a and c. No matter where we start the system within the interval between a and c
(and somewhat beyond, depending on the shape of the curve further out), it will wind up
approaching one of the two stable equilibrium states. In mathematical terms, we are able to
characterize the global behavior of this system, as opposed to just the local behavior near
equilibria.

At an equilibrium point, the curve of solar absorption crosses the OLR curve, and the
stability criterion is equivalent to stating that the equilibrium is stable if the slope of the
solar curve is less than that of the OLR curve where the two curves intersect. Using this
criterion, we see that the intermediate-temperature large ice-sheet states, labeled A and A′

in Fig. 3.8, are unstable. If the temperature is made a little bit warmer then the equilibrium
the climate will continue to warm until it settles into the warm state (B or B′) which has
a small or non-existent ice sheet. If the temperature is made a little bit colder than the
equilibrium, the system will collapse into the Snowball state (Sn2 or Sn3). The unstable state
thus defines the boundary separating the basin of attraction of the warm state from that of
the Snowball state.

Moreover, if the net flux G(T ) is continuous and has a continuous derivative (i.e. if the
curve has no “kinks” in it), then the sequence of consecutive equilibria always alternates
between stable and unstable states. For the purpose of this theorem, the rare marginal states
with dG/dT =0 should be considered “wildcards” that can substitute for either a stable or
unstable state. The basic geometrical idea leading to this property is more or less evident
from Fig. 3.9, but a more formalized argument runs as follows: Let Ta and Tb be equilibria,
so that G(Ta)=G(Tb)=0. Suppose that the first of these is stable, so dG/dT < 0 at Ta, and
also that the two solutions are consecutive, so that G(T ) does not vanish for any T between
Ta and Tb . Now if dG/dT < 0 at Tb , then it follows that G > 0 just to the left of Tb . The slope
near Ta similarly implies that G < 0 just to the right of Ta. Since G is continuous, it would
follow that G(T )=0 somewhere between Ta and Tb . This would contradict our assumption
that the two solutions are consecutive. In consequence, dG/dT ≥ 0 at Tb . Thus, the state
Tb is either stable or marginally stable, which proves our result. The proof goes through
similarly if Ta is unstable. Note that we didn’t actually need to make use of the condition



3.4 Ice-albedo feedback 159

that dG/dT be continuous everywhere: it’s enough that it be continuous near the equilibria,
so we can actually tolerate a few kinks in the curve.

A consequence of this result is that, if the shape of G(T ) is controlled continuously by
some parameter like L�, then new solutions are born in the form of a single marginal state
which upon further change of L� splits into a stable/unstable or unstable/stable pair. The
first member of the pair will be unstable if there is a pre-existing stable solution immediately
on the cold side of the new one, as is the case for the Snowball states Sn in Fig. 3.8. The first
member will be stable if there is a pre-existing unstable state on cold side, or a pre-existing
stable state on the warm side (e.g. the state H in Fig. 3.8). What we have just encountered is
a very small taste of the very large and powerful subject of bifurcation theory.

3.4.1 Faint Young Sun, Snowball Earth and hysteresis

We now have enough basic theoretical equipment to take a first quantitative look at the
Faint Young Sun problem. To allow for the greenhouse effect of the Earth’s atmosphere,
we take prad =670 mb, which gives the correct surface temperature with the observed cur-
rent albedo α=0.3. How much colder does the Earth get if we ratchet the solar constant
down to 960 W/m2, as it was 4.7 billion years ago when the Earth was new? As a first
estimate, we can compute the new temperature from Eq. (3.8) holding prad and the albedo
fixed at their present values. This yields 261 K. This is substantially colder than the present
Earth. The fixed albedo assumption is unrealistic, however, since the albedo would increase
for a colder and more ice-covered Earth, leading to a substantially colder temperature
than we have estimated. In addition, the strength of the atmospheric greenhouse effect
could have been different for the Early Earth, owing to changes in the composition of the
atmosphere.

An attempt at incorporating the ice-albedo feedback can be made by using the energy
balance Eq. (3.10) with the albedo parameterization given by Eq. (3.9). For this calculation, we
choose constants in the albedo formula that give a somewhat more realistic Earthlike climate
than those used in Fig. 3.8. Specifically, we set α0=0.28 to allow for the albedo of clouds and
land, and T0=295 K to allow a slightly bigger polar ice sheet. The position of the equilibria
can be determined by drawing a graph like Fig. 3.8, or by applying a root-finding algorithm
like Newton’s method to Eq. (3.10). The resulting equilibria are shown as a function of L� in
Fig. 3.10, with prad held fixed at 670 mb. Some techniques for generating diagrams of this
type are developed in Problem 3.34. For the modern solar constant, and prad =670 mb, the
system has a stable equilibrium at Ts =286 K, close to the observed modern surface tem-
perature, and is partially ice-covered. However, the system has a second stable equilibrium,
which is a globally ice-covered Snowball state having Ts =249 K. Even today, the Earth would
stay in a Snowball state if it were somehow put there. The two stable equilibria are sepa-
rated by an unstable equilibrium at Ts =270 K, which defines the boundary between the set
of initial conditions that go to the “modern” type state, and the set that go to a Snowball
state. The attractor boundary for the modern open-ocean state is comfortably far from the
present temperature, so it would not be easy to succumb to a Snowball.

Now we turn down the solar constant, and re-do the calculation. For L� =960 W/m2,
there is only a single equilibrium point if we keep prad =670 mb. This is a stable Snowball
state with Ts = 228 K. Thus, if the Early Earth had the same atmospheric composition as
today, leading to a greenhouse effect no stronger than the present one, the Earth would
have inevitably been in a Snowball state. The open-ocean state only comes into being when
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Figure 3.10 Hysteresis diagram obtained
by varying L� with prad/ps fixed at 0.67.
Arrows indicate path followed by the sys-
tem as L� is first increased, then decreased.
The unstable solution branch is indicated by
a dashed curve.
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L� is increased to 1330 W/m2, which was not attained until the relatively recent past. This
contradicts the abundant geological evidence for prevalent open water throughout several
billion years of Earth’s history. Even worse, if the Earth were initially in a stable Snowball
state four billion years ago, it would stay in that state until L� increased to 1640 W/m2, at
which point the stable Snowball state would disappear and the Earth would deglaciate. Since
this far exceeds the present solar constant, the Earth would be globally glaciated today. This
even more obviously contradicts the data.

The currently favored resolution to the paradox of the Faint Young Sun is the supposi-
tion that the atmospheric composition of the Early Earth must have resulted in a stronger
greenhouse effect than the modern atmosphere produces. The prime candidate gases for
mediating this change are CO2 and CH4. The radiative basis of the idea will be elaborated
further in Chapter 4, and some ideas about why the atmosphere might have adjusted over
time so as to maintain an equable climate despite the brightening Sun are introduced in
Chapter 8. Figure 3.11 shows how the equilibria depend on prad , with L� fixed at 960 W/m2.
Whichever greenhouse gas is the Earth’s savior, if it is present in sufficient quantities to
reduce prad to 500 mb or less, then a warm state with an open ocean exists (the upper
branch in Fig. 3.11). However, for 420 mb < prad < 500 mb a stable Snowball state also
exists, meaning that the climate that is actually selected depends on earlier history. If the
planet had already fallen into a Snowball state for some reason, the early Earth would stay
in a Snowball unless the greenhouse gases built up sufficiently to reduce prad below 420 mb
at some point.

Figures 3.10 and 3.11 illustrate an important phenomenon known as hysteresis: the state
in which a system finds itself depends not just on the value of some parameter of the system,
but the history of variation of that parameter. This is possible only for systems that have
multiple stable states. For example, in Fig. 3.10 suppose we start with L� =1000 W/m2, where
the system is inevitably in a Snowball state with T =230 K. Let’s now gradually increase
L�. When L� reaches 1500 W/m2 the system is still in a Snowball state, having T =254 K,
since we have been following a stable solution branch the whole way. However, when L�
reaches 1640 W/m2, the Snowball solution disappears, and the system makes a sudden tran-
sition from a Snowball state with T =260 K to the only available stable solution, which is an
ice-free state having T =301 K. As L� increases further to 2000 W/m2, we follow the warm,
ice-free state and the temperature rises to 316 K. Now suppose we begin to gradually dim
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Figure 3.11 As in Fig. 3.10, but varying prad

with L� =960 W/m2.

the Sun, perhaps by making the Solar System pass through a galactic dust cloud. Now, we
follow the upper, stable branch as L� decreases, so that when we find ourselves once more at
L� =1500 W/m2 the temperature is 294 K and the system is in a warm, ice-free state rather
than in the Snowball state we enjoyed the last time we were there. As L� is decreased fur-
ther, the warm branch disappears at L� =1330 W/m2 and the system drops suddenly from
a temperature of 277 K into a Snowball state with a temperature of 246 K, whereafter the
Snowball branch is again followed as L� is reduced further. The trajectory of the system as
L� is increased then decreased back to its original value takes the form of an open loop,
depicted in Fig. 3.10.

The thought experiment of varying L� in a hysteresis loop is rather fanciful, but many
atmospheric processes could act to either increase or decrease the greenhouse effect over
time. For the very young Earth, with L� =960 W/m2, the planet falls into a Snowball when
prad exceeds 500 mb, and thereafter would not deglaciate until prad was reduced to 420 mb
or less (see Fig. 3.11). The boundaries of the hysteresis loop, which are the critical thresholds
for entering and leaving the Snowball, depend on the solar constant. For the modern solar
constant, the hysteresis loop operates between prad =690 mb and prad =570 mb. It takes less
greenhouse effect to keep out of the Snowball now than it did when the Sun was fainter, but
the threshold for initiating a Snowball in modern conditions is disconcertingly close to the
value of prad which reproduces the present climate.

The fact that the freeze–thaw cycle can exhibit hysteresis as atmospheric composition
changes is at the heart of the Snowball Earth phenomenon. An initially warm state can fall
into a globally glaciated Snowball if the atmospheric composition changes in such a way
as to sufficiently weaken the greenhouse effect. Once the threshold is reached, the planet
can fall into a Snowball relatively quickly – in a matter of a thousand years or less – since
sea ice can form quickly. However, to deglaciate the Snowball, the greenhouse effect must be
increased far beyond the threshold value at which the planet originally entered the Snowball
state. Atmospheric composition must change drastically in order to achieve such a great
increase, and this typically takes many millions of years. When deglaciation finally occurs,
it leaves the atmosphere in a hyper-warm state, which only gradually returns to normal
as the atmospheric composition evolves in such a way as to reduce the greenhouse effect.
As discussed in Chapter 1, there are two periods in Earth’s past when geological evidence
suggests that one or more Snowball freeze–thaw cycles may have occurred. The first is in
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the Paleoproterozoic, around 2 billion years ago. At this time, L� ≈ 1170 W/m2, and the
thresholds for initiating and deglaciating a Snowball are prad =600 mb and prad =500 mb in
our simple model. For the Neoproterozoic, about 700 million years ago, L� ≈ 1290 W/m2

and the thresholds are at prad =650 mb and prad =540 mb.
The boundaries of the hysteresis loop shift as the solar constant increases, but there

is nothing obvious in the numbers to suggest why a Snowball state should have occurred
in the Paleoproterozoic and Neoproterozoic but not at other times. Hysteresis associated
with ice-albedo feedback has been a feature of the Earth’s climate system throughout the
entire history of the planet. Hysteresis will remain a possibility until the solar constant
increases sufficiently to render the Snowball state impossible even in the absence of any
greenhouse effect (i.e. with prad =1000 mb). Could a Snowball episode happen again in the
future, or is that peril safely behind us? These issues require an understanding of the pro-
cesses governing the evolution of Earth’s atmosphere, a subject that will be taken up in
Chapter 8.

Exercise 3.7 Assuming an ice albedo of 0.6, how high does L� have to become to eliminate
the possibility of a Snowball state? Will this happen within the next five billion years? What
if you assume there is enough greenhouse gas in the atmosphere to make prad/ps =0.5?

Note: The evolution of the solar constant over time is approximately L�(t)=L�p · (0.7 +
(t/22.975)+ (t/14.563)2), where t is the age of the Sun in billions of years (t = 4.6 being the
current age) and L�p is the present solar constant. This fit is reasonably good for the first
10 billion years of solar evolution.

The “cold start” problem is a habitability crisis that applies to waterworlds in general.
If a planet falls into a Snowball state early in its history, it could take billions of years to
get out if one needs to wait for the Sun to brighten. The time to get out of a Snowball
could be shortened if greenhouse gases built up in the atmosphere, reducing prad . How
much greenhouse gas must build up to deglaciate a Snowball? How long would that take?
What could cause greenhouse gases to accumulate on a Snowball planet? These important
questions will be taken up in subsequent chapters.

Another general lesson to be drawn from the preceding discussion is that the state with a
stable, small ice cap is very fragile, in the sense that the planetary conditions must be tuned
rather precisely for the state to exist at all. For example, with the present solar constant,
the stable small ice cap solution first appears when prad falls below 690 mb. However, the
ice cap shrinks to zero as prad is reduced somewhat more, to 615 mb. Hence, a moderate
strengthening in the greenhouse effect would, according to the simple energy balance model,
eliminate the polar ice entirely and throw the Earth into an ice-free Cretaceous hothouse
state. The transition to an ice-free state of this sort is continuous in the parameter being
varied; unlike the collapse into a Snowball state or the recovery from a Snowball, it does
not result from a bifurcation. In light of its fragility, it is a little surprising that the Earth’s
present small-icecap state has persisted for the past two million years, and that similar
states have occurred at several other times in the past half billion years. Does the simple
energy balance model exaggerate the fragility of the stable small-icecap state? Does some
additional feedback process adjust the greenhouse effect so as to favor such a state while
resisting the peril of the Snowball? These are largely unresolved questions. Attacks on the
first question require comprehensive dynamical models of the general circulation, which we
will not encounter in the present volume. We will take up, though not resolve, the second
question in Chapter 8. It is worth noting that small-icecap states like those of the past two
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million years appear to be relatively uncommon in the most recent half billion years of
Earth’s history, for which data is good enough to render a judgement about ice cover. The
typical state appears to be more like the warm relatively ice-free states of the Cretaceous,
and perhaps this reflects the fragility of the small-icecap state.

The simple models used above are too crude to produce very precise hysteresis bound-
aries. Among the many important effects left out of the story are water vapor radiative
feedbacks, cloud feedbacks, the factors governing albedo of sea ice, ocean heat transports,
and variations in atmospheric heat transport. The phenomena uncovered in this exposition
are general, however, and can be revisited across a hierarchy of models. Indeed, the re-
examination of this subject provides an unending source of amusement and enlightenment
to climate scientists.

3.4.2 Climate sensitivity, radiative forcing and feedback

The simple model we have been studying affords us the opportunity to introduce the
concepts of radiative forcing, climate sensitivity coefficient, and feedback factor. These diag-
nostics can be applied across the whole spectrum of climate models, from the simplest to
the most comprehensive.

Suppose that the mean surface temperature depends on some parameter Λ, and we
wish to know how sensitive T is to changes in that parameter. For example, this parameter
might be the solar constant, or the radiating pressure. It could be some other parameter
controlling the strength of the greenhouse effect, such as CO2 concentration. Near a givenΛ, the sensitivity is characterized by dT/dΛ.

Let G be the net top-of-atmosphere flux, such as used in Eq. (3.11). To allow for the fact
that the terms making up the net flux depend on the parameter Λ, we write G=G(T ,Λ). If
we take the derivative of the energy balance requirement G=0 with respect to Λ, we find

0 = ∂G
∂T

dT
dΛ + ∂G

∂Λ (3.13)

so that

dT
dΛ = −

∂G
∂Λ
∂G
∂T

. (3.14)

The numerator in this expression is a measure of the radiative forcing associated with
changes in Λ. Specifically, changing Λ by an amount δΛ will perturb the top-of-atmosphere
radiative budget by ∂G

∂ΛδΛ, requiring that the temperature change so as to bring the energy

budget back into balance. For example, if Λ is the solar constant L, then ∂G
∂Λ = 1

4 (1 − α). If Λ
is the radiating pressure prad , then ∂G

∂Λ = − ∂OLR
∂prad

. Since OLR goes down as prad is reduced, a
reduction in prad yields a positive radiative forcing. This is a warming influence.

Radiative forcing is often quoted in terms of the change in flux caused by a standard
change in the parameter, in place of the slope ∂G

∂Λ itself. For example, the radiative forcing
due to CO2 is typically described by the change in flux caused by doubling CO2 from its pre-
industrial value, with temperature and everything else held fixed. This is practically the same
thing as ∂G

∂Λ if we take Λ= log2 pCO2, where pCO2 is the partial pressure of CO2. Similarly,
the climate sensitivity is often described in terms of the temperature change caused by the
standard forcing change, rather than the slope dT

dΛ . For example, the notation ΔT2x would
refer to the amount by which temperature changes when CO2 is doubled.
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