


The aim of this book is to develop a unified approach to nonlinear science which 
does justice to its multiple facets and to the diversity and richness of the concepts 
and tools developed in this field over the years. 

Nonlinear science emerged in its present form following a series of closely 
related and decisive analytic, numerical and experimental developments that took 
place over the past three decades. It appeals to an extremely large variety of subject 
areas, but, at the same time, introduces into science a new way of thinking based 
on a subtle interplay between qualitative and quantitative techniques, topological 
and metric considerations and deterministic and statistical views. Special effort 
has been hade throughout the book to illustrate the development of the subject by 
physical examples and prototypical experiments, and the mathematical tech- 
niques by reference to simple models. Each chapter concludes with a set of 
problems. 

This book will be of great value to graduate students in physics, applied 
mathematics, chemistry, engineering and biology taking courses in nonlinear 
science and its applications, as well as to researchers and teachers involved in one 
way or another in this field. 
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Preface 

Nonlinear science emerged in its present form following a serles of decisive 
analytic, numerical and experimental developments that took place in 
close interaction in the last three decades. Its aim is to provide the 
concepts and the techniques necessary for a unified description of the 
particular, yet quite large, class of phenomena whereby simple determinis- 
tic systems give rise to complex behavior associated with the appearance 
of unexpected spatial structures or evolutionary events. Such systems are 
encountered in a great number of disciplines notably in classical 
mechanics, statistical physics, fluid dynamics, chemistry, optics, atomic 
and molecular physics, environmental sciences, engineering sciences or 
biology, in the context of both fundamental and applied investigations. 

While the concern for unification is central in every attempt of man to 
explain the natural world, the particular approach followed by nonlinear 
science in the pursuit of this goal is chaxacterized by a great originality 
that differentiates it from other disciplines belonging to the traditional 
realm of physical sciences. Nonlinear science introduces a new way of 
thinking based on a subtle interplay between qualitative and quantitative 
techniques, between topological, geometric and metric considerations, 
between deterministic and statistical aspects. It uses an extremely large 
variety of methods from very diverse disciplines, but through the process 
of continual switching between different views of the same reality these 
methods are cross-fertilized and blended into a unique combination that 
gives them a marked added value. Most important of all, nonlinear 
science helps to identify the appropriate level of description in which 
unification and universality can be expected. The fundamental laws of 
microscopic physics such as Newton's equations or Schrijdinger's 
equation, or of macroscopic physics such as the Navier-Stakes equations 
or the law of mass action, are inadequate for understanding or even for 
formulating the complexity induced by the evolution of nonlinear 
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systems. In contrast attractors, fractals and multifractals, normal forms, 
Lyapunov exponents, entropies, invariant measures and correlation 
functions are parts of the new scientific vocabulary proposed by modern 
nonlinear science and provide a pragmatic way to meet a challenge in 
front of which classical approaches fail. 

The aim of this book is to develop the material of an introductory 
course to nonlinear science which, while doing justice to its multiple 
facets, is not merely a compilation of topics but rather one (undoubtedly 
out of many) particular way to treat the entire field in a straightforward 
coherent manner. The book is addressed primarily to graduate level 
students and to researchers whose background is in physics, in applied 
mathematics, in chemistry or in engineering. In preparing it 1 tried to fill a 
gap that I have perceived in the literature ever since I began in the late 
1970s-early 1980s to teach this subject to the fourth year students of 
physics and chemistry at the University of Brussels: while there are 
excellent books on particular aspects of nonlinear dynamics like bifurca- 
tion theory, chaos, fractals or ergodic theory, there is (with some rare 
exceptions) a marked tendency for uneven coverage of these subjects. 
Sometimes this takes extreme forms where nonlinearity is identified with 
chaos or on the contrary with everything but chaos; where difference 
equations and low-order systems dominate entirely over spatially ext- 
ended systems; or where probabilistic aspects are either forgotten 
altogether or merely used as auxiliary material in the definition of average 
quantities such as attractor dimensions or Lyapunov exponents. 

The book is addressed primarily to the practitioner of nonlinear science 
rather than to the theorem prover. The exposition is largely self- 
contained, but inevitably every now and then advanced knowledge from 
other fields is required. In such instances I have tried to appeal to common 
sense and to anticipate links with later chapters of the book. Moreover, 
despite repeated reference to and examples of conservative systems the 
book eventually carries its author's personal bias and interest in 
dissipative systems. 

The principal role of the first two chapters is to motivate the 
development of the more technically oriented last five chapters. Chapter 1 
provides an overview of the experimental evidence of nonlinear behavior 
in the physical sciences and biology thanks to which unifying concepts 
such as instability, bifurcation or symmetry-breaking are sorted out in 
view of later developments. In Chapter 2 the evolution equations 
corresponding to the systems and phenomena surveyed in Chapter 1 are 
laid down. A number of 'canonical' models used extensively later for 
illustrating the techniques of nonlinear science are also derived from these 
general equations. In Chapters 3 - 5 the techniques of nonlinear science 
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are introduced on dynamical systems with a finite number of variables. 
We consider, successively, the geometry of phase space, the concepts of 
invariant manifold and of attractor, stability, and the bifurcation of new 
branches of solutions with special emphasis on normal form theory. 
Chapter 6 is devoted to spatially extended systems. It focuses on new 
problems such as pattern formation arising from the spatial degrees of 
freedom, and on the possible extensions of normal form theory. Chapter 7 
deals with chaotic dynamics. This immense subject, to which tens (if not 
hundreds) of books have been devoted cannot, of course, be treated 
exhaustively in a single chapter. The particular approach I have chosen is 
to provide some classical introductory material and to focus for much of 
the remainder of the chapter on the statistical aspects of chaos, which 
usually are not covered adequately in the literature. I am convinced that 
these aspects along with spatio-temporal chaos introduced in the last 
section of the chapter will dominate research on chaos in the next years. 

In preparing this book I have greatly benefitted from discussions with 
and the critical comments of my students, coworkers and colleagues. To 
the students of my nonlinear class I owe much of the choice of material 
and the 'experimental' proof that a 30-hour introductory course on 
nonlinear science of the kind 1 had in mind is possible. 1 am most indebted 
to C. Baesens with whom I had prepared an early (1981-2) version of my 
lecture notes entitled 'Phinomenes non-lin~aires'. C. Nicolis provided 
invaluable help in the preparation of the figures and in the final 
corrections. To the critical reading of I. Antoniou, P. Borckmans, D. 
Daems, T. Erneux and J. Weimar I owe the elimination of several 
misprints and mistakes as well as certain improvements of the first typed 
version that I circulated in December, 1992. Finally, it is a pleasure to 
thank S. Wellens and I. Saverino for the competent typing of successive 
versions of the manuscript and their patience, and P. Kinet for efficient 
technical assistance. 

My research in the subject area covered in this book is sponsored by the 
University of Brussels, the Belgian Government, the Belgian Fund for 
Scientific Research and the European Commission. Their interest and 
generous support are gratefully acknowledged. 

G. Nicolis 
Brussels, December, 1993 



CHAPTER ONE 

Nonlinear behavior 
in the physical 
sciences and 
biology: some 
typical examples 

I . I  What i s  nonlinearity? 

Introductory science textbooks - and much of our educational system, for 
that matter - are built on the idea that a natural system subjected to 
well-defined external conditions will follow a unique course and that a 
slight change in these conditions will likewise induce a slight change in the 
system's response. Owing undoubtedly to its cultural attractiveness, this 
idea, along with its corollaries of reproducibility and unlimited predicta- 
bility and hence of ultimate simplicity, has long dominated our thinking 
and has gradually led to the image of a linear world: a world in which the 
observed effects are linked to the underlying causes by a set of laws 
reducing for all practical purposes to a simple proportionality. 

Appealing and reassuring as it may sound, this perennial idea is now 
being challenged and shown to provide, at best, only a partial view of the 
natural world. In many instances - and as a matter of fact in most of those 
interfering with our everyday experience - we witness radical, qualitative 
deviations from the regime of proportionality. This book has to do with 
nonlinearity, that is to say, the phenomena that can take place under these 
conditions. 

A striking difference between linear and nonlinear laws is whether the 
property of superposition holds or breaks down. In a linear system the 
ultimate effect of the combined action of two different causes is merely the 
superposition of the effects of each cause taken individually. But in a 
nonlinear system adding two elementary actions to one another can 
induce dramatic new effects reflecting the onset of cooperativity between 
the constituent elements. This can give rise to unexpected structures and 
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Fig. 1.1 Schematic 
representation of the 

motion of a mass m on 
a vertical rotating 

hoop. 

events whose properties can be quite different from those of the underlying 
elementary laws, in the form of abrupt transitions, a multiplicity of states, 
pattern formation, or an irregular markedly unpredictable evolution in 
space and time referred to as deterministic chaos. Nonlinear science is, 
therefore, the science of evolution and complexity. 

By focusing on a specific class of behaviors encountered in many 
different contexts nonlinear science cuts across traditional scientific 
disciplinary divisions. It constitutes, today, one of the most active and 
rapidly growing branches of science. 

The aim of this first chapter is to show how nonlinearities arise in a very 
broad range of natural phenomena, from classical mechanics to biology. 
At this early stage of our program the exposition will be qualitative and 
will appeal to undergraduate-level background knowledge and to corn- 
mon sense. In the subsequent chapters the tools of nonlinear science will 
be developed. This will gradually lead to a deeper understanding of the 
varidus phenomena touched upon in the present chapter. 

1.2 Nonlinear behavior in classical mechanics 

Nonlinear behavior is deeply rooted in the fundamental laws of classical 
physics. In this section we illustrate the ubiquity of nonlinearity in 
mechanics (Andronov, Vitt and Khaikin, 1966; Thompson, 1982), using 
the very simple example of the hoop. We consider (Fig. 1.1) a rigid vertical 
ring of radius r in the field of gravity. A mass m is initially placed at an 
angle 8, from the lower end of the vertical diameter and is allowed to move 

sin 8 
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Fig. 1.2 Bifurcation of 
0 

new equilibria d + , 6- 
as the angular velocity @+ 

w of the hoop exceeds 
the threshold value a,. 

along the ring with no fribon. As long as.the ring as a whole is at rest, it 
will perform a periodic motion around position A (if 0, # 0) or will 
remain fixed for ever on A (if 8, = O),  the equilibrium state of our simple 
device. 

Now let the ring be rotated around its vertical diameter with a constant 
angular velocity w, as a result of an external constraint (here an 
appropriately applied torque). Experiment shows that as long as w is 
small the mass m still oscillates around the same equilibrium position A as 
before. But, beyond a critical threshold w,, one observes that the situation 
changes completely and the mass oscillates around a new equilibrium 
position corresponding to a nonzero value of the angle 8. Actually there 
exist two such equilibria, placed symmetrically around the vertical 
diameter. There is no preference for either of the equilibria to be chosen: 
the choice is dictated by the initial position and velocity of the mass which 
in many respects is governed by chance. Still, in a given experiment only 
one of these equilibria will be realized and the mass will accordingly 
oscillate around it. To the observer, this will appear as an asymmetric 
realization of a perfectly symmetric physical situation. We refer to this 
phenomenon as symmetry breaking, the particular symmetry broken 
being here the reflection symmetry around the vertical diameter. 

It is convenient to organize this information on a diagram (cf. Fig. 1.2) 
in which the equilibrium position 8, characterizing the state of our system, 
is plotted against the angular velocity co - the constraint acting on the 
system. Below the threshold o, only one position is available, corr'espond- 
ing to 8 = 0 (branch ( a )  in Fig. 1.2). Beyond co, this state cannot be 
sustained. We express this in Fig. 1.2 by the dashed line along the branch 
(ar) extrapolating branch (a). For each co , w, two new equilibria become 
available. Joining the corresponding values of the angles we obtain two 
branches of states (bl)  and (b2) which merge with (a) at o = a, but 
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separate from it at co f a,. This is the phenomenon of bfurcation, which 
will recur throughout this volume and which will turn out to be one of the 
most characteristic signatures of nonlinearity. 

In summary, we have seen using a very simple mechanical device that 
beyond a critical threshold of constraint nonlinear phenomena are 
switched on in the sense that the system responds to the constraint in a 
manner that deviates dramatically from the law of proportionality 
referred to in Section 1.1. One of the manifestations of this nonlinear 
response is that the system now disposes of multiple solutions between 
which it can choose. As the value of o gradually grows we switch 
spontaneously from the classical regime of pendulum-like oscillations 
around a unique equilibrium to a regime of oscillations around a variety 
of possible equilibria. It is significant that the same - quite ordinary - 
physical system can present different types of behavior as the values of a 
characteristic parameter built into it are varied. 

It is easy to figure out the qualitative mechanism at the root of this 
phenomenon. The motion of the mass m is governed by two adverse 
factors (Fig. 1 .I): the weight rng that tends to move it downwards, and the 
centrifugal force mw2r sin 9 that tends to maintain it away from the 
downward vertical position A. Intuitively, the higher the cc, the stronger 
the tendency to sustain a motion away from A will be. This will be 
substantiated by the more quantitative formulation of the next chapter. 

As we shall see shortly, the above features are not limited to our simple 
example but are prototypical of alarge class of natural systems. In the case 
of the hoop it so happens that they constitute the exhaustive list of the 
types of complex behavior that become possible in the nonlinear range. 
But this is by no means a universal limitation. The action of an external 
periodic forcing on a nonlinear oscillator of the kind depicted in Fig. 1.1 
(through, for instance, a periodic variation of the radius, r = 

r ,  + r ,  sin f l t )  already gives rise, under certain conditions, to an aperi- 
odic motion of the mass m referred to in Section 1.1 as deterministic chaos. 
Similar phenomena arise in coupled nonlinear oscillators like the 
composite pendulum and in celestial mechanics in connection with the 
celebrated three-body problem. A more systematic classification will be 
outlined in Sections 2.1 and 3.3. Finally, we note that electric circuits give 
rise to nonlinear phenomena very similar to those arising in mechanical 
devices (Linsay, 1981). This is quite natural, since the laws governing 
these two types of system can be mapped into each other provided that 
mass is replaced by inductance, displacement by charge, restoring force by 
inverse capacitance and friction(by resistance. 
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Fig. 1.3 Schematic 
representation of a 

horizontal fluid layer 
heated from below. 

1.3 Thermal convection 

We now turyto macroscopic physics and survey nonlinear behavior in 
connection with thermal convection - the bulk motions of fluids generated 
by temperature inhomogeneities. 

Thermal convection is at the origin of important, spectacular natural 
phenomena. Some examples are the circulations of atmosphere and 
oceans, which determine to a large extent short- and medium-term 
weather changes and continental drift, the motion of continental plates 
induced by large-scale movements in the mantle. In this section we shall 
be interested in the more modest laboratory-scale experiment first 
performed in 1900 by Benard which, despite its apparent simplicity, leads 
to the observation of a number of astonishing properties (Chandrasekhar, 
1961 ; Koschmieder, 1981 ; Velarde and Normant, 1980). 

Imagine a thin fluid layer between two horizontal conducting plates in 
the field of gravity (Fig. 1.3). The plates are maintained at fixed 
temperatures To and TI, To being larger than or equal to T , ,  through 
appropriate heating from below. Suppose first that AT = To - T,  = 0. 
The layer will then sooner or later reach the state of thermodynamic 
equilibrium, characterized by the absence of bulk motion and by a 
uniform temperature and density throughout. Now let a temperature 
difference AT = To - TI > 0 be gradually applied. This thermal con- 
straint, the analog of the mechanical constraint generating the angular 
velocity w in the example of the previous section, displaces the system 
from equilibrium and gives rise to heat conduction from the lower (hot) 
plate to the upper (cold) one and a concomitant temperature distribution 
along the vertical. As long as AT is weak the behavior will be limited to 
this. In particular, the fluid will remain at rest and an observer moving 
along a horizontal plane will still perceive a uniform temperature and 
density environment. 

The situation changes completely when AT exceeds a critical threshold 
AT,. The fluid ceases now to be at rest and begins to perform bulk 
movement organized in the form of well-structured convection cells (Fig. 
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1.41, known as Benard cells (this is precisely the regime of thermal 
convection). In a given cell the fluid moves upward, follows the upper 
boundary, then sinks downward, follows the lower boundary, and starts 
all over again. If this motion occurs, say, in the clockwise direction in the 
adjacent cells it will occur in the opposite, counterclockwise direction. 
The cells have a characteristic size which is determined once the geometry 
- and particularly the depth d - is specified. Notice that despite the fact 
that the fluid moves, the velocity, temperature and density at a given point 
are time-independent. From the macroscopic point of view, therefore, we 
have a stationary nonequilibrium state. 

We have seen that two adjacent cells rotate in opposite directions. At a 
given point in space, therefore, a small volume element of the fluid can find 
itself at two distinct states in the sense that it can be part of a cell rotating 
clockwise or counterclockwise. Actually, since for a system of large 
horizontal extent the whole structure can be shifted by any amount along 
the horizontal direction there is a whole continuum of states available. 
But since the most characteristic manifestation of this multiplicity 
remains the direction of rotation of the cell, we will argue in the following 
in terms of a two-fold multiplicity. Now, nothing in the experimental 
setup allows one to assign beforehand a preference for either of these two 
directions: the particular direction that will be chosen at  a particular point 
of our apparatus will merely be dictated by the locally prevailing 
conditions at the moment of the experiment which, to a large extent, are 
determined by random elements such as minute local temperature 
fluctuations, dust particles and mechanical vibrations. Still, in a given 
experiment, a volume element of the fluid located around this particular 
point will eventually realize only one of these two types of motion. Just 
like in Section 1.2, we witness here an asymmetric realization of an 
initially perfectly symmetric physical situation. This symmetry-breaking 
phenomenon is associated with the breaking of the chiral symmetry 

Fig. 1.4 Qualitative 
view of convection 

(BCnard) cells. 



1.3 Thermal convection 7 

Fig. 1.5 Qualitative 
explanation of the 
origin of thermal 

convection. 

associated with the sense of rotation. Alternatively, for an observer 
moving along the horizontal plane homogeneity will be broken: since 
there is internal spatial differentiation within a pair of adjacent cells, to 
recover the same environment one must now move a distance twice the 
size of t hbe l l ,  In other words the Benard convection also breaks the 
translational symmetry in the horizontal direction. The situation is 
somewhat analogous to a liquid-solid transition, where the full isotropy 
and rotational symmetry of the liquid phase are broken in favor of the less 
symmetric crystalline solid. A major difference is that in a crystal the 
characteristic length associated with translational symmetry breaking is 
microscopic, comparable to the range of intermolecular forces. In 
contrast the characteristic size of a Benard cell is macroscopic, of the order 
of a millimeter or more. In some sense one may think of such large-scale 
patterns as macroscopic, 'dissipative' crystals of a completely new kind. 
Just like their equilibrium analogs, such structures can also be classified 
according to their spatial symmetries (Walgraef, Dewel and Borckmans, 
1982; Manneville, 1991). One may thus expect structures belonging to the 
cubic, rhombohedra1 or tetragonal systems, many of which are indeed 
observed in thermal convection experiments. 

Fig. 1.5 shows a qualitative explanation of the phenomenon using, just 
like in Section 1.2, the competition between two adverse factors. Owing to 
thermal expansion the fluid becomes stratified, with the part close to the 
lower plate characterized by a lower density than the upper part. This 
gives rise to a density gradient that opposes the force of grdvity - a 
potentially unstable configuration. Consider a small volume of the fluid 
near the lower plate. Imagine that this volume element is slightly 
displaced upward by the random action of disturbances that are 
inevitably acting on any real-world system. Being now in a colder - and 
hence denser - region it will experience an upward force that will tend to 
amplify further the ascending movement. If, on the other hand, a small 
droplet initially close to the upper plate is displaced downward, it will 
penetrate an environment of lower density and the initial descent will be 
further amplified. We see therefore that, in principle, the fluid can generate 
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ascending and descending currents like those observed in the experiment. 
The reason these currents do not appear as soon as ATis not strictly zero 
is that the destabilizing effects are counteracted by the stabilizing effects of 
viscosity, which generates an internal friction opposing movement, as well 
as by thermal conduction, which tends to smear the temperature 
difference between the displaced drop and its environment. This explains 
the existence of the critical threshold AT, observed in the experiment. 

In analogy, once again, with Section 1.2 we may organize the above 
information in the form of a bijiurcation diagram (Fig. 1.6). A convenient 
state variable to be plotted against the constraint AT is now the vertical 
component of the velocity, w, at a given point, say in the middle of the 
layer. Before the threshold ATc the fluid is at rest, w = 0. Beyond AT, at 
the particular point under consideration one will observe an ascending 
(w > 0) or a descending (w < 0) movement. These two branches of states 
coales~e at AT, with the state of rest, but bifurcate out of it for AT > AT,. 
~ e s ~ i t e  the completely different natures of the systems considered in 
Sections 1.2 and 1.3 we sense here some unity: in both cases nonlinear 
behavior, associated with multiplicity of states, emerges through a 
bifurcation mechanism when a constraint acting on the system exceeds a 
critical threshold, the states born from bifurcation being qualitatively 
different from the state prevailing before bifurcation by the fact that they 
display broken symmetries. As will become gradually more and more 
evident in this book this scenario is typical and underlies huge classes of 
nonlinear phenomena which arise in widely different contexts. 

One of the reasons that make the Benard problem so important in 
nonlinear science is that, in addition to this first bifurcation, the system 
can also undergo a whole series of successive transitions unveiling 
practically the entire repertoire of nonlinear behaviors known to date. 
Several transition scenarios have been discovered, thanks to the use of 

Fig. I .6 Bifurcation 1 
diagram for the onset 
of thermal convection 

beyond a critical 
temperature difference 

AT,. - - - - - - -  
*Tc AT 
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increasingly sophisticated optical techniques. As it turns out, they depend 
on two main factors: the aspect ratio r = L/d, measuring essentially the 
horizontal extent L of the system; and the fluid's intrinsic parameters such 
as viscosity or heat conductivity. Typically, for r around 2 or so (a 'small' 
system), when ATis increased to a value several times larger than AT,, say 
ATc2, convection is no longer steady but becomes periodic in time. The 
frequency of the oscillation is in the macroscopic range and is intrinsically 
determined by the system (Dubois and BergC, 1981). Beyond a still higher 
threshold ATc3 a second frequency appears and the behavior becomes 
biperiodic. Two cases may now be distinguished. In the first one the two 
frequencies cu, and w2 have a common divisor, say Q. In practical terms 
this is guaranteed once their ratio w,/w,  is rational, that is to say, equal to 
the ratio of two integers p and q: w, /w ,  = p/q. The common divisor S1 is 
then L! = w , / p  = o , / q  and plays the role of the frequency of a global, 
simply-periodic motion. In the second case this condition is not fulfilled, a 
fact that one usually summarizes by the statement that a, and m2 are 
'irrationally related'. The doubly-periodic regime is, then, quasi-periodic. 
Since the irrationals constitute the overwhelming majority of real 
numbers, one expects that this latter case will be the most typical one to be 
realized in the experiment. Finally for a temperature difference ATbeyond 
a new threshold AT, the time dependence becomes chaotic. In the time 
domain this shows up through aperiodicity of a more noisy type than 
quasi-periodic behavior, despite the deterministic character of the 
underlying system. This type of behavior is reminiscent of turbblence. 

A very convenient quantitative distinction between periodic, quasi- 
periodic and chaotic regimes is provided by the power spectra constructed 
by Fourier transforming the time series data of a relevant variable X(t,), 
k = 1, . . . , N (Berg&, Pomeau and Vidal, 1984): 

where w j  = j/(NAt ), j = 0, . . . , N - 1 and At = t ,  - t ,  - , . For periodic or 
quasi-periodic behavior the power spectrum consists of only isolated lines 
of well-defined frequencies, whereas chaotic behavior is marked by a 
broad band continuous spectrum containing an important low-frequency 
part. Such a transition from periodicity to chaos in the BCnard experiment 
is depicted in Fig. 1.7. 

It should be noted that a broad band spectrum can be compatible with 
both (deterministic) chaos and (random) noise. There exist more 
elaborate ways than power spectra, allowing one to characterize chaos 
and to discriminate it from both periodicity and random noise. They will 
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Fig. 1 .7  Fourier 
spectra drawn from 

(9 )  

velocity measurements 
in the Berg&- Dubois 

experiment of the 
Rayleigh - Benard 

instability (Dubois and 
Berge, 1981): (a) 

periodic, (b) 
quasi-periodic and (c) 

weakly chaotic 
regimes. In (b ) ,  

measurement at two 

be developed later on in this book, when the geometric and analytic 
techniques of nonlinear science will be laid down (see especially Chapters 
3 and 7). 

The quasi-periodic route to chaos established by the above experiments 
has a historical significance since it provides a refutation of the ideas 
prevailing until the 1970s on the nature of turbulence. Specifically, it was 
thought that turbulence arises from an infinity of transitions, each 
generating a new frequency until a continuum of such frequencies 
characteristic of turbulent spectra becomes available. The possibility that 
turbulent-like behaviors may arise after a finite (and small) number of 

different points reveal 
two different, 

irrationally related (6) 

frequencies. R ,  is 
a dimensionless 
measure of the 

critical temperature 
difference AT,. 

t 
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transitions, first proposed theoretically by Ruelle and Takens (1971) 
before the experimental confirmation outlined above, sheds therefore new 
light on this major problem. However, one should be aware of the fact that 
the chaotic behavior observed under these conditions is far from the fully 
developed turbulence characterizing large-scale real-world flows. 

Two other transition to chaos scenarios can be observed in small 
systems under different conditions. In the so-called intermittency route, 
after a first transition to a time-periodic flow one observes a further 
transition to a chaotic state characterized by long quiescent periods of 
nearly periodic behavior interrupted, at  more or less random intervals, by 
short-lived bursts (Berg6 et al., 1984). In the so-called period doubling 
cascade, after a first transition to simple periodic behavior a long series of 
transitions to complex periodic oscillations is observed in which the main 
frequency is a subharmonic of the previous one. Eventually chaotic 
behavior sets in (Libchaber and Maurer, 1980). These scenarios will be 
discussed more fully in Chapter 7. 

Let us turn now to systems of large horizontal extent, characterized by 
an aspect ratio which is much larger than unity (Ahlers and Behringer, 
1978; Pocheau, Croquette and Le Gal, 1985). A transition to a chaotic 
convection is again observed, but there are some major differences with 
the behavior observed in small systems. First, the successive transition 
thresholds are now squeezed into a small vicinity near the threshold of 
stationary thermal convection, AT,. Second, in addition to the weakly 
chaotic behavior typical of small systems 'hard' turbulence becomes 
possible. Third, and perhaps most significant of all, the convective motion 
is ordered only on a local scale. Specifically, it appears (Fig. 1.8) that 

Fig. 1.8 Convection 
patterns in a system of 

large aspect ratio 
(courtesy of Croquette 

and Pocheau). When 
roll-like structures of 
different orientations 

merge defects of 
various kinds 

(dislocations, grain 
boundaries . . . ), 
indicated by the 

arrows, are formed. 
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different patterns (corresponding to different bifurcation branches in Fig. 
1.6) are realized in different parts of the system. When they merge defects 
are created and subsequently undergo a complex dynamics which appears 
to be the prelude to spatio-temporal chaos, a regime in which in addition 
to aperiodicity and irreproducibility in the time domain one also observes 
an erratic distribution of hydrodynamic variables in space. 

The behavior found in the Benard experiment turns out to be typical of 
a large class of phenomena arising in fluid dynamics (Chandrasekhar, 
1961; Lin, 1955; Guyon, Hulin and Petit, 1991) such as the motion of a 
fluid between two concentric rotating cylinders (Taylor vortex flow), 
thermal convection in a mixture (Soret flow), and transitions in the 
presence of a free surface (Bknard-Marangoni convection). In the 
following, the Binard problem will be one of the typical models to which 
we will refer to illustrate the ideas and tools that we shall put forward to 
understand nonlinear phenomena. 

1.4 Nonlinear phenomena in chemistry 

For a long time chemists thought that a homogeneous, time-independent 
state should eventually emerge from any chemical transformation. The 
first clearcut experimental evidence that this view is incorrect came in the 
1960s from a redox reaction known as the Belousov-Zhabotinski (BZ) 
reaction (Zhabotinski 1964; Nicolis and Portnow, 1973; Noyes and Field, 
1974). 

A typical BZ reagent consists of such ordinary products as a salt which 
generates bromate (like KBrO,), an organic reductant (like malonic acid 
CH,(COOH),) and a salt capable of generating a redox couple (like Ce, 
(SO,),), all dissolved in sulfuric acid. The composition of the system can 
be followed visually through a change in color and, more quantitatively, 
by placing specific electrodes in the solution or by measuring the optical 
absorption caused by a particular substance. 

Thanks to the design of open reactors (Pacault and Vidal, 1978) the 
reaction can nowadays be carried out without interruption for long 
periods of time - a necessary condition to arrive at a quantitative 
understanding. We first survey briefly the behavior of the BZ reaction in a 
well-stirred open reactor (Fig. 1.9) in which homogeneity is ensured by a 
vigorous stirring of the mixture, hereafter referred to as 'CSTR'. Two 
types of parameter control the behavior of this system: the concentrations 
of chemicals pumped from outside, and the rate at which they are pumped 
in the reactor, that is to say, the volume pumped from the feed stream into 
the reactor per unit time. The latter quantity J i ,  divided by the volume of 
the reactor V,  gives the inverse of the residence time zi of the corresponding 
chemical i within the reactor, 
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Fig. 1.9 Experlrnenral 

Under slow pumping conditions (all J i  small) the chemicals will remain in 
the reactor for a very long time and will, for all practical purposes, reach a 
state of chemical equilibrium just as if the reactor were closed. However, 
for large Ji  the chemicals will leave the reactor very quickly, essentially 
with the concentration of the feed stream and will be unable to react 
significantly and equilibrate with the bulk. The residence time z can 
therefore be used as a convenient control parameter playing the role of the 
constraint, much like the angular velocity o in Section 1.2 or the 
temperature difference AT in Section 1.3. 

We now survey the principal modes of behavior of BZ-like reactions in 
an open well-stirred reactor for a range of values of the residence time 
between the two above-mentioned extremes (Vidal and Pacault, 1981; 
Berge et al., 1984). As it turns out, there exists a critical threshold 2, below 
which stationary behavior is no longer possible and sustained oscillations 
are observed. The amplitude and period of these oscillations are 
intrinsically determined by the dynamics once the parameters (tempera- 
ture, concentrations in the feed streams and residence times) are specified. 
The birth of this new regime is associated with the breaking of 
translational symmetry in the time domain, since then the phase of the 
system's variables changes within an oscillation period. As in Sections I .2 
and 1.3, the transition can be represented in the form of a bifurcation 

setup for an open 
chemical system. 

light 

reactor 

beam signal recording 
and processing 

reactant entry 
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diagram in which the oscillatory branch bifurcates out of the stationary 
state when .r = T?. 

Fig. 1.10 depicts a sequence of transitions leading to complex periodic 
oscillations of various types, as the residence time is varied (Simoyi, Wolf 
and Swinney, 1982). Further change of the constraints leads to a regime of 
chemical chaos, in the form of a random-looking mix of small- and 
large-amplitude oscillations. As in the thermal convection problem, the 
chaotic regime can be reached in a variety of different ways depending on 
the values of the constraints, including the period doubling cascade, a 
transition through quasi-periodic behavior and intermittency. 

A qualitative explanation of the oscillatory behavior in the BZ reagent 
was proposed by Field, Koros and Noyes, (1972). Although their original 
mechanism has been modified over the years, it still provides the basis of 
our knowledge of this system. The main point to realize is that the BZ 
reaction involves two different processes, A and B, which alternately 
domhate the kinetics, while a third process C is responsible for a 
switching from B to A. More specifically: 

When the Br- concentration is appreciable, the following reactions 
take place, 

Fig. 1.10 Complex 
A 

"g 
I . .  

periodic oscillations in 
BZ reaction (Simoyi et 

aE., 1982). 
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(A.1)Brp + BrO; $ 2Hf -+ HOBr + HBrO, 
(A.2)BrP + HOBr + H f  4 Br, + H 2 0  
(A.3)BrP + HBrO, + H +  -+ 2HOBr 

Once Br- concentration is sufficiently lowered, the oxidation of Ce3+ 
to Ce4+ is carried out autocatalytically thanks to the liberation of the 
free radical BrO, , 

(B.1)2HBr02 + HOBr + BrO, + H+ 
(B.2)HBr02 + Br03  + H +  + 2Br0,. + H 2 0  
(B.3)Br02- + Ce3 + + H +  -+ Ce4+ + HBrO, 

Autocatalysis takes place through the bromous acid, since two 
molecules of this substance are produced by (B.3) for each one 
consumed in (B.2). 
Finally, Ce4+ is reduced back to Ce3+ while at the same time it 
regenerates Br-, thus allowing the process to start all over again. The 
global reaction for this transformation can be written as 

Notice that the mere fact of switching from pathway 3 to pathway A 
through process C is not sufficient to explain oscillations. An additional 
ingredient - cooperativity - is needed to sustain a cyclic behavior, and is 
provided by the positive feedback (autocatalysis) of bromous acid onto 
itself, We may express this schematically through the following diagram : 

brornate 

", 

malonic acid 

Being limited to a single feedback, the above mechanism cannot 
generate more than one relevant time scale. Consequently, it cannot 
explain the quasi-periodicity, composite periodic oscillations and chaos 
found in numerous experiments. Richetti and coauthors have proposed 
an augmented Field - Koros - Noyes mechanism involving an additional, 
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negative feedback whereby in the presence of hypobromous acid (HOBr), 
HOBr, is consumed in a manner that is autocatalytic in Br-. The 
competition between these two mechanisms of cooperativity then brings a 
second time scale into the problem. This suffices to explain, in principle, 
the appearance of complex oscillations including chaotic ones (Argoul, 
Arneodo, Richetti and Roux, 1987; Arnkodo, Argoul, Elezgaray and 
Richetti, 1993). 

We now come to the behavior of the BZ system in an unstirred reactor 
(Vidal and Pacault, 1984; Field and Burger, 1985; Gray, Nicolis, Baras, 
Borckmans and Scott, 1990). For a long time experiments were limited to 
closed reactors, typically in the form of a shallow layer of solution 
contained in a petri dish. Fig. 1.1 1 depicts the typical behavior found 
under these conditions, namely regular patterns in space and time in the 
form of propagating wave fronts. The waves appear primarily in two 
different forms: circular fronts (a) displaying a roughly cylindrical 
symmetry around an axis perpendicular to the layer, usually referred to as 
target patterns; and spiral fronts (b) rotating in space clockwise o r  
counterclockwise. It is also possible to obtain, although under rather 
exceptional conditions, the multiarmed spirals shown in Fig. 1.1 I@). In 
each case the wave fronts propagate over macroscopic distances without 
distortion and at  a prescribed speed. As in the Btnard problem we can 
associate the formation of these fronts with space symmetry breaking: 
translational symmetry breaking in the target wave case and chiral 
symmetry breaking in the spiral wave case. 

More recently stationary inhomogeneous patterns arising through 
symmetry breaking have been observed in a variant of the BZ reaction, 
the chlorite -iodide- malonic acid reaction, thanks to the design of new 
open, unstirred chemical reactors which allow the development of 
spatiaily inhomogeneous states while avoiding parasitic hydrodynamic 
motion. Figure 1.12 depicts the gel reactor designed to that effect by De 
Kepper and coworkers (Castets, Dulos, Boissonade and De Kepper, 
1990). The two opposite long edges are in contact respectively with two 
chemical reservoirs, A and B, where the concentrations of reactants are 
kept constant and uniform by appropriate mixing and a continuous flow 
of fresh reactant solutions. The reactants are separated in such a way that 
neither solution A nor solution B is individually reactive: the chemicals 
diffuse from the edges into the gel where the reaction takes place. The 
typical diffusion time to establish stationary concentration profiles across 
the gel strip is of the order of an hour. To make the concentration changes 
visible, the gel is loaded with a starch-like color indicator which does not 
diffuse through the gel. The color changes from yellow to blue with the 
change of the [IO;J/[I,J ratio during the redox reaction. The color 
pattern is monitored with a video camera. 
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Fig. 1.11 Wave 
propagation in a 

ro-dimensional layer 
of BZ reagent: (a) 

target patterns; (b)  
spiral waves; ( c )  

multiarmed spirals. 
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Fig. 1.12 The open 
unstirred reactor 

designed by De 
Kepper and coworkers 

for the realization of 
stationary spatial 

patterns. The gel strip 
is fixed between two 

flat plates 1 mm apart. 
Reactants are fed 

through the 
well-mixed reservoirs 

A and B. 

At the beginning of the experiment, the development of a series of light 
and dark stripes parallel to the edges reveals the emergence of a 
concentration pattern in the central region of the reactor. Although this 
pattern is nontrivial, the stripes preserve the symmetry imposed by the 
feed. But over a well-defined range of the maionic acid concentration in B, 
some of these stripes ultimately break up into lines of periodic spots as 
depicted in Fig. 1.13. This constitutes a genuine symmetry-breaking 
phenomenon in the direction transverse to the imposed gradient. The 
pattern can be sustained indefinitely. Moreo ver, the wa velength 

(1, e 0.2 mm) seems to be ritti~hsic and exclusively characterized by 

end 
view 

outlets 0 

view 

inlets 0 
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Fig. 1.13 Enlarged 
image of the region of 
the reactor, Fig. 1.12, 

in which the pattern is 
appearing (Castets et 

al., 1990). Distances 
are in millimeters. 

Dark regions 
correspond to reduced 

states, light ones to 
oxidized states. 

nongeometric properties; in particular, it is much smaller than any 
geometric size of the reactor (including thickness) by at least one order of 
magnitude. This is very different from the stationary patterns in the 
Benard problem, whose characteristic length is determined by the size of 
the experimental device. 

In the above experiment, visualization of the pattern is perpendicular to 
the direction offeed. An alternate possibility is visualization parallel to the 
direction of feed, which is, in turn, chosen to be perpendicular to the 
reactor's largest dimension (Ouyang and Swinney, 1991 ). Fig. 1.14 reveals 
in this case a very large variety of patterns such as hexagons, stripes and 
mixed states. Transitions from stationary spatial patterns to spatio- 
temporal chaos (chemical turbulence) are also observed in conjunction 
with the formation of defects separating different domains, much as in the 
Benard problem. These phenomena will be analyzed in detail in Chapters 
6 and 7. 

1.5 Some further examples of chemically- 
mediated nonlinear behavior. 

In addition to their fundamental interest in laboratory-scale chemistry, 
chemically-mediated nonlinearities provide the natural explanation of a 
large body of complex phenomena in a wide variety of contexts. In this 
section we survey some characteristic examples from the fields of chemical 
engineering and biology (see e.g. Nicolis and Baras (1984), Gray et al. 
(1990) and Murray (1989)). 

Much of the chemical industry is based on heterogeneous catalysis. In 
this, some of the steps necessary for the synthesis of a product are 
accelerated by the presence of a surface on which the chemicals are first 
adsorbed and then converted to active forms capable of undergoing 
reactions that would be impossible otherwise. For instance, the oxidation 
of ammonia or of carbon monoxide is usually carried out in the presence 
of a platinum catalyst; similarly in the decomposition of nitrous oxide, 
N,O, a catalytic copper oxide surface is used. 

There are two quite general sources of cooperativity in this type of 

\ 
\ 

4 \ 

r= a '\ , 
$ 

~n le t  outlet % 
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phenomenon. First, since the total number of sites in the catalyst is finite, 
the substances in the bulk phase inevitably compete for adsorbing sites: 
they thus exert negative feedback on each other. Second, some of the 
adsorbed substances facilitate a structural change of the catalyst surface, 
which may further affect the adsorption probability of this very substance 
or of other substances. It is, therefore, not surprising that heterogeneous 
catalysis provides today some of the best-documented examples of 
nonlinear phenomena, from homogeneous sustained oscillations to 
propagating waves or even to stationary concentration patterns. A 
particularly clear illustration is provided by the beautiful experiments of 
carbon monoxide oxidation on platinum under ultra-high vacuum 
( < lop3 mbar) pressure conditions (Cox, Ertl and Imbihl, 1985; Ertl, 
1991 ; Imbihl, 1992). 

Combustion, the burning of hydrocarbons, the process by which heat 
engines function, is another class of important chemical transformations. 
The* overall reaction can be represented schematically as 

Fig. 1.14 Stationary 
chemical patterns 

formed in a 
continuously fed 
unstirred reactor 

(Ouyang and Swinney, 
1991). Visualization is 

parallel to the 
direction of feed: (a),  

(b) hexagons; (c) 
stripes; ( d )  mixed 

state. 
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fuel + oxygen 5 oxide + heat ( 1 . 3 )  

Now, according to the well-known Arrhenius law of chemical kinetics, the 
rate constant k of a reaction is an increasing function of temperature 
(Kondratiev and Nikitin, 198 1) 

where E represents the activation barrier that the kinetic energy of the 
reactants must overcome in order to break the chemicai bond. In an 
exothermic reaction like (1.3), the heat liberated will increase the 
translational kinetic energy and thus the temperature; this will increase 
the rate constant k ( T ) ,  eq. (1.4), and thus the rate of production of heat; 
this, in turn, will increase Tand k{7')  further, whereupon more heat will be 
liberated, etc. This thermal feedback, which is ubiquitous in all combus- 
tion phenomena, is responsible for a rich variety of typically nonlinear 
behaviors, the most obvious example of which is the appearance of flame 
fronts separating the region of fresh reactants from the region of burnt 
ones. 

One of the typical manifestations of nonlinear behavior in biology is 
self-sustained oscillations (Goldbeter, 1990; Segel, 1984; Murray, 1989). 
They are observed at all levels of biological organization, from the 
molecular to the supercellular, or even to the social (population) one, with 
periods ranging from seconds to days to years. Among these the best 
understood are biochemical oscillations at the subcellular level, Their 
most characteristic feature is that they involve enzyme regulation at a 
certain stage of the reaction sequence..The enzymes responsible for 
regulation are usually not simple Michaelian enzymes but, rather, 
cooperative (allosteric) ones in the sense that their conformation is affected 
by the fixation of certain metabolites and subsequently influences the 
catalytic activity of the enzyme. This cooperativity introduces, precisely, 
the nonlinearity necessary for complex behavior. 

Another common manifestation of nonlinearity in biology is the 
coexistence of multiple steady states {see e.g. Thomas and d'Ari (1990)). 
Two very interesting contexts in which this behavior is likely to be 
manifested are the functions of the nervous and the immune systems, 
where it is thought to provide a prototype of the phenomenon of memory 
(Kaufman and Thomas, 1987). A less spectacular, but well-documented 
example is the ability of microorganisms to switch between different 
pathways of enzyme synthesis according to the medium in which they are 
embedded (Jacob and Monod, 1961). A source of nonlinearity common to 
all these phenomena is the almost stepwise response of the biomolecules 
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to various effectors or even to their own or to the other unit's activity. 
A most appealing example of symmetry breaking in living systems is 

morphogenesis. In the course of embryonic development one witnesses a 
sequence of events leading from a unique cell, the fertilized egg, to a 
multicellular organism involving specialized cells organized in an enor- 
mous variety of shapes and forms. Significantly, in developing tissues one 
frequently observes gradients of a variety of substances such as ions or 
relatively small metabolites. It has been conjectured that such gradients 
provide the tissue with a kind of 'coordinate system' that conveys 
positiona2 information to the individual cells, by means of which they can 
recognize their position with respect to their partners and differentiate 
accordingly (Wolpert, 1969). Chemical symmetry-breaking bifurcations 
(cf. Fig. 1.1 3-1.14) provide an appealing prototype for understanding 
these processes. Further examples of space-dependent nonlinear behavior 
in biology include the propagation of a nerve impulse, the calcium- 
induced propagating waves on cell membranes and the peculiar aggre- 
gates formed by unicellular organisms like amoebae or bacteria. 

For a long time it was thought that chaos in biology is tantamount to 
nuisance. A logical consequence of this attitude was to view it as the 
natural reference for understanding certain forms of biological disorder. 
This idea has been implemented in a number of convincing examples 
related, for instance, to respiratory diseases or to arrhythmias of the 
cardiac muscle (Glass and Mackey, 1988). Today it is realized that beyond 
this aspect chaos is likely to play a constructive role of the utmost 
importance in the highest levels of biological organization, particularly 
brain activity (J. S. Nicolis, 1991; Babloyantz and Destexhe, 1986; 
Destexhe, 1992). Consider as an example the electroencephalogram 
(EEG), a widely used record of the electrical activity of the brain 
generated by the sum of elemental sustained low-frequency (0.540 Hz) 
neuronal activities emanating from small volumes of cortical tissue just 
underneath the scalp (Fig. 1.15).  The upper five panels of the Figure 
describe the EEG of a normal human subject in two stages of awareness 
((a)-(b)) and three stages of sleep ((c)-(s)), whereas the lower two describe 
the EEG associated to two pathological situations. All records show an 
irregular succession of peaks, although V) and (g) look definitely more 
'coherent' than (a)-(e). The analysis of the time series associated with 
these records using the techniques of nonlinear dynamics developed later 
in this book reveals the presence of deterministic chaos, whose complexity 
depends on the stage of brain activity. Significantly, in pathological states 
such as epilepsy chaotic behavior is milder than in the healthy state. This 
suggests the rather unexpected idea that a healthy physiological system 
needs a certain amount of internal variability whose loss, witnessed by the 
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Fig. 1.15 EEG records -. - - - (a) eyes open 

during various stages 
of brain activity (b) eyes closed 

(courtesy of A. 
Destexhe) (c) sleep 2 

(d) sleep 4 
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transition to a more 'ordered' state, signals the appearance of pathologi- 
cal behavior. It is important to realize that this healthy variability is not 
the result of random noise. Deterministic chaos combines here, in a subtle 
manner, order and reliability on the one side, and disorder and 
unpredictability on the other. One is therefore tempted to speculate that a 
regime of deterministic chaos provides a system with the readiness needed 
to recognize a variety of external inputs and respond flexibly to a changing 
environment. 

Population biology provides another exBmple in which chaos may well 
be present. Experimental data are not clearcut, mainly because of the 
large environmental noise that is inevitably superimposed on the 
dynamical behavior. Still, taken in conjunction with mathematical 
models, they do suggest that irregular variations in time and space are 
ubiquitous (May, 1974, 1976). Such variations may have an important 
role in problems involving competition and selection. 

Problems 

1.1 Using eq. (1.1) show that the power spectrum of a sinusoidal signal 
displays a sharp peak around the signal frequency. Comment on the 
origin of the fine structure around this peak, particularly on its relation to 
the number of data points N. What happens for a nonsinusoidal periodic 
function in the form of a square pulse of width A repeated every T time 
units? 
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1.2 Identify the aonequilibrium constraint(s) analogous to A T  of the Benard 
problem (Section 1.3) and e of the CSTR (Section 1.4) driving the 
biological rhythmic or patterning phenomena surveyed in Section 1.5. 

1.3 In biology many key molecules, such as proteins, and many key 
subcellular microstructures possess a systematic built-in handedness. 
Comment on the possible role of this handedness at the molecular level in 
the origin of the macroscopic left-right asymmetry observed in vertebrates 
(Almirantis and Nicolis, 1987; Brown and Wolpert, 1990). 



CHAPTER TWO 

Quantitative 
formulation 

2.1 Evolution equations in classical mechanics 

The state variables of a mechanical system are the spatial coordinates {r,) 
and velocities {vi),  or the generalized positions (q,) and momenta { p i } ,  
i = 1, . . . , N, of the N constituent particles. These quantities vary in space 
and time owing to the interactions between the particles and/or to the 
forces of external origin acting on them. The evolution laws are Newton's 
equations, 

or Hamilton's equations (Goldstein, 1959) 

in which mi stands for the mass of ith particle and H for the Hamiltonian. 
Eqs. (2.1) and (2.2) share the generic property of nonlinearity, since the 
fundamental laws of nature depend on the particle coordinates in a 
nonlinear fashion, a typical example of which is Newton's law of 
gravitation. 

Eqs. (2.2) constitute a set of 6N coupled ordinary differential equations. 
It is well known from calculus that the integration of such a system 
amounts to finding 6N independent first integrals of motion. Hamiltonian 
systems constitute, however, a particular class in the sense that, under 
quite general conditions, it suffices to know only 3N first integrals. As 
Liouville demonstrated, if the latter are sufficiently regular mathematical 
functions of the variables, the system can he integrated by simple 
quadratures. 

Liouville's theorem tells more. Under the above conditions it shows 
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that it is, in principle, possible, by means of appropriate transformations 
which preserve the Hamiltonian structure and which are known as 
canonical transformaiio~zs to cast eqs. (2.2) into the form (Goldstein, 1959; 
Lichtenberg and Lieberman, 1983) 

in which the 1,s are suitable combinations of the constants of motion. Wc 
refer to Ii and 4i as action and angle variables, respectively. 

Eqs. (2.3) define the particular class of integrable systems. The behavior 
of such systems is easily obtained by straightforward integration: 

Ii = I i  = const. 
0 

$i = oit + di, 

If & l o o  at ( I i ,  4i)as polar coordinates, in the system's original variables 
we realize that the behavior will be multiperiodic. If the frequencies- (wij 
are rational functions of each other, there will be a common divisor 
frequency and the behavior will actually be simply-periodic as alluded to 
already in Section 1.3. The general mathematical expression of this 
condition of commensurability is that there are integers k ,  , k , ,  . . . , not all 
zero, such that 

If there exists no such set ( k ,  , k , ,  . . , ) the frequencies will be irrationally 
related and the multiperiodic motion described by (2.3)-(2.4) will be 
quasi-periodic. Such an aperiodic motion may look quite intricate. 
Relation (2.5) defines the important concept of resonance, the relevance of 
which will become clear later on in this book (see especially Chapter 5). 

Any Hamiltonian system with one degree of freedom, that is to say, onc 
pair (q ,  , p, ) of coordinates and momenta, is integrable since it possesses 
one regular constant of motion, the total energy H. The hoop (Section 
1.2), the simple pendulum and the linear harmonic oscillator are therefore 
integrable systems. A Hamiltonian system with two degrees of freedom is 
integrable if there exists a sufficiently regular first integral independent oT 
H. For three degrees of freedom three first integrals are needed. In the 
two-body problem in the presence of central forces, whose importance 
stems from its relation to the motion of celestial bodies, their existence 
follows from conservation of linear and angular momentum (in addition, 
of course, to that of energy). More generally, all systems that can bc 
separated into uncoupled systems of one degree of freedom are integrablc. 
This is the basis of the extensive literature on small vibrations around a 

position of equilibrium, of which solid state physics is a particularly 
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important illustration. Certain problems of nonlinear vibrations can also 
be integrable, like the Toda lattice or the Korteweg-de Vries equation 
(Infeld and Rowlands, 1990). 

Integrable systems dominated mechanics for almost three centuries, 
During this period it was thought that all physically relevant systems 
belonged to this class. As a result, multiperiodic behavior was considered 
to be the typical - and even the only possible - behavior of a mechanical 
system. Today the situation looks very different. Since the 1950s, thanks 
to the historic contributions of A. Kolrnogorov, it is realized that many 
(and, in fact, in a certain mathematical sense 'most') of the naturally 
occurring systems are nonintegrable (Lichtenberg and Lieberman, 1983; 
Arnol'd, 2980). This has some momentous consequences, since by the loss 
of integrability multiperiodicity is no longer guaranteed. This leaves room 
for aperiodic unstable behavior and, in particular, for Hamiltonia~ chaos. 
There is ample evidence of the ubiquity of this phenomenon, to which we 
shall come back later. For now we want to point out two important areas 
in which chaos in classical mechanics is contributing to a radical change of 
perspective. The first is celestial mechanics, in connection with the 
celebrated three-body problem (Moser, 1973; Sussman and Wisdom, 
1992; Laskar and Robutel, 1993). The second relates to the microscopic 
foundations of statistical mechanics, the main question here being the 
passage from microscopic, time-reversible behavior as described by eqs. 
(2.2) to the macroscopic, time-irreversible behavior as described by 
hydrodynamics or chemical kinetics. Hamiltonian chaos provides the 
missing link in that it shows how probabilistic concepts can naturally 
emerge from a system described by a well-defined, perfectly deterministic 
set of laws (Krylov, 1979; Bunimovitch, and Sinai, 1980; Penrose, 1970, 
1979; Prigogine, 1962, 1980)+ 

Let us now illustrate the laws of classical mechanics using the example 
of the hoop considered in Section 1.2. We first recall that, as the hoop is a 
one degree, of freedom system, it cannot give rise to chaotic behavior. 
Nevertheless, as we shall see in Chapters 4 and 5, it will give rise to the 
phenomenon of instability and bifurcation, in full agreement with the 
experimental results described in Section 1.2. 

The starting point is eq. (2.1) 

v,, F ,  being the tangential velocity and force (Fig. 1.1). Writing 

u, = r d#/dt 
F, - (weight + centrifugal force), (2.7) 

= -mgsinB + mco2rsinBcos8 

we obtain from eq. (2.6) 
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where we have set 

n = w2r/g (2.8b) 
2, 

This equation exhibits quite clearly the nonlinearity inherent in the 
problem. It also shows nicely how the consbaitlt enters the dynamics in a 
natural manner, here through the dimensionless parameter A which 
expresses the relative importance of the two adverse factors - gravity and 
centrifugal force - present in this problem. 

It is instructive to consider the vicinity of the threshold value a, around 
which the system switches to a new equilibrium position (Section 1.2), 
Since in this range 13 is small (if initially small), one can expand eq. (2.8a) in 
powers of 8 and keep the first nontrivial terms. The result is: 

with 

Eq. (2.9a), also known as the Duflng oscillator, presents a number of 
interesting features: 

(i) It remains invariant under the substitution 8' = - 8. This reflects the 
invariance of the original problem with respect to reflections around 
the vertical axis. 

(ii) It is largely independent of the details of the original problem, which 
enter only through the specific values of the parameters p and v. 
Actually, as will become clear in Chapter 5, in the small 8 limit eq. 
(2.9a) is universal, and describes any nonlinear oscillator enjoying 
the symmetry property under (i). 

(iii) It reduces to the classical harmonic oscillator when the nonlinearity 
isneglected, provided that p can be written as p = -wO2, where coo is 
a (real-valued) angular frequency. According to the first relation of 
(2.9b) this can only be the case if A < 1, Beyond the threshold value 
A, = 1, or w, = (g/r)  the oscillatory character is lost and O shows 
explosive behavior. Nonlinear terms then become necessary and are 
the ones that eventually are responsible for the bifurcation of the two 
new equilibria in this problem. 
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2.2 The macroscopic level: balance equation of a 
macrovariable 

As we saw in Chapter 1, nonlinear behavior is also prominent at the 
macroscopic level. The state variables that are relevant at this level of 
description are the collective variables associated with statistical averages 
of microscopic quantities. Typical examples are bulk motion velocity, 
pressure, concentration of a chemical in a solvent, etc. 

A variable B(t) which refers to the system as a whole, like total energy or 
momentum, is called extensive. One can associate to it an intensive 
variable b(r,t), describing local behavior, through 

V being the volume occupied by the system. We are interested in how B ( t )  
evolves in time (Prigogine, 1947; De Groot and Mazur, 1962). As a rule, B 
will vary owing to two types of process (Fig. 2.1 ): 

Exchanges with the external world, d,B/dt. These can be modeled by a 
flux of b, J, through the surface C surrounding V. 
Internal processes, diB/dt. These are generated by the system itself even 
when it is completely isolated, and can be modeled as a rate of production 
of b per unit volume, o, 

It follows that 

Fig. 2.1 Schematic where n is the outward normal to the surface Z, For a fixed but otherwise 
representation of a arbitrary C, applying Gauss' divergence theorem to the surface integral in 

system in a volume V 
separated from the I: 
environment by a 
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(2.11) and substituting B from (2.10) one obtains straightforwardly from 
the above the general balance equation for an intensive variable 

This equation is purely formal: since J, and a, are unknown at  this stage, 
it cannot provide as such information on the time development of b. Still, 
it is an interesting relation as it allows one to classify physical quantities 
into two large categories: 

Conserved quantities, for which the source term a, = 0. Such quantities 
vary only through the fluxes exchanged with the external world and 
remain therefore constant in an isolated system. Typical examples are the 
mass or the momentum and energy in the absence of external forces. 
Nonconserved quantities, for which a, #' 0. A typical example is the mass 
or the mole number of a chemical constituent in the presence of chemical 
reactions. In general u, has no definite sign. A notable exception is the 
entropy source term us, which is bound to be a nonnegative quantity by 
the second law of thermodynamics. 

In what follows we consider, in turn, the particular form of balance 
equations for these two types of quantities. As we shall see they will lead us 
quite naturally to the fields of fluid dynamics and chemical kinetics. 

2.3 Conserved variables in a one-component 
system and the equations of fluid dynamics 

Consider a one-component fluid (Landau and Lifshitz, 1959a; Guyon et 
al., 1991). The most obvious example of a conserved variable for such a 
system is the mass density, b = p. Mass is transported only through the 
bulk motion, whose velocity we denote by v(r,t). Setting therefore 
J, = pv, a, -0 in eq. (2.12) we obtain 

dp/dt = - div pv (2.13) 

Consider next the momentum density, b = pv. Source terms for this 
quantity can only come from external forces, a, = pf. As regards the flux 
we first have, as in the case of mass balance, the transport of pv with the 
bulk velocity giving the contribution pvv, which is now a tensor of rank 2. 
In addition, however, momentum can be transported through thermal 
motion and interactions between adjacent volume elements of the fluid 
whose global effect is described by the pressure tensor, P. Eq. (2.12) 
becomes therefore 
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Performing the time and space derivations and utilizing (2.13) one may 
further transform (2.14a) into 

where the hydrodynamic derivative d/dt expresses the total variation of v 
along the motion of the fluid. 

Eqs. (2.14) feature p and v which are among the system's state variables, 
the external force term f which is supposed to be known, and the pressure 
tensor P. As long as the last of these is not expressed in terms of the state 
variables we will not have at our disposal a closed set of equations from 
which the state variables can be evaluated. In fluid dynamics this closure is 
achieved by a series of constitutive, or phenomenological relations (De 
Groot and Mazur, 1962). Specifically, we decompose P into an ideal fluid 
part and a part accounting for dissipation, 

where in the ideal part p is the hydrostatic pressure and in the dissipative 
part a is the stress tensor expressing the frictional forces exerted between 
adjacent fluid regions. We adopt the local equilibrium assumption, 
whereby locally the thermodynamic quantities depend on the same 
variables as in equilibrium (De Groot and Mazur, 1962). It is shown in 
statistical mechanics that this assumption is reasonable as long as the 
constraints driving the system out of equilibrium vary in space and time 
on a scale that is much larger than the scales associated with molecular 
level processes. Under these conditions one may then, in an isotropic 
system, 

(a) use for p the equation of state 

where T is the temperature; 
(b) express a as 

where q and ?: are, respectively, the shear and bulk viscosity 
coefficients. In general these phenomenological coefficients are T- and 
p-dependent but in most applications considered in this book they 
will be treated as constants. 

Eqs. (2.14)-(2.16) now constitute a closed set provided that an 
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evolution equation for the temperature T can be derived. We obtain this 
equation by considering the internal energy density pu, the third 
important quantity characterizing the state of a fluid. We first recall that 
in the presence of conservative forces the total energy density pe, 

~ . h  .. ~h .. is .. t.hp, .. no.tcCntiia1 ... cncr(t~ a c c ~ c i . ~ t ~ r i  5 x r i t . h  .+ha AY+P-- $A----- .-E 

conserves;. x-om eq. !(2:I'2);0rie h a s  .therefore 

In addition to the universal transport mechanism of pe through the fluid 
velocity, pev, one must add a contribution associated with the mechanical 
work P. v performed by the internal stresses of the system as well as a 
purely dissipative contribution J,, arising from the transport of energy 
through thermal motion and intermolecular interactions: 

J, = p ev + P-v  + J,, (2.19) 

Substituting into eq. (2.18) and taking into account eqs. (2.1 3)-(2.15) one 
arrives a t  an equation for the internal energy u, 

i 

= -div J,, - Pbgradv (2.20) 

As in the case of momentum balance, we need constitutive relations to 
close this equatic'n. In the local equilibrium regime these relations are: 

(a) an equation of state 

(b) Fourier's law of heat conduction 

where A is the heat conductivity coefficient. 

Eqs. (2.13), (2.14) and (2.20) supplemented with (2.15), (2.16) and (2.21) 
and appropriate boundary conditions constitute the closed set of 
equations of fluid dynamics from which the five hydrodynamic fields p,T 
and the three components of v can, in principle, be evaluated. On 
inspecting these equations one immediately realizes that they all feature a 
universal nonlineairity of the form v -Vx, x being p, v or T,  reff ecting the fact 
that the properties of a fluid are transported by the fluid velocity -itself a 
fluid property. W'e may refer to this mechanism as the 'hydrodynamic 
feedback'. It is worth noting that this nonlinearity subsists in the limit of 



2.4 Nonconserved variables in a ntulticomponent system 33 

ideal fluids in which all dissipative effects are neglected. On the other hand 
as one sees from (2.16b) and (2.21b) dissipative effects typically give rise to 
linear contributions, unless the phenomenological coefficients q, 5 and R 
are state-dependent. The complex behaviors surveyed in Chapter 1 in 
connection with the Bknard problem stem, therefore, primarily from the 
'inertial' nonlinearity inherent in fluid mechanics. 

2.4 Nonconserved variables in a multicomponent 
system and the equations of chemical kinetics 

We now consider a multicomponent system involving n chemically active 
constituents i = 1, . . . , n participating in r chemical reactions p = 

1, . . . , r (Nicolis and Prigogine, 1977; Aris, 1975). In addition to the 
variables considered in the preceding section, in order to describe the 
macroscopic state of the system, we also need the composition variables 
{X,(r, t ) ) .  These may be mass densities, molar densities or mole fractions 
but in what follows we will usually argue in terms of molar densities. 
According to eq. (2.12), 

dXi/dt = - div Ji + a, 

In addition to the universal transport mechanism of Xi through the 
bulk motion velocity, Xiv, one must also consider a purely dissipative 
contribution J P ~ ~ ~  associated with diffusion, that is to say, transport 
through thermal motion and intermolecular interactions, 

In the local equilibrium regime the diffusion flux is given by Fick's law, 

in which the additional simplifying assumption of an ideal mixture has 
been made to allow us to neglect cross-diffusion terms. 

Let us turn now to the source term ai in (2.22), which reflects the effect of 
chemical reactions. We write formally a chemical reaction as 

in which V, 7' stand for the number of moles of the reactants and products 
involved in the reaction and k ,  for the rate constant. The difference 
vi, = Y r i ,  - Y i p  gives the number of moles produced (v,, > 0) or consumed 
(vi ,  i 0) in the process. Hence, if we denote by w, the velocity of the 
reaction we are entitled to write ui as 
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Again, we need a phenomenological closure relation to express w, in 
terms of the state variables. In ideal systems this is provided by the law of 
mass action, 

which expresses that the rate of reaction p is proportional to the frequency 
of encounters between the molecules of the chemicals participating in the 
reaction times a coefficient k, , which is generally state-dependent, 
specifying the fraction of those encounters that will actually result in a 
change of chemical identity. In an ideal system the frequency of 
encounters is simply the product of concentrations, but in a nonideal one 
the effect of intermolecular interactions must be taken into account 
through the activity coefficients. 

Thanks to eqs. (2.23) and (2.25) the set of equations for Xi combined 
with the equations of fluid dynamics of Section 2.3 is now closed. Let us 
look in detail at the structure of these equations in some important 
limiting cases. 

A Wel I-sti rred open reactors 

Such reactors have already been introduced in Section 1.4, Fig. 1.9. 
Stirring inside the reactor entails that Jyiff = 0 throughout. The remain- 
ing flux term, - divXiv is nonvanishing only at the reactor's boundaries. 
In the part communicating with the feed streams it describes the entry of 
fresh products at a concentration X y  and in the outlet it describes the 
evacuation process at the reactant concentration Xi inside the reactor. 
Introducing the residence time z (eq. 1.2), we may therefore write the 
balance equations in a well-stirred open reactor in the form 

B Reaction-diffusion equations 

We consider next an unstirred reactor in mechanical equilibrium, v = 0, 
and at constant temperature. Furthermore we take the diffusion coeffi- 
cients Di to be constant, an assumption that is reasonable as long as the 
system is not close to a phase instability leading to unmixing. Substituting 
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(2.23b) and (2.25b) into eq. (2.22) one then obtains the reactiondiffusion 
equations. 

These partial differential equations, supplemented with appropriate 
boundary conditions which express the way the reactor is fed from the 
outside world, constitute a closed set of n partial differential equations 
since they decouple completely from the equations of fluid dynamics. 

Eqs. (2.26) and (2.27) are intrinsically nonlinear, since a collision 
process is bound to involve the product of at least two concentrations. In 
contrast with hydrodynamic nonlinearity, this chemical nonlinearity 
arises through the dissipative terms in the balance equation. Furthermore 
it is system-specific since it involves explicitly the mole numbers Y j p  and 
therefore, ultimately, the nature of the reaction mechanism. On the other 
hand, being independent of transport, chemicai nonlinearities subsist 
even in the limit of a spatially uniform system (cf. eqs. (2.26)). Chemical 
kinetics provides, therefore, one of the very few genuine examples of 
nonlinear dissipative systems whose dynamics, although possibly very 
complex, is governed by a finite and sometimes very small number of 
degrees of freedom. In contrast to this, hydrodynamic nonlinearity is 
invariably associated with spatial inhomogeneities. As a result in a typical 
fluid dynamics problem one is confronted, at the outset, with a system 
involving an infinite number of degrees of freedom. 

2.5 The Benard problem: quantitative formulation 

As a concrete illustration of the equations of evolution of macroscopic 
observables we outline in this section the quantitative formulation of the 
problem of thermal convection described in Section 1.3 (Chandrasekhar, 
1961; Manneville, 1991). In the idealized situation of a horizontal shallow 
layer one expects the density variations along the fluid motion to be 
negligible compared to the density itself or, in other words, the 
logarithmic hydrodynamic derivative (llp)(dp/dt) to be vanishingly 
small. Comparing with the mass balance equation (2.13) we deduce that 

div v = 0 (2.28) 

which will be hereafter referred to as the incompressibi2ity condition. 
Let us turn to the momentum balance, eq. (2.14). In aclosed cell surface 

effects can be ignored and the only force present is gravity, 
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1, being the (upward directed) unit vector along the vertical. Introducing 
the phenomenoiogical relations (2.1 5) and (2.16),  assuming that the 
phenomenological coefficients are state-independent and taking the 
incompressibility condition (2.28) into account we arrive at the Navier - 
Stokes equation 

According to the arguments at the beginning of this section, in a shallow 
layer of fluid one might by tempted to treat p as a constant. However, if 
this property is applied everywhere in eq. (2.30) one observes that 
momentum balance becomes completely uncoupled from the thermal 
constraint which, according to Section 1.3, should play an essential role in 
the onset of thermal convection. We must therefore somehow incorporate 
in eq.(2.30) the effect of density variation. Now, according to the equation 
of state (2.16a), 

P = P ( P ,  T) (2.31) 

In this relation the effect of pressure can be neglected owing to the 
shallowness of the layer (isothermal incompressibility). Furthermore, as 
long as temperature variations remain moderate one can expand (2.31) 
around a fixed reference state (p , ,To) ,  hereafter chosen to correspond to 
the state at  the lower plate, and write 

where a is the coefficient of thermal expansion. Typical values of this 
coefficient are a - fO-4K-1  for water and a - 1 0 - 3 K - 1  for air, 
justifying a posteriori the reasonableness of the expansion for temperature 
differences of the order of several degrees or so. 

It follows from the above that the density variations in the fluid, as a 
function of temperature, are much smaller than the density itself, 
analogously for density variations as a function of pressure. This suggests 
that one may neglect the variation of p in the left hand side of 
Navier-Stokes equation since, in a typical laboratory experiment, the 
velocities and accelerations involved are small and vary smoothly in 
space. We cannot apply a similar simplification to the right hand side 
since, as observed earlier, this would eliminate the physical mechanism at 
the very basis of thermal convection. We thus arrive at the following 
'minimal' version of Navier-Stokes equation, 
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Let us turn finally to the internal energy balance, eq. (2.20). Decornpo- 
sing P as in (2.15) we write the internal stress term P-grad v as 

Pagrad v = pdiv v + a-grad v 

The first part is zero on account of the incompressibility condition, eq. 
(2.28). In  view of eq. (2.16b) the second part is quadratic in the velocity 
gradient, a small quantity in a Benard experiment under laboratory 
conditions, and can therefore be neglected. Furthermore, in accordance 
with the arguments leading to eq. (2.33) we neglect the variation of density 
in the left hand side of (2.20) and replace the phenomenological coefficient 
A in Fourier's law (2.21b) by a constant. It remains to express the internal 
energy u in terms of the experimentally more relevant variables p and Tby 
the equation of state (2.21a) or. in the case of incompressible fluid, by the 
simplified form 

(notice that c, = c, in an incompressible fluid). Inserting aH these 
expressions and simplifications into eq. (2.20) we obtain 

Eqs. (2,28), (2.32), (2.33) and (2.35) are the fundamental equations 
governing thermal convection. They will be taken up again in Chapter 6 
and wiI1 serve as one of our favorite models on which the concepts and 
tools of nonlinear science will be illustfated. We recall here that their 
specific form stems from: ( a )  the particular way of treating density 
variations by replacing p by a constant everywhere except in the gravity 
term; jb) neglecting the viscous heating term aegrad v; and (c) supposing 
that the p~enomenologica~ coefficients q, A, cc, c, are state-independent. 
We refer to these assumptions as the Boussinesq approximation. We have 
justified this approximation here on the basis of intuitive arguments. A 
more systematic derivation exploiting the existence of a number of 
smallness parameters in the problem has been elaborated by De Boer 
(1986) and by Velarde and Gordon (1976). Notice that the Boussinesq 
approximation fails when the depth of the layer becomes appreciable. 
This is the case in many important real-world situations such as 
convection in the atmosphere or in the oceans. 

A set of partial differential equations like (2.33) and (2.35) together with 
conditions (2.28) and (2.32) does not constitute a well-posed problem 
unless it is supplemented by appropriate boundary conditions. Since the 
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fluid layer is supposed to extend indefinitely in the horizontal direction the 
only requirement is that T and v remain bounded as the coordinates (x, y) 
tend to + co. We may also model the infinite extent of the system along 
this plane by periodic boundary conditions. The situation is somewhat 
more involved along the z direction. There are, of course, two pairs of 
boundary conditions that impose themselves by the very definition of the 
Benard problem. The first expresses that the plates are maintained at fixed 
temperatures, 

The second expresses the fact that the fluid is confined, hence its velocity 
along the vertical direction must vanish on the plates 

where we have set v = (u, v ,  w). However, these conditions are insufficient 
since (2.33) is equivalent to an equation of sixth order in one of the velocity 
components. One needs, therefore, four more boundary conditions for the 
velocity field. As it turns out these conditions depend on the nature of the 
experimental setup. Two typical cases can be envisaged. 

A Rigid boundaries 

Suppose that the fluid is placed between two rigid plates. By continuity its 
velocity must then vanish identically on these plates or, in view of (2.37), 

It follows from (2.38) that the partial derivatives of u and v along any 
direction on a horizontal plane vanish identically. In particular, 

Combining with the incompressibility condition (2.28), we may transform 
these conditions to a condition on the vertical component of the velocity, 

B Free boundaries 

As we shall see in Chapter 6 the solution of the Benard problem with the 
boundary conditions (2.37) and (2.39) is technically very involved. For the 
sake of mathematical simplicity we consider here the case of a fluid 
confined by free boundaries, that is to say, boundaries on which no 
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viscous stress is exerted. Using the expression (2.16b) of the stress tensor 
along with the incompressibility condition (2.28) we express this property 
as 

or more explicitly, 

In practice these conditions are difficult to realize except under micro- 
gravity conditions. On the other hand, in a fluid subjected to such 
conditions one of the mechanisms at  the origin of the thermal convection 
instability - the gravity-induced Archimedes force - disappears. A more 
elaborate study shows that an instability can still occur owing to the 
temperature dependence of the surface tension, measuring the decrease of 
surface energy arising from the decrease of cohesion in the fluid as the 
temperature increases. We refer to this mechanism as the Marangoni effect 
(Guyon et al., 1991). 

As before one may transform (2.40) into conditions for the vertical 
component w .  First, it follows from (2.37) that the derivatives of w along 
any horizontal direction vanish identically, 

Combining with (2.40) one deduces that 

Consider now the incompressibility condition (2.28) differentiated once 
with respect to z :  

Requiring that u, u are differentiable functions which possess bounded 
derivatives one can exchange the order of derivations in the first two 
terms. Taking (2.41) into account one obtains 

A number of variants of the Benard experiment can also be formulated 
along similar lines such as a rigid lower and a free upper boundary. This 
actually models the experiments performed by Binard himself, in which 
the upper surface of the fluid was in contact with ambient air. 
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2.6 Some representative chemical models giving 
rise to nonlinear behavior 

We have already stressed the fact that the form of the equations of 
chemical kinetics is system-specific. In chemistry, therefore, there is no 
straight analog of the Boussinesq equations of the previous section 
describing, say, a chemical oscillator or a chemical system giving rise to 
pattern forma tion whatever its specific characteristics might be. In this 
section we survey a number of models that have been proposed over the 
years to interpret various types of complex nonlinearity-driven behavior. 
Many of these will be taken up in the subsequent chapters and used to 
illustrate the concepts and tools of nonlinear science. 

We start once again with the BZ reaction. The first successful model of 
oscillatory behavior in this system has been developed by Noyes and 
coworkers on the basis of the mechanism discussed in Section 1.4. It is 
frequently referred to in the literature as the 'Oregonator'. 

Let X = [HBrO,], Y = [Br-], Z = 2[Ce4*] be the concentrations of 
the three key substances featured in the mechanism of Section 1.4. From 
the analysis of this section we see that reaction ( A l )  describes the 
conversion of Y to X, reaction ( A 3 )  the simultaneous inactivation of X and 
Y, reactions (B2) and ( B 3 )  the autocatalytic generation of X, reaction (Bl) 
the bimolecular decomposition of X, and the global reaction (C) the 
regeneration of Y from Z. Hence, we write the following steps (Field et al., 
1972): 

Here the concentrations A = B = [BrO,] are supposed to remain fixed 
('pool' chemical approximation (Gray, 1990)). P and Q denote waste 
products, and f a suitable stoichiometric coefficient. Note that all 
reactions are taken to be irreversible (the reversible version of this model 
has been studied by Field (1975)). The rate constants ki contain the effect 
of H +, of bromomalonic acid and any other species considered to act as a 
'reservoir'. Numerical values of these constants can be inferred by 
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comparison with the detailed mechanism. They turn out to be widely 
different, ranging from 1 to lo9 M-I s-l.  This entails that the system 
evolves according to different time scales, a property that gives rise to 
sharp, relaxation-like oscillations even close to the transition threshold to 
oscillatory behavior. This is confirmed by experiment. 

Historically, the first chemical model giving rise to sustained oscilla- 
tions while being fully compatible with the fundamental laws of physics 
and chemistry was a two-variable autocatalytic model known as the 
Brusselator (Prigogine and Lefever, 1968; Lefever and Nicolis, 197 1 ; 
Lefever, Nicolis and Borckmans, 1988). Here the unique source of 
nonlinearity is the autocatalytic synthesis of X according to 

in which the initial product concentrations A and B are again treated as 
fixed parameters and C, D denote waste products. In the presence of 
diffusion the Brusselator also generates a variety of spatial patterns 
(Nicolis and Auchmuty, 1974; Nicolis and Prigogine, 1977), including 
inhomogeneous stationary states similar to those discovered recently in 
the experiments of the Bordeaux and Austin groups (cf. Section 1.4) and 
spatio-temporal chaos (Kuramoto, 1984). This establishes the possibility 
of complex nonlinear behavior in purely dissipative systems, even in the 
absence of the inertial effects inherent in fluid dynamics. 

Chemical reaction models involving a single variable may also give rise 
to highly nontrivial behavior in the form of multiple stationary states and 
propagating wave fronts. Such phenomena have been observed experi- 
mentally, notably in the iodate-arsenous acid reaction (Ganapathisub- 
ramanian and Showalter, 1983) and, even more typically, in combustion. 

-An elegant prototype mechanism for this type of behavior in isothermal 
system is provided by Schl6gl's first and second models (Schlogl 1971, 
1972). 
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and 

in which X denotes the unique variable and A,  B are again treated.as 
parameters. As in the Brusselator, the unique source of nonlinearity is the 
autocatalytic production of X. 

A minimal one-variable model incorporating thermal effects is the 
Sernenov-Frank-Kamenetskii model (Frank-Kamenetskii, 1969; Zel- 
dovich, Barenblatt, Librovich and Makhviladze, 1985). Consider a 
well-stirred reactor in mechanical equilibrium, closed to mass transfer but 
capable of exchangng energy with a thermal reservoir at constant 
temperature To. The chemical transformation taking place within the 
reactor is an irreversible, unimolecular exothermic decomposition of a 
fuel in gas phase (cf. eq. (1,3)). For simplicity one assumes that the 
concentration of the reactant varies on a scale that is much slower than 
heat transfer and may thus be taken as a constant (equal to its initial value 
c , ) .  The only remaining relevant variable is therefore the temperature T. 
To obtain an evolution equation for this variable we turn to the general 
energy balance equation (eq. (2.20)). We set v = 0 (mechanical equilib- 
rium) and model the heat transfer term in a way analogous to the mass 
transfer term in the open well-stirred reactor (eq. (2.26)), known as 
Newt on's cooling law, 

dr( - div J,,) = @(To - 7') (2.46a) 
V reactor 'i 

In the presence of chemical transformations the equation of state (eq. 
(2.21a)) linking internal energy to T also features the degree of advance- 
ment 5 of the reaction, defined by dc/dt = reaction velocity w .  It  follows 
that 

d T  
= PC,,- + AHw 

d t 

where p is the mass density of the mixture, c, the specific hear ar constant 
volume and -AH the heat of reaction. Substituting (2.46a) and (2.46b) 
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into eq. (2.20) and taking into account the Arrhenius law for the 
temperature dependence of the rate constant k (eq, (1 -4)) we arrive at the 
Semenov equation 

As it turns out this equation quite successfully describes the first stages of 
thermal explosion characteristic of combustion phenomena. When 
supplemented with (heat) diffusion terms to model a nonstirred reactor 
(Frank-Kamenetskii equation) it atso gives rise to propagating fronts 
thereby providing the basis for understanding the formation of a flame. 

As stressed in Section 1.5, in many cases the kinetics of biologically 
relevant phenomena is completely isomorphic to the kinetics of chemical 
reactions. An interesting illustration of this analogy is provided by 
population dynamics. Let X be the density of the population (number of 
individuals per surface) in the supporting medium and A the density of 
resources. One may reasonably decompose the processes contributing to 
the evolution of X as follows: 

Birth, 

Death , 

Migration, 

Regulation, consisting of the slowing down of the rate of growth k, as the 
density of individuals increases and it becomes difficult for the supporting 
medium to sustain further growth. A minimal model for this phenomenon 
is io set 

This law was first stipulated by the Belgian scientist Verhulst (Verhulst: 
1845). At this time it was in complete opposition to the prevailing theories 
of Malthusian growth (exponential growth or decay, according to 
whether the birth rate is larger or smaller than the death rate). Notice the 
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striking resemblance of (2.48a)-(2.48d) with the four steps of Schlogl's 
first model, eq. (2.45a). 

From (2.48ak(2.48d) neglecting for simplicity migration and setting 
ryl = 1, n = 2 we arrive at the rate equation 

or, setting 

in the more compact form 

This is the celebrated logistic equation. It describes in a surprisingly 
successful manner population growth on various scales (Montroll and 
Badger, 1974) as a process in which after an initial exponential growth 
stage (small X, k > 0) the system performs a fast transition toward a 
plateau value X = N, N being the ecosystem capacity (Fig. 2.2). It should 
be stressed that in the real world N is not constant but evolves in time on a 
slow scale as a result of evolution or technological innovation. After 
having reached a first plateau (representative, say, of an agricultural 
society) X may thus subsequently jump to a number of successively higher 
plateaus reflecting, for instance, the concentration of individuals in urban 
centers. 

The above reasoning can easily be extended to include coexisting 

Fig. 2.2 Time - 

dependence of the X 

equation, eq. (2.51). 
Parameter values : 
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populations or predator - prey interactions. It should be noted that in 
population biology the generation time is often comparable to the time 
scale of the dynamics (May, 1974). This entails that the  continuous time 
logistic equation must sometimes be replaced by its discrete counterpart 

2 
X, + = ax ,  - bx ,  

which, as will be seen in Chapter 7, may give rise to a surprising variety of 
complex behaviors. 

Problems 

2.1 Construct the explicit form of the transformation to action-angle 
variables mapping the harmonic oscillator hamiltonian, 
H = p2/2m + (k /2 )q2  into the form H = w1. Identify the value of w in 
terms of the original. parameters. 

2.2 Write out the equation generalizing (2.8a) in the presence of friction 
assuming that the friction force is a constant multiple of the velocity of 
the mass. Derive the equation replacing (2.9a) in this case and comment 
on its symmetry properties with respect to the transformation 0 -, -0 
and t +  -t. 

2.3 Derive in the Benard problem a quantitative expression for the 
Archimedes force and for the viscous frictional force acting on a small 
spherical fluid volume of radius R displaced upward by a length element 
6z by a random disturbance. Comment on the onset of the instability by 
analyzing the relative magnitude of these two forces. 

2.4 Carry out the detailed derivation of eq. '(2.20) starting from eqs. 
(2.13 j(2.19). 

2.5 Derive the entropy balance equation for the Btnard problem in the 
Boussinesq approximation using the local equilibrium assumption 
(Section 2.3) .  Hint: express formally the entropy density as a function of 
u and p and use the balance equations for these quantities (De Groot 
and Mazur, 1962). 

2.6 Derive the balance equations of the Brusselator, eq. (2.44) in a CSTR, 
+ assumed closed to X, Y and open to the transfer of A, B, C, D with 

X ~ # O , X ~ # O , X ~ = X ~ = O ~ ~ ~ ~ , = ~ , = T , = T , = T .  

2.7 The pool chemical approximation (Section 2.6) amounts to neglecting in 
a chemical reaction the consumption of certain initial products during 
the time scale of variation of the reaction intermediates (Gray, 1990). 
Derive the rate equations for A, B, X, Y in the Brusselator (eq. (2.44)) 
viewed as a closed system. Discuss in terms of the values of the rate 
constants k,  limiting cases where the equations reduce to a pair of 
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equations for X and Y corresponding precisely to the pool chemical 
approximation (Lefever et a!., 1988). 

2.8 Identify the nondi~si~ative,  time reversible and the dissipative, time 
irreversible contributions in the evolution equations of the Benard 
problem and of a reaction-diffusion system. Check the invariance of 
these equations with respect to space and time translations. 

2.9 In Section 2.4 a distinction was made between 'kinetic' and 
'thermodynamic' nonlinearities, the former being already present in the 
nondissipative limit and the second arising from the constitutive 
relations linking the fluxes with the constraints. Consider the 

k 1 

isomerization reaction A e B .  As shown in thermodynamics (De Groot 
k r 

and Mazur, 1962) the driving force of this reaction, also known as 
afJinity is d = p, - p,, p being the chemical potential. Assuming an 
ideal mixture, relate the flux 3 = w, - w,  to this driving force. Discuss 

.in terms of the distance from the state of chemical equilibrium 
(w,,,, = w,,,,) limiting cases reducing this thermodynamically nonlinear 
law to a linear one. 

2.10 In the absence of external forces the general relation linking the diffusion 
flux in an n-component mixture to the corresponding constraint is (De 
Groot and Mazur, 1962) 

where Lij is a set of phenomenological coefficients and the nth 
component s plays the role of the solvent. Show how in an ideal mixture 
involving one solute species in a solvent this law reduces to (2.23b) and 
relate Fick's coefficient Di to the phenomenological coefficient Lii. 

2.11 Derive the extended form of eq. (2.47) to account for the consumption of 
the reactant. What is the stationary state solution of the new equations? 



CHAPTER' THREE 

Dynamical systems 
with a finite 
number of degrees 
of freedom 

3.1 General orientation 

As we saw in Chapter 2 the evolution of the state variables of a system 
obeying the laws of classical physics is given by a set of differential 
equations of first order in time. These may be ordinary (ode) like 
Hamilton's equations (2.2) and the equations of chemical kinetics in a 
well-stirred reactor (eqs. (2.26)) or partial (pde), like the equations of fluid 
dynamics (eqs. (2,131, (2.14 j(2.16) and (2.20t(2.21)) and the reaction- 
diffusion equations (eqs. (2.27)). In this latter case, which is typical in a 
macroscopic description, one deals in principle with an infinity of degrees 
of freedom - the values of the state variables (which are now fields) at each 
point in space as functions of time. 

Although in certain problems this may constitute an essential aspect of 
the phenomenon under consideration; in other cases it may happen that 
this description can effectively be reduced to a finite number of variables. 
As an example consider the typical form of a set of partial differential 
equations. 

We endow our functional space with a scalar product and a norm and 
introduce a complete basis of orthonormal functions (#,(r)). Expanding 
X,(r,t) in the basis 

substituting into eq. (3.1) and using the orthogonality properties of the 
basis one easily arrives at 



48 3 Dy namical systems 

For any given form of evolution laws Pi the scalar product (integration 
over space) can be carried out explicitly in eq. (3.31, and one is left with an 
infinite set of co&led odes for the expansion coefficients c,. The coupling 
reflects the fact that the spatial modes described by $,(r) do not evolve 
independently: even if initially only one mode is present (cim = ci4SL), a 
cascading process will be switched on whereby all modes will sooner or 
later become excited. Nevertheless, it so hqppens that in many cases the 
amplitudes of these modes are scaled by a smallness parameter, thereby 
allowing theinfinite hierarchy ofeqs. (3.3) to be truncated to a finite order. 
Additional simplifications may arise by the judicious use of symmetry 
arguments. 

One famous example of a reduction of the above type, usually referred 
to in the literature as the Galerkin method (Kantorovitch and Krylov, 
1964), is the Lorenz equations (Lorenz, 1963). They arise by expanding 
the velocity and temperature fields in the BCnard problem in Fourier 
seriei'and by truncating the Fourier amplitude equations deduced froti 
(2.33) and (2.35) to three modes. The resulting system of odes reads 

where X, Y, Z are rescaled Fourier amplitudes and a, r ,  b positive 
combinations of the original parameters of the Binard problem. 

The present chapter deals with systems that are amenable to descrip- 
tion in terms of a finite number of variables. Assuming, in addition, that 
the constraints acting on such systems do not depend explicitly on time 
(autonomous systems) we write the typical form of the evolution laws as 

or, introducing the vector notation 

X = column(X, , . . . , X, )  

in the more compact form 

In writing eqs. (3.5) and (3.6) we have also accounted for the fact that a 
real-world system involves a number of parameters 1, hereafter referred to 
as control parameters, reflecting its internal structure (viscosity or 
diffusion coefficients) or the way it communicates with the external world 
(thermal or shear constraints, residence time of a chemical pumped into a 
reactor, etc). We know already from Chapter 1 that such parameters play 
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Fig. 3.1 Phase space 
trajectory of a 

an important role in the system's behavior, it is therefore natural to 
incorporate them into our description. 

Even in the simplified form of eqs. (3.6) in which space dependencies are 
discarded, one is left with an intractable problem: the methods of modern 
science do not allow one to derive explicit solutions of eqs. (3.6) as soon as 
the number of variables n is larger than two, except in some pathological 
limiting cases. The main reason for this is the nonlinearity inherent in the 
equations which, as stressed in Chapter 2, is a universal property of the 
vast majority of natural systems. We shall cope with this fundamental 
limitation by giving up the idea of a full quantitative understanding, 
thereby focusing on the qualitative aspects of the dynamics. The basis of 
such a qualitative study is the notion of phase space. 

3.2 Phase space 

We embed the evolution of our system, as described by eqs. (3.5) and (3.6), 
into the abstract n-dimensional space spanned by the full set of variables 
(XI, . . . , X,), which we shall refer to from now on as the phase space, T. 
By definition, an instantaneous state of the system is given by a particular 
set of values of (XI,  . . . , X,) - hence by a unique point P in phase space 
(Fig. 3.1). Conversely, a phase space point P can be characterized by its 
coordinates (X ,, . . . , X,)  and defines, therefore, a state of our system in a 
unique fashion. In other words, there is a one-to-one correspondence 
between physical states of the system under consideration and phase space 
points. 

Consider now a succession of states (X, . . . , X,, . . . ) attained in the 
course of time t .  By the above argument tliis will determine in phase space 
a succession of points (P, .. ., P,, . . . ) joined by a curve C, the phase 
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space trajectory (Fig. 3.1 ). Repeating the process for all possible histories 
(X', . . . , XI,, , . . ) etc, one generates a continuous family of phase space 
trajectories, in other words, the evolution of a system amounts to a 
mapping of r into itself. 

The tangent to the phase space trajectory at a given point is the phase 
space velocity v = (v,, . . . , v,). By analogy with fluid mechanics it may bc 
thought of as the velocity of a jow generated by the vectorfieid, eqs. (3.61, 
in I?. Its orientation angles relative to the axes are given by oi = ds/dXi, s 

being the length element along the trajectory. Writing ds = (C, dX;)"' 
and using eqs. (3.5) we obtain: 

These quantities are well-defined everywhere in except on points 
X,-= ( X j s }  given by the solution of the set of algebraic equations 

We shall refer to these points as singular points. In an autonomous system 
the singular points remain fixed in phase space for all times - hence the 
terminology of $xed points also used to characterize them. 

A system like in eqs. (3.6), endowed with an evolution law 4, such that 
X(t) = X, = $,(X,) and embedded in r is referred to as a dynamical 
system. The set of smooth phase space trajectories (i.e. trajectories not 
containing fixed points) and singular points constitutes the phase portrait 
of the system. By virtue of the one-to-one correspondence between the 
succession of states in time and flow in phase space, one can assert that the 
determination of the phase portrait will give information on the full set of 
all possible behaviors of a dynamical system. In the more modest 
perspective of qualitative analysis, the objective will be limited to the 
classification of the types of phase space portrait that can be realized. 
Qualitative analysis is thus reduced to a well-defined geometric problem. 
It is for this reason that phase space is so central in the study of nonlinear 
phenomena. 

One property that plays a decisive role in the structure of the phase 
portrait relates to the uniqueness theorem of the solutions of the ordinary 
differential equations underlying our dynamical system, eqs. (3.6). This 
result, which goes back to Cauchy (see e.g. Cesari (1963)), stipulates that: 

if X, is a point other than a singular point belonging to a certain open 
subset U of phase space r, 
if F satisfies the Lipschitz property, i.e. 
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for some K < co and with I . I the Euclidean norm, then 

there is an interval to  < t < to + T such that there exists in U a unique 
solution X ( t ; X , , t , )  satisfying (3.6) with the initial condition X ( t o )  = X,. 

In the phase space representation, one immediately realizes that the 
theorem automatically rules out the intersection of two trajectories or the 
self-intersection of a given trajectory at any point other than a singular 
point. This introduces topological constraints delimiting the type of phase 
space motion. These constraints are particularly severe in one and two 
dimensions, and it is not an accident that complex dynamical behaviors in 
the form of deterministic chaos become possible only in three-or 
higher-dimensional continuous time dynarnical systems. 

3.3 Invariant manifolds 

A second element of great importance in organizing the phase portrait of a 
dynamical system is the compact invariant manifolds that may exist in the 
flow. By this we mean objects embedded in the phase space that are 
bounded and are mapped onto themselves during the evolution generated 
by eqs. {3.6), By definition we exclude the trivial invariant manifold 
constituted by r itself, in other words, we limit ourselves to manifolds 
whose dimensionality d is strictly less than the phase space dimensionality 
n. 

Thefixed points encountered in the preceding section, eq. (3.81, are an 
obvious example of an invariant set, of dimension d = 0. Since by virtue of 
(3.6) dX,/dt - F i  = 0 on these points, we conclude that fixed points in 
phase space describe the statiorzary states that can be reached by the 
underlying system, such as the state of the mechanical equilibrium in the 
example of the hoop (Section 1.2) or the stationary nonequilibrium values 
of chemical concentrations in an open reactor. 

The next obvious example of a compact invariant manifold is given by 
one-dimensional objects in phase space in the form of closed curves free of 
fixed points (Fig. 3.2). Once on such a curve the system goes repeatedly 
through exactly the same states, in other words, it exhibits a periodic 
behavior. As we saw in Chapter 1 this type of behavior arises in large 
classes of natural systems. The importance of the geometrical view of 
dynamical systems is now beginning to be clear since it allows us to 
establish a correspondence between dynamical behavior and geometric 
figures embedded in phase space. 

To proceed further it is instructive to investigate the nature of invariant 
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Fig. 3.2 A 
one-dimensional 

invariant manifold in 
the form of a closed 
curve C free of fixed 

points embedded in a 
three-dimensional 

phase space, coexisting 
with a 

zero-dimensional 
invariant manifold in 

the form of a fixed 
point P. J 

XI 

manifolds in conjunction with the dimensionality of the embedding space 
or, equivalently, the number of variables involved in the dynamics. 

A One-variable systems 

The phase space is one-dimensional. Since the dimensionality of the 
invariant manifold is strictly smaller than the phase space one, the only 
possibility one is left with are zero-dimensional manifolds - the fixed 
points. If we further require on physical grounds that the system remains 
bounded we arrive at a very restrictive picture of the motion in phase 
space, as illustrated in Fig. 3.3. 

B Two-variable systems 

Since now n = 2, d can be either 0 (fixed point) or 1 (invariant curve). A 
one-dimensional manifold can be a closed curve free of fixed points (Fig. 
3.2). In a two-dimensional space the only way to realize this while 
avoiding at the same time self-intersection (in agreement with the 
uniqueness theorem) is through one-circuit closed curves. However, in 
view of the possible coexistence with fixed points, more intricate 

Fig. 3.3 Phase 
portraits of a 

one-dimensional 
dynamical system: fa) 

a single fixed point; 
(b) several coexisting Po k PI a Po +. p2 k 

fixed points. 
- / \ - / \ 

(4 {b) 
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Fig. 3.4 Three types of x, 
invariant sets 

coexisting in a 
two-dimensional flow: 

fixed points 
(Po, PI ,  P,), a closed 
curve C free of fixed 
points and a pair of 

heteroclinic trajectories 
HI and H, connecting 

invariant sets. 

configurations of one-dimensional manifolds can anse such as curves 
joining fixed points (referred to as heteroclinic trajectories) or curves 
leaving a fixed point and subsequently returning to it (homoclinic 
trajectories or separatrix loops). A typical example is shown in Fig. 3.4. 
Notice that one disposes of the full classification of the phase space 
portraits of two-dimensional dynamical systems (Andronov et al., 1966), 

C Three variables and beyond 

Since n = 3, one may have invariant manifolds with d = 0, 1, or 2; d = 0 
corresponds again to fixed points and d - 1 to closed curves free of fixed 
points, or to curves joining fixed points familiar from the discussion in 
Sections 3.3A, and 3.3B. It is worth noticing, however, that contrary to 
the n = 2 case a closed curve (or a homoclinic trajectory) may now be of 
the many-circuit type without violating the uniqueness theorem. 

Let us now look for some genuinely new possibilities in the form of 
two-dimensional invariant manifolds free of fixed points. Among the 
familiar surfaces in elementary three-dimensional geometry the cylinder, 
the cone, the hyperboloid or the paraboloid are to be excluded since they 
are not compact. The sphere (and all other surfaces homeomorphic to it) 
is an allowed possibility. However, as shown by PoincarC it may be 
mapped in a unique fashion onto a plane tangent to its 'south' pole by 
means of a projection using the corresponding 'north' pole as center. 
There is, therefore, no specifically new behavior expected in connection 
with this type of invariant manifold. 

Less familiar, but very important for our purposes are the simple torus 
and the k-fold torus (torus with k 2 2 holes). It is shown in topology 



54 3 Dynarniccll systems 

(Patterson, 1959) that a k-fold torus must possess at  least 2k - 2 fixed 
points, implying that there is no torus other than the simple one free of 
fixed points. Fig. 3.5 depicts a simple torus. It can be constructed by first 
joining together two opposite edges of a rectangle, a process giving rise to 
a finite cylinder. By subsequently joining the two remaining edges of the 
original rectangle one produces the torus. 

A phase space point moving on a torus can be parameterized by two 
angular coordinates 8 and 4 (see Fig. 3.5). As a result the motion is 
biperiodic. If the periods T I ,  T,  along the two angular coordinates are 
rationally related, 

the motion will reduce to a periodic one and will be represented by a 
closed curve winding p and q times on the torus, respectively, along the 
two angular directions. But if no relation of the kind of eq. (3.9) can be 
found the motion will be quasi-periodic and will be represented by a helix 
winding on the torus without ever closing to itself and without any 
self-intersection. The torus topology allows this flexibility, contrary to the 
plane or sphere topologies. We conclude that two-dimensional tori 
embedded in a three-dimensional space constitute the natural prototype 
of quasi-periodic behavior. As stressed in Chapter 1 such a behavior is 
encountered in large classes of nonlinear systems under nonequilibrium 
constraints. 

The above arguments carry through in higher-dimensional dynamical 
systems, where 2, 3, . .. up to (n - 1)-tori can be embedded in an 
n-dimensional space. The natural question to be raised is whether this 
family exhausts the list of allowable invariant manifolds. Although a full 
classification of compact surfaces in a multi-dimensional space is still an 
open problem, one can imagine a priori other possibilities of compact, 
invariant nonintersecting sets such as the Mobius band in three dimen- 
sions or the Klein bottle in four dimensions. Such possibilities are 
sometimes realized -for instance, in connection with homoclinic behavior 
in certain multivariate dynamical systems (Wiggins, 1990). However, the 
behavior of trajectories on such manifolds does not seem to introduce new 
elements beyond the ones considered above. 

Fig. 3.5 Successive 
steps in the 

construction of a torus A 
(after Patterson 

(1959)). rj 
5 c 0 C 



3.3 Invariant manifolds 55  

Fig. 3.6 Construction 
of a fractal by 

successive 
fragmentation of an 

object of size k into Nn 
copies of reduced size 

d r y 0  < r < l),  
n = 1 , 2 , .  . . (after Tel 

(1987)). 

D Fractal manifolds 

Our exploration of the geometry of phase space has led us to identify the 
prototypes of stationary behavior (fixed point), periodic behavior (closed 
curve) and quasi-periodic behavior (torus). We are still not in possession 
of the prototype of chaotic behavior which, as shown in Chapter 1, is 
abundant in large classes of natural systems. In this subsection we show 
that the flexibility afforded by a phase space of sufficiently large 
dimensionality, more precisely n 2 3, allows one to envision manifolds of 
a new kind capable of carrying chaotic nonself-intersecting phase space 
trajectories. 

In looking for rnvarlant manifolds other than the manifolds of 
conventional geometry referred to in the previous subsections one is 
implicitly raising the question of the existence of objects that are neither 
points (d = O), nor curves (d = 1 ), surfaces (d = 2) or hypersurfaces (d = 3 
and beyond). Modern mathematics shows that such objects do indeed 
exist. They are 'intermediate' between two conventional manifolds of 
dimension d and d + 1 in the sense that although their Lebesgue measure 
(or more plainly their 'volume') in the (d + 1)-dimensional space is zero, 
they are nevertheless 'larger' in some well-defined sense (to be specified 
below) than sets constituting the d-dimensional manifold. 

The canonical algorithm to construct such fractal sets (Mandelbrot, 
1977; Feder, 1988; Schroder, 1991) mimics a process of successive 
fragmentation, a simple example of which is depicted in Fig. 3.6. From a 
d-dimensional object of characteristic size &, N conformal copies of 
reduced size &r (0 < r < 1) are generated. From each of them N further 
reduced copies of size Lr2 are generated, and so forth. In the limit of 
infinite fragmentation one arrives at an infinite set of points (or, at most, of 
(d - 1)-dimensional objects) whose dimensionality should normally be 
zero (or, at most, d - 1). Yet one intuitively feels that this set has more 
content than that. To implement this idea in a quantitative fashion one 
introduces the concept of fracta! dimension, Do. For the simple example of 
Fig. 3.6 this can be done most conveniently by counting how the number 
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N, of members of the set of a given size E varies with E in the limit of small E ,  

Notice that this reproduces the topological dimensions of the familiar 
manifolds of Euclidean geometry. Turning now to the example of Fig. 3.6, 
we see that there is N ,  = 1 object of size 8, Ntr = N objects of size Lr, 
Nf,.2 = N2 objects of size dr2 etc . . . . Substituting into (3.10) one finds 

or, taking logarithms and simplifying by n, 

A familiar illustration of the above procedure is the celebrated Cantor 
set in which the unit interval is subdivided into three segments of length 
1/3 from which the middle one (without its boundaries) is deleted. Each of 
the two remaining segments is next divided into three equal parts with the 
open middle once again deleted, and so forth. Setting N = 2 and r = 1/3 in 
(3.1 1) one obtains Do = In 2/ln 3 z 0.63. The Cantor set is therefore in 
this sense intermediate between a point (d  = 0) and a line (d = 1). It is a 
fractal object, in the sense that its generalized dimension is strictly larger 
than its topological dimension d = 0. 

Having established the existence of fractal sets one can now imagine 
invariant manifolds consisting of an infinity of sheets such that a section 
taken transversally to the sheets is a Cantor-like set visited successively by 
the phase space trajectory in a nonreproducible fashion as time follows its 
course. In a two-dimensional space this cannot be achieved without 
self-intersection of the trajectories. But in a space of dimensionality 
greater than or equal to three, such configurations become possible, 
typically by a process of successive foldings produced as the trajectory is 
winding on the manifold (Fig. 3.7). Such objects, which we shall refer to as 
strange sets are the carriers of chaotic behavior. 

The fractal sets introduced so far in this subsection enjoy the property of 
strict self-similarity, since the presence of a single scale r in the reduction 
process guarantees that in each generation the resulting objects are 
conformal copies of the original one. A more typical case is that of 
many-scale fractals, where the subdivision of the original object into N 
objects is carried out with different reduction factors r i ,  i = 1 ,  . . . , N. This 
results in a complex, highly inhomogeneous structure referred to as a 
multifractal. One can still define for such objects a fractal dimension Do, 



3.3 Invariant rnani;folds 57 

Fig. 3.7 The folding 
process leading to 

fractal sets in a phase 
space flow (after 

Abraham and Shaw 
(1985)). 

but this dimension now appears as a sort .of statistical average. Indeed, 
setting 

applying eq. (3.10) to both sides and recognizing that N,(s) - N(s/r i )  we 
obtain 

or finally 
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The new aspect is now that, in addition to Do, one needs new parameters 
to characterize the inhomogeneity of the set. These so-called generalized 
dimensions, D, ( ~ e d e r ,  1988) play in the theory a role analogous to the 
moments of a probability distribution. We do not develop this point 
further here but rather refer the reader to the abundant specialized 
literature. 

3.4 Conservative and dissipative systems. 
Attractors 

As we saw previously, the solution of the evolution equations of a 
dynamical system (eq. (3.6)) constitutes a well-posed problem in the sense 
that, under mild conditions, a complete specification of the state X = 

(XI,  . . . , X,) at any one time allows prediction of the state at  all later 
times. In practice, such a complete specification amounts to disposing of 
an i h n i t e  amount of data. This is operationally meaningless since the- 
process of measurement, by which the observer communicates with a 
physical system, is limited by a finite precision. In the phase space 
representation this will show up through the fact that the experimentally 
accessible state will not be given by a point but rather by a volume AT, 
surrounding such a point, whose linear dimension is roughly given by the 
precision of the measurement. From the standpoint of the observer all 
points contained in Ar, represent the same (macroscopic) state; in 
contrast, in the idealized point-like description afforded by eqs. (3.6) each 
of these points is to be viewed as a different initial condition from which 
emanates a phase space trajectory (Fig. 3.8). 

Gibbs invented a new mode of approach enabling one to cope with this 
duality. He introduced the concept of a statistical ensemble (Gibbs, 1902) 
constituted by a very large number of identical systems, all subject to 
exactly the same evolution laws and external constraints, but differing in 
their initial conditions. In this view, the relevant quantity to be considered 
is the probability p ,  (t) of being in a phase space cell A r  at time t or, 
taking the limit of small A r  and introducing the corresponding probabil- 
ity density p, 

with 

1 AN 
P = -  lim -- 

Ntot *r+o AT 

where AN stands for the number of states in A r  and N,,, for the total 
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number of phase space states available. The relevance of Gibbs' invention 
is becoming increasingly obvious in the light of the discovery of the 
complex behaviors surveyed in Chapter 1, For such behaviors, and 
particularly for the chaotic regime, the phase space motion becomes very 
complex, and it is no longer meaningful to argue in terms of individual 
trajectories. The probabilistic description underlying the idea of Gibbs' 
ensemble provides one with a valuable alternative for describing the 
evolution of complex systems, which will be developed further in Chapter 
7. 

in order to predict the probability of occurrence of particular values of 
the state variables {Xi), one must set up an equation of evolution for p .  
The uniqueness theorem of solutions of (3.6) formulated in Section 3.2 
ensures that the number of phase space trajectories emanating from a 
certain set of initial data is conserved. This entails that p, which plays the 
role of the density of trajectories, behaves like the mass density of a fluid 
(eq. (2,13)) provided that the physical space coordinates ( r , )  in eq. (2.13) 
are replaced by the phase space ones (Xi) and the velocities { u i )  by the 
evolution laws {F,). One thus obtains 

Performing the derivation of the product in (3.14) and introducing the 
hydrodynamic derivative by analogy to eq. (2.14b) one can further 
transform this equation into 

Fig. 3.8 Phase space 
trajectories emanating 

from the representative 
phase space points 

inside an initial 
volume Ar, . 
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dp ap -- a~ 
dt - dt + E F , =  = - p div F 

c 

d l n p  
-- - - div F 

Integrating this relation formally from 0 to t one obtains 

dt' div F = -(div F), 
t Po 

where the bar denotes the time average and p, - p ( .  , t), p, = p(. , 0). On 
the other hand, introducing expression (3.13b) for p and taking into 
account the fact that by the uniqueness theorem the number of states AN 
is conserved, one can further transform the above relation to 

1 A - 
-1n- = (div F), 
t AT, 

Eqs. (3.16) are the starting point of the classification of dynamical systems 
into the two important classes of conservative and dissipative systems. 

A Conservative systems 

By definition a dynamical system is called conservative if 

div F = 0 

It follows from (3.15) that dp/dt = 0, which is nothing but the Liouville 
equation familiar from classical statistical mechanics {Prigogine, 1962). 
Alternatively, from eq. (3.16b) it follows that AT, = AT,, that is to say, 
the measure of a phase space volume is conserved during the evolution of a 
conservative system. This is the content of Liouville's theorem, another 
important result of classical dynamics (Goldstein, 1959; Lichtenberg and 
Lieberman, 1983). 

An important class of conservative systems is the Hamiltonian systems. 
Indeed, using Hamilton's equations (2.2) one can see straightforwardly 
that eq. (3.17) is fulfilled identically. However, the concept of a 
conservative dynamical system is more general than that of a Hamiltonian 
system since, for one thing, the number of variables involved need not be 
even as in the Hamiltonian case. 
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B Dissipative systems 

In a nonconservative system divF # 0. We will define the class of 
dissipative systems by the more restrictive condition 

(div F), < 0, t z to 

From eq. (3.16b) it follows that for such systems there is, on the average, 
contraction of phase space volume beyond a certain interval of time, 

This entails that in the limit t+m the trajectories of a dissipative system 
initially emanating from a certain phase space volume AT, will tend to a 
subset of phase space of zero volume, i.e. a subset whose dimension will be 
strictly less than the phase space dimension. This set is referred to as an 
attractor of the dynamical system. Since by the above definition attractors 
are invariant manifolds, one can apply to them the analysis of Section 3.3. 
On this basis one expects to find in dissipative systems zero-dimensional 
(fixed point) attractors; one-dimensional (periodic) attractors, referred to 
as limit cycles; two-dimensional and higher-dimensional (quasi-periodic) 
attractors in the form of invariant tori; and fractal attractors. The largest, 
compact, invariant set having the attracting property is referred to as the 
universal attractor. Clearly, every evolution of a dissipative system from a 
certain time on remains on this universal attractor for ever. 

From the above short discussion one can realize why physically 
relevant nonconservative systems must obey the more restrictive condi- 
tion (3.18). Indeed, had the inequality sign been reversed, the system 
would eventually escape to infinity. Such an explosive behavior is ruled 
out in physical systems, which are characterized by finite values of energy, 
mass and other macroscopic observables. Notice that the phase space 
volume contraction need not hold everywhere: it suffices to have this 
condition satisfied on average. This is what happens in the Brusselator 
model (eq. (2.44)), where F ,  = k, A - (k2B + k, )X  + k,X2 Y, F, - 
k,BX - k , X 2  Y and div F = -(k2B + k,) + k3X(2Y - X). In contrast, 
certain systems like the Lorenz model (eqs. (3.4)) satisfy the more strict 
dissipativity condition of div F being negative everywhere: div F = 
-(a + b + 1). A similar property holds when a linear-damping term of 

the form - ydB/dt is added to the equation of evolution of a conservative 
oscillator like the Duffing oscillator, eq. (2.9a). 

3.5 Stabi l i ty  

Our next objective will be to characterize the invariant manifolds 
introduced in the preceding sections in a more detailed manner. 



Fig. 3.9 Geometric 
view of stability. 

Consider a system -dissipative or conservative - evolving according to 
eqs. (3.6).  We suppose that by a mechanism that we need not specify here, 
the system has reached after a certain lapse of time a 'reference' state X, 
on an invariant manifold. In principle, by the very definition of invariant 
manifold, one expects that the system will remain therein for ever and will 
undergo a dynamical behavior dictated by the particular type of manifold 
considered. 

In actuality, a real-world system never stays in a single state as time 
varies. To begin with, most systems are in contact with a complex 
environment with which they exchange matter, momentum and energy in 
a practically unpredictable manner. In addition, most of the systems 
encountered in nature intrinsically generate their own variability in the 
form of thermodynamic fluctuations. As a result the instantaneous state 
X ( t )  will continuously deviate from X, by an amount x( t ) ,  referred to as 
the perturbation, 

We are interested in the response x ( t )  of a dynamical system to an 
initial deviation x ( 0 )  of the kind defined above. In particular we want to 
know whether, upon the action of the perturbation, the system will 
remain close to the reference state or on the contrary will deviate 
significantly from it. It is here that stability, one of the key concepts of the 
theory of dynamical systems, enables one to envisage things in a clearcut 
manner. 

Let us formulate the problem in phase space. We denote (Fig. 3.9) by U, 
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and U,(,, two regions surrounding X, (represented as a point in Fig. 3.9) 
whose characteristic sizes are given respectively by E and 6 (with 6 
generally depending on E). We adopt the following definitions: 

X, is stable in the sense of Lyapunov if, for any given neighborhood U, of X, 
there exists a certain neighborhood U,,,, such that any trajectory 
emanating from the interior of U,(,,never leaves U, .  
X, is unstable if no such neighborhood U,(,, can be found. 
X, is asymptotically stable if it is stable and if, in addition, any trajectory 
emanating from the interior of U,(,, tends to X, as t - m .  

To this geometric view of stability one can associate an analytic 
formulation, provided that one endows phase space with a norm, 1 . 1 .  
Specifically one has 

Lyapunov stability if, for any E > 0, there exists a 6(&) > 0 such that for 
any X(0) with I X(0) - X, 1 < 6, one has I X(t) - X, I < E for all t 2 0. 
Asymptotic stability if, in addition, I X(t) - X, I + 0 as t+m. 

In this latter case X, will be an attractor of the dynamical system. Clearly 
then, asymptotic stability can hold only in dissipative systems. 

The great value of the above definitions is to reflect the intuitive idea 
that stability, and especially asymptotic stability, is a property that 
makes, in a way, a given state physically legitimate, Indeed, in view of the 
ubiquity of perturbations and fluctuations in nature, a state lacking 
stability would become unobservable after a certain lapse of time. 

A second most important point is that stability allows one to formulate 
systematically, and in quantitative terms, the onset of complex behavior. 
Specifically, let X, first represent one of the fixed points of the dynamical 
system (eqs. (3.6)), 

The determination of these particular invariant sets reduces to a problem 
of algebra that can, in principle, be solved. If X, happens to be stable the 
system's behavior will essentially be determined by the knowledge of X,, 
and the classification problem raised in the first sections of this chapter 
will be solved. Conversely, the onset of behaviors of a type more complex 
than the fixed point one will be signaled by the failure of the stability of the 
fixed points, whereupon the system will be bound to evolve toward 
invariant sets of a new type. 

In view of the above it now becomes crucial to devise methods for 
testing the stability of a given invariant set, say a fixed point. In some 
exceptional cases this can be done as a straightforward application of the 
very definition of stability. As an example consider the classical harmonic 



Fig. 3.10 Proof of 
Lyapunov stability of 
the fixed point of the 
harmonic oscillator, 

eqs. (3.22). 

oscillator to which we have already alluded as a limiting case of the hoop 
problem (eq. (2.9a), p < 0, cubic term neglected). Introducing the velocity 
v = dO/dt and the angular frequency og = - p  one can write the 
equations of motion as 

which define in the phase space a continuum of ellipses surrounding the 
equilibrium point 8 = u = 0 (Fig. 3.10). We want to test the stability of 
this fixed point. To this end we consider a neighborhood U, in the form of 
a square of side e. Among the integral curves of the system there exists one 
that is tangent to the vertical sides of the square and contained entirely in 
its interior. We choose the part of the phase plane inside this curve as our 
neighborhood U,,,,. Consider now an initial condition inside this 
neighborhood. By virtue of the uniqueness theorem a trajectory emana-. 
ting from this initial condition will never cross another integral curve (not 
containing a fixed point) and will thus remain, by construction, inside the 
neighborhood U , .  We conclude that the fixed point (0,O) is stable in the 
sense of Lyapunov. Such points, surrounded by a continuum of elliptic 
trajectories, are also referred to as elliptic points, the motions around them 
being qualified as stable motions. 

A very different case corresponds to having a positive coefficient p in the 
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hoop problem (eq. (2.9a)). Neglect~ng for a moment again the cubic term 
one obtains 

which now define in the phase space (.x = u + w,8, y = u - 0,8) a 
continuum of hyperbolas around the equilibrium point (0,O). The motion 
consists (Fig. 3.11) of a contraction along the y direction and an 
expansion along the x direction. Arguing as above one will find that the 
equilibrium point is unstable (Section 1.2, Fig. 1.2, branch (a')). We call 
such points hyperbolic points, the motions around them being qualified as 
unstable motions. 

In both eqs. (3.22) and (3.23) the phase space volume is conserved, since 
condition (3.17) is satisfied. But while in the first case its shape remains 
essentially unchanged, in the second case it is highly deformed since an 
initial volume in the form of a square will eventually become a rectangle 
whose horizontal side will tend to infinity and whose vertical one to zero. 
We already find in this simple example the ingredients of more complex 
phenomena related to chaos that will be studied in more detail later. 

So far we have not used explicitly the property that eqs. (3.6) are 
autonomous. We shall now inquire into the repercussions of this property 
in stability. Let Xi ( t )  be a solution of eqs. (3.6). It is then clear that any 
function Xi( t  -t z) where z is an arbitrary constant (the phase) is still a 
solution of the same equations. In other words, autonomous systems 
exhibit the property of translational invariance in time. These infinitely 

Fig. 3 . 1 2  Deformation y 

of a phase space 
volume in a dynamical 

system possessing a 1.00 

hyperbolic point (eqs. 
(3.23)). 
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many solutions, differing from each other by the phase, define an orbit, C 
in phase space. 

We say that C is orbitally stable if, given E > 0, there exists a 6 > 0 such 
that if X, is a representative point of another orbit withn a distance6 from 
C at time 0, then its image X remains within a distance E from C for any 
t > 0. Otherwise, C is orbitally unstable. If C is orbitally stable and the 
distance between X and C tends to zero as t+  a, C is asymptotically 
orbitally stable. 

Lyapunov stability and orbital stability should not be confused, see 
problems 3.6 and 3.7. 

3.6 The principle of linearized stability 

The straightforward assessment of stability on the basis of the definitions 
laid down in Section 3.5 works only in rather exceptional cases. A 
systeinatic, analytically tractable algorithm is clearly needed to tackle 
more general and more complex cases. 

The starting point is to substitute eq. (3.20) into (3.6). Utilizing the fact 
that the reference state X, is itself a particular solution of these latter 
equations one obtains 

We assume that F can be Taylor expanded in formal power series of x 
around X,. This is always possible if F has a polynomial structure and 
leads then to a finite number of terms, but may require further conditions 
in more intricate situations: 

Substituting into eq. (3.24) one sees that the inhomogeneous term cancels 
and one is left with a homogeneous problem for the perturbation vector x: 

dx/dt = Y(A).x + h(x, 4 (3.26) 
linearized part nonlinear contributions 

where we introduced the short hand notation 

The linear operator T ( A )  is simply the Jacobian matrix of F evaluated at 
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the reference state, whereas h(x,A) contains contributions that are 
nonlinear in x and has, therefore, the property h(x, 2) = 0( I x 12), or if the 
series (3.27b) can be differentiated term by term, (dh/dx) + 0 as I x I + 0. If 
the reference state X, i s  time-independent (fixed point) then both 9 and h 
will be free of any explicit time dependence. 

Comparing (3.26) and (3.6) we see that the former is an equivalent 
version of the latter in which the origin of coordinates in phase space has 
been placed on X,. The (trivial) solution x = 0 of the (homogeneous) 
system of eq. (3.26) is, clearly, the analog of the reference state X, of the 
initial problem defined by eqs. (3.6). 

In dynamical systems involving a finite number of degrees of freedom 
h(x,A) is a vector in phase space, whereas 2(1) is a n x n matrix whose 
elements are given by 9, = (aFi/aXj) (i, j = 1, . . . , n). For instance, 
in the Brusselator model in a well-stirred medium (eqs. (2.44)), taking for 
simplicity ki = 1 one has 

and a single fixed point X, = (A,B/A). Choosing this point as a reference 
state one finds straightforwardly that 

Eq. (3.26) constitutes still a highly nonlinear problem which, as a rule, is 
as intractable as the original problem, eqs. (3.6). At this point, however, a 
most important result can be invoked to enable further progress. This 
theorem, also known as the principle of linearized stability, compares the 
stability properties of the following two problems: 

The original, fully nonlinear problem (eqs. (3.26)). 
The 'auxiliary' linearized problem, in which higher order terms are 
omitted. 

It stipulates the following: 

If the trivial solution x - 0 of the linearized problem (eq. (3.29)) is 
asymptotically stable, then x = 0 (or equivalently X = X,) is an asymp- 
totically stable solution of the nonlinear problem, eqs. (3.26) or (3.6). 
If the trivial solution x = 0 of the linearized problem is unstable, then 
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x = 0 (or equivalently X = X,) is an unstable solution of the nonlinear 
problem. 

The theorem is unable to provide information in the case in which the 
trivial solution of (3.29) is Lyapunov stable but not asymptotically stable. 
Still, it is of the utmost value since it reduces the passage from stability to 
instability, one of the fundamental problems of dynamical systems theory, 
to a linear problem - a much more traditional and tractable problem of 
analysis. 

Intuitively the theorem seems reasonable since, after all, stability 
reflects the response of a system to small perturbations for which the 
expansion of eq. (3.25) can be truncated to its first significant (here linear) 
term. Rigorous demonstrations can be found in the abundant mathemat- 
ical literature. To give a flavor of the argument we reproduce in Appendix 
A1 the proof for a one-variable system and illustrate it on the logistic 
equation (eq. (2.5 1)). In the multivariate case two versions are usually 
encountered. The most traditional one (Nemytskii and Stepanov, 1960; 
Cesari, 1963; Sattinger, 1972) amounts to the statement: 

If all eigenvalues of $P in (3.26) have negative real parts then x = 0 is an 
asymptotically stable solution. If some eigenvalues of 9 have positive real 
parts, then x = 0 is unstable. 

In this form the theorem is proved either by the method of successive 
approximations or by the use of Lyapunov functions (the so-called 
Lyapunov's second method). 

A more far-reaching formulation (Arnol'd, 1980; Guckenheimer and 
Holmes, 1983; Arrowsmith and Place, 1990), which actually goes back to 
Poincari: and is known in its modern version as the Hartman-Grobman 
theorem, is as follows: 

If 9 ( 8 )  has no zero or purely imaginary eigenvalues then there is a 
homeomorphism defined in some neighborhood of X, in R" locally taking 
orbits of the nonlinear flow of (3.26) to those of the linear flow of (3.29). 
The homeomorphism preserves the sense of orbits and can also be chosen 
to preserve parameterization by time. 

The proof of this important result is surprisingly simple and can be 
found in Arnol'd (1980). When X, is such that 9 { R )  has the above 
property, X, is called a hyperbolic or nondegenerate fixed point. In this 
case, then, the linear and nonlinear flows are topologically equivalent. A 
simple illustration on the Brusselator model, eq. (2.441, is depicted in Fig. 
3.12. 
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Fig. 3.1 2 Illustration 
of the 

Hartman-Grobrnan 
theorem on the 

Brusselator model, eq. 
(2.44), for ki  = 1, 

A = 2. In (a) B = 4.5 
and the fixed point is 

a stable focus. The 
trajectories of the 
linearized system 

(dashes) and of the 
nonlinear system (full 

lines) spiral toward the 
attractor. In (b) B = 5 
and the system is in a 

state of marginal 
stability. The 

trajectories of the 
linearized system are 

closed curves 
surrounding the fixed 

paint and are 
topologically different 

from those of the 
non-linear system, 

which spiral toward 
the fixed point. 

Problems 

3.1 Let Y ( X )  be the phase space trajectory of the dynamical system 
dX/dt =AX, Y), dY/dt = g(X, Y). Derive an expression for the time 
needed to evolve from (X,, Y o )  to  ( X I ,  Y ,  ) in terms off or g and the 
equation of the trajectory. 

3.2 The definitions of stability of Section 3.5 apply as well to any reference 
solution X , ( t )  of the evolution equations, not necessarily lying on an 
invariant manifold. Prove that every solution of dxldt = -Ax, A > 0 is 
asymptotically stable for t > 0. What happens for t < O? 

3.3 Write out the explicit form of eq. (3.15) for the one-variable system 
dx/dt = -Ax, R > 0. Solve the initial value problem and the 
corresponding eigenvalue problem. Comment on the results in 
connection with the stability of the state x = 0. 

3.4 Similarly for the harmonic oscillator model, eq. (3.22). 
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3.5 Stability versus bo undedness (Cesari, 1963). (a} Every solution of 
dxldt = 1 is unbounded. Show that any one of these solutions, chosen as 
a reference state, is nevertheless stable in the sense of Lyapunov. (b) The 
solutions d the equation dxldt = x - x3 are bounded. Show that x = 0 
is unstable and x = f 1 are asymptotically stable. 

3.6 The system 

has the two-parameter family of solutions x = C ,  cos (C;t + C,) ,  
y = C, sin (Cqt + C 2 ) ,  Show that all solutions but x = y = 0 are 
Lyapunov unstable, but that all integral curves (compact invariant 
manifolds) are orbitally stable. 

3.7 Noninvariance of stability with respect to  a coordinate change (Cesari, 
1963). Find the evolution equations generated from those of Problem 3.6 
by performing the change of variables n = r cos (r2t + $), y = r sin 
(r2 t  + $). Show that all solutions of the system for the new variables 
(r ,$)  are Lyapunov stable. 

3.8 Using the results summarized in Section 2.1 prove that any integrable 
system can be transformed by an appropriate change of variables to a 
system all of whose solutions are Lyapunov stable. What are these new 
variables? 

3.9 Consider a dynamical system on the two-d torus defined by the 
equations dO/dt = F(O $), d$/dt = ctF(O,@) where ct is a positive 
irrational number, and F ( 0 4 )  a continuous function satisfying the 
Lipschitz condition, 2n-periodic in the arguments 0 and 4,  and positive 
everywhere except a t  (0,O) where F(0,O) = 0. Describe the motion 
generated by these equations with special emphasis on stability and 
compare it with the uniform motion generated by dO/dt = 1, d#/dt = a. 

3.10 Show that the system of coupled logistic equations 

admits a continuum of degenerate steady-state solutions. 
Determine the stability of these solutions and draw the phase portrait. 
Sketch an intuitive interpretation of the results from the standpoint of 
population dynamics and evolution theory (Gause, 1934; Allen, 1975). 



CHAPTER FOUR 

Linear stability 
analysis of fixed 
points 

4.1 General formulation 

The objective of this chapter is to set up quantitative criteria of stability of 
the fixed points of a dynamical system. This will be possible thanks to the 
principle of linearized stability which, as we saw in Section 3.6, reduces 
stability to a linear problem, eqs. (3.29). 

In a system subjected to time-independent constraints the evolution 
laws F (eqs. (3.6)) do not depend explicitly on time. Furthermore, if one is 
interested in the stability of fixed points the reference state X, is 
time-independent and so is also, by virtue of eq. (3.27a), the linearized 
operator 6P(A) .  It follows that eqs. (3.29) admit solutions that depend on 
time exponentially, 

Substituting into eqs. (3.29) one finds that u and the characteristic 
exponent o must satisfy the relations 

or, in more explicit form, 

In other words u and cu are, respectively, eigenvectors and eigenvalues of 
S ( A )  and stability is thus reduced to an eigenvalue problem. An 
important point is that independently of the properties of u, which takes 
into account the structure of x as a vector in phase space, knowledge of the 
eigenvalue co provides one with a full solution of the problem of stability. 
Indeed, separating o into real and imaginary parts we have from (4.1) 
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Fig. 4.1 Two typical 
dependences of the 

real part of the 
eigenvalue of the 

linearized operator, 
eqs. (4-21, versus the 
wntrol parameter 1: 

(a) the reference state 
is asymptotically 

stable for 1 < A, and 
unstable for I > I, ; 

(b) the reference state 
remains asymptotically 
stable for all values of 

1. 

It follows that 

if Rew < 0, I x )is exponentially decreasing and hence the reference state 
x = 0 (or X = X,) is asymptotically stable; 
if Recu > 0 the perturbations grow exponentially and hence the reference 
state is unstable. 

These two regimes, for which the principle of linearized stability 
applies, are separated by the regime where Rew = 0. We call this 
borderline case between asymptotic stability and instability marginal 
stability. Notice that the occurrence of instability and marginal stability is 
compatible with both conservative and dissipative systems. In contrast 
asymptotic stability implies by necessity a contraction of phase space 
volumes and can therefore occur only in dissipative systems. 

The eigenvalue problem, eqs. (4.21, allows us to understand better the 
paramount importance of the control parameter(s) A. Indeed, a variation 
of /Z induces a variation of 2 and, through it, of the eigenvalue co. Two 
typical possibilities are depicted by curves ( a )  and (b )  of Fig. 4.1. 

In (a) ,  w crosses the A-axis with a positive slope. This will be reflected by 
the fact that as /1 increases, the system will switch from asymptotic stability 
to instability. As the reference fixed point will no longer be a physically 
legitimate solution for A > A,, a qualitative change of behavior is to be 
expected when 2, is crossed. For this reason we shall refer to 2, as the 
critical value of the control parameter. In contrast, in ( b )  the real part of 
the eigenvalue remains negative for all values of 1: the fixed point is always 

I, asymptotically stable 
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asymptotically stable and no qualitatively. new regime is expected to arise 
spontaneously from the action of perturbations. In general a multivari- 
able system possesses a whole spectrum of eigcnvalues, some of which 
may behave as in (a)  and others as in (b).  For the transition to instability 
to take place it suffices that one eigenvalue behaves as in (a). The 
important point is that a given, well-defined system can switch between 
stability and instability according to the conditions to which it is 
subjected: stability is thus reduced to the parameter dependence of the 
solutions of the eigenvalue problem of the linearized operator. 

It is clear by now that the central problem of stability theory is the 
determination of o. An explicit calculation can be carried out from eq. 
(4.2b) which we write in the more suggestive form 

This set of homogeneous algebraic equations for { u j )  admits a nontrivial 
solution provided that the determinant of the matrix of coefficients of { u j )  
vanishes. This gives rise to the characteristic equation 

det I Yij(;i) - om(A)6fJ I = 0 (4.5) 

where we have introduced the index m to account for the fact that eq. (4.5), 
which is an algebraic equation for a,, will in general admit several 
solutions. For typical values of the parameter one can legitimately expect 
that, unless Sf',,. has some remarkable symmetries built in, the eigenvalues 
om will be distinct. The general solution of the linear system of eqs. (3.29) 
will then be given by 

where C, are integration constants determined by the initial conditions. 
Under the same conditions one knows from linear algebra that 2' can be 
diagonalized by a similarity transformation involving a nonsingular 
matrix T, 

where 

and the columns of T are given by the eigenvectors of 9. Operating on 
both sides of (3.29) by T - '  one can transform this system to 
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or, introducing the new variables 

and taking (4.7) into account, 

or finally 

The above results (eqs. (4.6 j (4 .9))  can be generalized to include cases in 
which the matrix 2 has multiple eigenvalues. This happens frequently in 
the presence of symmetries or, more exceptionally, when the control 
parameters take some particular values. Actually one should distinguish 
between two types of multiplicities of aneigenvalue om (m = 1, . . . , r) of 
a matrix 9: 

the algebraic multiplicity ,urn, which is the multiplicity of a, as a root of the 
characteristic equation (4.5) 
the geometric multiplicity v, (sometimes referred to as nullity), defined as 
the number of linearly independent vectors g such that 

Notice that one has necessarily v, 5 ~1,. 
Given now an n x n matrix 2 of eigenvalues corn of algebraic and 

geometric multiplicities p, and v, respectively, one may show (Gant- 
macher, 1959) that there exist nonsingular matrices T such that 

is the direct sum of N irreducible matrices J, of orders n, 
(n, + . . . + n, + . . . + n, = n), referred to as Jordan blocks. The 
dimensionality n, of J, depends on the relation between the pm and v,. If 
y, = v, then n, = I and 4 = om. If v, < p, then n, > 1. In this case each 
Jordan block can still be uniquely associated with an eigenvalue w, and 
has the following typical structure 

if o, is real, or 
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with 

1 0  

l m u ,  Reo, 0 1 

if w, is complex. 
The relevance of these more sophisticated transformations will become 

obvious in Chapter 5,  where explicit examples of Jordan blocks will be 
given. For now we come back to the generic case of distinct eigenvalues 
and survey, in the next three sections, a number of representative cases. 

4.2 Systems involving one variable 

Eqs. (3.6) reduce in this case to the single equation 

The phase space is one-dimensional and the linearized system, eqs. (3.29), 
becomes 

dxldt = (8 F / a X ) x s ~  (4.12b) 

The linearized operator S ( A )  reduces to a number, also identical to the 
characteristic exponent w ,  

~ ( n )  = q n )  = (a~jax), (4.13) 

This number is by necessity real. Two typical situations can be realized, 
depending on whether m(d) is in the negative or in the positive half axis: 

( a )  o is negative 

The phase portrait around the fixed point is given by 

m 
I - 
x, 

where the arrows account for the tendency of trajectories initially in a 
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neighborhood of X ,  to converge to it in the course of time, Since o is real 
the convergence is monotonic. 

(b) o is positive 

The phase space portrait is given by 

The trajectories now diverge from X , .  Since sheer explosion to infinity is 
not expected in a physical system, they will presumably tend to a new 
attractor. In a one-dimensional phase space the latter can only be another 
fixed point, located at some (typically finite) distance from X,. The two 
cases (a) and (b) are separated by the critical case of marginal stability 

for which linearization becomes inadequate. 
A one-variable nonexplosive system is necessarily dissipative. Interest- 

ing examples, given in Chapter 2, are the Schlogl models (eqs. (2.45)), the 
Semenov model (eq. (2.47)) and the Verhulst model (eq. (2.51)). Taking 
the last as an illustration one has 

There are two fixed points X,, = 0, X,,  - N, with 

Recalling (eq. (2.50)) that k is an excess parameter expressing the 
difference between reproduction and death rates we see that the state of 
extinction is the unique physically acceptable state for k < 0 and is 
asymptotically stable in this range (see also Appendix A l ) .  When k > 0 
this state still exists, but becomes unstable. A new, nontrivial state 
X,, = N is born which 'inherits' the stability of X,,. We see that 
one-variable systems can produce nontrivial behavior reminiscent of 
some of the experimental results surveyed in Chapter 1. The possibilities 
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are, however, tar more limited than for two-variable systems to which we 
turn next. 

4.3 Systems involving two variables 

The phase space is now two-dimensional and the linearized equations 
(3.29) take the form 

Inserting (4.1) one may write the eigenvalue problem, eqs. (4.41, as 

Here u,, , u,, are the two components of the eigenvector u, associated 
with the eigenvalue om (m = 1 or 2). The characteristic equation for the 
latter (eq. (4.5)) takes the explicit form 

where 7' and A are, respectively, the trace and the determinant of the 
matrix (SFij), 

The solution of the quadratic eq. (4.17a) is 

where 9 is the discriminant. The nature of the roots depends on the signs 
of T,  A and 9. The various distinct possibilities (Jordan and Smith, 1977; 
Andronov et al., 1966; Cesari, 1963) are classified below, using the 
representation in the plane (Imo, Reo). 
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9) > 0: two real eigenvalues 
(a) A > 0,  roots have the same sign 

(b )  A < 0, roots have opposite signs 

fbl) T < O  (b2) T > 0 (b3) T = 0 

Im w Im w Im w 

(c)  A = 0, at least one of the real roots is zero 

(cl) T < 0 (c2) T > 0 (c3) T = 0 

Im w Im w Im o 



9 < 0: two complex conjugate eigenvalues 

(dl) 'T K O  (d2) f '0 (d3) T = 0 

Im w Im o Irn o 

9 = 0: a double eigenvalue 

(el) T <  0 

Im o 

Cases (bS) ,  (c3) and (d3) are the only ones that can be realized in 
conservative systems. Indeed, T = xi ( dF j i?X i ) , s  = (divF), , and by 
definition divF = 0 in such systems. In a dissipative system (hese three 
cases along with (clb(c2) and (el)- (c2) are nongeneric, in the sense that 
they require a strict cquaiity which can only be realized (if a1 all) for 
specific values of the control parameter i.. They arc important in the sense 
that they are borderline cases. In particular (c l )  and (d3) define the 
borderline between asymptotic stability and instability. 

Barring degeneracies we shall now consider more explicitly (a l )  (a2). 
(bl ) (b2) and (d 1 ) (d2), our objective being to determine, in these generic 
cases, the shape of the phase portraits around the reference fixed point. 
We start by writing the solution of (4.1 5) in the explicit form (cf. eq. (4.6)) 

where the coefficients uij ( i , j  = 1,2) are to be calculated from eqs. (4.16) 
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and C,, C, are fixed by the initial conditions. To go further we need to 
specify the type of situation considered. 

(a) Two real roots of equal sign (9 > 0, A > 0) 
Suppose first w, < w, < 0. Diflerentiating the two relations (4.19) with 
respect to time and dividing we obtain 

Similarly, dividing the two eqs. (4.19) we obtain: 

It is useful to consider first two limiting cases, corresponding to special 
types of initial conditions. 

C, = 0. eq.(4.20b) reduces to 

In the (x,, x,) plane this is an equation of a straight line passing 
through the origin. As the ws are negative, trajectories starting on this line 
tend to (0,O) in the course of time (Fig. 4.2) 

Fig. 4.2 Two- 
dimensional phase 
portrait around an 

asymptotically stable 
node obtained from 

numerical integration 
of the system 

dxl,Jdt = x l  - 2x2, 
dx,/dt = 3x, - 4x2. -L i X I  

P 

The trajectories come -3 3 

from infinity with a 
3 slope u2,/u2, = 5, and 

converge to the fixed 
point with a slope 

/ / 
tending to u,,/u,, = 1, 

eqs. (4.21 a) and 
(4.21 b). 
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C,  = 0. eq. (4.20b) reduces to 

which in the (x,,x,) plane represents another pair of straight line 
trajectories directed toward the origin (Fig. 4.2). 

We consider now the general case C ,  # 0, C ,  # 0, corresponding to 
initial conditions on the plane outside the above two lines. When t+  co the 
negative exponential in (4.20a) will tend to zero and the trajectories (no 
longer straight lines) will tend to the fixed point with a slope equal to that 
of the straight line (4.21b). In the opposite limit t-, - co the exponential 
in (4.20a) explodes. The remaining terms can be neglected, and the 
trajectories come from infinity with a slope equal to that of the straight 
line (4.21a). We obtain in this way the configuration of Fig. 4.2. The 
corresponding fixed point will be referred to as a node. In Fig. 4.2 the node 
is asymptotically stable and is, therefore, the attractor of our dynamical 
system. Had we chosen LO, and w,  positive a similar topological 
configuration would have been realized, in which the trajectories would 
now diverge rather than converge. We then speak of an unstable node 
which can be referred to as a repellor (in contrast to the attracting node). 

(b) Two real roots of opposite sign (9 > 0, A < 0) 
Suppose, without loss of generality, that w ,  > 0 and w ,  < 0. In the 
particular case C ,  = 0 the influence of the growing exponential disap- 
pears in (4.19) and the corresponding trajectories are straight lines given 
again by eq. (4.21a). approaching the origin. We refer to this pair of 
straight lines as the stable manifold, W,  of the fixed point. When C ,  = 0 
only the unstable mode is excited in (4.19). Because of the cancellations 
taking place in eqs. (4.20) the trajectories are still straight lines, given now 
by (4.21 b), but this time they are directed away from the fixed point. We 
shall refer to them as the unstable manifold, W,, of the fixed point. A 1  other 
trajectories are hyperbola-like whose asymptotes as t+ co and t- ,  - co 
are, by the same argument as in the previous case, the two straight lines 
(4.21a) and (4.21 b), as seen in Fig, 4.3. These lines divide the phase space 
into four regions between which passage is prohibited by virtue of the 
nonintersection of trajectories imposed by the theorem of uniqueness of 
solutions. They are referred to as separatrices, the fixed point itself being 
qualified as a saddle point. As the phase portrait of Fig. 4.3 shows, a saddle 
point combines a stabilizing action in one direction with a destabilizing 
one along another direction. Eventually the instability takes over unless 
the system is itself found initially on the line of eq. (4.2la). Since this line is 
of measure zero in the plane this situation is untypical: a saddle point in a 
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Fig. 4.3 Two- X 2  

dimensional phase 
portrait around a 

saddle point obtained 
from numerical 

integration of the 
system 

dx,/dt = 2x, + 2x, 
dx,/dt = - 2x, - 3x, : 

The slopes of the 
stable and unstable 

manifolds (dotted 
lines) are, respectively, 

u,,/u2, = -2 and 
1 

~ 1 2 / ~ 1 I  = -7. 

dynamical system is, therefore, a repellor. In a realistic system a runaway 
to infinity cannot take place. The separatrices will then bend and will 
either tend to new attracting sets or (in high-dimensional systems) be 
reinjected back to the vicinity of the fixed point. These phenomena are 
typically nonlinear and will be discussed further later in this monograph. 
Notice that saddle points can occur in conservative as well as in 
dissipative systems whereas, as stressed already above, nodes can only 
occur in dissipative systems. 

(c) Two complex conjugate roots with a nonvanishing real 
part (9 < 0, T # 0). 
Since w 1  = a;, it follows from (4.16) that u,, = u;, , u,, = u;,. Since x, 
and x, are real, eq. (4.19) entails that C, = C; . Setting 

a,,, = p + i!2 (4.22) 

one may then write eqs. (4.19) as 

x1(t) = P'(C,u,, ei"' + cc) 

x 2 ( t )  = ep'(C,u,, ei"' + cc) 

Introducing new amplitude and phase variables C, K ,  y and K through 

we may transform (4.23) into the more transparent form 
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These relations predict an oscillatory behavior around the fixed point.The 
oscillation is damped if p < 0 (i.e. T < 0), and amplified if p > 0 (i.e. 
T > 0). In the first case the fixed point is an (asymptotically stable) 
attractor, in the second an (unstable) repellor. Notice that while in eqs. 
(4.24) and (4.25) C and y are determined by the initial conditions, the 
parameters K and ti are intrinsic, as they are determined by the linearized 
problem. 

To obtain the phase space portrait around the fixed point we switch to 
the canonical representation in which the matrix 9 is diagonalized (cf. 
eqs. (4.7)-(4.9)), 

Only one such relation is needed in the present two-variable system, since 
the second equation featuring the eigenvalue p - i i l  would merely be the 
complex conjugate of (4.26). Introducing the polar coordinates r, 4 
through 

and separating real and imaginary parts we further transform (4.26) into 

or, eliminating the time between the two ,equations, 

or finally 

where r ,  is an integration constant. This equation represents a family of 
logarithmic spirals. If p < 0 the representative point will tend to the origin 
(Fig. 4.4); otherwise the trajectories will spiral away from the origin. In 
both cases the fixed point is referred to as the focus. The domains of 
asymptotic stability and instability are separated by the critical condition 
T = 0, or p = 0. In this case eqs, (4.28) reduce to a family of circles 
surrounding the origin, which is referred to as a center (Fig. 4.5). As 
pointed out earlier an attracting focus can only arise in dissipative 
systems, whereas a center is compatible with a conservative (e.g. 
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Fig. 4.4 Two- 
dimensional phase 
portrait around a 

stable focus obtained 
from numerical 

integration of the 
canonical form of eq. 
(4.26) with p = -0.2, 

R =  1. 

Hamiltonian) system. In a dissipative system the center is nongeneric, in 
the sense that it is an exceptional situation in which the parameters 
present in the problem must satisfy a strict equality. This is further 
reflected by the fact that under the slightest change of parameters the 
topology of the phase portrait will undergo a qualitative change, switching 
from the form of Fig. 4.5 to that of Fig. 4.4. We refer to this phenomenon 
as structural instability. In the same sense a node, a saddle point or a focus 
arising in a dissipative system is structurally stable. Hamiltonian (more 
generally conservative) dynamical systems, although nongeneric and 
structurally unstable in the abstract space of all possible dynamical 
systems, are nevertheless generic from the standpoint of physics. They 
remain robust under a special class of transformations, the only ones that 
seem to be allowed by the laws of nature, which we already referred to in 
Section 2.1 as canonical transformations. 

4.4 Examples of stability analysis of 
two-dimensional dynamical systems 

Following the order of presentation of Chapter 2 we first consider the 
problem of the hoop as a typical example of a two-dimensional 
conservative dynarnical system. The equation of evolution of this system 
was derived in Section 2.1, eq. (2.8a). For the purposes of the stability 
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Fig. 4.5 Phase portrait 
when the limit p = 0 is 
taken in eq. (4.26) and 

Fig. 4.4. The fixed 
point behaves as a 

center 

analysis it will be convenient to transform this second order equation into 
a pair of first order ones: 

dv/dt = ( g / r )  sin 8(A cos 8 - 1) 

According to the general procedure laid down in the preceding sections, 
the first step is to determine the fixed points (O,, O), where 8, is given by 
sin $,(A cos 8, - 1 )  = 0. In the domain of variation of 8, - n I 0 I n, the 
solutions to this equation are 

The first solution exists for all parameter values, but for the second one the 
condition A > 1 is required. Referring to (2.8b), this means that the hoop 
must rotate with an angular velocity w such that (cf. also Fig. 1.1) 
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The next step is to introduce perturbations around the fixed points, 

Linearizing eqs. (4.30) with respect to 68 and 6 u  we obtain, using (3.27a) 
and (4.15), 

d80/dt = 6v 

il 
} (4.34) 

d6v/dt = - [cos B,(A cos 0, - 1) - A  sinz 0,] 68 
r 

In the notation of (4.17) this corresponds to 

For A < 1 only (4.35a) has to be taken Into consideration. One has 
A, > 0 which in the classification of Section 4.3 falls in case (d3): the trivial 
fixed point is stable in the sense of Lyapunov and behaves like a center. 
For A > 1, however, A, < 0 and case (b3) applies: the trivial fixed point is 
unstable and behaves as a saddle. Under the same conditions A *  in 
(4.35b) is positive and the nontrivial fixed points behave as a center. This 
exchange ofstabijity is in full agreement with Fig. 1.1 and the physics of the 
problem as discussed in Sections 1.2 and 2.1. Notice that in the presence of 
friction the situation would change in a qualitative way. Lyapunov 
stability would be replaced by asymptotic stability and the center would 
unfold to become a focus. 

We now turn to dissipative systems considering the Brusselator model 
(eqs. (2.44)) as a representative example. The linearized equations around 
the unique fixed point ( A ,  B /A)  have already been written down in (3.28), 

and the characteristic equation (eq. (4.17a)) reads 

Since in the notation of Section 3,3 A > 0, the fixed point can never be a 
saddle. The discriminant 
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Fig. 4.6 The five 
possible 

(nondegenerate) 
configurations of the 

roots of the 
characteristic equation 
of a three-dimensional 

dynamical system in 
the complex plane. 

can be further written as 

9 = [ B  - ( A  + I)'] [ B  - ( A  - I)'] 

whereas the trace T is 

As the parameter B varies while the second parameter A is kept fixed, the 
fixed point switches from asymptotic stability to instability at T = 0, or 

B, = A2 + 1 (4.38) 

It can behave as node or focus, depending on the value of 5 relative to 

( A  - or (A + I)', as summarized in the diagram below: 

Stable node Stable focus Unstable focus Unstable node 

I I I B 

(A - 1)2 B, = A2 + I (A + 1 )2 

4.5 Three variables and beyond 

In a system involving three variables the characteristic equation (eq. (4.5)) 
around a fixed point will be an algebraic equation of third degree with real 
coefficients, which can have either three real roots or one real and two 
complex conjugate roots. Fig 4.6(a j ( e )  depicts the various (generic) 
possibilities for the positions of these roots in the complex plane, it being 
understood that to each of these cases correspond cases (af)-(e') obtained 
by reflection with respect to the imaginary' axis. There exist, in addition, 
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Fig. 4.7 Three- 
dimensional phase 

portrait around a fixed 
point obtained from 

numerical integration 
of the canonical form 

of eq. (4.40): ( a )  

p = -0.15, 
u3 = -0.05, ir = 1 

(case ( c )  of Fig. 4.6); 
(b) p = -0.05, 

w3 = -0.15, R = 1 
(case (d )  of Fig. 4.6). 

degenerate cases whereby the real part of at least one of the roots is zero, 
the real parts of two roots (not belonging to a complex conjugate pair) are 
equal, and combinations thereof. As stressed in Sections 4.2 and 4.3 these 
are borderline cases signaling the passage from asymptotic stability to 
instability. They are important in their own right, but since they can be 
handled along similar lines as before we do not consider them in this 
section and focus, instead, on some of the new possibilities arising from 
the presence of an additional variable. In this perspective cases (a) and ( b )  
are straightforward generalizations of the node and saddle of the 
two-dimensional case, and need not be considered further. 

Cases (c) and (d) are new, since they are combinations of situations 
corresponding to a node and to a focus. Writing the solution in the form 

and switching to the representation in which the linearized operator is 
diagonal one may reduce the original (coupled) equations for the 
perturbations x,, x2,  x, to a complex equation corresponding to the pair 
of the complex eigenvalues cu,, cu, and a real one corresponding to the 
third eigenvalue o, , 

This entails that the fixed point behaves kike a (stable) focus in the 
subspace spanned by the eigenvectors u,, u,, while along the third 
direction u, it is approached monotonically at a rate equal to w,. The 
corresponding three-dimensional phase portrait is depicted in Fig. 4.7. 
The trajectories are directed toward the fixed point following a funnel 
converging to this point (a), or a paraboloid of revolution (b), according 
to whether Rew,,, < w, < 0 or w, < Rew,,, < 0 (Arnol'd, 1980). 
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Fig. 4.8 Three- 
dimensional portrait 

around a saddle-focus 
(case ( e )  of Fig. 4.6), 

obtained from 
numerical integration 

of eqs. (4.40) with 
p = -.0.15, O, = 0.05, 

n=  1 .  

Case (e) is by far the most interesting. In the same representation as 
above, the fixed point behaves in the subspace spanned by u, ,  u, as a 
stable focus, while along the third direction u, the trajectory evolves away 
from this point. In the three-dimensional phase space the trajectories 
evolve away from the fixed point following an inverted funnel (Fig. 4.8). 
This configuration, which is reminiscent of both a saddle and a focus, is 
referred to as a saddle-focus. In the case (e) of Fig. 4.6, the corresponding 
fixed point possesses a two-dimensional stable manifold (u,, u,) and a 
one-dimensional unstable manfold (u,), but in the symmetric case (e') the 
stable manifold would be one-dimensional and the unstable one two- 
dimensional, 

The importance of the saddle-focus in dynamical systems stems from 
the fact that it combines in a single dynamics a stabilizing trend coexisting 
with a destabilizing one, while allowing at the same time for oscillatory 
behavior. In the linearized case the trajectories will inevitably tend to 
infinity, but in the original nonlinear problem the exclusion of runaway 
effects will force the stable and unstable manifolds and, consequently, the 
trajectories themselves to bend and to remain confined. In the absence of 
an attractor in the form of another fixed point or a limit cycle this may 
result in a very intricate motion consisting of an aperiodic succession of 
unstable stages removing the trajectory from the fixed point, followed by a 
reinjection back to the vicinity of the fixed point. It can be shown 
(Shil'nikov, 1965) that this will actually be the case if the parameters are 
such that the system operates near a situation in which the sta6le and 
unstable manifolds merge. This possibility, to which we have alluded 
already briefly in Section 3.3B, implies the existence of homoclinic 
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trajectories. Such trajectories are structurally unstable since the merging 
condition requires that certain equalities between parameters be fulfilled. 
But the important point is that, if some inequalities depending on the 
eigenvalues of the saddle-focus known as Shil'nikov conditions are 
fulfilled, the destruction of a homoclinic trajectory will give rise to a rich 
structure in phase space allowing for deterministic chaos. For this reason, 
the saddle-focus and the associated homoclinic orbit can be regarded as 
important organizing centers for chaos in three- and higher-dimensional 
dynamical systems. We stress that the flexibility allowed by the third 
dimension is essential, since in a two-dimensional space a sequence of 
bendings and reinjections would be impossible without intersection of the 
trajectories, which is prohibited by the uniqueness theorem of the 
solutions of eqs. (3.6). 

Homoclinic behavior has been found in the Lorenz model introducedin 
Section 3.1 (Sparrow, 1982; Glendinning and Sparrow, 1984). An elegant 
model showing the role of homoclinicity in the onset of chaos has been 
introduced by Rossler (1976,1979). It consists of three coupled equations 
with a single (quadratic) nonlinearity, 

The characteristic equation around the fixed point x = y = z = 0 is 

and may generate, when the parameters are varied, a saddle-focus 
satisfying the Shil'nikov condition. Furthermore when a = 0.38;b = 

0.30, c - 4.82 there exists a homoclinic orbit, shown in Fig. 4.9. If c 
decreases toward c = 4.5 this orbit disappears and a chaotic attractor is 
generated, the structure of which is shown in Fig. 4.10 (Gaspard and 
Nicolis, 1983). 

Homoclinicity as a route to chaos arises in higher-than-three-dimen- 
sional systems as well. There are some interesting new phenomena in 
connection with the possibility that the stable and unstable manifolds 
themselves can now be high-dimensional, but their detailed analysis is 
beyond the scope of the present monograph, 
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Fig. 4.9 Homoclinic 
orbit associated with 

the fixed point (0,0,0) 
of Rossler's model, 

eqs. (4.41), for 
parameter values 

a = 0.38, b = 0.30, 
c = 4.82. 

Fig. 4.10 Chaotic 1 
attractor obtained I 

from numerical 
integration of Rossler's 
model, eqs. (4.41), for 

a = 0.32, b = 0.30, 
c = 4.50. The 

trajectories are I 
injected on the same 
side of the unstable 

fixed point, a situation 
referred to as spiral 

chaos. Y 

X 
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Problems 

4.1 Show that the Semenov equation (eq. (2.47)) can admit up to three steady 
state solutions and determine the linear stability of these solutions using 
the cooling coefficient ol as a control parameter. What happens when 
consumption of reactants is allowed (cf. also Problem 2.11)? 

4.2 Determine the fixed points and their linear stability of the Brusselator in 
a CSTR under the conditions of Problem 2.6. 

4.3 Derive eq, (4.42) and find the domain of parameter values for which the 
trivial fixed point (0,0,O) of the Rossler model (eq. (4.41)) behaves as a 
saddle-focus. Analyze the linear stability of the nontrivial fixed point of 
the model (Gaspard and Nicolis, 1983). 

4.4 The Volterra-Lotka model (Lotka, 1924; Volterra, 1936) describes the 
predator-prey dynamics in the form 

dxldt = kx - sxy 

dyldt = sxy - fy 

where x and y are respectively the prey and predator population densities, 
k the prey birth rate, f the predator death rate and s the frequency of 
predator-prey encounters. Determine the fixed points of this system and 
their linear stability (a) if k is regarded as a constant, (b) if a regulation in 
the sense of Verhulst (Section 2.6) is introduced, k = a - bx.  Show that 
under the change of variables u = tnx, v = tny the equations are 
transformed (in case (a ) )  to a Hamiltonian form and identify the effective 
Hamiltonian (Kerner, 1957). 

4.5 The Willamowski-Rassler model 

gives rise to chaotic dynamics while satisfying all the requirements 
imposed by thermodynamics and chemical kinetics (Willamowski and 
Rossler, 1980; Geysermans and Nicolis, 1993). Determine the fixed points 
of the rate equations and the parameter values under which saddle-focus 
behavior is observed in the simplified case k -  , = k - ,  = k - ,  = 0, 
k 2 = k 4 = l .  

4.6 Fig. 4.1 1 represents (left) a voltaic arc connected in series with an 
inductance and shunted by a capacitance and (right) the dependence of 
the voltage across the arc on the current i. {a) Derive the equations for 
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the current i and voltage u across the capacitance. (b )  Determine the fixed 
points and their linear stability using the'slope of the + ( i )  curve at these 
points as a control parameter. (c) Study the cases C = 0, L # 0 and 
C $0 ,  L = 0 and compare the results with the ones obtained in (b )  in the 
limit of very small C or L (Andronov et al., 1966). 

4.7 The global energy balance of the planet earth is described qualitatively by 
the equation 

C(dT/dt) = (incoming solar energy) - (outgoing infrared energy) 

where T is the space averaged surface temperature, C the heat capacity, Q 
the solar constant, cr the albedo, u the Stefan constant and E an emissivity 
factor accounting for deviations from black body radiation (Crafoord and 
Kalltn, 1978). By modeling the albedo as a piecewise linear function of T 
with two extreme horizontal branches and an intermediate one of 
negative slope, show that this equation may admit three steady state 
solutions, two of which are stable and one unstable. Discuss 
quantitatively the case: 

Parameter values: Q = 340W m- ', E = 0.61. 

4.8 A qualitative description of the coupling between mean ocean temperature 
and sea ice extent is provided by the system of equations (Saltzman, 
Sutera and Hansen, 1982; Nicolis, 1984) 

where q and 8 are, respectively, suitably scaled deviations of the latitude 
of sea ice extent and of the mean ocean temperature from a reference 
state. Compute the fixed points of this system and determine their type 
and stability in terms of the parameters a and b. 



CHAPTER F I V E  

Nonlinear behavior 
around fixed points: 
bifurcation analysis 

5.1 Introduction 

The importance of linear stability analysis is to show that a qualitative 
change of behavior may occur within a single, well-defined dynamical 
system beyond the critical value A, of the control parameter at which the 
system switches from asymptotic stability to instability. However, as soon 
as one enters the domain of instability the linearized equations become 
inadequate, as they predict runaway to infinity. In order to investigate the 
existence of new physically acceptable solutions which emerge beyond the 
threshold of instability the full, nonlinear equations will have to be 
analyzed. This is the objective of the present chapter. 

The starting point is given by eqs. (3.26), 

We suppose that linear stability analysis performed on these equations 
along the lines of the previous chapter has established the existence of a 
critical value 3LC such that the linearized operator S(&) admits an 
eigenvalue with vanishing real part, Re co, = Re u(R,) = 0. The linearized 
version of (5.1), 

then admits at A = A, a solution of the form (cf.eq.(4.1)) 

Substituting into (5.2) and setting 3, = A, one finds that 

in other words, the operator 
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admits at least one eigenvector u corresponding to a zero eigenvalue. We 
also express this property by the statement that J, admits a nontrivial null 
space. The question is now, what is the behavior of the solutions of the full 
nonlinear problem (eqs. (5.1)) for values of the control parameter A in a 
certain neighborhood of A,. The following two theorems give a surprising- 
ly comprehensive answer. 

Theorem 1 (Sattinger, 1972). If 

x = 0 remains a solution of (5.1) in a neighborhood of A,, 
w, is a simple eigenvalue that is a simple root of the characteristic equation 
(or more generally a root of odd multiplicity) 
then A = A, is a bifurcation point, in the sense that there is at least one new 
branch of solutions outgoing from (x = 0, A,). This branch either extends 
to infinity or meets another bifurcation point. 

Theorem 2 If o, is a simple eigenvalue and the additional transversality 
condition is satisfied, 

guaranteeing that the Reco versus A curve in Fig. 4.1 crosses the A - axis at 
A = A,, then 

the bifurcating solutions will be stationary if R, = 0 in (5.4); 
the bifurcating solutions will be time-periodic if SZ, # 0 in (5.4) (Hopf 
bfurcation); 
in both of the above cases supercritical branches (bifurcating in the region 
of 2-values for which the reference state has lost its stability) are stable and 
subcritical ones (bifurcating in the region of 2-values for which the 
reference state is stable) are unstable, provided that the remaining 
eigenvalues of 9(3LC) have negative real parts. 

Fig. 5.1 summarizes the various possibilities 

Rather than reproduce here one of the proofs of these theorems found in 
the mathematical literature we shall adopt a physicist's constructive 
approach in which the validity of the theorems will be verified by the 
analytic construction of the solutions of the full nonlinear problem. This 
approach is outlined in the subsequent sections. 
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Fig. 5.1 The three 
elementary 

bifurcations at a 
simple eigenvalue 
arising under the 

conditions of theorems 
1 and 2: full and 

dotted lines represent, 
respectively, 

asymptotically stable 
(S) and unstable (U) 

branches of solutions. 
In (a) and (b) the 
amplitude of the 

solution is plotted 
versus the control 

parameter; (c) 
schematically depicts, 

in addition, the 
continuous family of 

solutions 
corresponding to the 

different values of the 
phase of the 

oscillatory motion. 

5.2 Expansion of the solutions in perturbation 
series: the case of zero eigenvalue, 
Rew,=Imw,=O 

We have repeatedly stressed the difficulties arising in the solution of 
nonlinear problems. We therefore give up the idea of obtaining exact 
results of a global character, and limit our attention to the local behavior of 
the solutions in the vicinity of the bifurcation point A,. Furthermore, we 7,' 
suppose that the new solutions emerge at A, in a continuous fashion, thu3 
excluding vertical branchings or jumps. 

These hypotheses allow us to expand x in the vicinity of AC in power 
series of a small parameter. The latter must certainly be related to A - A,, 
since at ,I = A, the norm I x 1 of the solution goes to zero. There is no 
reason, however, for this small parameter to be A - A, itself, since in 
principle nothing guarantees the analyticity of the soIutions in A - I , .  
Later on in this chapter we shall in fact encounter several examples of 
manifkstly nonanalytic dependence. 

-*.  u '. '. 
- - - - - - - - -  

U 

,' U 

(a) 
transcritical bifucation 

(5') 

(b3 
pitchfork bifurcation 

Hopf bifurcation 
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To allow the system ~tself to fix the dependence of the solutions on 
A - A, we introduce an auxiliary smallness parameter E with respect to 
which we expand both x and R - A, : 

where the coefficients y,,  y2, ... are to be determined from the perturbation 
analysis . 

Eqs. (5.1) feature not only x but also its rate of change with respect to 
the independent variable t. At criticality, and for the case of a, = 0 
considered in this section, eq. (5.3) entails that at the level of a linearized 
description x does not vary at all with time after a transient period during 
which the stable modes (eigenvalues of .9(1,) with negative real parts) 
have relaxed exponentially to zero. By continuity, one expects that for 1 
close to A, the solution x of the full system of eqs. (5.1) wili be a slowly 
varying function of time. This critical slowing down, reminiscent of the 
theory of equilibrium critical phenomena (Stanley, 1971) suggests the 
introduction of new, more relevant time scales 2, , 2, etc. through 

We shall refer to the scheme defined by eqs. (5.7k(5.9) as mwltiscale 
perfurbation expansion (Keworkian and Cole, 1981). Under certain 
conditions met in typical applications the convergence of this scheme can 
be guaranteed, but the radius of convergence can, in general, not be 
determined. 

Substituting (5.7b15.9) into eqs. (5.1) we get, to the various orders In E ,  

the following systems of equations: 

We obtain a single contribution, 

We obtain four kinds of contribution. First, the operator 2(A,) may act 
on the second order term x, in the expansion of x, eq. (5.7). Second, we 
may evaluate the operator S ( A )  at a A close to AC, and have it act on x,. 
This shift will be expressed formally by the first term of a Taylor expansion 
of 9 ( A )  around A, and will thus yield the contribution y,9,(Ac).x,, 
where derivatives are denoted by subscripts. Third, to order E~ we will 
have a contribution coming from the quadratic part of hin eqs. (5.1 ) which 
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will be denoted formally as the second order term of a Taylor expansion 
around zero. Finally, to this order we will have a first contribution of the 
time derivative in the left hand side of (5.1) featuring the new time scale z, . 
We thus obtain the full equation to order c2:  

An example of explicit form of the various operators appearing in this 
equation is given in Appendix A2. 

Proceeding in the same manner as above we obtain 

Similar expressions can be written to an arbitrary order in E .  The initial 
nonlinear problem has thus been replaced by an infinite sequence of linear 
problems. However, as we shall see shortly, eqs. (5.10)-(5.12) already 
contain the essential information needed for understanding bifurcation. 

5.3 The amplitude equation: transcritical 
bifurcation 

We want now to construct the solutions of eqs. (5.10)-(5.12). We notice 
that to O ( E )  the structure of eqs. (5.10) is identical to the linear stability 
problem (eq. (3.29)) at the criticality point 1 = A,. The solution takes 
therefore the form (cf. eq. (4.1) for co = m, = 0) 

We have factored out the amplitude c of the solution, which is 
undetermined at this stage in view of the fact that eqs. (5.10) are 
homogeneous. It is therefore understood from now on that u is completely 
determined from the linearized problem. Fox instance, in a two-variable 
system we have from (4.16): 



with 31 1@,)3,~(/1,) - 912(;1c)3,,(;1,) 7 0 from which u can be com- 
puted as 

1 
(5.14) 

Furthermore, since the slow time does not appear explicitly in eqs. (5.10) 
we have allowed in (5.131, for a dependence of c on the various slow time 
scales introduced in the perturbative expansion, eq. (5.9), 

We next turn to O(eZ), Inserting (5.13) into (5.1 1) we obtain 

dc 
9 ( l c ) . x 2  = -CY ,3,(lc)- u - ~c2hh,,(l,). uu + - u = q2(u, c, A,) 

85  
(5.15) 

These relations constitute an inhomogeneous set of equations for x,, since 
the right hand side depends on the solution of the equations of the lower 
order. One is tempted to write, formally, its solution as 

The point, however, is that %(Ac) is not everywhere invertible since by 
(5.4) (and R, = 0) it possesses a nontrivial null space. In such a case the 
action of the inverse operator according to (5.16) will produce divergent 
results, unless the parts of q, responsible for the divergence can be 
eliminated. An important result of analysis, known as the theorem of the 
Fredholm alternative (Sattinger, 1972; Iooss and Joseph, 1980) prescribes 
how this can be achieved. To formulate the theorem one has to endow the 
space with a scalar product and define theiidjoint operator 9+(;1,). In the 
present case of dynamical systems involving a finite number of variables 
these can simply follow the conventional definitions of scalar product and 
adjoint of a matrix familiar from linear algebra (Friedman, 1956). For 
instance, taking once again the example of a two-variable system, 

Let us introduce the null eigenvector uf of 9' through 

The theorem of the Fredholm alternative stipulates, then, that the right 
hand side q2 of (5.15) should be orthogonal (with the choice of scalar 
product discussed above) to the null eigenspace of 64+(/1,), 
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This relation, also referred to as the solvability condition, follows 
straightforwardly by taking the scalar product of both sides of eq. (5.15) 
with uf and by applying subsequently the definition of the adjoint 
operator. The point is that just like u, the vector uf is completely 
determined by (5.17). Furthermore it is unique, since we consider 
bifurcation at  a simple eigenvalue. Eq. (5.18) reduces, therefore, to a single 
equation for the undetermined amplitude c .  To find its explicit stru2ture 
we substitute q2 as given by (5.15): 

where the coefficients P I  and P ,  are given by 

They are numerical coefficients determined entirely by the structure of the 
initial equations and the solution of the eigenvalue problem of the 
linearized operator. 

In addition to c, eq. (5.19) still features the so far undetermined 
parameter y, . Now, one may notice from the first equation (5.7) that the 
important quantity determining x to the dominant order is EX, rather 
than x, , We therefore introduce the normalized amplitude 

We further multiply both sides of (5.19) by E~ and eliminate y, and T, in 
favor of the initial physical parameters A - A, and t ,  through inversion 
(again to the dominant order) of (5.8) and (5.9). Eq. (5.19) is then 
transformed to 

As long as P, # 0 it admits two fixed points 

Plotting these solutions in terms of R one finds the graphs (a)  or (a') of Fig. 
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5.1 according to whether P,/P, is positive,or negative, these being the two 
possible forms of transcritical bifurcation. The stability of the branches is 
found by setting 

and by linearizing in 5 :  

di/dt = [(A - Ac)P, - 2P2z,]( 

yielding a characteristic exponent 

co = (3, - IE,)P, - 2P,z, 

or: 

o = ( A  - A,)P, for z, = z,, = 0 1 

To evaluate the sign of P ,  we differentiate both sides of the eigenvalue 
equation (4.2a) with respect to A and evaluate the result at  the critical 
point A = A,, 

where u = u(Ac) is the critical eigenvector. Taking the scalar product of 
both sides of this equation with u +  and using (5.17) we obtain, recalling 
that w, = 0, 

or finally, using the first relation (5.20), 

This is nothing but the expression appearing in the transversality 
condition (5.6). We may assume without loss of generality that 
(do/dA), > 0, hence PI > 0. Eqs. (5.24) imply then that the nontrivial 
(bifurcating) branch z,, is stable in the range 3, > A,, in which it is 
supercritical, and unstable in the range A < A,, in which it is subcritical. 

The above analysis provides one with the constructive proof of 
theorems 1 and 2 of Section 5.1 for transcritical bifurcation. A number of 
important points that have emerged from the analysis deserve special 
mention. 
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(i) Eq. (5.22) is universal, in the sense that its form is independent of the 
detailed structure of the underlying model. The latter enters only through 
the numerical vaIues of the coefficients PI and P,. All dynamical systems 
undergoing a transcritical bifurcation are thus described, to the dominant 
order, by this equation. For this reason we shall refer to (5.22) as the 
normal form of transcritical bifurcation. 
(ii) While the original system is, in general, a multivariate systern,hq. 
(5.22) is a single scalar equation. In the vicinity of the bifurcation theie is 
thus a dramatic reduction in the description of a dynamical system in the 
sense that the only relevant variable appears to be the normalized 
amplitude z, which will be referred to for this reason as the order parameter 
(Landau and Lifshitz, 1959b). We call the reduced subspace of the full 
phase space in which the dynamics of the order parameter is taking place 
the center manifold (Guckenheimer and Holmes, 1983). All other variables 
follow z passively according to eq. (5.13). This enhances enormously the 
power'and range of applicability of bifurcation analysis as well as the 
importance of low-dimensional dynamical systems. 

5.4 The amplitude equation: pitchfork bifurcation 

The analysis of the preceding section obviously fails when P, = 0. At first 
sight this would seem to be a very exceptional situation, but on a closer 
examination of eq. (5.20) one realizes that it may be typical in systems 
displaying symmetries. Such symmetries are manifested most naturally in 
the presence of spatial degrees of freedom as we see further in Chapter 6, 
but may well subsist when the reduction to a finite number of variables 
described in Section 3.1 is operated. 

Be it as it may, an immediate consequence of P ,  = 0 in eq. (5.19) or 
(5.22) is that the normal form equation is reduced to its linear part which 
shows unphysical runaway behavior beyond bifurcation unless, of course, 
it reduces to a trivial identity. This will be so provided that 

The solvability condition (5.18) being still (trivially) satisfied, one may 
solve the simplified second order equation (eq. (5.15)) to obtain 

where we have added to the particular solution of the inhomogeneous eq. 
(5.15) the general solution of the associated homogeneous equation. To 
determine the amplitude c one has now to turn to the third order equation, 
eq. (5.12). For y ,  = 0, no z,-dependence, and x, , x, given by (5.13) and 
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(5.26b) this equation simplifies to 

These relations constitute again an inhomogeneous set of equations, this 
time for x3. To compute this unknown vector one must ensure the 
invertibility of Z(2,)  through the solvability condition (cf. eq. (5.18)) 

Substituting q, from (5.27) and following the lines of the preceding section 
one finally ends up with 

where Pl is given by the first relation (5.20) and 

Notice that in view of P ,  = 0, the solution of the homogeneous equation 
does not contribute to the solvability condition. Switching to the 
normalized amplitude z = EC and eliminating y,  and t, in favor of the 
physical parameters R - 1, and t through the inversion of eqs. (5.8) and 
(5.9) (now with y ,  = 0 and no zl-dependence) one can write (5.29) in the 
more suggestive form 

As long as P ,  # 0 this equation may admit up to three fixed points, 

Plotting these solutions against 1 one finds the graphs (b )  or (b') of Fig. 
5.1, according to whether P , / P ,  is positive or negative, these being the 
two possible forms of pitchfork bifurcation. The stability of the branches 
can be studied exactly as in the previous section, the result being that 
supercritical branches are stable and subcritical ones unstable. We have 
thus extended the constructive proof of theorems 1 and 2 of Section 5.1 to 
include the case of pitchfork bifurcation. 

The comments at the end of Section 5.3 apply fully to eq. (5.3 1) as well: 
it is a universal equation, effectively reducing the initial multivariate 
problem to a single variable. All dynamical systems operating in the 
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vicinity of a pitchfork bifurcationcan be cast into eq. (5.31), which for this 
reason can be regarded as the normal form for this type of bifurcation, 

A new feature nbt encountered in the transcriticaf bifurcation is that at 
the stationary state the order parameter z depends on the distance from 
bifurcation in a nonanalytic manner (eq. (5.32)). This is the mathematical 
manifestation of the qualitative change of behavior across a pitchfork 
bifurcation and, more specifically, of the fact that for A as close to A, as 
desired one finds two branches of coexisting states having identical 
stability properties. This is reminiscent of many of the experimental data 
surveyed in Chapter 1 .  

5.5 Limit point bifurcation 

The basis of our analysis of the preceding sections was the assumption, 
spelled out explicitly in the statement of theorem 1 of Section 5.1, that the 
reference state remains an exact solution of the system equations in a 
neighborhood of the bifurcation point. This means, in particular, that 
F(X,, A) and all its derivatives with respect to 1 vanish at A = A,. In this 
section we examine the type of behavior that can take place when these 
conditions are not satisfied. To simplify notation we limit ourselves to one 
variable. 

Let X, be a reference state that exists, say, up to the value R, of the 
control parameter A, F(X,,  , I,) = 0. Suppose furthermore that at  A, it 
loses its stability through a simple real eigenvalue that becomes zero, 
(aF/dX), = 0, where the subscript c indicates that the derivatives are to be 
evaluated at X,, and A,. We expand the evolution equation 

around (X,, ,A, ) 

The first two terms vanish on the grounds of our assumptions. 
Introducing the notation 

we may transform, to the dominant order, the original equation into 
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Fig. 5.2 Dependence ZS 

of the amplitude z, of S 
the solution on the 

7 

parameter p in the 
vicinity of a limit 
point bifurcation. 

P 

\ 
'v. 
\ 

This equation admits a pair of fixed points, 

which exist in the region p > 0 if 9, is positive and p < 0 if q, is negative. 
They are plotted against p (for q, > 0) in Fig. 5.2. To check stability we set 
z = z + ( and linearize (5.36) with respect to (, getting 

s *  i 

dl/dt = -29,z,,,C 

Thls shows that if q, > 0, the positive branch z,, is stable and the 
negative one z,, is unstable. We conclude that as p decreases from 
positive values, the stable and unstable branches 'collide' at p = 0 and 
subsequently are annihilated. For this reason wecall p = Oa limit point, or 
fold. Its presence signals once again the appearance of singularities, as 
illustrated by the nonanalytic dependence of z,, + on p in eq. (5.37). 

The above analysis extends straightforwardly to the multivariate case 
One still ends up with an equation of the form (5.36) satisfied by a suitable 
combination of the original variables, which can therefore be regarded as 
the normal form of a dynamical system operating in the vicinity of a limit 
point bifurcation (Guckenheimer and Holmes, 1983). A widely encoun- 
tered realization of this type of bifurcation is when two fixed points that 
coalesce at p = 0 behave for p # 0 as a stable node and as a saddle, in the 
sense of the classification of Sections 4.3 and 4.5. For this reason it is also 
referred to in the literature as a saddle-node bifurcation. 

5.6 Kinetic potential, sensitivity, structural 
stability 

The reduction of bifurcation of steady-state solutions at a simple real 
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eigenvalue to a one-dimensional dynamics entails the interesting conse- 
quence that the normal form equations (5.221, (5.3 1) or (5.36) derive 
necessarily from a potentid, 

with, up to an arbitrary constant, 

z2 z 
U = - (1 - 3LC)P1 - + PZ - (transcritical bifurcation) (5.39a) 

2 3 

z. L 
U = - (1 - ) P I  - + P - (pitchfork bifurcation) (5.39b) 

2 4 

z3  
U = - p z  + q,  - (limit point bifurcation) 

3 
(5.39~) 

The structure of the potential U bears a straightforward relation with the 
fixed points of the dynarnical system and their stability. Indeed, by (5.38) 
the fixed points are extrema of U and vice versa 

Setting z = 2, + [ and linearizing (5.38) with respect to 5 one may also 
cast the stability problem in the form 

It follows that: 

if z ,  is a minimum of U ,  ( d 2 ~ / d z 2 ) Z  > 0 and zs is stable; 
if z, is a maximum of U, ( d 2 ~ / 8 z 2 ) ~ ,  < 0 and z, is unstable. 

Fig. 5.3 describes on the basis ofeq. (5.39b), the structural changes of U 
as the underlying dynamical system undergoes a pitchfork bifurcation, 
choosing, to fix ideas, PI > 0 and P, > 0. We notice a striking analogy 
with the Landau theory of order-disorder transitions or the van der 
Waals theory of liquid-vapor transition (Landau and Lifshitz, 1959b; 
Stanley, 1971; Ma, 1976) with the notable difference that U is here not a 
thermodynamic potential but, rather, a kinetic one determined by the 
dynamics. The analogy also extends to the behavior of z versus 1. Indeed. 
the nonanalytic dependence in eq. (5.32) 

is also encountered in Landau theory, where the role of the control 
parameter is played by the temperature. In the theory of critical 
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phenomena the exponent 1/2, referred to as critical exponent, is character- 
istic of a meanfield description, which is now known to break down in the 
immediate vicinity of the critical point (Ma, 1976). In dynamical systems 
with a finite number of degrees of freedom the mean field exponent is 
exact, but qualitative changes may be expected in spatially extended 
systems as discussed further in Chapter 6. 

Despite the above mentioned appealing analogies one should refrain 
from identifying bifurcations in nonlinear systems under constraint with 
equilibrium phase transitions. The microscopic basis of these two classes 
of phenomena is indeed very different. When fluctuations are incorpor- 
ated in the description these differences show up in a number of properties 
such as, for instance, the parameter values at which the coexisting 
attractors z -  and z + are equiprobable (Nicolis and Turner, 1977; Nicolis 
and Lefever, 1977). Another major difference is that, contrary to 
equilibrium phase transitions which are mediated entirely by the inter- 
molecular forces, bifurcations in systems under constraint bring about 
space and time scales which are macroscopic. 

An alternative, interesting vision of the three fundamental bifurcations 
at a simple real eigenvalue can be achieved when one realizes that the limit 
point bifurcation can actually be viewed as the result of an imperfection 
perturbing a transcritical or a pitchfork bifurcation. Consider, for 
instance, the equation 

which reduces to the normal form of pitchfork bifurcation for b = d = 0 

Fig. 5.3 Kinetic 
potential associated 

with the pitchfork 
bifurcation, eq. 

(5.39b). Parameter 0.6 

values P ,  = P ,  = 1 .  
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Fig. 5.4 The regions 
of existence of one and 

and to the limit point bifurcation for a = c = 0. What happens when all 
these terms coexist? We notice that the coefficient a can be eliminated, as 
long as it is not strictly zero, by a change of time scale and the quadratic 
term can likewise be eliminated by a shift of the variable x. One then 
obtains the canonical form of the cubic equation 

where z = ) a-' 1 t ,  z = x - b / 3 )  a 1 ,  R and y are combinations of the 
original parameters and the negative sign in front of z3 accounts for 
stability. 

We know from elementary algebra that eq.  (5.42) can have up to three 
fixed points. Moreover, as the parameters vary the three solutions merge 
and we are left with only one (real) solution. One can determine a relation 
between parameters separating these two regimes. specifically, 

These curves are represented in parameter space in Fig. 5.4. The region of 
three real solutions ends at a point (the origin in the figure), in which there 
is a singular dependence of R on y. This is known as a cusp singularity 
(Thom, 1962). 

Figs. 5.5ia) and ( b )  provide two different views of the dependence of the 
solutions on the parameters. In Fig. 5,5(a) z, is plotted against ,u for fixed 
A. The resulting S-shaped curve indicates the coexistence of multiple 

three real solutions of 
eq. (5.42) in parameter 

space. 
one solution 

-I 1°- 

three solutions 
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Fig. 5.5 Effect of 
parameters in the 

bifurcation of steady 
state solutions of eq. 
(5.42). (a) Hysteretic 

behavior of the 
solution at fixed 1 

(here II  = I), as the 
parameter p is varied. 

The limit point 
bifurcation remains 

robust. (b)  Destruction 
of pitchfork 

bifurcation when the 
parameter p, acting as 
an imperfection, is not 

identically zero (here 
p = 0.05). 

solutions for a certain range of parameter values. Stability analysis along 
the by now familiar lines shows that two of these branches are 
simultaneously stable. The bistability region ends at the limit points y, 
and y2 in the vicinity of which we see the behavior shown in Fig. 5.2. 
Under these conditions an increase of p beyond p, and up to p,, followed 
by a variation in the opposite direction, will lead to a hysteresis cycle 
reminiscent of some of the experimental facts surveyed in Chapter 1. 

In Fig. 5.5(b) z, is plotted against 3, at fixed p. We now obtain two 
disjoint curves: one, ( I ) ,  defined for all values of A, and the other, (21, 
defined for A 2 Xand exhibiting a limit point singularity at  TI. For A < 1 
only one stable solution is available, but for ;1 > X we have bistability as 
before. We realize that for no nonvanishing I p I, however small, can the 
pitchfork bifurcation (Fig. 5.l(b) and Section 5.4) be observed. The 
imperfection expressed by the presence of p therefore destroys this 
bifurcation. In contrast the limit point bifurcation proves to be robust, 
since it is recovered in both Figs. 5.5(a) and (b) .  But if A and ,u are varied 
simultaneously there will always be a particular combination of values 
(p  = 0, ;1 going through zero in our case) for which the pitchfork 
bifurcation will be recovered, as the system will be able to traverse the 
cusp singularity in a symmetric fashion. 

The above discussion illustrates the deep concept of structural stability, 
to which we have already alluded in the preceding chapters. It shows that 
certain phenomena, such as the pitchfork bifurcation, occur only if the 
parameters present satisfy at least one equality. Inasmuch as in a physical 
system such a strict requirement will be difficult to meet, we expect that 
these phenomena will disappear under slight changes of parameter values: 
we describe them as being structurally unstable. On the other hand there 
exist other phenomena, like the limit point bifurcation, that persist (even 
though they may be shifted) under changes of the control parameters 
affecting the structure of the evolution laws: these we call structwally 
stable. To account for the full set of potentialities of a given dynarnical 
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system, including the structurally unstable situations delimiting different 
types of structurally stable behavior, it is essential to be able to control a 
sufficient number of parameters. This number depends on the type of 
phenomenon to  be described and on the degree of nonlinearity - for 
instance, it is equal to two for the full classification of bifurcation 
phenomena in the presence of a cubic nonlinearity (eq. (5,42 )), A more 
comprehensive study of this question brings us to the concept of universal 
~cnfolding and to catastrophe theory (Thorn, 1962; Dumortier, 1991) whose 
technical details are beyond the scope of the present monograph. 

In many physical systems imperfections of the type studied above arise 
in the presence of external fields. In chemical reactions, when certain types 
of external constraint related to pumping of material in the reactor are 
present, imperfections may likewise arise. This is nicely illustrated by the 
second Schlogl model (eq. (2.45 b)) 

Introducing the new quantities 

one can check straightforwardly that the initial four-parameter system 
reduces to a two-parameter one, described by eq. (5.42). The 'imperfec- 
tion' p is, in principle, present as a result of pumping A and B in the 
system. But there exists a relation between A and B, given by p = 0 in eq. 
(5.45), for which its effect on the evolution of the concentration variable is 
canceled. The system then undergoes a pitchfork bifurcation. 

5.7 The Hopf bifurcation 

We now turn to the case where, at the critical value of the control 
parameter A = A,, the imaginary part Q, of the (simple) critical eigenvalue 
o, of the linearized operator (whose real part vanishes by the very 
definition of criticality) is nonzero, According to eq. (5.3) this entails that 
at  A,, x varies periodically on a fast time scale, given by 2n/Qc. As 
explained in Section 5.2, in the vicinity of 1, an additional slow 
time-dependence is expected (critical slowing down). To account for all 
these.possibilities we have to adapt the multiscale perturbation expansion 
of Section 5.2 and replace eq. (5.9) by the new scaling relation 
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fast scale 

With eq. (5.46), eqs. (5.1) may now be solved perturbatively, by expanding 
as before x and ;1 in power series of E (eqs. (5.7), (5.8)). We briefly outline 
the structure of the equations of the first few significant orders. 

We obtain an additional contribution to (5.10) arising from the presence 
of the fast time scale: 

This homogeneous system of equations (identical to the problem of linear 
stability analysis) admits solutions of the form 

where u is given by eq. (5.4) and is, therefore, the null eigenvector of the 
operator J, defined in eq. (5.5). The amplitude c remains undetermined at 
this stage and is allowed to depend on the slow time scales, which do not 
enter explicitly in eq. (5.47). 

B Higher orders 

To O ( E ~ ) ,  O ( E ~ )  etc., substitution of (5.7), (5.8) and (5.46) into eqs. (5.1) 
will give rise to a sequence of linear inhomogeneous equations of the form 

- 9(;1,) -xi = qj(xj-,, . . . , x,) j 2 2 (5.49) 1 
In order to determine the solution x j  one needs to ensure that the operator 
J, is invertible. This is, however, not necessarily true since according to 
eqs. (5.47) this operator has a nontrivial null space. To ensure invertibility 
a solvability condition must be fulfilled, in the form of orthogonality of qj 
and the null eigenvector of the adjoint operator J; . Orthogonality and 
adjointness must here be defined in an extended space which, in addition 
to being the finite vector space considered in the preceding sections, 
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includes 2n-periodic functions in time. In this functional space (Friedman, 
1956) the scalar product will be defined as 

where a* b stands for the classical scalar product, a* being the complex 
conjugate of a. The adjoint operator J: can be identified by the property 

or, performing integration by parts in time, 

where 6 4 + ( A , )  has the same significance as in the preceding sections. The 
null eigenvector of this operator is of the form 

u +  being the null eigenvector of the adjoint of J, in eq. (5.5). 
Applied to the second order equation the solvability condition yields 

owing to the fact that (u+ eiT, h,,ueiTu eiT) vanishes identically. The 
second order equation can then be solved, the result being a n-periodic 
solution (second harmonic of (5.48)) plus a time-independent part. Since 
the second order solvability condition is trivial this solution still features 
the amplitude c. To determine it one must therefore proceed to the third 
order in E .  The solvability condition to this order now gives a nontrivial 
result which, on transforming back to the original variables and 
parameters, reads 

where the coefficients P ,  (still given by eq. (5 .25))  and P ,  are in general 
complex quantities PI = Pi + iP;', P, = P; + iP'; . Eq. (5.53) constitut,es 
the normal form of the Hopf bifurcation (Marsden and McCracken, 1976; 
Guckenheimer and Holmes, 1983). 

To solve eq. (5.53) it is convenient to introduce polar coordinates 

Separating real and imaginary parts one obtains 
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The first relation is independent of the phase variable 4. It can be handled 
as eq. (5.31), characteristic of the pitchfork bifurcation, except that r must 
be always nonnegative. Taking up the results of Section 5.4 we conclude 
that at A = A, r undergoes bifurcation from the trivial solution r ,  - 0 to 
the nontrivial one 

which extends in the domain I > R ,  if P;/P', > 0 and in the domain 3, < A, 
if P',/P; < 0, Furthermore, supercritical branches can be proven to be 
stable and subcritical ones unstable. 

At the level of the first eq. (5.55) the solutions just found are 
time-independent, but at the level of the z-variable (eq. (5.54)) they are 
time-periodic since from the second eq. (5.55) one has in the long time 
limit, 

The frequency AR of the z-oscillation corrects the value S2, (eq. (5.49)) by 
terms of the order of A - A,. In the phase space (Im z ,  Re z )  the trajectories 
are winding toward the invariant curve 1 z 1 = r, ,  which we have referred to 
as the limit cycle (Fig. 5.6). The representative point moves on this 
attractor at an angular velocity equal to AQ. We have thus produced a 
constructive proof of the bifurcation of time-periodic solutions in the 
vicinity of a criticality corresponding to a simple pair of complex 
eigenvalues. Notice that the period and the amplitude of the oscillations 
are intrinsic in the sense that they are determined entirely by the evolution 
laws, independent of the initial conditions. Many of the experimental data 
surveyed in Chapter 1, such as chemical oscillations and biological 
rhythms, feature this property. This is to be contrasted with oscillations in 
conservative systems, whose characteristics depend on the initial condi- 
tions. 

Just like in Sections 5.3-5.5 one may remark that eqs. (5,53) or (5.55) 
are universal: they constitute the normal form of any dynamical system 
operating in the vicinity of a Hopf bifurcation. One notable difference 
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'ig. 5.6 Phase portrait 
beyond the Hopf 

bifurcation, as 
deduced from the 

normal form equation 
(5.53). Parameter 

values: P, = P, = 1, 
1, - A, = 1 ,  frequency 

at criticality ST, = 1. 

with the bifurcation at a real eigenvalue is, however, that the order 
parameter z is complex. The subspace of phase space on which the 
reduced dynamics is taking place is, therefore, two-dimensional. An 
explicit calculation of the periodic solutions of the Brusselator model 
following the above scheme is performed in Appendix A2. 

5.8 Cascading bifurcations 

Bifurcations at simple eigenvalues analyzed in the preceding sections are 
well understood since they can be reduced to a local problem around the 
reference state X,, assumed to be known explicitly. Furthermore, since 
they are fully described by a scalar or a two-component vector order 
parameter, the phase portraits which they generate can be classified 
completely (Andronov et al., 1966) and can only give rise to structurally 
stable attractors in the form of fixed points or limit cycles. As shown in 
Chapter 3 this is mainly due to the topological constraints imposed on the 
trajectories embedded in a one- or  two-dimensional phase space, and 
more particularly to the fact that self-intersections are not allowed. 

What happens beyond the first (local) bifurcation from X, is, on the 
other hand, generally a global problem. For instance, the first bifurcating 
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Fig. 5.7 Illustration of 
the mechanisms by 

solution emerging at A,, may lose its stability at some critical value 3,L1 
where a new solution branch may bifurcate. But typically ;I:, will be at 
finite distance from 3,,, . The problem of extending the primary bifurcating 
branch (known explicitly only near I, ,) up to X,, and of constructing the 
new secondary bifurcating branch becomes, then, a highly nonlinear and 
generally intractable problem. 

One way out of this difficulty is to identify in the system one or several 
control parameters in addition to A and to vary them until critical 
situations of a new kind are reached. Fig. 5.7 illustrates the idea for two 
control parameters A and p. At p = p, we obtain an ordinary one- 
parameter bifurcation diagram displaying a number of primary branches 
a,,  b ,  . . . as well as a secondary branch a,. Both A,,, A,, and the 
amplitudes of the solutions depend now on p. One may therefore imagine 
that by selecting p in an appropriate manner, for some value p = p,  the 
distance between A,, , A,, and &, will become smaller and the branches a,, 
b,, a, will begin to interact. On further varying p one might even reach a 
situation corresponding to parameter values (x, F) in which the two 
primary bifurcation points will coalesce. It may be expected that at this 
point many different branches of bifurcating solutions will emerge. 

which a global ,=,I / - q.-*- 
problem related to a 

(0)  secondary bifurcation - - - - -  + - - - - - - - - 
(a), reduces to a local \I xc, 

A 

one (b), in the vicinity 
of a high codimension 
bifurcation ( c ) ,  thanks 

to the simultaneous 
control of two Pt,2 I 

I .  parameters ,I and p.  
(4 

A 
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However, on slightly varying 2 and p from this situation the branches will 
split and a secondary bifurcation will take place (Bauer, Keller and Reiss, - - 
1975; Keener, 1976). The point is that since X, and (A, p )  are known 
explicitly from algebra and linear stability analysis, the initial global 
problem has been reduced, in principle, to a local one. We refer to it as 
higher codimension (here two) bifurcation, in the sense that the parameters 
must satisfy more than one strict equality. Physically speaking such 
bifurcations should arise either in the presence of symmetries, or  when two 
or more mechanisms of instability interfere simultaneously with the 
dynamics. 

The simplest cases of higher codimension bifurcations are: 

(i) Two real eigenualues go through zero 
At criticality one gets a double zero eigenvalue coo = 0 of 9, that is to say 
an eigenvalue of algebraic multiplicity p, = 2. In the terminology of 
Section 4.1 two subcases may arise, depending on the value of the 
geometric multiplicity v,. 

(i. 1) Geometric multiplicity v ,  = 2 
The transformed linearized matrix 64 (eq. (4.1 la) )  will contain at 

criticality two Jordan blocks of order no = 1 containing a zero matrix 
element (the vanishing eigenvalue), which can be grouped into the 2 x 2 
Jordan block 

Obviously, (A) and ( y  ) are two linearly independent null eigenvectors of J, . 

(i.2) Geometric multiplicity v, = 1 
The transformed linearized matrix will contain at criticality a Jordan 

block in the form (cf. eq. (4.1 1 b)): 

The only null eigenvector is now u, = (h). To complete the basis of the 
2 x 2 critical subspace one introduces generalized eigenvectors (Sattin- 
ger, 1972; Iooss and Joseph, 1980) 

In the present case there is only one such additional eigenvector. Notice 
that by (5.59), J,2.u, = 0. 
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(ii) One real eigenualue goes through zero and one pair of complex 
conjugate eigenvalues (with l m  o, # 0) has a vanishing real part 
At criticality the eigenvalues of 9 remain distinct. The corresponding 
Jordan block will be (cf. eq. (4.11~)):  

(iii) Three real eigenvalues go through zero 
At criticality one gets a triple zero eigenvalue of 9. As in (i) one may 
distinguish various cases, depending on the value of the geometric 
multiplicity v,. For v, = 1 the transformed linearized matrix contains a 
Jordan block of the form (cf. eq. (4.1 1 b)): 

Jc = t , (5.61 ) 

(iv) Two pairs of complex conjugate eigenvalues (with l m  o # 0) haue 
vanishing real parts 
As in case (ii) the eigenvalues of 9 remain distinct at criticality. The 
corresponding Jordan block in the transformed linearized matrix will be 

As in the preceding sections of this chapter, the perturbative approach 
can again be applied to derive the equations to which the dynamics is 
reduced. Let us illustrate the procedure for the criticality of type (i.1). We 
want again to solve eqs, (5.1), this time near (X, i). Since we dispose of two 
control parameters we enlarge the expansion (5.7)-(5.9) to 

\ 

dldt = E dldt, + . - 

Substituting into (5.1) we obtain, to the first order in e, a homogeneous 
equation similar to (5.10), 
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The new point is, however, that owing to the type of degeneracy 
considered (p, = v,  = 2), ~ ( x ,  F) has now a two-dimensional null space 
(u,, u2) .  Hence eq. (5.64) admits solutions of the form 

To O(r2) the analysis proceeds as in Section 5.2, except that owing to 
the presence of the second parameter one gets the additional term 
2',(X,i).xl in the right hand side of eq. (5.11). As before this relation 
constitutes an inhomogeneous set of equations for the components of the 
vector x,, whose solution requires a solvability condition. But since the 
null space of 9 ( J ,  i )  and of its adjoint 9+ is now two-dimensional there 
will be two such relations, 

which will provide one with a set of closed equations for the undetermined 
amplitudes c, and c2. Introducing normalized amplitudes z, = EC,, 
z2 = &c2, and switching back to the original parameters one finally ends 
up with the following augmented set of equations replacing (5.22), 

dz1/dt = [(A - l )P1  + (p - L)P;]z, - P, ,z: - P12zlz2 - P2,z; 
(5.67a) 

provided that the coefficients Pij,  Q i j  (i, j = 1,2) do not all vanish 
identically. 

Let us analyze the bifurcation structure of the fixed points of these 
equations under the simplifying conditions P12 = Q,, = Q2, = 0. We 
notice that these conditions imply that eqs. (5.67) are invariant under the 
transformation (z,, z,)+(z,, -z2). Such situations may arise frequently 
in spatially distributed systems, as we see in the next chapter. 

The fixed point solutions are: 

the trivial solution 

which we take as the reference solution 
the semi-trivial solution 

the nontrivial solution 



5.8 Cascading bifurcations ~ I Y  

We notice that z,, can become equal to z;, for some l* = A(p) ,  in which 
case z;, vanishes according to the first relation, (5.68b) thus becoming 
equal to z,,. At this point the interaction between the two primary 
branches (5.68b) and (5.68~) produces, therefore, a secondary bifurcation 
as illustrated in Fig. 5.8. Other secondary bifurcation phenomena, 
including Hopf bifurcations can arise in eqs. (5.67) when (z;,, z;,) is used 
as reference state. 

In the example of a doubly-degenerate real eigenvalue of geometric 
muItiplicity two considered here one arrives at a set of two normal form 
equations dispIaying two order parameters. As noticed earlier in a 
different context, being associated with a two-dimensional dynamical 
system, the phase portraits of this set of equations can be classified 
exhaustively. In particular, they can only admit structurally stable 
attractors in the form of fixed points and limit cycles. 

The situation becomes more complicated in the bifurcations (ii j ( i v )  
listed above, where one obtains three or four coupled equations for an 
equal number of order parameters. Here the normal forms at which one 
arrives by perturbation theory can no longer be guaranteed to be - - 
universal in the vicinity of (I. ,  p).  In particular, the effect of higher order 
terms or of additional parameters has not yet been fully assessed: the 
complete stable unfolding of the problem remains an open question. 
Fortunately in many situations of physical interest the type of system and 
the nature of the dynamics impose a particular type of unfolding. The 

Fig. 5.8 Secondary ZI  

bifurcation branches 
arising from the 

interaction of two 
primary branches near 

a codimension two 
bifurcation, eqs. (5.68). 
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question of universality, although very important from the standpoint of 
mathematical completenes,~, thus becomes less relevant for the physics of 
the underlying system. 

A second characteristic feature of codimension two (and, of course, also 
higher than two) bifurcations is that, in addition to fixed points and limit 
cycles, new invariant sets of the flow are generated and give rise to global 
bifurcation phenomena in the normal form, even though the latter has 
been established by a local theory. In the presence of at least three order 
parameters these global bifurcations may lead to chaotic dynamics. We 
may thus conclude this section by stressing that codimension two 
bifurcations already mark the limits ofuniuersality in the description of 
nonlinear dynamical systems. As we shall see in the next two chapters, 
universal laws may still emerge beyond this range. These laws are, 
however, of a new type as they refer to a completely different level of 
description. 

5.9 Normal forms and resonances 

An interesting, alternative approach to normal forms, which historically 
was actually the first one developed in the literature, is to use the 
Poincark-Hartman-Grobman ideas discussed in Section 3.6 to try to 
determine the local homeomorphism transforming the nonlinear flow (eq. 
(3.26)) into a linear one (eq, (3.29)). We know that in principle this can be 
achieved when the linearized operator 9 has no zero or purely imaginary 
eigenvalues, but for the time being we ignore this condition and try to 
perform the reduction process explicitly. We expect that at some stage of 

the procedure the difficulties, if any, arising from critical eigenvalues will 
show up and impose certain natural restrictions. 

We begin by performing on the canonical form of eqs. (3.26) a linear 
change of variable (eq. (4.1 la)) transforming the linearized operator 9 
into a diagonal form A. We ignore at this stage the complications arising 
from eigenvalues of algebraic multiplicity strictly larger than the geo- 
metrical one and assume from now on that the Jordan blocks of A are of 
order 1. Eqs. (3.26) become, in these new variables y, 

where v is the transform of h under the action of the diagonalizing 
transformation. In many problems of interest v will be a formal power 
series of y. 

We now attempt to eliminate from v(y) as many nonlinearities as 
possible by means of a change of variables close to the identity: 
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where 4(z)  (to be determined by the process) is a vector polynomial of 
order r 2 2, that is to say a vector whose components are polynomials. A 
vector polynomial can also be viewed as the sum of vector monomials, 
that is vector polynomials having one nontrivial monomial component 
(e.g. z?" . . . zfn)  and all other components equal to zero; the number 
m = m, + . . . m, will be the order of the monomial. 

Substituting (5.70) into (5.69) one obtains 

To  eliminate the lowest nonlinearity of v (say of order r) it suffices to 
require that the following relation be satisfied: 

in which case (5.71) will reduce to 

dzldt = A .  z + (terms of order higher than r) (5.71 b) 

The central point in the process is therefore to solve eq. (5.72), known as 
the homologicul equation, for the transformation function 4. To this end 
we shall now open a digression and study the principal properties of the 
homological operator L A ,  eq. (5.72). 

Let o, , . . . , w, and u, , . . . , u, be the eigenvalues and eigenvectors of A. 
We shall show that (Arnol'd, 1980): 

the eigenvectors of LA are vector monomials of the form zmus, where 

the eigenvalues of LA are linear combinations of the { o m }  

T o  see this we evaluate the action of the two parts of LA on the vector 
monomial 

We have, noticing that us is an eigenvector of A, 

Furthermore, expressing explicitly the scalar products in the first part of 
LAwe have: 

or, remembering that A is diagonal ( A , ~  = ~ ~ 8 ; ; )  
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Combining (5.73b) and (5.73~) we arrive at 

which proves the statement about the eigenvalue problem of LA. 
We come back now to the solution of eqs. (5.72). We express both the 

unknown vector 6 and the (known) right hand side as sums of vector 
monomials, 

Substituting into the equation and identifying the coefficients of equal 
powers in each of the basis vectors us we obtain 

provided that the denominators are not equal to  zero. This condition is 
violated when one of the eigenvalues can be expressed as a linear 
combination (with integer coefficients) of at least two eigenvalues, 

Now, this is precisely what happens in the vicinity of a bifurcation point. 
For instance, in a Hopf bifurcation one has a pair of complex conjugate 
eigenvalues w ,  , w ,  with vanishing real parts, 

We refer to these situations as resonances -for instance, eq. (5.78) defines a 
resonance of order three. The point is that in the presence of resonance eq. 
(5.76) does not make sense and the linearization procedure fails. 

One way out of this difficulty is to give up the idea of eliminatinggall the 
nonlinearities and to limit oneself only to the ones that are not associated 
with resonance. In p~actical terms we include in eq. (5.72) only the 
nonresonant part of v h )  and augment consequently eq. (5.71 b) with the 
missing resonant  art, 
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where wr(z) is a sum of resonant monomials, 

with 

As an example, in the presence of Hopf bifurcation, the unique resonant 
monomial has the form z:z, or, since z, = z:, 1 z, I 2  - z, . This is, precisely, 
the nonlinearity that we found in the perturbative approach of Section 5.7 
(eq. (5.53)). 

In practice the computation of the normal form is carried out exactly at 
the bifurcation (resonance) point. An appropriate unfolding exhibiting 
the system's parameters must be performed subsequently in the vicinity of 
this point. As mentioned in the previous section the question of the 
universality of the unfolding is still an open problem for most of the high 
codimension bifurcations. 

The explicit construction of the normal form by the above method for 
the Brusselator model (eqs. (2.44)) and for two coupled Brusselators has 
been carried out by Wang (1983) and Wang and Nicolis (1987). In most 
cases of interest the calculations are long and tedious. Fortunately the 
advent of symbolic calculus has opened new possibilities. Normal form 
calculations that would have been very hard to imagine just a few years 
ago can now be performed on a routine basis (Rand and Armbruster, 
1987). 

An elegant variant of classical normal form theory appealing to 
geometrical ideas related to the center manifold has been developed by 
Arneodo, Coullet and coauthors (Arnkodo and Thual, 1988; Coullet and 
Spiegel, 1983). One seeks for solutions of eqs. (3.26) of the form 

where u,,~ are the critical eigenvectors of the linearized operator 9 in the 
sense that they are associated with the eigenvalues which have vanishing 
real parts at criticality, and uric. are the remaining noncritical eigenvec- 
tors. The amplitudes zi and wj constitute a new set of variables. Their 
equations of evolution are obtained by substituting (5.80) into (3.26) and 
by using the linear independence of {ui). One obtains: 



5 Nonlinear behavior around fixed points 

d being the total number of critical modes. 
From the second set of eqs. (5.8 1) it is clear that at or near criticality the 

wj vary on a time scale that is much faster than the time scale ofz,, since the 
eigenvalues of (Mjj.] have a finite real part. It must therefore be possible 
to perform some kind of adiabatic elimination, 

which upon substitution into the first set ofeqs. (5.81) gives a closed set of 
equations for ( z , } ,  

Eqs. (5.82) can be regarded as the equations of the center man$old on 
which the relevant part of the dynamics lies (Guckenheimer and Holmes, 
1983), whereas eqs. (5.83) should be equivalent to the normal form 
equations. The explicit construction of W j  and q i  can be carried out by 
perturbing around the critical values of the control parameters and 
involves, as one might have expected, solvability conditions ensuring the 
invertibility of the homological operator. In many instances the pro- 
cedure can be substantially simplified by invoking the symmetries 
satisfied by the underlying system. 

We end this section by pointing out that, in addition to the distance to 
criticality, there exists a second general mechanism ensuring the reduction 
of a multivariate system into a low order dynamics. Indeed, in many cases 
physical systems away from any sort of criticality may still give rise to 
widely separated time scales due to order of magnitude differences in the 
values of parameters and/or the state variables. For instance, in chemistry 
a catalytic reaction under laboratory conditions usually involves catalyst 
concentrations that are much less than the initial or final product 
concentrations, and rates that are much higher than the intrinsic rates in 
the absence of catalyst. As a result, some intermediate steps involving 
catalytic complexes proceed very quickly. In combustion the activation 
energies of some of the exothermic reactions are very high so these 
reactions proceed, at least in the early stages, much more slowly tlian does 
energy transport. Similar examples can be found in hydrodynamics, 
optics, biology and*-other fields. 



To formulate this problem quantitatively one performs an appropriate 
scaling of variables and parameters casting the initial set of equations into 
the form 

dX/dt = F(X, Y, E )  (slow variables) 

&dY/dt=G(X,Y,&) (fastvariables) (5.84) 

where E << 1 accounts for the difference between scales. Tikhonov 
(Wasow, 1965) has spelled out the conditions under which from the 
second set of eqs. (5.84) the variables Y can be eliminated in the limit E+O 
in favor of X, 

thereby reducing the problem to a closed set of equations for the slow 
variables, 

The 'equation of state' (5.85a) defines the slow manfold present in the 
problem. This manifold carries the relevant part of the dynamics and 
plays therefore a role analogous to the center manifold of bifurcation 
theory. An illustration of the reduction process to this manifold is 
provided by the ideas of a rate-limiting step and of a quasi-steady-state 
approximation familiar in chemistry and, most particularly, in enzyme 
kinetics; or by the overdamped harmonic oscillator, where Newton's 
equation of motion reduces to a first order equation in which inertia is 
discarded. For further illustrations of this important point we refer the 
reader to Problem 5.10. 

Problems 

5.1 Consider the dynamical system 

(a) Compute the fixed points and their linear stability. (h) Study the 
eigenvalue problem of the linearized operator in the limit 3.-0. Is j. = 0 
a bifurcation point and if not, which among the conditions of theorem 1 
of Section 5.1 is not fulfilled'! 

5.2 The Lorenz model (eqs. (3.4)) gives rise to a pitchfork bifurcation at 
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r = 1. Derive the normal form equation in the vicinity of this point, 
compute the bifurcating branches and check their stability. 

5.3 Show that in the hoop problem (Sections 1.2 and 2.1) the new equilibria 
beyond o, appear through a pitchfork bifurcation. Derive the normal 
form equation of this bifurcation and compare with eq. (2.9). 

5.4 In the region of three fixed points the Schlogl second model (eq. (2.45b)) 
and the Semenov model (eq. (2.47)) exhibit two limit points in the 
variable versus control parameter diagram. Derive the explicit values of 
the coefficients of the normal form equation (5.36) around these points. 

5.5 The Saltzman model (Problem 4.8) generates a Hopf bifurcation for the 
parameter values h = 1 ,  a > h. Using the procedure outlined in Section 
5.7 and Appendix A2 derive the normal form equation in the vicinity of 
h = 1. 

5.6 Compute the amplitude of the oscillations of the variables X and Y and 
the correction to the critical frequency R, = A in the Brusselator model 
slightly above its Hopf bifurcation point. 

5.7 Show that the coefficient P ,  in the normal form of the Hopf bifurcation 
(eq. (5.33)) is still given by eq. (5.25). This coefficient happens to be real 
in the Brusselator model. Is it also real in the Saltzman model? 

5.8 Consider the dynamical system 

Show that a = - 2A is a bifurcation point of quasi-periodic solutions 
emerging from the reference state (x,(t), y,(t), z,) where x,, y, are periodic 
and z, time-independent. Hint: Switch to cylindrical coordinates 
(Langford, '1 979). 

5.9 Rederive the normal form equations for the Brusselator and Saltzman 
models using the procedure of Section 5.9 (Wang and Nicolis, 1987). 

5.10 The rate equations for the Oregonator (eq. (2.43)) read, after 
appropriate scaling transformations of variables and parameters (Tyson, 
1976) 

1 
dyldz = - (  -y - xy f fi) 

S 

where s >> 1 and f, q,  w are of the order of or less than unity. (a) Derive 



the conditions of Hopf bifurcation using f as the control parameter. 
(b) Using Tikhonov's theorem (Section 5.9) perform the adiabatic 
elimination of variable x and check whether the results of (a )  subsist in 
the reduced set of equations for y and 2. 



CHAPTER SIX 

Spatially distributed 
systems, broken 
symmetries, pattern 
formation 

6.1 General formulation 

As we saw in Section 3.1 and throughout Chapter 2 the macroscopic 
description of systems composed of many particles gives rise, typically, to 
state variables that arejelds in the sense that they depend continuously on 
the space coordinates. The evolution laws of these variables are expressed 
as partial differential equations of the form 

They involve spatial derivatives like the Laplacian of temperature V 2 T  or 
concentration V2c, or the gradient of the velocity Vv and include as 
particular cases the equations of fluid dynamics and the reaction- 
diffusion equations. A dynamical system of the form (6.1), hereafter 
referred to as the spatially distributed system possesses, in principle, an 
infinity of variables - the values of the fields {Xi(r, t)) at each point in 
space coupled through the transport phenomena generated by the spatial 
inhomogeneities. As shown in Section 3.1, in some cases this complication 
can be bypassed by a Galerkin expansion (eq. (3.2)) truncated to the first 
few modes. The present chapter is devoted to problems where this 
reduction is not applicable and spatial dependences need to be incorpor- 
ated explicitly in the description. We shall focus more specifically on the 
new features arising from the presence of spatial degrees of freedom. 

The ideas and techniques developed in the last three chapters suggest 
the following canonical procedure for studying eqs. (6.1). 

( i )  First a suitable reference state X,, which is an exact solution of eqs. 
(6.1), is identified. The choice of X, is motivated by physical 
arguments. Typically X, is a state describing the 'simplest' behavior 
observed in the system - for instance, the state of rest in the thermal 
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convection (Benard) problem (Section 1.3), or the uniform steady 
state in a chemically reacting system (Section 1.4). 

. (ii) The next step is to test the stability of X, against perturbations. To 
reduce the initial nonlinear problem to a linear one, one needs to 
extend the principle of linearized stability of Section 3.6. This 
extension, which amounts essentially to redefining an appropriate 
'distance' in an infinitely-dimensional space, has been carried out in a 
number of cases (Sattinger, 1972) and will be taken for granted from 
now on. In the presence of spatial inhomogeneities the linear stability 
operator replacing the operator 2 in eqs. (3.29) is expected to 
contain spatial derivatives. As a result the eigenvectors will span an 
infinite-dimensional functional space and there will be an infinity of 
eigenvalues associated with them. As we shall see in the subsequent 
sections the most important new element arising at the level of 
stability analysis from the presence of spatial derivatives in the 
evolution laws is the possibility of spontaneous symmetry breaking 
instabilities, that is to say, instabilities with respect to  space- 
dependent perturbations which are less symmetric than the evolution 
laws o r  the reference state X,. 

(iii) Finally, the nonlinear behavior around X, beyond the instability 
point is explored by a perturbation method closely following Section 
5.2, the aim being to obtain normal form equations for the amplitude 
of the solutions to the dominant order. As we shall see the form of 
these equations will depend crucially on the size of the system. In 
systems of small spatial extent much of the analysis of the previous 
chapter will extend straightforwardly. But in systems of large spatial 
extent some new features will appear, due to the interaction between 
the spatial degrees of freedom. 

Spatially distributed systems described by state variables in the form of 
fields also arise in the microscopic description of the electromagnetic field 
and of its coupling with matter as well as in elementary particle physics. 
We do not address this type of problem here. It is worth pointing out, 
however, that the origin of many of the symmetry-breaking phenomena 
which arise in field theory and particle physics is quite analogous to that 
arising in the macroscopic physics of spatially distributed systems. 

6.2 The Benard problem: reference state and 
linearization of the Boussinesq equations 

We shall apply the above described procedure to the problem of the 
thermal convection instability, whose quantitative formulation in the 
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Boussinesq approximation was laid down in Section 2.5. We choose as the 
reference solution the (stationary) state at rest v = 0 for which eqs. (2.33) 
and (2.35) reduce to (cf. also eq. (2.32)) 

In view of the geometry of the experiment and the symmetries involved in 
the problem we expect that p and T vary only along the z direction. 
Integration of eq. (6.3) using the boundary conditions (2.36) leads then to 

with 

Substituting into eq. (6.2) and integrating once again with respect to z one 
finds 

Notice that the characteristics of the system in this state are independent 
of the kinetic coefficients q and A which appear in the full balance 
equations. 

We now study the effect of perturbations on the system around the 
above reference state (T,, p,, p,, v, = 0). Specifically, we set 

T = T,(z) + O(r, t) 

P = + 6p(r, t )  

P = p,(z) + 6p(r, t )  

v = 6v(r, t): Bv = (u, v, w) 

and linearize the equations of Section 2.5 with respect to 0, Bp, 6p, 6v. 
Since 6v is a first order term it can only be multiplied by VT, in eq. (2.35). 
The linearized version of this equation is therefore, using eq. (6.4): 

or, introducing the thermal diffusivity coefficient 
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We consider next the Navier-Stokes equation (2.33). Substituting (6.6) 
and taking the reference state relations (6.4) and (6.5) into account we 
obtain 

Introducing the kinematic viscosity 

and evaluating 6p from the equation of state (2.32), 6p = -poaO, we 
obtain the more convenient form 

Eqs. (6.8) and (6.10) constitute the basic equations of linear stability 
analysis of the Benard problem. The introduction of the kinetic coeffi- 
cients K and v instead of the initial ones d and is doubly advantageous. 
First, IC and v vary less sensitively with the material considered. Second, 
the parameters p,, c ,  are absorbed in the definition of these coefficients 

' 

(p, still subsists in the pressure term, but this is immaterial as we shall see 
shortly). Still, eqs. (6.8) and (6.10) contain no less than five control 
parameters (p,  K,  v, ga, d), d being introduced by the boundary conditions. 
Since the objective of stability theory is to identify the values of control 
parameters at which a qualitative change of behavior takes place, it is 
obviously advantageous to get rid of as many spurious parameters as 
possible. A powerful first step in this direction is to express the equations 
in dimensionless form, the additional advantage of this being to allow for 
comparison of experiments obtained under different conditions. In the 
present problem the following dimensional quantities are involved: 

For the independent variables : 
time t ,  [TI 
space r, [L] 

For the dependent variables: 
temperature 6 ,  [K] 
velocity 6v, [LT- '1 
pressure 6p, [ML- 'T- 2 ]  

To switch to dimensionless form we seek combinations of parameters 
present in our problem that have the above dimensions. This leads to the 
following scaling: 



Substituting (6.11) into (6.8) and (6.10) to which we also add the 
incompressibility condition (2.28) and suppressing the primes to simplify 
notation we obtain the following dimensionless form of the linearized 
Boussinesq equations: 

dQ/at = Rw + V20 

asvlat = P( -vbp + v26v + 61,) i (6.1 2) 

div 6v = 0 

where we introduced the dimensionless parameters 

R = agf ld4 /v~  = agATd3/vu (Rayleigh number) 
(6.13) 

P = v/rc (Prandti number) 

We have thus reduced the number of parameters to two. An additional 
advantage of the reduction to dimensionless form is that one of the new 
parameters, the Rayleigh number, combines in an elegant and compact 
way the factors at the origin of the instability (the numerator of the first eq. 
(6.13 )) and the stabilizing factors (the denominator). 

One may simplify eqs. (6.12) further by reducing them to a closed form 
for (6,dv). The elimination of 6p can be achieved by taking the curl of both 
sides of the second relation (6.12). Introducing the uorticity o, 

we obtain 

Taking once more the curl of this latter relation and using the vector 
identity V x (V x a )  = V(div a )  - v2a  we obtain, using the first relation 
(6.12): 

Projecting this equation on the z-axis we finally obtain 
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Together with the first relation of (6.12) this equation constitutes a closed 
set of two equations for (8, w). Their analysis, which will provide us with 
the solution of the stability problem, is carried out in the next section. 

6.3 The Benard problem: linear stability analysis 
for free boundaries 

Eqs. (6.12) and (6.17) constitute a set of linear homogeneous equations of 
first order in time with constant coefficients. They therefore admit 
solutions of the form (cf. eq. (4.1)): 

Substituting back to the original equations one finds 

We notice that in the right hand side spatial derivatives appear through 
operators containing a2/dx2 + a2/dy2 and a2/az2 in an additive fashion. 
Eqs. (6.19) admit therefore solutions of the form 

where O,,, w,, are space-independent and $,, +, are, respectively, 
eigenfunctions of the above two operators. 

To solve the eigenvalue problem for the 'transverse Laplacian' 
V: = a2/dx2 + a2/dy2 one notices that, in the limit of a large aspect ratio 
(cf. Section 1.2), the system can be treated as being unbounded in the 
horizontal direction. Using familiar arguments similar to those applied in 
wave mechanics one realizes that such systems can be modeled adequately 
by periodic boundary conditions, in which case 

The corresponding eigenvalue, obtained by acting on (6.21a) by V:, is 
then 
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where the periodicity of boundary conditions is ensured by the property 

Here L,, L,  are the system size along the s and y directions and n,, n, take 
integer values. 

Turning now to the eigenvalue problem of d2/dz2, we want to solve 

subject to the boundary conditions (2.36) and (2.37) and to (2.38) and 
(2.39) or (2.40)-(2.42). Since we are dealing here with the perturbations 
rather than the initial variables, eqs. (2.36) and (2.37) reduce to 
(remembering also that we have rescaled our variables and parameters) 

For simplicity we shall also choose the free boundary conditions, 

Under these conditions the solution of the eigenvalue equation for d2/dz2 
becomes 

$, = sin nnz, 0 I z 1 (6.23a) 

where n is an integer. Substituting into (6.20) we obtain 6 and D in the 
form 

Since k,, k,,  and n determine the wavelength of the perturbations along 
the x, y and z directions, the amplitudes O,,, w,, may be interpreted as the 
coefficients of expansion of g, G in Fourier series. We refer to them as 
normaI modes. Substituting further eq. (6.24) into eqs. (6.19) we see that 
space dependences are factored out on both sides and we obtain a set of 
purely algebraic equations for the normal modes, which for comparison 
with Chapter 4 we write in the suggestive form 
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This system of equations admits nontrivial solutions provided that the 

. 'determinant of the 2 x 2 matrix acting on (k) vanishes. This condition 

is nothing but the characteristic equation (eq. (4.5)) which assumes here 
the explicit form 

It links the eigenvalue w to the spatial characteristics of the perturbations 
(k = (ki + kt)'12 and n) and to  the control parameters R and P which take 
into account the properties of the material and the constraints acting on  
the system. 

We notice from (6.26) that for given k and n the sum of eigenvalues is 
always negative, 

It follows that the passage through an  instability (if any) can only take 
place when one of the (real) roots goes through zero while the second root 
remains negative, 

This is known in the literature of hydrodynamics as the principle of 
exchange of stability (Chandrasekhar, 1961). In this marginal state the 
characteristic equation (6.26) reduces to 

which no longer involves the Prandtl number. In the spirit of linear 
stability analysis (Chapter 4) we interpret this equation as a relation 
between the control parameter R and the characteristics of the perturba- 
tion (k, n): 

If R exceeds the value of R(k, n) given by the above equation the product of 
the roots in eq. (6.26) will become negative. This corresponds to the 
situation 

in other words for R > R(k, n) the reference state is unstable, behaving as 
a (generalized) saddle. O n  the other hand for R < R(k, n) the product of 
the roots w ,  , o2 is positive and the additional condition o, + w2 < 0 (eq. 
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Fig. 6.1 Marginal 
tability curve R ( k )  
(6.30) with n = 1 )  
rating the domain 
;ymptotic stability 
om the domain of 
ability of the state 
rest in the Benard 
blem with free-free 
~ndary conditions. 

(6.27)) allows us to conclude that both cu, and w,  are negative and hence 
that the reference state is asymptotically stable. 

Suppose now that one performs a Bknard experiment in which the fluid 
is initially at uniform temperature (R = 0, eq. (6.13)). By gradually 
increasing the temperature gradient R itself increases from values 
R < R(k, n) to values tending to R(k, n). The set of values of R for which 
the system will first penetrate into the domain of instability is, obviously, 
given by curve (6.30) with n = 1. The resulting function R(k) is depicted in 
Fig. 6.1. It possesses a minimum at 

or, reestablishing the initial (dimensional) variables through (6.1 1 ): 

The corresponding value R, of the Rayleigh number 

gives the frontier between asymptotic stability (R < R,) and instability 
(R > R,). It is remarkable that this transition is mediated by a single 
universal parameter rather than by parameters reflecting the detailed 
structure of the material or of the experimental setup. 

A most important point in connection with eqs. (6.31) and Fig. 6.1 is 
that R, corresponds to  nontrivial values of k and n, that is to say, to critical 
perturbations having a finite characteristic wavelength in the x, y and z 
directions given by 

unstable 

I 
I 

asymptotically 
stable 

I 
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with (k:= + k;;)lt2 = kc = z/ J2d. It follows that the dominant mode in 
the vicinity of the instability will now be spatially inhomogeneous. This is 
the signature, at the level of stability analysis, of the symmetry breaking 
character of the transition. We thus have a simple elegant explanation of a 
large body of the experimental facts on pattern formation surveyed in 
Chapter 1. We notice that in the present problem the characteristic 
wavelength is extrinsic, in the sense that it is directly proportional to the 
depth of the layer. We defer further comments on this point to Section 6.4 
dealing with chemical symmetry-breaking instabilities. 

It is instructive to explore the vicinity of the critical state (kc, R,). By 
continuity we expect that o2 will remain a finite negative number while 
/ cu, I will be a small number. We may compute i t  by neglecting cu2 in eq. 
(6.26) and by expanding systematically around the critical state, taking 
eqs. (6.30b(6.31) into account. To  the first nontrivial order a straightfor- 
ward algebra leads to 

a x a(R - R,) - b(k - kc)2 (6.33a) 

where the positive numbers a and b are given by 

Fig. 6.2 depicts the dispersion relation (6.33a) for various values of R. We 
notice that all the curves have a maximum at k = kc. For R = R, the 
o = o(k) curve is tangent to the k-axis, yielding cuC = 0 as expected. For 

Fig. 6.2 Graph of w O.5 

versus k in the Benard a 

problem close to the 
instability threshold 
R = R, (eq. (6.33a)). 
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Table 6.1 

R c  k c  

free-free 657.51 2.221 
rigid-free 1 100.65 2.681 
rigid-rigid 1708 3.1 17 

R > R, part of the curve lies above the k-axis, implying that there is a zone 
of unstable modes of which the fastest growing is the one at k = kc. Now, 
when the lateral extension L of the system gets very large the spectrum of 
ks becomes continuous according to  (6.21~). The number of unstable 
modes for R r R,, however small I R - Rc[ might be, tends then to 
infinity. This is typical of most of the instabilities encountered in spatially 
distributed systems of Iarge extent. 

Notice that for values of k significantly different from kc the left part of 
the dispersion curve crosses the negative o-axis and subsequently 
continues in the negative k direction symmetrically with respect to this 
axis. This is a direct consequence of the fact that the characteristic 
equation (6.26) remains invariant under the transformation k-, - k. 

The solution of the linear stability problem for other types of boundary 
conditions is carried out  in Chandrasekhar's classical monograph 
(Chandrasekhar, 196 1 ). Table 6.1 gives the critical values for the three 
most widely studied cases. We notice that rigid boundaries exert a 
stabilizing influence, as one might have guessed from the very fact that 
they force all three components of the velocity to vanish on the two 
horizontal boundaries. 

6.4 Reaction-diffusion systems. The Turing 
instability 

We turn next to chemically reacting systems and choose as the reference 
state a time-independent and spatially uniform distribution of chemicals 
in the reactor. In the experimental setup of an open reactor described in 
Section 1.4 this will be achieved for all practical purposes if the depth of 
the reactor along the feeding direction is much less than its lateral 
extension. Alternatively one may adopt the pool chemical approximution 
whereby in a closed reactor the initial products are in large excess. The 
intermediates then behave as an open subsystem during a substanljal 
period of time. Depending on the case we shall adopt for them fixed 
(Dirichlet), zero flux (Neuman) o r  periodic (simulating an unbounded 
system) boundary conditions. 
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Let (Xis} be the uniform steady state reference solution (in the case of 
fixed boundary conditions this implies that the boundary values of (Xi) 
'should be kept equal to {Xis}). Setting 

substituting into eqs. (2.27) and linearizing with respect to x i  we obtain 

where v i  denotes the overall rate of change of Xi due to the reactions. Since 
the coefficients dvi/dXj and Di are time-independent, eqs. (6.35) admit 
solutions of the form 

where u is space-independent and accounts for the structure of x as a 
vector in concentration space. Now by construction dvi/dXj are space 
independent, and the Laplacian is the only operator acting on space 
coordinates in eqs. (6.35). It suffices therefore to choose 4(r) to be an 
eigenfunction of this operator subject to the boundary conditions that 
apply to the problem under consideration: 

Here m is a set of indices labeling the (infinite) set of eigenfunctions and the 
minus sign in front of k i  accounts for the fact that V2 is a dissipative 
operator having nonpositive eigenvalues. Notice that k, = 0 corresponds 
to a uniform distribution and k, # 0 to a nonuniform one. 

Substituting (6.36) and (6.37) into (6.35) one realizes that the space and 
time dependences are factored out on both sides of the equations. One is 
thus left with a homogeneous set of algebraic equations for the compo- 
nents ui of the vector u of the form 

This system admits a nontrivial solution provided that the characteristic 
equation (eq. (4.5), see also (6.26)) is satisfied: 

In this equation it is understood that the coefficients (doi/dXj), depend on 
the control parameters present in the problem such as the temperature 
or the concentration of an initial chemical (like the parameter B in the 
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Brusselator, eq. (2.44)), with the exception of the diffusion coefficients 
which appear explicitly through the terms ~ ~ k i .  In the limit where all 
diffusion coefficients are identical, Di = D, one can absorb these terms in a 
redefinition of w, 

Expressed in terms of w' ,  eq. (6.39) reduces, then, to the characteristic 
equation of a spatially uniform system. We know by now that such a 
system may admit bifurcations associated with one real eigenvalue 
crossing zero (w' = 0), a pair of complex conjugate eigenvalues crossing 
the real axis (Rew' = 0, Im w' # 0), or various higher codimension 
situations. In each case at such a transition point the eigenvalue w of the 
original system will have by virtue of (6.40) a real part smaller than or 
equal to zero, given by - Dk;. If follows that 

the first instability in a system having equal diffusion coefficients will be 
associated with spatially homogeneous solutions (k, = 0); 
if k, = 0 is excluded by the boundary conditions diffusion will play a 
stabilizing role, postponing the instability that would take place in its 
absence. 

Let us turn now to the general case where at least two among the 
diffusion coefficients are unequal. Excluding for the moment higher 
codimension bifurcations the following possibilities can be envisaged. 

A A real eigenvalue crosses zero at criticality, mc = 0 

Eq. (6.39) provides a relationfln, k i )  = 0 between the control parameter 3, 
contained in ( d v i / a X j ) ,  and the eigenvalue of the Laplacian k i  which 
accounts for the spatial characteristics of the perturbations. This relation 
is of 2nth degree in'k and is invariant under the transformation k + - k. 
Solving with respect to A, 

one expects to find a marginal stability curve having at  least one 
extremum. Two typical cases are-depicted in curves (a) and (b) of Fig. 6.3, 
limited for compactness to the positive k-axis only. 

In (a), as A is varied from values corresponding to asymptotic stability 
(here below curve (a)) to values leading to instability (above curve (a)), the 
first transition will take place at I I L  for which k, = 0. This corresponds to a 
space-independent situation. In other words, the dominant mode in the 
vicinity of the first bifurcation point will be a homogeneous one and the 
analysis will reduce to that carried out in the previous two chapters. 
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Fig. 6.3 Two typical 
outcomes of linear 

stability analysis 
around a uniform 

steady state in a 
spatially distributed 

reaction-diffusion type 
system. (a) The 

marginal stability 
curve I ( k )  presents an 

extremum at k = 0, 
implying that near the 

instability threshold 
the system will remain 

homogeneous in space. 
(b) The marginal 

stability curve i ( k )  
possesses an extremum 

at a nontrivial value 
k = k  implying the 

m~' 
emergence of solutions 

displaying broken 
symmetries beyond the 

instability threshold. 

The situation is very different in case (b) .  Here the extremum A: occurs 
at a nontrivial value km = kmC where the dominant mode of the solutions 
has a nontrivial space dependence displaying a characteristic length 
1, kiC1. We are thus in the presence of a symmetry-breaking instability 
similar to the one observed in the Benard problem (Fig. 6.1 ) with one most 
important difference: the characteristic length I, is here completely 
intrinsic since it is related by (6.41) to the system's parameters indepen- 
dently of geometry and boundary conditions. We shall refer to this type of 
instability as the Turing instability, since it was foreseen in Turing's 
historic paper (Turing, 1952) on the chemical basis of morphogenesis. 
This type ofinstability allows one to understand, a t  least qualitatively, the 
experimental data described in Figs. 1.11-1.13. 

It is interesting to identify the reasons why symmetry-breaking 
instabilities in chemistry can give rise to intrinsic characteristic lengths, 
whereas in hydrodynamics these lengths are always extrinsic. In chemistry 
one witnesses the coexistence of a transport phenomenon, whose 
characteristic parameter is a diffusion coefficient D of dimensions L ~ T -  ' 
and of a local relaxation phenomenon whose characteristic parameter is a 
rate constant of dimensions T - ' .  From these one can construct a 
combination 1, =: ( ~ l k ) " ~  having the dimensions of a length. O n  the other 
hand in hydrodynamics one still has a diffusive heat o r  momentum 
transport, but one lacks a preferred characteristic time since hy- 
drodynamic modes display a continuum of frequencies accumulating to 
zero. 

As in the previous section, it is interesting to derive for the two cases 
depicted in Fig. 6.3 the dispersion relation linking w to k in the vicinity of 
the criticality. In the limit of small w all terms of (6.39) except the first and 
zero order ones in o can be neglected. This gives rise to an equation of the 

I stable 
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form 

(polynomial of 2(n - 1)th degree in k,) - co 
= (polynomial of 2nth degree in k,) 

in which the right hand side vanishes at criticality on the grounds of eq. 
(6.41). Expanding (A, k,) locally around (I,, , k, ) and taking into account 

C 

the existence of an extremum at k,, we obtain a set of equations similar to 
(6.33a), 

w % a - ) - b k  for kmC = 0 (Fig. 6.3, curve (a)) (6.42a) 

and 

co z a ( l  - I,) - b(k, - k )' for kmC + 0 (Fig. 6.3, curve (b)) 
"'c 

(6.42b) 

These relations are depicted in Figs. 6.4(a),(b). 
A concrete illustration of eq. (6.42a), of curve (a) of Fig. 6.3 and of Fig. 

6.4(a) is provided by one-variable systems such as the Schlogl model (eq. 
(2.45)). Of more interest is the two-variable Brusselator model, which 
undergoes a Turing instability. Using expressions (3.28) of the rate 
functions and the uniform steady state solution (A,  BIA) as the reference 
state we obtain the characteristic equation 

B - 1 - ( ~ , k i  + co) A 2  
0 

- A ~  - (D2k2 + W) 

or in an explicit form 

Setting co = W, = 0 at the instability threshold and using B as a control 
parameter we find the explicit form of eq. (6.41) as 

Fig. 6.4 Graph of w 
versus k for a 

7eaction-diffusion type 
system in the vicinity 

0.1 of an instability: (a) 
the (w, = 0, k,, = 0) I I 0 

1 km instability, curve (a)  of -1 

Fig. 6.3; (b) the 4.1 

Turing instability 
-0.2 

(a, = 0, k,, f 01, 
curve (b) of Fig. 6.3. (0)  (4 

- 

I I 

- 

- 
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This function admits a minimum 

for 

We see that, as anticipated above, B, and k,, are intrinsic. This statement 
must be tempered, however, by the observation that, in principle, not all 
values of k, are accessible. Indeed, taking for concreteness periodic 
boundary conditions, we have k, - (2n/L)m where L is the extension of 
the system and m is an integer. In actual fact, therefore, for L finite the 
critical value k,, will not be given by (6.45b) but by the closest number to 
this expression having the form (2n/L)m. 

B A pair of complex conjugate eigenvalues crosses the 
imaginary axis at criticality, RemC = 0, ImmC # 0 

Eq. (6.39) gives rise to two equations for the real and imaginary parts of 
the critical eigenvalue. Setting Rew, = 0, one obtains two equations 
linking A, Irnw, and k i .  Eliminating Imw, between these two equations 
one finds a new relation A = A(k2) replacing eq. (6.41). Finally substitu- 
ting back into one of the initial relations one obtains the value of Imw, in 
terms of k, and other noncritical parameters that may be present in the 
problem. 

In principle, both of the situations depicted in Fig. 6.3 can take place 
here as well. The real part of the eigenvalue close to criticality will then 
behave as in Fig. 6.4. Since Imw, # 0 we expect to have the onset of 
time-periodic solutions with an intrinsically determined period beyond 
the instability threshold. We may refer to this phenomenon as time 
symmetry-breaking. In Fig. 6.3, curve (a) and Fig. 6.4(a) these emerging 
solutions will be uniform in space, whereas in Fig. 6.3 curve (b) and Fig. 
6.4(b) they will display a nontrivial space dependence associated with 
space symmetry-breaking. We will speak, then, of spatio-temporal pat- 
terns. 

The first type of situation is the only one to arise in systems involving 
two variables. Taking again the example of the Brusselator and setting 
Reul = 0 in eq. (6.43) we find 
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The imaginary part of this equation gives a relation between k, and the 
control parameter B 

which has the form of curve (a) of Fig. 6.3. The minimum of this marginal 
stability curve is (k, = 0, B, = + 1 ) which is nothing but the onset of 
oscillatory instability in the spatially uniform Brusselator (eq. (4.38)). On 
the other hand, taking the real part of (6.46) one obtains the expression of 
the oscillation frequency 

(Im w ) ~  = + [A2D1 - (B - 1)D2]k2 + D1D2k; (6.47b) 

which reduces to (Imwc)2 = A 2  at the instability threshold (k, , B , ) .  We 
see, again, that Tmw, is completely intrinsic, as it is determined entirely by 
the system's parameters. Notice that criticality at k, = 0 is forbidden for 
fixed boundary conditions. In this case the critical mode will be the mode 
lying closest to zero allowed by these conditions. 

Let us now turn to the possibility that the oscillatory instability is 
accompanied by space symmetry-breaking. To realize this, systems 
involving more than two variables are necessary. To see how this can 
happen we write the characteristic equation (6.39) of a three-variable 
system in the form 

where T and A have the same interpretation as in eq. (4.17a) and S is the 
sum of principal minors of rank two of the coefficient matrix of eqs. (6.38) 
with o = 0. Let us look at the conditions imposed on (6.48) by an 
oscillatory instability. We have, at the instability threshold, 

Inserting into eq. (6.48) and equating real and imaginary parts we find: 

T(A, k,) = w ,  < 0 

S(2, k,) = R2 > 0 

A(1, k,) = R2w3 < 0 

from which follows a relation linking 1 to k,, 
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The point is that this equation is of sixth degree in k,. As a result the A 
versus k, curve can have a minimum A, at a nontrivial value k, , which i.s 
precisely the property that we wanted to establish. 

C Competing instabilities 

From the above discussion it follows that a given system can exhibit 
several different kinds of instability associated with Fig. 6.4(a) or (b), the 
imaginary part of the critical eigenvalue at the threshold being possibly 
zero or nonzero, depending on the system under consideration. In a 
concrete physical situation the particular type of instability that will be 
realized first will be the one associated with the lowest lying threshold, as 3, 
is gradually increased from values corresponding to asymptotic stability 
in Fig. 6.3. This, in turn, is determined by the parameters present in the 
problem other than the one controlling stability. As an example let us 
derive the condition under which the Turing instability precedes the 
oscillatory instability in the Brusselator. Referring to Fig. 6.3 we must 
require that the minimum value B,  given by (6.45a) is less than the value 
given by (6.47a) evaluated at k, = 0, 

This imposes the following inequality on the ratio of diffusion coefficients, 

entailing that the autocatalytic species X must diffuse less efficiently than 
species Y. This could be anticipated from the intuitive argument that in 
the case of fast diffusion of the autocatalytic species (responsible for the 
instability) the nascent spatial pattern would tend to invade the whole 
system, thereby reestablishing the initial uniformity. 

When the equality sign is realized in (6.50) the thresholds for Turing 
and oscillatory instabilities will coincide. This is a higher codimension 
instability near which the complex phenomena already alluded to in 
Section 5.8 could arise. 

Another mechanism by which criticalities associated with Fig. 6.3 could 
compete is when, for a given value of the control parameter A, the 
marginal stability curve for a given type of instability, say curve(b), has 
two extrema at two different values of k,. Since the A(k2) curve is 
symmetric with respect to the A-axis we need for this at least four variables. 
In such a situation, which in the language of Section 5.8 corresponds also 
to a higher codimension instability, the linearized operator would have 
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two nontrivial zero eigenfunctions at criticality (see eq. (6.36)). One would 
then be led to a situation similar to the one analyzed in eqs. (5.65)-(5.68). 
Typically the two values of k, will be incommensurate. This can lead to 
complex, spatially quasi-periodic patterns arising from the mixing of the 
corresponding modes. 

In a small system the above two-mode competition can be realized in an 
alternative way. Indeed, remembering that only the values (2n/L)m, m 
integer, are permitted for k,, we may require that at a given value of A 
slightly above the (generally inaccessible) minimum A, of curve(b) in Fig. 
6.3 two permitted values of k, lie on the marginal stability curve. This is 
again a higher codirnension instability which can be handled by the 
methods of Section 5.8 (Mahar and Matkowsky, 1977). 

6.5 Further comments on linear stability in 
spatially distributed systems 

The analysis of Sections 6.3 and 6.4 suggests strongly that the transition to 
instability in spatially distributed systems presents some universal 
properties that are largely independent of the details of the particular 
system under consideration. All that seems to matter is: 

the form of marginal stability curve A = A(k,), which depends essentially 
on the number of relevant variables present; 
the type of instability involved (co, = 0 or Rew, = 0, Imw, # 0 at 
criticality). 

Furthermore, if the reference state displays appropriate symmetries the 
marginal stability curve depends on k i  only, and the system properties are 
invariant under the transformation k +  - k. It is therefore not surprising 
that instabilities and bifurcations similar to those observed in the Benard 
problem and in reaction-diffusion systems occur in agreat variety of other 
systems as well, such as the Taylor vortex flow (Koschmieder, 1981), 
dynamic solidification (Langer, (1980), laser physics (Newell and Mal- 
oney, 1992; Lugiato, 1992; Lugiato and Lefever, 1987) and so on. 

A distinct feature of instabilities in spatially distributed systems relates 
to the type and to the number of modes that can be destabilized beyond 
the threshold. Consider the Benard problem. According to eq. (6.24) the 
solutions depend on two wave numbers k,, k ,  in the horizontal plane. On 
the other hand linear stability only fixes to the norm kc of the vector 
k = (k,, k,) at the threshold (eq. (6.31)), 

Clearly, this unique relation may be satisfied by various combinations of 
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k ,  and k,. In particular the ratio k,/k,, defining the orientation of the 
vector k in the horizontal plane, can be arbitrary. We conclude that the 
'eigenvalue w, = 0 of the linearized operator is infinitely degenerate at the 
instability threshold, since there is an infinity of eigenfunctions compat- 
ible with the marginal stability condition. 

In view of eq. (6.24) it is clear that different choices of (k,, k,) will 
generate, at least at the level of linear analysis, different spatial patterns. 
As an example, the choice k, = kc, k, = 0 gives rise at criticality to a 
vertical component of the velocity field equal to 

w = W, sin nz cos k,x + cc 

or, setting w, = (r,/2) ei4, 4 being a phase factor and r,/2 a (positive) 
amplitude. 

w = rk sin nz cos (k,x + 4) (6.5 1 b) 

This corresponds to an ascending maximal flux at x = (1/kc)(2nn - 4), n 
integer, and to a descending maximal flux at x = (l/kc)[(2n + 1)n - $1, n 
integer, representing a regular succession of rolls parallel to the yaxis. 
Similarly, the choice k, = k, = k,/J2 gives rise at criticality to a vertical 
component w of the form (up to a phase factor) 

w = rk sin nz cos (3 .) cos (3 .) 
This corresponds to a situation in which the fluid moves upwards near the 
center of a square and downwards along its sides, representing a regular 
succession of squares in the (x, y) plane. 

An additional complication, to which we have already alluded in 
Section 6.4, appears when the critical threshold A, is exceeded. In a small 
system, since k,, . . . are 'quantized', in the sense k, = (2n/L,)n,, n, 

integer (for periodic boundary conditions), there will always be a value A 
close to A, such that only one mode corresponding to a particular choice of 
n,, . . . will become unstable. But in a large system (L,+ a) the spectrum 
of k values becomes continuous. For any supercritical I, as close to I., as 
desired there will, then, inevitably be a whole continuum ( k , ,  k,) of k 
values (Fig. 6.5) corresponding to positve eigenvalues of the linearized 
operator. We are thus confronted with a complex problem of selection of 
the solutions. This problem is far from being academic: it is manifested 
forcefully in the results of many of the experiments surveyed in Sections 
1.3 and 1.4. 

In view of the above comments one is entitled to express reservations 
about the very applicability of the techniques of bifurcation analysis to 
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Tig. 6.5 The zone of h 

unstable modes 
(shaded area) in the 
:inity of the (a, = 0, 

k ,  # 0) instability. 

spatially distributed systems since, for one thing, in the presence of infinite 
degeneracy none of the known theorems (Section 5.1) guaranteeing 
bifurcation seem to apply. In the next sections we shall discard this 
difficulty and derive amplitude equations for the bifurcating solutions 
using perturbative expansions. We close the present section by stressing 
that in the light of some unexpected recent results (Constantin, Foias, 
Nicolaenko and Temam, 1989), this is most probably not a futile exercise. 
Specifically, for certain types of evolution equations of spatially distrib- 
uted systems, one can show that the trajectories tend to a Jinite- 
dimensional (generally fractal) attractor embedded in a finite-dimensional 
phase space, referred to as the inertial manifold. This result may be 
impractical in the sense that these dimensionalities may be quite high in 
real-world problems. Still, it is of fundamental importance as it shows that 
the complications arising from the presence of an infinity of degrees of 
freedom may to a certain extent be bypassed. 

6.6 Bifurcation analysis: general formulation 

We now turn to the construction of the bifurcating solutions of the full 
nonlinear equations (6.1) beyond the instability threshold. As in eq. (5.1 1)  
we express these equations in terms of the excess variable, xi around the 
reference state Xis, 

dx(r, t)/& = 9 ( A ,  V)-x(r, t) + h(%, V, x(r, t ) )  (6.52) 

where both the linearized operator 64 and the nonlinear contribution h 
contain now space derivatives acting on x(r, t). We assume that linear 
stability analysis performed along the lines of Section 6.3 and 6.4 has 
revealed the existence of one of the above discussed criticalities (Figs. 
6.1-6.4), entailing that at a certain value 1, of the control parameter the 
linearized equation admits solutions of the form 
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where #,(r) is an eigenfunction of the space-dependent part of 2 
associated with the wave number k ,  and satisfying the appropriate 
boundary conditions. 

To  compute the solution of (6.52) when L deviates slightly from R,  we 
expand, as in Section 5.2, both x and R - A, in power series of a smallness 
parameter E ,  excluding for the moment discontinuities arising for instance 
from limit point bifurcations: 

Furthermore, to  account for critical slowing down we introduce slow 
time scales according to  

if o, = 0 at criticality, or 

if Rew, = 0, Imo, # 0 a t  criticality. 
It remains now to see how to  handle spatial derivatives in (6.52). Two 

cases need to  be distinguished. 

A Systems of small spatial extent 

As discussed in the previous sections the spectrum of k ,  is discrete in such 
systems. For R sufficiently close to  LC only one (or a small number of) 
mode(s) will be destabilized. The corresponding $,(r) in (6.53) will then 
determine the space dependence of the dominant part of the solution in 
the nonlinear range as well. In this case the action of space derivatives in 
(6.52) is straightforward and no additional scaling needs to  be performed. 

B Systems of large spatial extent 

As soon as one enters the unstable domain a continuum of modes will be 
excited. Owing to  the nonlinear term in (6.52) these modes will interact. If 
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one therefore formally performs an eigenfunction expansion of the type of 
eq. (3.2) for x one will find that the equations for the expansion coefficients 
(eq. (3.3)) will involve coefficients associated with linear combinations of 
the kms of the different modes. Expressed in terms of the variable r rather 
than k,, this entails that the system involves more than one space scale. 

In order now to infer the dominant scales among the continuum of the 
scales present we express k, as its reference value kmc (the latter being zero, 
Fig. 6.4(a), or finite, Fig. 6.4(b)) plus a deviation Ak, 

and observe that at a given distance from the instability threshold ,I - ,Ic, 
the range of Ak can be estimated by (cf. eq. (6.42)) 

Accordingly a space derivative acting on x(r, t)  will give rise to a 'fast' 
variation associated with kmC and a 'slow' one associated with Ak, the 
latter being weighted by a factor (A - ?,c)1'2 or, in the dominant order, by 
a factor &'I2 or E according as y ,  # 0 o r  y ,  = 0 in (6.55): 

Substituting (6.54)-(6.57) and (6.60) into eqs. (6.52) we get, to the 
various orders in E, a set of linear equations for the successive approxi- 
mations x,. The O(E) equations are homogeneous and have the same 
structure as the linear stability equations. Their solution is, therefore, of 
the form (cf (6.53)) 

xl  (r, t) = ~ ( p ,  z)u eiRcT4,,,(R) + cc (6.61) 

where we have introduced, as in eq. (5.1 3), an amplitude c. This amplitude 
is undetermined at this stage and is allowed to depend on the slow time 
and space scales that d o  not appear explicitly in the O(E) equations. It 
plays in this respect the role of an envelope modulating the variation 
expressed by 4,(R). 

To  the next orders the equations for x,, k 2 2 are inhomogeneous. T o  
compute them one has to impose, in the spirit of Chapter 5, solvability 
conditions since the operator $4(A,, V) acting on x, has a nontrivial null 
space. These conditions provide one with equations for the so far 
undetermined amplitude c, which are the analogs of the normal form 



equations ofchapter 5. The main novelty with respect to Chapter 5 is that 
in systems of large spatial extent these equations are going to be partial 
,differential equations, owing to the dependence of c on the slow space 
variable p. This procedure is illustrated in the next few sections on a 
number of representative examples considering, to begin with, the case of 
small systems. 

6.7 Bifurcation of two-dimensional rolls in the 
Benard problem: the small aspect ratio case 

Our first illustration of the machinery of bifurcation theory in spatially 
distributed systems will be the, by now familiar, Bknard problem in the 
Boussinesq approximation and with free boundary conditions. The 
starting point is the nonlinear Boussinesq equations derived in Section 
2.5. As shown in Section 6.2 there is a definite advantage in expressing the 
evolution laws of physical systems in dimensionless form. We therefore 
apply to these equations the scaling used in the study of linear stability 
analysis (eqs. (6.1 1)). A straightforward algebra leads to  

aelat + ( 6 v . v ) ~  = RW + v 2 0  

asvlat + ( ~ v . v ) ~ v  = P( -vsp + v2dv + 01,) 

div 6v = 0 

where the dimensionless parameters R and P have been defined in eq. 
(6.13). T o  simplify as much as possible we shall assume that the Prandtl 
number is very high, P >> 1. Dividing through the second equation (6.62) 
by P we see that one can neglect, in this limit, the nonlinearity (6v.V)6v 
compared to (6v.V)O as well as the contribution of the acceleration term 
86vlat. Furthermore, to eliminate the pressure term from this equation we 
apply the curl operator twice and project on the z-axis. We finally obtain, 
following (6.17), the following simplified set of equations 

div 6v = 0 

subject to the boundary conditions (6.22). 
As stressed throughout Chapter 1, the evolution laws of a spatially 

distributed system can generate a great variety of patterns. One of the 
principal reasons for this diversity, noted in Section 6.5, is the degeneracy 
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in the orientation of the wave vector k. In what follows we shall seek 
specific types of solution which for simplicity we take here in the form of 
rolls. According t o  eq. (6.51 b) this type of structure is two-dimensional. At 
the level of eq. (6.63) this implies 

We are now in the position to perform the bifurcation analysis of the 
solutions. We expand 0, 6v, R and dldt according to  (6.54t(6.56), 

and substitute into eq. (6.63). We keep spatial coordinates unscaled by 
limiting ourselves to a small aspect ratio. To  O(e)  we obtain, taking (6.64) 
into account, 

which is nothing but the linearized problem of Section 6.3 evaluated at 
criticality. Its solution is, therefore, of the form (cf. eqs. (6.20), (6.24) and 
(6.61 )), 

In accordance with the formulation of Section 6.6 we have introduced a 
(complex) amplitude c ,  which remains undetermined a t  this stage. 
Accordingly we have normalized the Fourier coefficients 8,, , w,, in such a 
way that 8,, = 1 and t,h = w,,/8,,. The latter is computed from the 
linearized equation (6.25) at criticality: 

Since the flow is two-dimensional (eq. (6.64)) we also need, in this order, 
information on the horizontal component u(x, z). The most straightfor- 
ward way to  get this is to  use the incompressibility condition (the third 
relation of (6.63)) 
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aul lax = - aw,/az 

and observe that for periodic rolls it is satisfied by the expression 

Indeed, differentiating (6.69a) with respect to  x and realizing from (6.51b) 
that the second derivative of w ,  with respect to  this variable reproduces w ,  

up to  a factor (- k:), one obtains the incompressibility condition as an 
identity. Substituting w ,  from (6.67) one obtains the more explicit form 

To compute the amplitude c in eq. (6.67) we have to go to  the higher 
orders in the perturbation expansion. We discuss first the O ( E ' )  and then 
the o ( E ~ )  equations. 

A The O ( E ~ )  equations 

Eqs. (6.63)-(6.65) lead to the following set of equations for the unknowns 

(02 9w2 1: 

The right hand side can be evaluated using (6.67) and (6.69b). One obtains 

The solvability of (6.70) requires that be orthogonal to  the null space ('3 
of 2 + ( R , , V ) .  One checks easily that with the boundary conditions 
adopted 
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and admits, for a zero eigenvalue, eigenfunctions with the same spatial 
dependence as those of Z(R,, v), 

u + = (;+) eikcx sin nz 

where $+ is computed from 9 " u  + = 0 at criticality. 
We may now express the solvability condition explicitly, adopting a 

Hilbert space scalar product in addition to the usual one of vector 
calculus, to account for the space dependence of the functions involved: 

((;+) eikcx sin nz, ( y o 2 ) )  = o 

or, more explicitly, using the fact that the functions under the scalar 
product are periodic in x, 

j o l d z j o e  dx [ sin ( 
ac ac4 

TCZ --- + - R ,$ sin2 ~ Z ( C  + C* e-2ikcx) a ~ ,  aT, 
1 

+ 2n$ I c I 'sinnz sin 2nz e - " ~ ~  ] = o  

Using the property that the integral of eimkcx over a period 2n/kc vanishes 
for m # 0 one sees that the above equation reduces to 

As pointed out in Section 5.4, this linear equation predicts unphysical 
runaway behavior beyond bifurcation. The only way to avoid this 
deficiency is to reduce it to a trivial identity, which can be achieved by 
setting 

The solvability condition (6.73) being thus satisfied one may solve the 
simplified second order equations (6.70): 

V28, + R,w, = 2n$ I c 1 sin 2712 

a28,/ax2 + v 4 ~ ,  = o (6.75) 

To this end we eliminate w, by applying the operator V4 to the first 
equation and subtracting the second equation multiplied by R,. This 
yields: 

(V6 - Rc $) 8, = (*IT)'$ 1 c 1 ' sin 21.7 (6.76) 
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Expanding 8, in Fourier series one arrives a t  

Substituting into the second of eqs. (6.75) and taking into account the free 
boundary conditions, eq. (6.22), one arrives at the trivial solution 

w,  = 0 (6.77b) 

and hence, by virtue of (6.69a), 

U 2  = o  
This completes the solution to the second order of perturbation theory. 

6 The o ( E ~ )  equations 

T o  the next order one is led, using eqs. (6.63)-(6.65), to the following set of 
equations for the unknowns (8, ,w,): 

The right hand side can be evaluated explicitly using expressions (6.67), 
(6.69b) and (6.77a)-(6.77~). One finds 

The solvability of (6.78) now requires (2) to be orthogonal to the null 

eigenvector of 9' introduced earlier in this section. Utilizing the same 
definition of the Hilbert space scalar product along with the periodicity of 
the solutions in the x-direction we obtain 
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After explicit evaluation of the integrals one ends up with the equation 

As in Section 5.4 we introduce the normalized amplitude z  = EC and 
reestablish from (6 .65)  the initial parameters t and R - R , .  This leads to 

which has the same structure as the normal form of a pitchfork 
bifurcation. The Benard problem in a system of small aspect ratio close to  
the bifurcation of convective solutions in the form of rolls has thus been 
reduced to a single ordinary differential equation for the amplitude of the 
solution to  the dominant order. The latter admits the nontrivial steady 
state value 

which is nonanalytic in the parameter R - R , .  It bifurcates supercritically 
and is, therefore, stable. Notice that the phase of the solution cannot be 
determined by the third order solvability condition nor, in fact, by higher 
order perturbation analysis. This was to  be expected since, as noticed in 
Section 1.3, in the absence of lateral boundaries there is no  mechanism 
capable of fixing a priori the position of a convection cell along the x-axis. 

The solution of the Benard problem to  the dominant order can now be 
written explicitly. Using eqs. (6 .67)  and (6 .82)  we obtain 

(3x5 2) ( = (::) = (?!)1'2(R - R c ) l ~ 2  (k) ei(kcx + 41 sin nz + cc 
w(x, z )  

where 4 denotes the phase. We have thus established analytically the 
phenomenon of space symmetry-breaking which, as mentioned earlier in 
this chapter, is one of the principal signatures of the complexity of 
nonlinear spatially distributed systems under nonequilibrium constraint. 

6.8 Bifurcation analysis in systems of large spatial 
extent: complex Landau-Ginzburg equation 

We now turn to systems whose extent in at least one direction is much 
larger that the characteristic length of the critical mode predicted by linear 
stability analysis. As pointed out in Section 6.6B, the bifurcation analysis 
for such systems has to  be completed by an appropriate scaling of spatial 
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coordinates as well, (6.60at(6.60b). We already know that the specific 
type of scaling depends on the type of instability experienced. In the 

' present section we focus on a reaction - diffusion type system in the 
vicinity of an instability corresponding to a pair of complex eigenvalues 
crossing the imaginary axis at criticality, Section 6.4B. To  be even more 
specific we suppose that in the system under consideration the first 
instability occurs at k, = 0, a situation which we referred to in Section 6.4 
as time symmetry-breaking. The dispersion relation for the real part of the 
eigenvalue will then be as in eq. (6.42a) and Fig. 6.4(a), 

Re o z a ( 1  - A,) - bkk + O(k:) (6.84a) 

while the imaginary part of the eigenvalue will be given by an equation of 
the type of (6.47b), 

Tm w z Rc + c(A - A,) + g k i  + O(k4,) (6.84b) 

Accordingly, one can anticipate a scaling of the time variable as in eq. 
(6.57a). The scaling of the space variable will be similar to eq. (6.60), but 
with the 'fast' variation 8laR absent since the most unstable (and hence 
dominant) modes will display close to instability (Rew = 0) space 
dependences modulated by small wave numbers. Recalling from the 
analysis of the Hopf bifurcation in spatially uniform systems (Section 5.7) 
that y ,  = 0 and R ,  = 0 in eqs. (6.55) and (6.57b), owing to the periodicity 
in the time variable, one is finally led to the perturbative analysis of eqs. 

(6.521, 

with 

Actually, in a reaction-diffusion type system with constant diffusion 
coefficients one deals with a more restricted form of eq. (6.52), whereby h is 
V-independent and 9 can be split into a V-independent part plus a 
contribution proportional to  the Laplace operator: 
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More generally, in eq. (6.52) 9 and h can be expanded formally in series 
containing increasingly high derivatives in space. The structure of this 
series depends critically on symmetry properties - for instance, in an 
isotropic system only even derivatives will show up. Eq. (6.86) can 
therefore be regarded as the simplest realization of this structure. 

Substituting now (6.85ak(6.85d) into (6.86) and proceeding as in 
Sections 5.2, 5.7 and 6.7 we get, to the various orders in E, the following 
systems of equations. 

This homogeneous system of equations is equivalent to  linear stability 
analysis. It therefore admits solutions of the form 

B ( 2 ~ ~ )  
One obtains (cf. eq. (5.1 1)) the inhomogeneous system of equations 

Having set at the very beginning y ,  = 0, Q, = 0 the solvability condition 
is automatically satisfied. In view of (6.88) one sees that the right hand side 
contains contributions in e2iT and eP2jT, as well as terms independent of 
T. We may therefore seek solutions x, of the form 

it being understood that the coefficients p, and p, can be determined 
uniquely once the detailed structure of the system is specified. 

T o  this order the slow space and time dependences are manifested for the 
first time. One obtains (cf. also (5.12)): 
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The solvability condition of this inhomogeneous system of equations 
requires that the right hand side be orthogonal to the null eigenspace oi 

. the adjoint of the operator acting on x3 which, as discussed in Section 5.7, 
is of the form u+eiT. We therefore obtain, following the previously 
adopted extended definition of scalar product: 

where the dot indicates the ordinary scalar product in a linear vector 
sp,ace. 

Substituting the detailed form of x, and x, from eqs. (6.88) and (6.90) 
we further obtain 

ac 
[ndTeiTu '*  - [ , , ( A C ) u ]  eiT - u eiT + V:c[9, (A,).  u] eiT ar 

Clearly, owing to the integration in T only the terms in eiT will survive in 
the curly brackets in eq. (6.93). This leads to an equation for the amplitude 
c of the form 

in which the coefficients, P , ,  P, and Q, are uniquely determined from 
(6.93) and the structure of the underlying system. We notice that, in 
general, P,  and Q, are complex-valued. Dividing through by u+ .u, 
introducing the normalized amplitude z = EC and reestablishing the initial 
parameters 3, - I,, , r and t through eqs. (6.85) we finally obtain 

where we have performed a further (E-independent) scaling to eliminate P ,  
and the real parts of P, and Q,, both assumed to be positive. 

With a certain degree of caution with regard to mathematical rigor in 
line with the comments made in Section 6.5, one may consider eq. (6.95) as 
the normal.form of a spatially extended dynamical system in the vicinity of 
an instability of the type (Reo, = 0, Tmw, # 0, k, = 0). This equation 
brings a correction to the normal form of a ~o~f 'bifurcation obtained 
earlier (eq. (5.53)) by introducing a slowly varying enuelope modulating 
the amplitude of the individual oscillators in different points in space. This 



10 6 Spatially distributed systems 

particular way of describing the coupling between spatially distributed 
oscillators induced by diffusion has the great merit of universality, at least 
in the vicinity of the bifurcation point. It was first studied systematically 
by Newell (1974) and Kuramoto (1984) and, more recently, by Coullet 
and coauthors (Coullet and Gil, 1988) who place special emphasis on the 
role of the symmetries built into the system. 

Eq. (6.95) is referred to in the literature as the complex- Landau- 
Ginzburg equation, since it generalizes the (real-valued) Landau-Gin- 
zburg equation familiar from equilibrium critical phenomena. The latter 
corrects, in turn, Landau's mean field theory of critical phenomena to 
which we alluded in Section 5.6, by allowing for spatially inhomogeneous 
fluctuations (Ma, 1976). In the opposite limit of purely imaginary 
coefficients and ;! = 4, eq. (6.95) reduces to the nonlinear Schrodinger 
equation familiar from the study of waves in nondissipative systems 
(Newel1 and Maloney, 1992). The fact that in the present context the 
coefficients of the cubic and spatial derivative terms are complex is a 
consequence of both the dissipative character of the dynamics and the 
nonequilibrium constraints. It entails that contrary t o  its equilibrium 
counterpart, this equation does not derive from a potential. This opens 
the way to new, specifically nonequilibrium phenomena arising from the 
loss of stability of the homogeneous limit cycle and ranging from 
propagating wave fronts to spatio-temporal chaos and the generation of 
defects. Two characteristic illustrations obtained from direct numerical 
simulation of (6.95) are depicted in Fig. 6.6. The analogy with the 

Fig. 6.6 Spatio- phenomena described in Section 1.4 in connection with chemical 

temporal complexity instabilities and defects is quite striking and highlights the importance of 

generated by the the complex Landau-Ginzburg equation in large classes of natural 
complex phenomena. 

Landau-Ginzburg TO get a flavor of how this complexity can arise it is useful to sketch the 
equation (6.95) in a 

two-dimensional 
;ystem: (a) spiral wave 

obtained for 
? .  

A - /.'. = 1, x = 1, 
p = -0.6. 

L, = L,. = 50; ( b )  
solution in the 

unstable region 
1 + z p  < 0: 
. .  

A - / . = =  1. 
u = 2,  f l  = - 0.82. 

L, = L, = 50 (Lega. 
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linear stability analysis of the homogeneous limit cycle solution of (6.95) 
in a one-dimensional system. From eqs. (5.55b(5.57) we have 

Setting 

we obtain the following linearized version of (6.95): 

or, with 6z = %eikr, % = u + i u  and after separation of real and 
imaginary parts, 

du/dt = - [2(?. - I.,) + k 2 ] u  + ~ k ' v  I 

The characteristic equation of this system reads (see Sections 4.3 and 
6.4) 

In the supercritical region i, - iLc 2 0 the sum of the roots obviously 
remains negative. The only instability that can arise is, therefore, through 
the constant term vanishing and subsequently becoming negative. This 
requires that the parameters a and f l  be such that 

This inequality constitutes a condition for spatio-temporal complexity 
since in this range a homogeneous oscillation encompassing the system as 
a whole may no longer be sustained. We notice that the instability is 
induced by the presence of complex coefficients in eq. (6.95) or, 
equivalently, by the presence of a nontrivial phase variable related to the 
imaginary part of the order parameter z .  In this sense, therefore, it can be 
referred to as a phase instability. 

6.9 Further examples of normal form envelope 
equations in large systems 

As stressed in Section 6.8 and throughout Chapter 5 ,  the structure of 
normal form equations depends on the type of instability experienced by 
the system. In this section we briefly summarize the procedure leading to 
such equations in large systems in the vicinity of instabilities other than 
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the (Re w, = 0, Im o, # 0, k,, = 0) one considered in the preceding 
section. 

A The (Re w, = 0, Im w, = 0, kmc # 0) instability 

This situation, which we referred to in Sections 6.3 and 6.4 as space 
symmetry-breaking, includes as particular cases the Benard and Turing 
instabilities. The dispersion relation for the real part of the eigenvalue will 
be as in eq. (6.42b), entailing that the scaling of the time and space 
variables will be as in eqs. (6.56) and (6.60) respectively. In particular, one 
will have to account both for a 'fast' and for a 'slow' space variable, R and 

P .  
Consider first a one-dimensional system. We anticipate that, because of 

spatial symmetries, y ,  = 0 and (dl&,)( . . . ) = 0 in the expansion of eqs. 
(6.55) and (6.56). We are therefore led to  solve eqs. (6.86) with the 
following perturbation scheme: 

Inserting in (6.86) we find, to the order O(E), 

This homogeneous system of equations admits solutions of the type (cf. 
eq. (6.36) and (6.67)), 

where we have taken into account that eikcR is the (critical) eigenfunction 
of d 2 / i 3 ~ 2  in an infinite system (with periodic boundary conditions), - k: 
being the critical eigenvalue. 

To 0 (c2)  one finds (cf. (6.89)) 
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Unlike in the previous section, eq. (6.89), the solvability condition is not 
trivially satisfied since the last term in the right hand side still contains the 
critical eigenfunction eikcR. One has to impose, therefore, that this term be 
orthogonal to the null eigenspace of the adjoint linear operator acting on 
x 2  . We do not carry out explicitly the, by now familiar, manipulations and 
rnereIy quote the final result, which is nothing but the requirement that 
(dc~ldk)~ = 0. This condition is identically satisfied owing to the very 
nature of the criticality. We may therefore proceed to write the formal 
solution of (6.105) as 

where p,, p,, p2 are determined from (6.105). 
To O ( c 3 )  one finds the equation (cf. (6.91)) 

The solvability condition of this inhomogeneous system of equations 
requires 

where we used the same extended definition of scalar product as in Section 
6.7 and u+ is determined by a procedure analogous to that leading to 
(6.72) and (6.73). Owing to the integration in R only those terms of q, 
which depend on R through eikcR will survive in (6.108). After some formal 
manipulations similar to those performed repeatedly in this dhapter as 
well as in Chapter 5 one finally ends up with an equation for the 
normalized amplitude z = EC of the form 

This equation differs from eqs. (6.94) and (6.95) by the important fact that 
the coefficients P1, D and P 3  are real-valued, a consequence of the absence 
of an imaginary part in the critical eigenvalue and the corresponding 
eigenvector. (Actually, assuming supercritical bifurcation all three coeffi- 
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cients can be normalized to unity through an appropriate rescaling of z ,  r 
and t.) This makes (6.109) structurally identical to the Landau-Ginzburg 
equation which appears in the study of  equilibrium critical phenomena. It 
is to be stressed, however, that the physics behind the two equations is 
very different. In particular, the 'potential' from which (6.109) derives in 
the sense of 

is given by 

It has a kinetic origin connected to the dynamics, in contrast to the 
classical Landau-Ginzburg equation which derives from the equilibrium 
free energy functional. 

Let us now turn to the extension of (6.109) in two dimensions. We are 
interested in situations (cf. Sections 6.3 and 6.4) in which the basic 
structure arising near bifurcation is one-dimensional (roll type of pattern), 
along say the x-coordinate. The explicit form of the linearized dispersion 
relations (eq. (6.33a) or (6.42b)) then reads (Manneville, 1991) 

Comparing orders of magnitude on both sides and bearing (6.51) in mind 
one realizes that 

Ak,  - Ak; 

This leads us to  extend the scaling of space coordinates in eq. (6.60b), in 
the following way, 
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Fig. 6.7 Numerical 
solutions of Turing 

patterns in the 
Brusselator model (eq. 

(3 .28)  supplemented 
with diffusion) in a 

two-dimensional 
system with periodic 

boundary conditions: 
( a )  regular roll pattern 

obtained for the 
dimensionless 

variables A = 4.5,  
B = 10, D, = 7 ,  

D, = 56, 
L, = L, = 64;  ( b )  
irregular pattern 

displaying defects 
obtained for the same 

chemical and diffusion 
parameters as in ( a )  

but with 
L, = L, = 256 and 

random initial 
conditions (De Wit, 

Replacing the last of eqs. (6.102) by (6.1 12) and again following the 
procedure described above one arrives at 

This equation, referred to as the Newell- Whitehead-Segei equation, can 
be regarded as the normal form of a symmetry-breaking bifurcation 
leading to roll or stripe patterns and allowing for modulation in both .u 
and J? directions. Fig. 6.7 illustrates on the Brusselator model, the type of 
pure and modulated patterns that may arise under these conditions. Note 
that when basic structures other than rolls are considered this equation 
needs to be corrected further, since one has then to allow for quadratic 
terms (Walgraef et ai.,  1982). 

B Secondary bifurcations. The Eckhaus instability 

To get the flavor of the type of behavior predicted by the equations 
derived in the previous subsection we consider eq. (6.109) with the scaling 
P ,  = D = P 3 ,  

One can easily check that this equation admits a family of time- 
independent solutions of the form 

where Ak is a small wave number describing the modulation of the basic 
structure at the critical wavelength k c ,  and 4 is an arbitrary phase. To 
study the stability of these solutions we set 
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z = ( I  - 1, - ~ k ~ ) ) " ~  [I + Sz(r, t)] eitAkr + 6 )  (6.1 16) 

The linearized equation for Sz reads 

As for eq. (6.98) we decompose 62 in real and imaginary parts, 
Sz = u + iu, thus transforming (6.1 17) into 

We seek solutions of these equations in the form 

Eqs. (6.1 18) are then transformed into a set of homogeneous algebraic 
equations for u,, u, whose characteristic equation turns out to be 

Assuming K is small we may neglect quartic terms in K .  The constant term 
then becomes equal to 

entailing that an instability associated with a change of sign of o will 
develop for wave numbers Ak such that 

In other words, periodic patterns with modulation characterized by a 
wavelength sufficiently far from the basic structure (Ak = 0) are unstable 
with respect to  long wavelength modes. This is known as the Eckhaus 
instability (Eckhaus, 1965). Evidence for the existence of this instability 
has been reported in fluid dynamics (Lowe and Gollub, 1985). 

If perturbations transverse to the basic structure are allowed then one 
has to appeal to  eq. (6.1 13). The analysis shows (Coullet and Gil, 1988; 
Manneville, 1991) that for negative Ak an instability with respect to 
large-scale wavy perturbations transverse to the pattern, referred to as the 
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zig-zag instability, takes place. This transition introduces a deformation of 
the basic pattern and renders it two-dimensional. It has been observed 

, experimentally in connection with the Benard problem (Busse and 
Whitehead, 197 1 ; Busse, 1978). 

It is worth noting that the Eckhaus and zig-zag instabilities provide a 
partial solution of the selection problem raised in Section 6.5, since they 
imply the collapse of certain types of structure that would appear to be 
allowed on the basis of linear stability analysis, see Fig. 6.8. 

C Phase dynamics 

A very interesting array of behaviors allowed by the normal form 
equations derived in Section 6.8 and in the previous two subsections is 
revealed by recasting these equations into a form exhibiting an amplitude 
and a phase variable. T o  be specific, consider the complex Landau- 
Ginzburg equation (6.95) in a one-dimensional system and set 

Substituting into eq. (6.95) and separating real and imaginary parts one 
obtains 

8~ r . .  

Fig. 6.8 Mode h 
selection arising from 

the Eckhaus and 
zig-zag instabilities: (a )  
marginal stability line; 
(h) Eckhaus instability 

line; ( c )  zig-zag 
instability line. The 

shaded area denotes hc 

the region of allowed 
modes. 

In the absence of space dependences these equations reduce to  (5.55). 
They show that, while the amplitude A reaches a plateau value through an 
intrinsic relaxation mechanism with a well-defined characteristic time 
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associated with the presence of a linear term (1 - &)A, the phase d, 
follows the variations of A passively and, to the extent that A is small close 
to the bifurcation, it varies slowly in time. Coming back now to the full 
space-dependent equations this suggests that A can be eliminated and an 
autonomous dynamics for 4 can be derived (except for a very narrow 
region around the instability threshold in which A will be subjected to 
critical slowing down), provided that the spatial derivatives of d, and A in 
the right hand side of eq. (6.121b) remain small. 

The above envisaged reduction can be carried out most easily under the 
more stringent assumption that A is space-independent. Neglecting the 
time derivative of A in the first equation (6.121a) (a legitimate procedure 
after an initial time layer, according to the previous argument) one 
obtains an expression for A in terms of the phase, 

Substituting into eq. (6.121 b) one obtains 

or, introducing the new phase variable 

This nonlinear dlflusion equation turns out to have a structure identical to 
the Burgers equation encountered in hydrodynamics (Burgers, 1948; 
Ortoleva and Ross, 1973; Kuramoto, 1984). It describes nicely the spatial 
complexity arising from the de~~nchronization of an array of spatially 
distributed oscillators coupled through diffusion, as a result of the weak 
stability properties of the phase variable. Now, as we saw in Section 6.8, 
when 1 + ap < 0 an instability of the basic limit cycle solution occurs in 

eq. (6.95). Under these conditions the 'diffusion coefficient' of $ in 
(6.123b) becomes negative. An 'anti-diffusion' behavior then sets in, 
leading to increasingly large values of the phase gradient. Clearly, the 
basic assumptions leading to (6.123b) need to be revised. A phenom- 
enological way to achieve a saturation of the growth of the phase gradient 
is to supplement (6.123b) by a fourth derivative term, -K(d4$/dr4) 
which has the additional merit of satisfying all the symmetry requirements 
imposed by the invariance properties of the initial equations. The 
argument can be justified by a more systematic procedure (Kuramoto 
1984, 1990). Eq. (6.123b) augmented by such a fourth order derivative 
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term is known as the ~ ~ ~ ~ ~ ~ t ~ - ~ h i u a s h i n s k i  equation. It gives rise to a 
very rich behavior including the possibility of spatio-temporal chaos. 

Notice that diffusion-like phase equations can only arise in dissipative 
systems under nonequilibrium constraints: in nondissipative systems the 
phase variable necessarily has a propagative character. 

Phase equations associated with other types of instabilities can also be 
derived (Walgraef, 1988; Brand, 1990). We d o  not develop the technicali- 
ties here, but refer the reader to  the original literature. We close this 
chapter by noticing that the phase dynamics formalism provides a very 
interesting insight into the origin of the defects characterizing nonequilib- 
rium structures, referred to  repeatedly in Chapter I and illustrated again 
in connection with Fig. 6.6, The latter appear as singular solutions of the 
normal form equations in which the amplitude variable A vanishes at the 
'core' and the phase gradient has a circulation of +_ 271 around any path, 
however small, surrounding the core (Coullet and Gil, 1988). 

Problems 

6.1 Perform linear stability analysis of the Brusselator (eq. (2.44)) in a 
square and in a circular spatial domain using either 3 or the size of the 
domain as the control parameter. Identify possible high-codimension 
instabilities arising from symmetry (Erneux and Herschkowitz-Kaufman, 
1975). 

6.2 Determine the conditions under which the Brusselator in a small 
one-dimensional box admits a codimension 2 instability originating from 
the coalescence of two time-independent modes of wave numbers m and 
m + 1 .  Derive the solutions associated with the secondary bifurcation 
close to this critical situation (Mahar and Matkowsky, 1977). 

6.3 Compute the coefficients of the normal form equations (6.95) and (6.109) 
for the Brusselator in one space dimension, respectively near its Hopf 
and its Turing bifurcation. 

( ~ n s w e r :  For (6.95) before rescaling (compare also with Appendix A2) 

Gz B - B ,  A 2 + 2  i 4 d 4 - 7 d 2 + 4  1 i. *z - - 2 -  - --- ( + -  
3 t 2 , 2A2  2  3 A 3  

For (6.109) 
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6.4 Pattern formation in the presence of a preexisting shallow gradient 
(Gierer and Meinhardt, 1972; Almirantis and Nicolis, 1987). Consider a 
two-component reaction-diffusion system 

in which the source term A exhibits a shallow gradient in space, 
A = A,  + &air), E << 1. Formulate the stability and bifurcation analyses 
in the presence of such a gradient and derive the extended normal form 
equation (in a small box) close to the Turing bifurcation. Show that in 
one space dimension the presence of the gradient entails a shift of the 
bifurcation point or the destruction of the bifurcation, in the sense of 
Fig. 5.5ib). 

6.5 Pattern formation in the presence of anisotropies. In many systems like, 
for instance, nematic liquid crystals subject to elliptical shear (Guazzelli 
and Guyon, 1982) or condensed matter under irradiation (Martin, 1983) 
there exists an intrinsic anisotropy breaking the symmetry between two 
transverse orientation axes. Perform the stability analysis of the 
homogeneous state in a two-variable reaction-diffusion system in which 
anisotropy is accounted for by two different longitudinal and transverse 
diffusion coefficients Dl/  and DT respectively. Apply the general formulae 
to the Brusselator model (Dewel, Borckmans and Walgraef, 1984). 

6.6 The effect of imperfections in the Benard instability (Ahlers, Hohenberg 
and Liicke, 1984; Liicke and Schank, 1985). Derive the extended version 
of the Boussinesq equations (Section 2.5) and of the corresponding 
normal form near the Benard instability threshold for a roll pattern 
(Section 6.7) in the presence of a slight sustained periodic variation of 
temperature at the lower boundary of the layer. Show that the 
imperfection induces a displacement of the critical Rayleigh number in 
the direction of increased stability. 

6.7 Bifurcations in nonideal reaction-diffusion systems (Li et al., 1981; Li 
and Nicolis, 1981; Othmer, 1976). Derive the extended form of 
reaction4iffusion equations for the second Schlogl model (eq. (2.45b)) 
and for the Brusselator (eq. (2.44)) using the regular solution model in 
which the excess free energy is given by 

where {n,) are the mole numbers and wij account for the interactions. By 
further assuming that only the interactions between the intermediates 
(X, . . .) and the initial products (A,B, . . .) are nonideal, prove that the 
nonideality correction to the diffusion coefficients is of the form 
D(X) = D,(1 - 2wX) etc. Investigate the effect of these corrections near 
the cusp (for the Schlijgl model) and the symmetry-breaking (for the 
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Brusselator) instabilities, with special emphasis on the interference 
between such instabilities and the phase transition (unmixing) predicted 
by the regular solution model. 

6.8 The normal form of a dynamical system in the vicinity of the criticality 
(Re w, = Im o, = 0, k = 0) is given by an equation similar to (6.109) 

n'c 
in which the order parameter z is real. By redefining space, time and z 
scales this equation can be written in one space dimension and in the 
presence of an imperfection (in the sense of Section 5.6) in the form 
(assuming P ,  > 0) 

Check that in an unbounded system this equation admits for h = 1, 
0 < a < 1 solitary wave solutions of the form 

where the propagation velocity is v = (I /  $)(I - 2 a ) .  
For a = 112 these solutions reduce to a stationary state (kink) joining 
states z = 0 and z = 1. Derive this solution directly from the normal 
form by setting dz la t  = 0 and treating the resulting equation by methods 
analogous to those of Chapters 3-5, in which time is now replaced by 
the spatial coordinate r (Campbell, Newell, Schrieffer and Segur, 1986; 
Malchow and Schimansky-Geier, 1985). 

6.9 First order phase transitions in systems under constraint (Langer, 1980; 
Langer and Miiller-Krumbhaar, 1983). In a great number of situations a 
liquid-solid phase transition takes place when the solidification front 
advances under the action of an external nonequilibrium constraint. A 
model equation describing dendritic crystallization under such 
conditions is 

where R is the radius of curvature at the tip, and v the velocity of the 
front. The minus sign of the second order derivative term accounts for 
phase instability (negative diffusion) whereas the fourth order derivative 
term describes stabilization through surface effects. Perform a linear 
stability analysis of this equation around the reference state 
R(x, t )  = r, = const. and identify the characteristic lengths and time 
scales present in the problem. Does the equation admit bounded 
solutions in the fully nonlinear regime? 

6.10 Precipitate pattern formation. An alternative interesting mechanism of 
interference between phase transitions and nonequilibrium constraints is 
provided by the competitive particle growth model (Feinn et al., 1978). 
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Let c represent a monomer concentration, R(x, t )  the 'local' radius of 
particles formed by monomer aggregation. A minimal model describing 
this process of precipitation is 

where ceq(R) is an equilibrium value of c for a radius R particle, n the 
particle number density, p the molar density and W the rate of 
monomer production (if any). Perform a linear stability analysis of the 
uniform state R = r, (arbitrary), c = ceq(r0). Identify the type of 
instability that can be realized, particularly in connection with the 
existence of a characteristic length of intrinsic origin. 



C H A P T E R  S E V E N  

Chaotic dynamics 

7.1 The Poincare map 

As we have seen throughout this monograph, in a nonlinear dynamical 
system the first bifurcation from a fixed point leads to fixed point or to  
limit cycle behavior. Chaotic behavior, which according to  the experimen- 
tal data surveyed in Chapter 1 is abundant in nature, can therefore arise 
smoothly from simple fixed point behavior only through a sequence of 
bifurcations involving high order (tertiary etc.) transitions. As a rule, at 
some stage of this sequence of transitions a periodic solution loses its 
stability, a fact that is also reflected in the experimental data where chaotic 
behavior seems to be much more intimately intertwined with periodic 
rather than steady-state behavior. 

The above comments suggest that to gain an insight into the onset of 
chaos it is necessary to analyze the loss of stability and the subsequent 
bifurcation behavior of periodic solutions. Unfortunately, this task is 
unattainable. First, the analytic form of these solutions in the interesting 
parameter region is not known except in a number of exceptional 
situations. Second, even if the analytic form were known one would be led 
to study dynamical systems of the form of eq. (3.26) in which both the 
linearized operator 2 and the nonlinear part h contain an explicit 
periodic dependence in time. This is, in ~rinciple, possible by Floquet 
theory (Cesari, 1963; Hale and Kogak, 1991), but in practice it is much 
more difFicult to carry out on a quantitative basis than is the study of the 
behavior around fixed points. The study of higher order transitions is, of 
course, even more complicated. 

An elegant way out of this difficulty has been invented by Poincare. We 
illustrate the idea in the case of a three-dimensional phase space (Fig. 7.1 ). 
Let y be the phase space trajectory of a dynamical system and S a surface 
cutting this trajectory transversally. The trace of y on S is a sequence of 



7 Chaotic dynamics 

:. 7.1 The Poincare 
-face of section of a 

continuous time 
kamical system. Po? 

PI . . . , are the 
intersections of the 
ectory y ,  generated 

from the Lorenz 
pdel (eqs. (3.4) with 
.= 10, r = 28, h = t )  

with a surface S 
transverse to the 

ijectory. The phase 
Ice flow induces on 

S a discrete time 
amics mapping the 
3osition variable of 
, x, to the position 

variable of P, , 
x, = g(xo) and so 

forth. 

points Po, P , ,  P,, . . . at which the trajectory intersects the surface with a 
slope of prescribed sign. The successive positions x,, x ,, x,, . . . of these 
points follow, in principle, from the dynamics. Indeed, if we write the 
formal solution of (3.26) as 

then, clearly, x, = 4 T(xo , (~o)  where T(xo ) is the time necessary for the 
trajectory to  return to S with the same sign of slope starting from x,, and 
similarly x, = 4 ,(,,,(x, ) etc. Quantitatively the precise form of I$ and the 
values of T(xi) are impossible to determine. But if we label the successive 
points not by the time at which they are visited but, rather, by their order, 
then we realize that the original flow (7.1) induces on S a dynamics of the 
form 

where g(x) = I$ .(,,(x). This dynamics is no longer continuous in time: it is 
a recurrence, since the time intervals between successive intersections are 
finite. This is referred to as the Poincard map, S being the Poincare'surface 
ofsection. By introducing an appropriate coordinate system in S, we can 
write (7.2) in the more explicit form 

We notice that, starting with a three-dimensional dynamical system we 
have ended up with a two-dimensional recurrence. This reduction of 
dimensionality is one of the important advantages of the Poincart. map. 
The second advantage is that recurrences like eqs. (7.2) and (7.3) lend 
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themselves to numerical simulation much better and much more accu- 
rately than continuous time dynamical systems. A third advantage is that 
by determining the object that will attract the Pns for long times, we will be 
able to infer a number of key properties of the attractor of the original 
dynamical system, since in actual fact we will dispose of a section (rather 
than a projection) of this attractor. In particular, the stability properties of 
these two objects will be completely identical. 

Let us give some illustrations of this last point. By construction, a limit 
cycle attractor will intersect the Poincare surface of section with a given 
slope at a single point P which will remain invariant under the dynamics, 
i.e. for all successive intersections. At the level of eqs. (7.2) and (7.3) this 
will be reflected by the fact that the coordinates (2, j )  of P will be such that 

- - 
X n + l  = xn, Y n + l  = J n  0' 

In other words, a periodic solution corresponds to a j x e d  point of the 
recurrence generated on S .  An interesting generalization is to search for 
attractors which produce on S a finite sequence of points visited 
consecutively such that xn+  , , . . . , xn+, remain different from x, (similarly 
for y )  until an iteration k is reached for which 

We call this a cycle of order k .  Fig. 7.2 describes how a cycle of order two 

Fig. 7.2 A cycle of 
order two and its 

signature on the 
Poincark surface of 

section. 

S 
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looks in the original phase space. We notice (see also Section 3.3C) that 
the additional twisting of the trajectory before closing to itself would be 
impossible in a two-dimensional phase space as it would imply self- 
intersection. 

Another topologically interesting possibility, depicted in Fig. 7.3, arises 
when the intersection points of the trajectories converge to a closed curve 
C in the Poincare surface of section. Following the discussion in Section 
3.3 the corresponding attractor of the flow is a torus. 

In the above perspective the signature of chaotic dynamics on the 
Poincare surface of section should be a set that is equivalent to neither a 
countable set of points nor a smooth curve. We have encountered such 
objects, thefractals, in our analysis of invariant manifolds of Section 3.3. 
Their existence entails that the underlying attractor of the continuous 
time dynamical system should contain an uncountable number of sheets 
whose transverse intersection by a line produces a Cantor-like set. This, in 
turn, requires that the attractor undergoes successive foldings as time goes 
on (cf. Fig. 3.7). 

Fig. 7.4(a) depicts the Poincare surface of section of the Rossler 
attractor (eqs. (4.41 ) and Fig. 4.10) on a surface of section corresponding 
to the plane y = 0, x < 0, z < 1 (Gaspard and Nicolis, 1983). We obtain a 
cloud of points. By delimiting part of the surface of section by a small 
rectangle we observe that at later intersections this rectangle is rotated 
and deformed into a stick-like structure which, in turn, is folded into a 
horseshoe-like structure. Subsequent foldings will produce the Cantor- 
like structure anticipated above. 

A second view of chaos in the Rossler model is given by Fig. 7.4(6). Here 

Fig. 7.3 A I 
quasi-periodic 

attractor in the form 
of a two-dimensional 

torus and its signature 
on the Poincare 

surface of section in 
the form of a closed 

curve C (after 
Thompson, 1982). 
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Fig. 7.4 (a) Horseshoe 
map induced by 

Rossler's model (eqs. 
(4.41 )) on the Poincare 

surface of section 
(y = 0, x < 0, z < 1). 

The trajectories within 
the rectangle rotate 

around the 
one-dimensional stable 

manifold of the fixed 
point and intersect the 
Poincare surface after 

having followed the 
folding of the unstable 

manifold. ( b )  The 
one-dimensional map 
obtained by plotting 

the value of -x at the 
(n + 11th intersection 
of the trajectory with 
the Poincare surface, 

versus its value at  the 
nth intersection. 

we plot the value of x at the (n + 1)th intersection point between the 
above-defined Poincart. surface and the flow, as a function of its vaIue at 
the nth intersection. The numerical construction shows that we obtain a 
smooth bell-shaped curve. The positions of the successive intersections on 
this curve are not given by consecutive points but by points that appear to 
be distributed randomly. 

Fig. 7.5 depicts a second example of a return map, obtained this time 
from a seven-variable model of the Belousov-Zhabotinski reaction 
(Richetti and Arneodo, 1985; see also Section 1.4). The temporal 
variation of Br-ion concentration and a two-dimensional projection of 
the attractor of the model equations are represented, respectively, in Figs. 
7.5(a) and 7.5(6). The return map itself, Fig. 7.5(c), is obtained from a 
Poincark surface of section whose trace is indicated by the dashed line on 
Fig. 7.5(b). These results follow very closely the time dependences, 
attractor shapes and return maps obtained directly from the experimental 
data (Turner, Roux, McCormick and Swinney, 198 1 ). 

In both Fig. 7.4(b) and Fig. 7.5(c), the important thing is that in the 
representation afforded by the return map one is left witn a one- 
dimensional recurrence, an additional advantage with respect to the 
high-dimensional recurrence governing the full Poincartt surface of 
section (Fig. 7.4(a)). Such dimensionality reductions arise frequently in 
systems possessing widely separated time scales: as time .goes on fast 
processes associated with contraction wipe out any extension in certain 
directions, leaving only one relevant variable associated with a slow 
motion along the most unstable direction. 
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7-2 One-dirnen~ion~l recurrences: general aspects 
The detailed construction of the Poincare recurrence on the surface of 
section, starting from a given dynamical system, is an extremely arduous 
task that cannot be carried out quantitatively unless the solutions of the 
equations of evolution (3.26) are known explicitly. As stressed repeatedly, 
in most dynamical systems of interest this is not the case. Nevertheless, the 
Poincare map is the origin of a most fruitful approach to chaos which may 
be summarized as follows : 

One starts with a particular recurrence, or a family thereof, arguing that 
there is bound to be a family of phase space flows reducible to this 
recurrence through a judicious choice of the surface of section. 
Qualitative, and whenever possible, quantitative analysis is performed on 
the recurrence. Certain features concerning possible routes to chaos as 
well as fully developed chaos that would be impossible to unravel from the 
original flow are thus brought out. 
By the previous argument on the existence of an underlying family of flows 
amenable to the Poincare recurrence, it is conjectured that the con- 
clusions obtained from the above analysis should be generic for flows as 
well, provided that the form of the evolution laws on the Poincart: surface 
is not pathological. The validity of this conjecture is checked by 
experiment or  by numerical simulation on model equations. 

Fig. 7.5 (a) Temporal 
variation of the Br- 

ion concentration 
deduced from the 

seven-variable model 
of the 

Belousov-Zhabotinski 
reaction by Richetti 

and coauthors; (h) 
two-dimensional 

projection of the phase 
portrait generated by 
the model equations; 

( c )  the return map 
deduced from a 

Poincare surface of 
section cutting the 

attractor along a 
hyperplane whose 

trace is indicated by 
the dashed line in (b ) .  
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Experience acquired during the last decade has fully vindicated the 
interest in this approach to which, consequently, much of this chapter will 
be devoted. In this section we derive some general properties of 
recurrences (Collet and Eckmann, 1980; Hao, 1989). In view of the 
arguments developed at the end of Section 7.1 we focus on the 
one-dimensional case 

where y stands for a control parameter. 
Let 2 be a fixed point solution of (7.6), 

In the spirit of Section 3.5, we introduce a perturbation j, from X through 

substitute in (7.6), expand f i n  Taylor series around i and keep only the 
linear contribution in {. One obtains in this way, using property (7.7), 

where the prime denotes the first derivative. This equation admits 
solutions of the form 

Substitution into (7.9a) yields 

On the other hand, from (7.9b) it is seen that j, will decay in time only if 
I p ( < 1 .  We thus arrive at the condition of asymptotic stability of the fixed 
point 

The above analysis can be extended straightforwardly to cycles of order 
k. Let {x, , . . . , x,) be the set of points visited consecutively by the cycle. 
Since x, = f (x, , y), . . . , xk = f ( x k  , p), it follows that each of the points 
(x, , . . . , x,) satisfies the property 

xi = ,f (.f . ..f (xi)) - ,f 'k'(~i) (7.1 1 )  
k limes 

i,e. it is a fixed point of the kth iterate of the map. Using the chain rule for 
the differentiation of implicit functions the condition oT asymptotic 
stability (eq. (7.10b)) then takes the form 
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In studies involving one-dimensional recurrences ,u and f are usually 
chosen and normalized in such a way that if the initial data x ,  are taken 
from a finite interval I s (a. b) ,  then the various iterates x, , . . . , x, belong 
to the same interval. Therefore, the function f maps the interval I into 
itself in the sense that the iterates may not fill the entire interval. We refer 
to such systems as endomorphisms. An endomorphism with a smooth 
inverse is referred to as a difeomorphism. Typically, one-dimensional 
endomorphisms leading to chaos are not invertible owing to the 
elimination of the motion along the contracting directions. In contrast to 
diffeomorphisms for such systems the past cannot be reconstructed in a 
unique fashion. 

7.3 Phenomenology of one-dimensional 
recurrences: illustrations 

Before we proceed to the quantitative study of the mechanisms leading to 
chaotic behavior and to the characterization of fully developed chaos we 
illustrate the properties of one-dimensional maps on three typical 
examples: the logistic, the circle and the intermittent map. These also 
happen to be the dynamical systems on which much of the early 
fundamental work on chaos theory has concentrated (Schuster, 1988; 
Berg6 er al, 1984; Baker and Gollub, 1990). 

A The logistic map 

The specific form of eq. (7.6) associated with this dynamical system is 

Its genericity stems from the fact that any function possessing a 
nondegenerate extremum behaves around this extremum as does the right 
hand side of eq. (7.13) around x = 112. 

The fixed point equation (7.7) possesses two solutions: 

x , ,  = 0, which exists for all values of the parameter ,u 
x , ,  = 1 - 1/4p, which exists as long as ,u r 114 

The stability of these fixed points can be assessed from eq. (7.10b), which 
for eq. (7.13) reads 

For ,F = x,, = 0 this leads to condition y < 114 in other words, the trivial 
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solution is stable only as long as it is the unique fixed point of the system 
, For i = x ,  , = 1 - 1/4p, inequality (7.14) leads to 1 /4 < p < 314, where 
the left part of the inequality guarantees that x,, is in the unit interval. 

Fig. 7.6 depicts the evolution of an initial condition xo induced by eq. 
(7.1 3) for values of p slightly below 314. We observe that after a short 
transient the iterates of x, spiral around the nontrivial fixed point x,, , to 
which they eventually tend as n+m. Notice that x,, is the intersection of 
the graph of f(x) and of the bissectrix of the unit box. Having drawn the 
bissectrix the iteration is visualized most conveniently first by going 
vertically from xo to its image on the graph, then by shifting this image on 
the bissectrix horizontally, then by continuing once again (vertically) 
toward the graph of f(x) and so forth. 

Beyond the stability limit p = $ of the fixed point x, ,  a new solution in 
the form of a cycle of order two takes over, as illustrated in Fig. 7.7 for 
p = 0.775. We refer to this phenomenon as period doubling. This solution, 
which we denote by (x, -, x, + ) can be constructed analytically using eq. 

(7.51, 

or, after some elementary algebra, 

Fig. 7.6 Evolution 
toward the stable fixed fix) 

point in the logistic 
map for p = 0.7. 

0.75 

I I I / 

I 

, 
/ 

- / 

/ 

O x, 0.25 x 
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Fig. 7.7 Evolution 
oward a stable cycle 

of order two in the 
logistic map for 

p = 0.775. 

Referring to curve ( b )  of Fig. 5.1, we see that the two points of the cycle 
emerge from x,, through a mechanism of supercritical pitchfork bifurca- 
tion at the critical parameter value p = 314. Notice that at the level of the 
evolution induced by J' the two values x, + are parts of a single solution, 
and are visited consecutively in the cours;of time. But at the level of the 
second iterate f2 '  each of x, + , x, - corresponds to a distinct (fixed point) 
solution. It is, therefore, at this level that the analogy with pitchfork 
bifurcation is meaningful. 

Let us jump, next, to the largest value of ,u allowed by eq. (7.13), p = I .  
One observes that for this value a typical initial condition in the interval 
will evolve to a complex, aperiodic behavior shown in Fig. 7.8(a),(b). As 
we shall see later, this behavior turns out to be one of the most clearcut 
and best-established examples of deterministic chaos. 

The above discussion shows that the logistic map is capable of 
producing both regular, periodic behavior (Figs. 7.6 and 7.7) and 
irregular, aperiodic behavior (Fig. 7.8). The question therefore naturally 
arises, of whether these two types of regime are separated by a well-defined 
transition. We shall see in Section 7.5 that this is indeed the case. More 
specifically, the transition is manifested through an infinite sequence of 
successive period doublings at  increasing values of the control parameter 
p(pl = 314, p2,  . . . , p,, . . .) culminating at a well-defined value 
l imn+mpn = pm < I ,  

The logistic map at p = 1 generates another, even simpler prototype of 
chaotic behavior through the change of variable 
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2 nYn 
x, = sin - 2 

Substituting into (7.13) and using standard trigonometric identities one 
arrives at 

n Y n + ~  - 2 sin2 - = sin ny, 
2 

implying that 

or finally 

Fig. 7.8 Fully Ax) 

developed chaos in the 
logistic map for 11 = I : 

(a) successive 0.75 

iterations starting from 

xo = (45 - 1 )/2; ( b )  
time series generated 

by these iterations. 050 



84 7 Chaotic dynamics 

Fig. 7.9 The tent map 
T(x) ,  eq. (7.16b). 

The recurrence law T(x) of this dynamical system, referred to as the tent 
map, is depicted in Fig. 7.9. It is topologically conjugate to (7.13), in the 
sense (cf. Section 3.6) that there exists a homeomorphism (eq. (7.16a)) 
taking the orbits of (7.13) to those of (7.16b). 

Since the absolute value of the slope of T(x) is everywhere larger than 1 ,  
by eqs. (7.10b) and (7.12) the fixed point and all periodic orbits are 
unstable. Inspection of the graph of Fk)(x) immediately shows that there 
are 2& intersection points between this graph and the bissectrix, Of these, 
two are the fixed points of T(x) itself (x,, = 0, x , ,  = 3). The remaining 
2' - 2 points belong to period k trajectories. Thus, there is one period-two 
trajectory (consisting of 2' - 2 = 2 points), two period-three trajectories 
(consisting of a total of Z 3  - 2 = 6 points) etc. By construction, the points 
belonging to these trajectories have a rational abscissa on the x-axis. One 
can prove additionally that they are dense in [O,l]. 

B The circle map 

We have seen (Fig. 7.3) that the motion on a torus induces on the Poincare 
surface of section a mapping of the circle into itself. Let us deduce the 
explicit form of this mapping by assuming first that the motion on the 
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torus is uniform. In the angular coordinates 0 and # already introduced in 
Section 3.3C this gives rise to the following equations, 

where a, ,  w ,  are the (constant) angular velocities. The solution of these 
equations reads 

Suppose that the Poincare surface of section cuts the torus along the 
'meridian' # = 0 (mod 271). The intersection of the trajectories on the 
torus with this meridian will occur at times t, such that #(t , )  - 4, = 2nn 
where n is an integer, o r  

Substituting into the first of eqs. (7.17) one finds 

0 1  0, = 0, + 2n-n (mod 2 n) 
a,  

or, after normalizing and transforming to the usual form of a recurrence, 

O n + l  = a  + 0, (mod 1) (7.18) 

with 

This dynamical system is known as the twist map and is depicted in Fig. 
7.10(a). If cc is rational (a case which has already been referred to as 
resonance, see Section 2.1) the trajectory emanating from an initial point 
0, will eventually return to 0, after a time T = p / a l  = q/w2 where p and q  
are integers such as w , / a ,  = p/q. The corresponding trajectory on the 
original torus will be a closed curve winding p times along the 0 direction 
and q  times along the # direction. But if ct is irrational the trajectory will 
never return to its initial position: the motion will be quasi-periodic, and 
will be represented by a helix winding indefinitely on the torus. As most of 
the real numbers are irrational, this case will be typical for the twist map. 

The twist map can be extended to account for nonuniform motion on 
the torus. The correction must, ofcourse, respect the periodicity condition 

(eq. (7.18)) 
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Fig, 7.10 The circle 
map, eq. (7.19), for 

= ( J5  - 1)/4 and for 
increasing values of 

the nonIinearity 
parameter K: (a) 

Y = 0 (twist map, eq. 
(7.18)); (b) K = 0.9; 
(c) K = 2; (d) state 

diagram in the 
parameter space 

( K ,  a) .  The motion is 
periodic inside the 

hatched regions 
Irnol'd tongues) and 
lasi-periodic outside. 
,t K = 1 the rational 

winding numbers 
dominate and for 

K > 1 the tongues 
overlap. ( 1  t ( 3 )  
indicate various 

possible routes to 
chaos. 

The most widely used model off  (8) is the sine map 

8, + , = 8, + cc - (K/2n)sin 2x8, (mod 1)  (7.19) 

As the nonlinearity parameter K is tuned different types of mapping, 
depicted in Figs. 7.10(b) and (c), can arise. In case (b) K < 1, and the map 
is invertible since f'(8) = 1 - K cos 2718 can never vanish. In case ( c )  
K > I and the map is noninvertible, resembling near its extrema the 
logistic map. This is at the origin of a variety of complex behaviors leading 
eventually to chaos. 
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As in the logistic map one may inquire about the transition from the 
quasi-periodic behavior typical of (7.18) to the chaotic behavior generated 

,from (7.19) when K > 1. Curiously, this transition may involve as an 
intermediate step regular regimes in the form of periodic oscillations. The 
way these regimes arise is depicted in Fig. 7.10(d). For K # 0 the regions 
of periodic behavior are no longer limited to the rational values of a, but 
correspond to whole regions (the so-called Arnol'd tongues) whose widths 
increase with K.  Indeed, given a map like the one depicted in Fig. 7.10(b), 
there exists a sufficiently high iterate f'k' whose graph will intersect for a 
certain a the bissectrix at two points corresponding to one stable and one 
unstable cycle of order k .  Since intersection between two curves is 
structurally stable with respect to slight changes of parameters, this 
situation is bound to subsist for a whole interval of values of a. 

There exists an infinite number of such phase-locked intervals. Outside 
of these intervals the motion remains quasi-periodic. As a varies at fixed 
K, the map displays therefore both periodic and quasi-periodic behavior. 
But as K approaches 1, the rational intervals increase in size. At K = 1 the 
set of irrational intervals reduces to a fractal. Beyond this value the 
phase-locking regions overlap and several periodic oscillations can occur 
for given (K, a )  depending on the initial conditions. Chaos is also 
observed for certain values of a. Three different paths are depicted in Fig. 
7.10(d). They correspond, respectively, to the transitions quasi-periodic- 
ity+phase locking+chaos, (1); quasi-periodicity+chaos, (2); and simple 
periodicity+period doubling+chaos, (3). 

C The intermittent map 

A very interesting situation arises when one of the branches of the map is 
nearly tangent to the bissectrix. This case, which may actually be 
encountered in both the logistic and the circle map or their iterates in 
some parameter ranges, is depicted schematically in Fig. 7.1 1 .  After a 
short transient, an initial condition x, enters in the narrow region between 
the graph of the function and the bissectrix. At the beginning this process 
resembles convergence to a fixed point of marginal stability and displays. 
therefore, a very long time scale. But since the fixed point does not actually 
exist the iterates will eventually leave this region, evolve into the second 
branch of the graph off  (x) near x = 1 and be reinjected shortly thereafter 
back to the region of near-tangency. To the observer this will appear as a 
series of long periods of quiescence interrupted at seemingly random times 
by short-lived bursts- a property which one usually refers to as intermit- 
tency and which is, indeed, one of the characteristic signatures of the 
phenomenon of turbulence, 
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From the above discussion it follows that a one-dimensional map 
possessing two fixed points which tend to merge and subsequently to 
disappear as  a parameter is varied, can potentially show intermittency 
(Manneville and Pomeau, 1980). In the language of Section 5.5 this 
transition amounts, therefore, to a limit point bifurcation. 

7.4 Tools of chaos theory 

In much of the analysis carried out in Chapters 4-6 we have been able to 
formulate the onset of complex behavior as a local problem amenable to  a 
perturbative approach. This has led us to normal form equations 

Fig. '7.1 1 Generation 
of intermittent 

f ( x )  

behavior through limit 
point bifurcation in 0.75 

the map 
,f (x) = 0.25 + E + x2 

mod 1 : (a) E - 0.05 : 
the system possesses 0.50 

one stable and one 
unstable fixed point ; 

(b) E = 0.02: the fixed 0.25 
points have been 

destroyed and the 
system undergoes 

chaotic behavior of the 0 0.25 0.50 0.75 x 

intermittent type. 
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describing the spatio-temporal behavior of the amplitude of the bifurcat- 
ing solutions in the vicinity of the transition point, which captured the 
essential part of the physics of the underlying problem. 

As the djscussion of the preceding sections has made clear, in contrast 
to the fixed points, limit cycles and spatial patterns, the onset and the 
principal properties of chaos constitute a global problem that is not 
amenable to perturbation theory. New approaches are needed. The 
present section is devoted to a brief survey of these methods, which will be 
applied subsequently in a number of case studies. 

A first type of method stems from the idea, already implicit in the 
discussion of Section 3.4, that in the presence of complex dynamics the 
monitoring of a phase space trajectory in a pointwise fashion loses much 
of its interest. One attractive alternative to this limitation is coarse- 
graining: we partition the phase space into a finite number of cells (C,), 
i = 1, . . . , N (Fig. 7.12) and monitor the successive cell-to-cell transitions 
of the trajectory. One may look at the 'states' C,, . . . , C ,  as the symbols 
of an N-letter alphabet. In this view, then, the initial dynamics induces on 
the partition a symbolic dynamics describing how the letters of the 
alphabet unfold in time (Collet and Eckmann, 1980; Hao, 1989; Devanay, 
1989). The investigation of this dynamics provides one with a powerful 
tool for classifying trajectories of various types and for unraveling aspects 
of the system's complexity that would remain blurred in a traditional 
description limited to the trajectories. Explicit examples will be given in 
Section 7.8. An additional motivation for developing the idea of symbolic 

Fig. 7.1 2 Illustration 
of the idea of 

coarse-graining and 
symbolic dynamics. 
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dynamics is that in many natural phenomena strings consisting of 
sequences of letters play a central role. For instance, the DNA and RNA 
molecules are linear strings written on an alphabet consisting of four 
letters 'A', 'C', 'G', and 'T' (or 'U'), according to whether the nucleic acid 
subunit (nucleotide) contains the bases adenine, cytosine, guanine and 
thymine (or uracil). Furthermore most of the messages transporting 
information or having a cognitive value such as books, music, computer 
programs, or electrical activity of the brain are amenable in one way or the 
other to strings of letters. 

Closely related to the ideas ofcoarse-graining and symbolic dynamics is 
the statistical approach to complex dynamical systems and especially to 
chaos (Lasota and Mackey, 1985; Eckmann and Ruelle, 1985). The 
objective here is to add to the topological view afforded by symbolic 
dynamics a metric element, such as the probability density p, (x )  of finding 
the system in phase space point x at time n, introduced in Section 3.4, or 
(Nicolis and Nicolis, 1988) the probability p,(Ci) of finding the system in 
one of the cells of the partition of Fig. 7.12. In a similar vein one may also 
introduce joint probabilities and correlation functions. The interest and 
power of this description will be illustrated in Sections 7.6 and 7.8. Notice 
that, applied to conservative systems, the statistical description of chaos 
becomes intimately related to the foundations of statistical mechanics. In 
this chapter, however, we shall limit the analysis to dissipative chaos. 

A third type of method for tackling chaos stems from the observation 
obtained from numerical studies that, in many instances, the dynamics 
exhibits a remarkable sewsimilarity. This property, which is also at the 
basis of the description of chaos by fractal attractors (cf. Section 3.3D), is 
nicely illustrated on the logistic map introduced in Section 7.3A 
(Devanay, 1989). 

In Figs. 7.13(a)-(c) the graphs f of this map for three different 
parameter values corresponding to the trivial fixed point being the only 
fixed point available (a), and to the nontrivial fixed point p being stable (b) 
or unstable (c), are depicted. The graphs of the second iterate f 2 '  for the 
same parameter values as in (b) and (c) are drawn in Fig. 7.1 3(b'),(c1). We 
see that when p is a stable fixed point o f f ,  the map f('j possesses a single 
nontrivial fixed point. In contrast, when p is unstable for map f ,  the map 
f'2'  possesses three nontrivial fixed points. One of them is identical to p. 
According to Section 7.2 the other two (p,, p,) define the stable period 
two orbit of f .  

Let @ be the pre-image of p in the sense that f (0) = p.  We fix our 
attention on the portion of the graph o f f  (2' in the interval [P, p], which 
for clarity is enclosed in a box in Figs. 7.13(b1),(c'). The following 
observations are worth making: 
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Fig. 7.13 Illustration 
of the idea of 

self-similarity : (a)-(c) 
the graphs of j ' (x ) ,  eq. 

(7.13), for p = 0.2, 
p = 0.7 and p = 0.82 
respectively; (bJ) - (c ' )  
the graphs off ("(x) 

for values of p 

corresponding to ( 6 )  
and ( c )  respectively. 
p, f i  denote the fixed 

point and its 
pre-image. Notice the 

similarity of the 
behavior ofj''' in 

[b ,  p ]  to that of j in 

co, 11. 

The interval [fl, p] is invariant under the action of f'2', just like the unit 
interval [0, I] is invariant under the action o f f .  

Despite marked differences between f ( 2 )  and f (number of extrema etc), 
f '2) restricted to the interval [p, p] resembles the graph of the original 
quadratic map (for a different p value). Indeed, inside the box it has one 
fixed point at the end point of this interval (just like f at x = 0) and a 
unique critical point withjn this interval (just like f at x = 112). 

As p increases the hump of this quadratic-like map grows until a second, 
nontrivial fixed point arises within [@, p]. 

In summary, the behavior of f 2 '  on [@, p] is very similar to that o f f  on 
[O,l]. As p increases one may therefore expect that the new fixed point 
born in [p,p] for f ' 2 )  will become, in turn, unstable and undergo 
period-doubling (just like p did for f ), producing a period four orbit o f f .  
Continuing the procedure outlined in Fig. 7.13 we may likewise find a 
small box in which the graph of f(4' (the second iterate of f ( 2 ) )  will 
resemble the original quadratic function, and so on. This suggests that 
these functions are converging toward a uniuersalfunction. If so, the latter 
should be accessible through a renormalization calculation, expressing 
that the action of the transformation connecting the original function f to 
its image in the part of the graph of f''' inside the box eventually 
converges to some fixed point. We shall discuss this problem further in the 
next section. 
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7.5 Routes to chaos: quantitative formulation 

We now turn to the part of chaos theory that has attracted so far the 
greatest attention among all other chaos-related subjects and is largely 
responsible for the popularity of this theory in the scientific community. 
Our aim is not to present an exhaustive analysis, which can be found in the 
abundant original literature and in many excellent monographs, see 
especially Schuster (1988), Devanay (1989) and Hao (1989). Instead, we 
shall devote this section to a succinct compilation of the main ideas and 
turn for the remainder of the chapter to some other aspects of chaos theory 
which, although very important, are less covered in the literature. 

We begin once again with the logistic map, eq. (7.13). The arguments 
developed in Section 7.4 in connection with Fig. 7.13 and the idea of 
self-similarity, suggested that f undergoes a series of period doublings as p 
increases. In order to formulate this problem in a quantitative manner we 
first construct a linear mapping taking the fixed point p to 0 and its left 
pre-image f~ to 1 (actually j? exists and is on the left of p as long as p > 112): 

where from now on we index all quantities of interest by p in order to 
follow clearly the dependence on the parameter. Notice that L, expands 
[b,, p,] onto [O,1] with a change of orientation. Its inverse L, ' , obtained 
by solving (7.20) for x is 

We now define the action of the renormalization operator R on f ,(x) by 

One can check by straightforward algebra that Rf,(x) shares many of the 
properties of f,, in particular: 

Furthermore, as we saw in connection with Fig. 7.13, Rf, converts 
periodic orbits of period two for f, into fixed points for Rf,, As long as Rj; 
admits a fixed point p,(p) in the negative slope region (Fig. 7.14) one may 
identify its pre-image j?,(p), introduce once again a linear map taking 

pl(p) to 0 and to 1 and define a second renormalization. Hence we 
get another period doubling bifurcation. Continuing this process leads to 
a succession of period doubling bifurcations as p increases, as illustrated 
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in Fig. 7.15. It  is now conventional (Feigenbaum, 1978) quantitatively to 
characterize the complexity of this bifurcation diagram by the following 
two parameters: 

The ratio 

Numerical simulations show that as n+co 6, tends to a constant value 
6 = 4.669201 . . . entailing that p, converges geometrically to some limit 

Pm < 1, 

The behavior at p, turns out to be aperiodic and attracting, the attracting 
set being a fractal. 

The separation dn of the two closest points of a periodic orbit at specific 
parameter values { P , ) ,  typically those for which the critical point x, = 1/2 

Fig. 7.14 The graphs RfJx) 

off, and Rf, for the 
logistic map, eq. (7.13) 0.75 

and for (a)  p = 0.82, 
and (b) p = 0.89. 

0.50 
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is part of the orbit (one speaks then of superstable orbits). Numerical 
simulations show that the ratio d,/d,+, also approaches a limit as n+ a, 

d" lim -- = a  (7.25) 
n 4 m  dn+ 1 

which numerically is found to be a = 2.502907 . . . . 

A most exciting aspect of this period douhhg  route to chaos is 
Feigenbaum's fundamental observation (Feigenbaum, 1978) that as the 
above limits are approached, the equivalence of f in [0,1] and f ' 2 )  in 
p,,p,] amounts to the existence of a unique real-valued mapping g such 
that 

where a is a scaling factor (related to (b, - p )  ' in (7.22) and we have 
switched to new coordinates in which the origin is placed on the fixed 
point p,. The problem of determining g and a amounts, therefore, to 
finding the fixed points of the renormalization operator R in the space of 
real-valued functions. This can be done by successive approximations in 
which g is expanded in series. One first observes that for any real v, 

This scale-invariance property allows one to choose g(0) = 1.  In a first 
approximation, restricting the solutions to the space of even functions, 
g(x) = 1 + b x 2 ,  one obtains then from (7.26) 

Fig. 7.1 5 The )r 

bifurcation diagram 
for ,f;, , showing the 

successive period 
doublings at p ,  

(period two), p, 

(period four), p, 
(period eight) etc. 
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By identifying the coefficients of equal powers of x one finds b - - 1.366, 
a = 2.73, a result quite close to the 'exact' value of a given above. The 
agreement can be improved by including higher order terms. Rigorous 
proof of the existence of the fixed point can be found in Lanford (1 982) and 
Campanino and Epstein (1981). The reader will have realized by now that 
the whole argument is not limited to the specific form of the logistic map 
but concerns, instead, the entire family of unimodal maps with a 
nondegenerate critical point satisfying the condition of eq. (7.23). In this 
respect, therefore, one is entitled to speak of universality. 

Once the existence of a fixed point of R is established the question 
naturally arises, how is this fixed point attained by successive iterations. 
Since R converts periodic orbits of period 2" for f ,  into periodic orbits of 
period 2"- for Rfp, we may express the action of the transformation as 

In the spirit of the previous chapters of this book, the natural way to 
formulate this recurrence problem is to expand this general equation 
defining the action of R around the fixed point g(x) and truncate to linear 
terms. Now, we notice that eq. (7.27) actually runs backward in the 'time' 
variable n. The fixed point is therefore unstable, and repeated use of the 
linearized renormalization transformation L will be dominated by the 
eigenvalues of this operator whose absolute value is greater than one (cf. 
Section 7.2). In other words only expanding directions around the fixed 
point in the space of functions on which (7.27) is defined will be relevant. 
Actually the fixed point turns out to be a saddle point. The basic reason 
for this is that to achieve the fixed point g it is necessary to rescale the 
control parameter p at each successive step. This defines a 'critical line' 
playing the role of the stable manifold of the fixed point. If one is not on 
this line one can come close to g only up to some finite n. Rescaling beyond 
such an n will drive the corresponding f, away from g, a property 
implying that g behaves as a saddle point. A very similar situation arises in 
the modern theory of equilibrium critical phenomena (Ma, 1976). 

Applied to the period doubling transformation the above procedure 
produces a dominant eigenvalue 6 = 4.669201 . . . , thus providing the 
fundamental explanation of the geometric law of convergence of p, to j i ,  
(eq. (7.24)). But the beauty of renormalization ideas as applied to chaos is 
that, when appropriately adapte'd, they can also be used in a variety of 
problems in which chaos sets in by other mechanisms than the period- 
doubling cascade. A rather straightforward il~ustratidn is provided by 
htermittency, where one can derive by renormalization arguments the 
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average time spent by the trajectory near the bissectrix (Hu and Rudnick, 
1982). A more elaborate, very important extension leading again to 
universal scaling laws refers to the onset of chaos in the circle map, Section 
7.3B (Feigenbaum, Kadanoff and Shenker, 1982). 

The quantitative features underlying the various routes to chaos, such 
as the scaling laws (7.24) and (7.25) have been amply confirmed by 
experiments in such different areas as chemistry, fluid mechanics or  laser 
physics. This justifies, a posteriori, the approach to chaos based on the 
study of Poincare recurrences and suggests a remarkable universality 
underlying the onset of chaos in large classes of natural phenomena. A 
survey of the literature on the quantitative comparison between theory 
and experiment in this area can be found in Schuster (1988). 

7.6 Fully developed chaos: probabilistic description 

We now turn our attention to the case where, by one of the mechanisms 
discussed in the previous sections, chaotic behavior has set in. We have 
already encountered a number of concrete illustrations of this behavior, 
such as the logistic map for the value p = 1 of control parameter (eq. 
(7.13) and Fig. 7.8) or  homoclinic chaos in the Rossler model and in the 
Belousov-Zhabotinski reaction (eqs. (4.41) and Figs. 4.10, 7.4 and 7.5). 
So far we do not dispose of quantitative criteria to characterize this 
phenomenon in comparison to other types of aperiodic behavior like, say, 
quasi-periodic oscillations. Our objective is to arrive at a sharper view of 
chaos and to identify some of its key properties. The basis of this program 
will be the probabilistic approach, to which the present section is devoted. 

A number of reasons for undertaking a probabilistic description have 
already been alluded to in Section 3.4. The crux of the argument was that 
in nature thefprocess of measurement, by which the observer communi- 
cates with a physical system, is limited by a finite precision. As a result, a 
'state' of a system is in reality to be understood not as a point in phase 
space but, rather, as a small region whose size E reflects the finite precision 
of the measuring apparatus. Additional sources of delocalization of a 
dynamical system in phase space also exist in connection, for instance, 
with incomplete specification of initial data or numerical roundoffs. 

If the dynamics of the underlying system were simple the difference 
between the point-like description and the delocalized description 
described above would not really matter. The situation changes entirely in 
the region of chaotic behavior. To illustrate this we depict in Fig. 7.16 the 
time evolution of two nearby initial data, whose separation L- is supposed 
to account for the various sources of imprecision or error, for the logistic 
map at the value p = 1 of the control parameter. We observe that after an 



7.6 Fully developed chaos 197 

initial stage of coherent coevolution the two curves deviate and eventually 
their difference becomes comparable to the size of the attractor itself. In 
other words, chaos amplifies small errors. Put differently, experimentally 
indistinguishable initial states will eventually evolve to states that are far 
apart in phase space. To the observer this behavior will signal the inability 
to predict the future beyond a certain time on the basis of the knowledge of 
the present conditions. This property, which we also refer to as sensitivity 
to  initial conditiorls and to which we shall return in Section 7.7, introduces 
a fundamental difference between localized, point-like and delocalized 
descriptions. It constitutes, therefore, an additional compelling moti- 
vation for undertaking a probabilistic description which is the only one to 
reflect this delocalization and to cope in a natural fashion with irregular, 
unpredictable successions of events. 

Consider a one-dimensional recurrent dynamical system, eq. (7 .6 ) .  
Within the framework of a probabilistic description, the central quantity 
to evaluate is the probability density p, (x )  to be in state x at time n. Let x ,  
be an initial state. A point-like description of our dynamical system 
amounts to stipulating that x ,  is known with an infinite precision. The 
corresponding probability density is, then p,(x)  = 6(x - x , ) .  Since after 
one time unit x ,  is sent to f ( x , ) ,  p , (x )  will obviously evolve to 

P I  = 6Cx - f ( x 0 ) l .  
Suppose now that the initial density p,(x)  is a smooth function of x, in 

the spirit of the ensemble theory point of view discussed in Section 3.4. 
Obviously, the probability density after one iteration will be given by a 
superposition of the above point-like evolutions over all initial states x ,  
represented in the ensemble. We may therefore write 

Fig. 7.16 The 
sensitivity to the initial 

conditions in the 
logistic map, eq. 

(7.13), for p = 1 .  Full 
and dashed lines 

denote the trajectories 
emanating from two 

initial conditions 
separated by E = lop3. 
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This equation, known as the Frobenius-Perron equation (Lasota and 
Mackey, 1985), is the analog of the continuous time evolution equation 
(3.15) for discrete time dynamical systems. In order to write it in a more 
explicit form one has to  perform the integration over the phase space r, in 
other words, determine the roots x, of the equation f (x,) = x. The phase 
space points x, satisfying this relation are referred to as the pre-images of 
x, since they evolve to x upon one iteration. In a typical one-dimensional 
endomorphism there are more than one pre-images to a given point x as 
one sees clearly in Fig. 7.17. Using well-known properties of the delta 
function one may thus write (7.28) in the equivalent form 

where f,-' stands for the branch of the inverse map leading to  the 
particular pre-image x,. One can check from (7.28) arid (7.29) that the 
Frobenius- Perron operator U preserves the positivity and the normaliz- 
ation of p. Such operators are referred to as Markov operators. 

The Frobenius - Perron equation can be used as the natural starting 
point of a most illuminating classification of dynamical systems, based on 
the properties of the invariant probability density p,(x) (the stationary 
solution of (7.28) and (7.29)) and on the ways time-dependent densities 
may approach p, in time. We summarize below some salient features and 
illustrate them on the various examples of chaotic mappings given earlier 
in this chapter. 

Fig. 7.17 The f ix )  , 

struction leading to 
le explicit form, eq. 

(7.29), of the 0.75 
Frobenius-Perron 

equation for the 
logistic map, eq. 

13). x,,,x,, denote 0.50 
two pre-images of 

tate represented by 
point x. 

0.25 
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A Ergodicity 

According to the Frobenius - Perron equation, the invariant probability 
density p,(x) satisfies the equation 

It induces on the subsets C of [O,l] an invariant measure given by 

in the sense that p,( f - 'C) = p,(C), where the precise meaning off  'C is 
the set of all points x whose images will be in C after one iteration. 

In general, under the effect of the dynamics a set C will be transformed 
into a new one. If this is not the case, the set will be called invariant. We 
express this property by 

The dynamical system defined by the iteration law flx) will be called 
ergodic if every invariant set in the above sense is either the trivial set or the 
entire interval, in the sense p,(C) = 0 or 1 .  In other words, the phase space 
of an ergodic system cannot be decomposed into invariant measurable 
subsets (other than the two previous ones) within each of which the 
trajectories remain trapped during the evolution. 

It is useful to compare ergodicity, also known in the early literature as 
metric transitivity, to a property of chaotic motion of a more geometric 
nature, namely that an open set in the interval will eventually move under 
the iteration to cover the entire interval. Ergodicity adds to the above 
property of topological transitivity an important metric element, allowing 
one to distinguish between 'typical' and 'untypical' trajectories. 

A more direct relationship between ergodicit~ and p,(x) is established 
by the following theorem (Lasota and Mackey, 1985): 

If the dynamical system f ( x )  is ergodic, then there is exactly one 
stationary probability density p,(x) which is Lebesgue integrable, in the 
sense that the integral J c d . ~ p s ( ~ )  is finite. Furthermore, if there is a unique 
stationary density p,(x) and p,(x) > 0 almost everywhere, then f is 
ergodic. 

Ergodicity is thus intimately connected with the uniqueness and 
smoothness properties of the invariant probability density. Here and 
throughout the present section 'almost everywhere' is to be understood as 
a property being fulfilled in all points of phase space except for a subset of 
measure zero, the measure to be used being the invariant measure (eq. 
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(7.31)). Notice that, at this stage, there is nothing which excludes the 
possibility of singular invariant densities in the form say of delta functions. 
This is what happens, for instance, in systems possessing a unique fixed 
point attractor. 

Operationally, the invariant density is usually constructed by counting 
the number of times different regions of phase space are visited by a typical 
trajectory over a long time interval N, N-+ co. This is how one proceeds, 
for instance, to  compute numerically probability histograms from 
trajectories. We express this idea by the relation (Eckmann and Ruelle, 
1985): 

lIn a similar vein one may argue that the outcome of an experimental 
observation (or numerical simulation) of a certain property A(x) of a 
dynamical system is also related to  the time average of its instantaneous 
values over a long period, 

A(x) = lim 1 ~ [ f ( " ( x ~ ) ]  
N-m N i = O  

The question therefore naturally arises of how p(x) and A(x) are related to 
p,(x). The answer is given by the extended BirkhofS ergodic theorem: 

In an ergodic dynamical system satisfying the condition ps[f'-'(C)] = 

ps(C) for all sets in the unit interval [0,1] the following equalities hold in 
almost all points in phase space: 

(equality of time and ensemble averages), and 

(equivalence between the 'physical' probability density and the (unique) 
time-independent Lebesgue-integrable solution of the'Frobenius-Perron 
equation). 

As a byproduct, eqs. (7.35) guarantee that the time averages (7.33) and 
(7.34) are independent of the initial state xo for almost all x,, in the sense 
defined above. 

Let us illustrate the concept of ergodicity on some simple examples. We 
begin by the twist map, eq. (7.1 8). Eq. (7.30) reads 
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Let a be rational, a = p/q, p and q being integers. Eq. (7.36a) then admits a 
continuous family of normalized solutions 

where H* + ( p / q ) i ,  i = 0, . . . , q - 1 are the points of the circle visited by a 
period-q orbit starting form 8". Since this holds for any H", we conclude 
that there is an infinity of (singular) invariant probability densities 
supported on disjoint sets, violating the uniqueness condition of the 
previously enunciated theorem: the system is not ergodic in the full phase 
space [0, 11. O n  the other hand it becomes ergodic in the restricted phase 
space consisting of the points of a periodic orbit emanating from a certain 
initial 4*. In contrast, if a is irrational, then the validity of (7.36) for all 0s 
entails that there is a unique, smooth solution p, = const or, taking 
normalization into account, 

p, = 1 (twist map) (7.37) 

The system is now ergodic in the full phase space [O, 11. Notice that in the 
spirit ofeq. (7.36b), this solution can be viewed as the unique combination 
of an infinity of singular measures centered this time on the irrational 
numbers in the continuum [O,l]. 

As a second example consider the tent map T(x), eq. (7.16b). Eq. (7.30) 
becomes 

Performing the appropriate change of variables one finally arrives at 

which admits the unique smooth, Lebesgue integrable properly nor- 
malized invariant density 

P,(x) = 1 (tent map) (7.39) 

entailing that the invariant measure of a set A for this system is, simply, the 
length of the corresponding interval (Lebesgue measure). One can deduce 
from this result the invariant probability of the logistic map, eq. (7.13), for 
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p = 1. Indeed, using eq. (7.16a) and the conservation of probability we 
write 

p,(x)dx = p,(y)dy 
logislie tent 

or, with p,(y) = 1, 

or  finally 

(logistic map) 

A common property of all the ergodic invariant densities (7.37), (7.38) and 
(7.40) is to be delocalized in phase space, despite the purely deterministic 
origin of the underlying dynamics.? As a result fluctuations around 
averages are expected to  be comparable to the averages themselves. This is 
to be contrasted with the behavior of the probability densities of 
thermodynamic fluctuations in systems of interacting particles, which are 
sharply peaked around well-defined most probable states, except in the 
immediate vicinity of critical points of phase transitions (Stanley, 1971). 
In this respect one may therefore view a chaotic dynamical system like the 
tent map as being permanently in a 'critical' state. 

B Mixing and exactness 

Despite its interest, the concept of ergodicity deals essentially with static 
properties such as the existence of an invariant density. Furthermore, as 
we saw in the previous subsection it cannot discriminate between 
dynamical systems as different as the twist map with a irrational and the 
tent map of slope 2. New concepts, addressing dynamical properties, are 
clearly needed. 
One key quantity providing information on the dynamics is the time 
autocorrelation function, 

where the average may run over the invariant probability density p, or  
over the time variable t (cf. eq. (7.35)) and 6 A  = A  - ( A ) , A being a 

?In addition to such smooth, delocalized densities both systems (logistic and tent) admit an 
infinity of singular, localized ones supported by the points of the unstable periodic orbits. 
This does not compromise ergodicity, since these points are of measure zero with respect to 
the smooth invariant densities (7.39) or (7.40). 



I developed chaos 203 

certain observable. Similarly, one can define the cross-correlation be- 
tween two observables A and B or  analogous quantities involving 
measures of sets C in [O, 11. Of particular interest in this respect, is the 
quantity p,(C1 n f -"C2), providing the measure of the set of points x 
belonging to C, and to the set of points which will evolve into C, after n 
time units. The dynamical system described by f (x) will be called mixing if 

for all sets in the interval [O,l]. Un other words, the fraction of points 
starting in C, and ending in C, after a large number of iterations is just the 
product of measures of C, and C,, independent of their position in T. It is 
easy to see that any mixing transformation must be ergodic. 

There is a very useful connection between mixing and the properties of 
the time-dependent probability densities, establishing (Lasota and Mack- 
ey, 1985) that f (x) is mixing if and only if Unp is weakly convergent to p, 
for all ps in the set of probability density functions, in the sense 

where, (5 g) = 1 dxf(x)g(x) and g is an Lm-integrable function. Of more 
interest in physical applications would be the possibility that Unp 
converges to p, itself. It is here that the concept of exactness becomes 
crucial. 

Exact dynamical systems are defined by the property 

lim p( f (")C) = 1 
n +  n 

for all sets C in [ O , l ]  with p(C) > 0. In plain terms this means that if we 
follow the evolution of initial conditions within a set C of nonzero 
measure, then after a large number of iterations the points will have 
spread and completely filled the entire phase space. It can be proved that 
exactness implies mixing. 

As before there is a useful connection between exactness and time- 
dependent densities which establishes (Lasota and Mackey, 1985) that in 
an exact transformation 

lim 11 Unp - p, 11 = O 
n-r  to 

where the L1 distance is here defined by 

AS in the previous subsection, we illustrate now the concepts of mixing 
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'ig. 7.18 Evolution of 
an initial probability 
ensity whose support 
is the arc spanned by 
he angle A, generated 
by the twist map (eq. 

(7.18)). The rigid 
body-like rotation 

eflects the nonmixing 
character of the 

dynamics. 

and exactness on some simple examples. Consider first the twist map, eq. 
(7.18). The time-dependent Frobenius - Perron equation (eq. (7.28)) 
becomes 

Obviously a nonuniform initial condition-for instance, p(0) = 1/A if 
0, 5 0 I 0, + A, p(0) = 0 otherwise- will merely perform in the course 
of time a rigid body rotation around an axis perpendicular to the circle 
while keeping its initial shape, even if a is irrational (Fig. 7.18). We 
conclude that the twist map does not drive the system to the uniform 
distribution (7.37): it is a nonexact transformation. Using eq. (7.42b) one 
can see that it also lacks the mixing property. 

The situation is very different for the tent map, eq. (7.16b). Using the 
same procedure as in Section 7.6A, eq. (7.38), we can write the full 
time-dependent Frobenius-Perron equation for this system as 

This equation can be solved exactly by induction, 

where p, is the initial density. In the limit n + w ,  noticing that x remains 
confined in [0, I], one sees that the right hand side approaches the integral 
of po over [O,l], which is equal to unity by normalization and thus 
identical to the invariant density for this system (eq. (7.39)). We conclude 
that 

The tent map is thus an exact (and mixing as well) dynamical system. 
An interesting alternative formulation of the convergence of densities to 
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p, is to consider the functional 

where sup, designates the supremum of p,(x) in [O,l]. We have, using 
(7.4% 

or finally, noticing that x/2 and 1 - x/2 also run over [0, 11, 

This property is reminiscent of Boltzmann's H-theorem, familiar from 
classical statistical mechanics (Prigogine, 1962). It shows that the tent 
map irreversibly and monotonously drives the system to a state in which 
H, - and thus p, - no longer evolve in time. This state corresponds to the 
invariant distribution p,(x) = 1 constructed in Section 7.6A. 

7.7 Error growth, Lyapunov exponents and 
predictability 

We come back now to the property of sensitivity to  initial conditions (Fig. 
7.16), in the light of the probabilistic formalism developed in Section 7.6. 
Consider a one-dimensional recurrence in the form of eq. (7.6). Let x,, 
x, + F (F << 1) be two initial conditions slightly displaced with respect to  
each other. We follow the trajectories emanating from x, and x, + F and 
evaluate after n time units the instantaneous error 

or, using eq. (7.6), 

For any given F, as xo runs over the system's attractor the evolution of 
u,(n, x,) for finite times is both x,-dependent and highly irregular. T o  
identify some reproducible trends we therefore perform an average of 
(7.51) over the attractor. In the spirit of the probabilistic approach this 
amounts to studying the quantity 

where p(xo) gives the statistical weight of the various points on the 
attractor. In most cases it appears reasonable to  use as the weighting 
factor the invariant distribution p,(xo), eq. (7.30). 
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Fig. 7.19 depicts the evolution of the instantaneous error, eq. (7.52), for 
the logistic map (eq. (7.1 3)) averaged over the invariant distribution 
(7.40). We observe that error growth follows a logistic-like curve ( N i c o ~ i ~  
and Nicolis, 1991). Three different stages may be distinguished, which 
actually turn out to be typical of a very wide class of chaotic systems: an 
initial 'induction' stage during which the error remains small; an 
intermediate 'explosive' stage displaying an inflection point situated 
approximately at n* z ln I / & ;  and a final stage, where the mean error 
reaches a saturation value u, of the order of the extension of the attractor 
and remains constant thereafter. 

The mechanism ensuring the final saturation of the error is the 
reinjection already mentioned in Section 4.5 in connection with homo- 
clinic chaos, which is also responsible for the fact that the attractor itself 
remains confined in phase space despite the instability of the motion. In 
the logistic system this is manifested by the fact that the interval 
1, = [x,, ,I] is mapped by the dynamics back into the interval I ,  = 

CO, ~ 1 1 1 .  
Let us ffocus on the initial regime. Since the error remains small, an 

expansion in which only the lowest order term in E is kept should be 
meaningful. At the level of eq. (7.51) this leads to 

where x, , . . . , x"-, are the points visited successively by the 'unperturb- 
ed' trajectory emanating from x, . While these points are to be determined 
ffrom the full nonlinear equations, the presence of the derivative terms in 
(7.53) implies that the error itself evolves during this stage according to the 

Fig. 7.19 Numerical 0.4 

evaluation of the time 
dependence of the 
mean error for the 

0.3 
logistic map and for 

p = 1. The averaging 
is performed over 

al 10 000 samples , 0.2 
m 

differing in the initial f 
position x, which runs 
over the attractor. The 

0. I 
initial error is 

E = 
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linearized equations around this reference (chaotic) trajectory. These 
equations define the tangent space of the system's attractor (Gucker- 
heimer and Holmes, 1983). 

Let us write u,(n, x,) as 

Substituting in (7.53) one finds 

We know from Fig. 7.19 that for any finite E, however small, the error is 
bound to leave the tangent space after a lapse of time of the order of 
n* = In I/€. But in the idealized case where the limit E+O is taken n* is 
pushed (though very slowly) to infinity and one may define from 
(7.5 1 )-(7.55), 

where in the first equality, the limits are to be taken in the indicated order. 
We call this quantity the Lyapunov exponent of the system. For ergodic 
transformations the time average in (7.56) should be independent of the 
initial state (except, perhaps, for a set of points ofmeasure zero) and equal 
to  (cf, (7.34) and (7.35)) 

f'"'(xo + E) - f(")(x0) 

n-r m E - 0  n E 

Notice that a depends on the control parameter in a complex fashion, 
both through p,(x) and through f'(x). 

Applied to the tent map (eq. (7.16b)), eqs. (7.56) and (7.57) give 

1 n - 1  

= lim - 1 ln l,fl(xi) 1 
n - r m  n i = o  

a = l n 2  (tent map) (7.58a) 

where we used the expression p,(x) = 1 for this map (eq. (7.39)). For the 
logistic map at p = 1 eq. (7.56) is difficult to evaluate straightforwardly 
since ( fr(xi)l varies locally as the system runs on the attractor. O n  the 
other hand, substituting (7.40) in (7.57) one gets again an explicit result 

a = J  dx 
I 

In 14 - 8x I = In 2 (logistic map) 
0 .[x(l - x ) ] " ~  

In view of these results one concludes from (7.54) that in the double limit 
E + O  (to be taken first) and n+co (to be taken next) the initial error E 
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doubles after each iteration. More generally, in a system displaying a 
positive Lyapunov exponent errors increase exponentially with time in 
this double limit, with a rate equal to the Lyapunov exponent. In this sense 
the existence of a positive Lyapunov exponent is tantamount to sensitivity 
to initial conditions and may be regarded as one of the main signatures of 
chaos. 

Appealing as it may seem this view, which still dominates much of the 
literature on chaos, is unfortunately oversimplified. When confronted 
with the problem of predicting the evolution ofa concrete physical system, 
the observer is led to follow the growth of a (at best) small butjinite error 
over a transient, usually small period of time. In this context, the quantity 
of interest is (cf. (7.52 j(7.55)) 

This equation shows that error growth amounts to studying, for jinite 
times, the average over the attractor of an exponential function 
<eno(n,xo)> where a(n, x,) is given by (7.55). To  recover for such ns the 
picture of a Lyapunov exponent-driven exponential amplification of the 
error one needs to  identify (7.59) with the exponential of the long-time 
limit of a(n, x,), 

In a typical attractor this is not legitimate since a(n,xo) is xo-dependent. 
This property stems from the juctuations of the local Lyapunov 
exponents (Nicolis, Mayer-Kress and Haubs, 1983; Grassberger, Badii 
and Politi, 1988; Nese, 1989; Abarbanel, Brown and Kennel, 1991) 

For instance, in the logistic map with p = 1 the variance of these 
fluctuations is 

zL 
(ha2) = ((a - (u ) )~ )  = dxp,(x)[ln 14 - 8x I - In 212 = - J oA 12 

(7.62) 

which is of the same order as (a) = a itself, eq. (7.58b). It is only in the 
exceptional case of uniform attractors, characterized by a constant local 
rate of divergence of initial conditions, that (7.59) and (7.60) can be 
identified. The tent map provides a concrete example, but it must be 
stressed that most real-world attractors do not satisfy this property. 
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Let us illustrate the transient behavior of the error for the logistic map 
at ,u = 1 (Nicolis and Nicolis, 1993). Fig. 7.20, open circles, describes thc 
error growth curve obtained from direct numerical evaluation of (7.51), 
averaged over 100 000 samples of different initial conditions and an initial 
error of We observe a significant deviation from an exponential 
behavior corresponding to the same initial error and a rate equal to the 
mean Lyapunov exponent ln2 (shaded circles) in agreement with the 
previous comments on the difference between (7.59) and (7.60). Writing, 
in analogy to eq. (7.60), 

Fig. 7.20 Short-time 
behavior of mean 
error growth with 

E = lo-' obtained 
from numerical 

simulation of the 
logistic map for p = 1 
averaged over 100 000 

initial conditions 
scattered on the 

attractor (circles); and 
from the theoretical 

expression of eq. (7.59) 
(crosses). The shaded 

circles correspond to a 
purely exponential law 
whose rate is given by 

(rr) = a = In2. 

we evaluate a,,, from the simulation data. The results, depicted in Fig. 
7.21, show that a,,, is actually n-dependent, starting at n = 1 with a value 
significantly larger than In 2. This entails that error growth is neither 
driven by the Lyapunov exponent nor follows an exponential law. This 
property further complicates the problem of prediction of chaotic systems. 

It is interesting to realize from Fig. 7.21 that for E as small as the 
system never attains a regime where a,,, becomes identical to (a). The 
reason for this has already become clear in the discussion made in 
connection with Fig. 7.19: at a time n* z In 1 / ~  the error dynamics leaves 
the tangent space and evolves toward its saturation value. In the setting of 
Fig. 7.21 this would give n* values equal to about 7, 12 and 21 for 
E = lop3 ,  l o p 5  and respectively. These are very short times indeed 
for the value of infinite time averages such as (a) to be established. To 
keep the error dynamics in the tangent space for, say, 50 time units or so in 
order possibly to reach a regime driven by (a) one would need an initial 
error of E z Such small values hardly ever arise in practical 
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Fig 7.21 Time 
dependence of the 

effective rate o,,, , eq. 
(7.63), obtained 

numerically as in Fig. 
7.20 with E = lop3 

(triangles); E = lop5 
(crosses); and 

E = (circles). For 
each E the simulation 

is carried out till a 
time n* z ln ( l /~)  

beyond which the 
linearized description 

breaks down. 

applications, at least at the macroscopic level. In this sense therefore the 
L yapunov exponent is to be regarded as one of the quantities which allow 
one to characterize the attractor (more specifically its tangent space) 
rather than as the principal quantity monitoring error growth and 
predictability. In actual fact, as seen from the first equality (7.59), error 
growth is determined by the n-fold time correlation of the system. Such 
dynamical properties are hard to evaluate analytically, although for the 
logistic map this can be done for the first few ns using symbolic calculus. 
The results are in full agreement with the conclusions drawn from Fig. 
7.20. 

We have based the analysis of this section on one-dimensional maps. In 
more complex -and realistic - systems two further complications are 
expected to arise. First, a multivariate dynamical system possesses a 
number of Lyapun,ov exponents equal to its phase space dimensionality. 
For short times all of these exponents, including the negative ones 
associated with motion along the stable manifolds, are expected to take 
part in the error dynamics. Second, since a typical attractor associated to 
a chaotic system is fractal, a small error displacingthe system from an 
initial state on the attractor may well place it outside the attractor. Error 
dynamics will then involve a transient prior to the re-establishment of the 
attractor, during which errors may well decay in time (Vannitsem and 
Nicolis, 1 994). 

We have stressed that deviations of error growth from a Lyapunov 
exponent-driven exponential law may be generated by the nonuniformity 
of the attractor. As alluded to already in Section 3.3D, nonuniformity is 
also at the origin of the inadequacy of the fractal dimension D, to describe 
the structure of such an attractor. Within the framework of the 
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probabilistic description laid down in Section 7.6 one can propose a 
natural remedy of this deficiency. As in Sections 3.3D and 7.4 one divides 

. the attractor into cells of linear dimension F, introducing now the 
additional important element to weight the various points by the 
probability Pi (F) that the trajectory visits cell i. The generalized dimensions 
D, are then defined in terms of the 9th powers of Pi(&) through (Renyi, 
1970; Hentschel and Procaccia, 1983) 

N ( E )  

In 1 Pq 
1 ;=, 

D, = lim - 
0 9 - 1 In& 

where N(E) is the total number of cells. For any integer q > 1, Pq gives the 
total probability that q points of the attractor are within a given box. This 
allows one to capture the effect of correlations between different parts of 
the attractor, and thus the degree of its inhomogeneity. 

As expected, for q = 0 one recovers from (7.64) the fractal dimension 
introduced in eq. (3.1 1). For a general value of q, eq. (7.64) can be handled 
by methods analogous to those used in the evaluation of the partition 
function in equilibrium statistical mechanics. This is the starting point of 
the interesting thermodynamic formalism of fractals (Halsey et al., 1986; 
Tel, 1987; Bohr and Tel, 1988), the details of which are outside the scope 
of the present book. 

7.8 The dynamics of symbolic sequences: entropy, 
master equation 

We shall now combine the tools of probabilistic analysis laid down in 
Section 7.6 with the idea of symbolic dynamics introduced in Section 7.4. 
As we shall see, this blending will provide yet another interesting view of 
chaos and, in particular, will allow one to sort out some remarkable 
connections with random processes. 

As in Fig. 7.12, we consider a finite partition C = (C,, . . . , C,) of phase 
space into N nonoverlapping cells. Followingeq. (7.3 I), we also introduce 
the measure p(Ci) of cell i. A natural question to be raised in connection 
with the developments outlined in the last two sections, is how to quantify 
the idea that in a chaotic system a localization of the instantaneous state in 
phase space becomes increasingly difficult as the resolution required gets 
finer. Now this question is reminiscent of a central problem of information 
and communication theories (Shannon and Weaver, 19491, namely, what 
is the amount of data needed to recognize a signal blurred by noise. 
~ s suming  that the information source is a random processor possessing N 
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states, one shows that the central quantity to be studied in this latter 
context is the information entropy 

Indeed, this quantity possesses all the properties compatible with the idea 
of information needed to localize a system in its state space (Khinchine, 
1959): 

It takes its largest value for P ( i )  = 1/N, implying that in the case of 
equiprobable events the amount of data needed to realize one of these 
events is the maximum one. 
The entropy of a composite system CD equals the entropy H(C) of 
subsystem C plus the (conditional) entropy HJD) of subsystem D under 
the condition that subsystem C is in a given state, a property referred to as 
subadditivity. 
Adding an impossible event a, P(a) = 0, does not change the entropy of 
the process. 

Notice that information entropy bears an interesting relation with the 
generalized dimensions D,, eq. (7.64). Indeed, applying this relation for 
q = 1 one obtains 

- 
i = O  Dl = lim 

t + O  In (l l4 
referred to as the information dimension of the system. For a given value 
D,(D, _< DO by (7.64)) this allows one to determine how information 
entropy scales with the size of the boxes in which the fractal object has 
been subdivided. 

Coming back to the phase space partition C = (C,, . . . , C,), by 
analogy to (7.65) we introduce the information entropy of the partition 

In general {Ci) are affected by the dynamics. As in earlier sections we 
denote by f-kCi  the set of points mapped to Ciafter k iterations. The set of 

all (f  . . . , ,f defines a new partition, denoted by f 
Continuing the process for n iterations we are led to define a partition C("' 
whose cells are the intersection of cells of the partitions C, 
f lC, ,.., f - "+ lC ,  
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where i,, . . . , i, run over 1, . . . , N. One realizes immediately that as n 
increases the partition ~ ( " 1  generated by C becomes finer and finer. 
Consequently its information entropy H(C'"') will typically be greater 
than H(C). This can be understood by realizing that with a finer mesh and 
in the absence of any a priori information, more data are needed to localize 
the system in a particular part of phase space. 

The interest of the above construction is that one attains, in the limit 
n+ a, an intrinsic property of the dynamics known as the Kolmogorou- 
Sinai entropy h,, measuring the average rate of creation of information in 
time. We first define the rate of creation of information with respect to the 
partition C: 

1 h (c) = lim [H(c("+ I ) )  - H(Ctn))] = lim - H(C("') (7.69) 
Ir 

n +  m n +  a, n 

In principle this quantity depends on the choice of initial partition C. The 
Kolmogorov-Sinai (K-S) entropy h, is just the supremum of all possible 
values h,(C), as the partition C gets finer and finer. Notice that for certain 
partitions C, referred to as generating partitions, this latter limit and the 
supremum may be avoided and one can write h,(C) = h,. 

Loosely speaking, if h, is to be finite H(C(")) should scale as n or, in view 
of (7.67k(7.69) the number of cells in the partition C'") should increase 
exponentially with n. This is reminiscent of the exponential divergence of 
initially nearby conditions in the tangent space of a chaotic attractor and 
suggests that ( a )  the positivity h, should be a new way to characterize 
chaos; and (b) there should be a connection between h, and Lyapunov 
exponents. Both statements can, in fact, be justified rigorously. In 
particular, if the dynamical system possesses a smooth invariant density 
along the unstable directions of the motion one can establish the Pesin 
equality (Pesin, 1977), 

where ai are the positive Lyapunov exponents. 
One can show that the property of H(c(")) to scale linearly with n is also 

shared by most of the typical random processes like, for instance, Markov 
processes (Khinchine, 1959). It may thus be regarded as the signature of a 
process, be it (deterministic) chaos or (random) noise, in which at each 
new step of the evolution a finite amount of variety is on average created. 
This implies, in turn, that the memory of the underlying system is 
short-range. It is legitimate to expect that in many natural systems, 
~articularly in biological systems, this condition is not satisfied. The 
existence of long-range correlations and memory effects in such systems 
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should be manifested, then, by a sublinear scaling of H(C(")) and thus by a 
zero K-S entropy (Ebeling and Nicolis, 1992). Such systems may still give 
rise to quite complex, aperiodic behavior. An interesting notion charac- 
terizing this type of complexity is the topological entropy (Misiurewicz, 
1976), defined for a one-dimensional recurrence J (x) as 

1 
h,- = lim - In N, (7.71 ) 

n-.m n 

where N ,  is the number of monotone pieces of f'"'. 
Let us now follow in a more detailed manner the action of the dynamics 

at the level of the partition (C, , . . . , CN). We impose on this partition the 
condition that each element is mapped by the transformation f on a union 
of elements (we recall that the cells of the partition are not overlapping). 
To express this properly we introduce the characteristic function ~ , ( x )  of a 
set C through 

The above requirement then amounts to 

where x j  = xCj and the elements of the topological transition matrix {aji) 
take values 0 or 1 depending on whether Ci belongs to f (Cj)  or not. 

One further condition that we impose is that the state of the system be 
initially coarse-grained, in the sense that the initial probability density 
po(x) is constant within each element of the partition. Writing 

where for convenience pj is chosen to be the Lebesgue measure (rather 
than the invariant measure, eq. (7.31)) of cell j ,  we may then identify Po(j) 
with the probability of finding the system in cell Cj, 

The main problem now is to evaluate the action of the Frobenius-- 
Perron operator on p,. According to eqs. (7.28) and (7.29) we have 



7.8 The dynamics of symbolic sequences 21 5 

We notice that the sum over the branches or of the inverse mapping is 
nonvanishing only if x E f(Cj). For any Ci c f(C,) we denote by,L;ij, 
'those branches of the inverse transformation which map points of Ci into 
Cj. This means, in particular, that for all or(i+j) the pre-images of Ci by 
this branch be contained in Cj, 

Under these conditions, using eq. (7.73), we can rewrite eq. (7.75) as 

In contrast to po(x), the probability density pl(x) is, in general, not 
coarse-grained, owing to the presence of x-dependences in the coefficients 
containing the first order derivatives, 

A considerable simplification occurs for maps for which these coefficients 
are x-independent, like in piecewise linear transformations (Grossmann 
and Thomae, 1977). Indeed, defining 

one can write eq. (7.77) in a form similar to (7.74a), 

entailing that the probability density is again constant within the elements 
of the partition. 

Eq. (7.79) can be conveniently rewritten as 

where P is the one-column matrix col (P(1) . . . P(N)} and W is an N x N 
matrix whose elements are given by 

Pi W.. = - 
1 

LJ aji - 
Pj I ~ i + j I  

As the Frobenius-Perron operator conserves the norm and the positivity 
of probability densities the sums of Wij over the rows are equal to unity: W 
is a stochastic matrix. After n iterations the state of the system is thus 
entirely describable in terms of probabilities P , c )  satisfying the equation 
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(Nicolis and Nicolis, 1988 ; Nicolis, ~iasecki and McKernan, 1992) 

The structure of this equation is identical to that of the Chapman- 
Kolmogorov equations used widely in the theory of stochastic processes 
(Feller, 1968) which are frequently referred to in the physical literature as 
master equations (Nicolis and Prigogine, 1977; Gardiner, 1983). In other 
words, under the conditions imposed on the partition (especially eq. 
(7.73)), which also guarantee the propagation of coarse-graining with 
time, we have been able to cast the deterministic dynamics into a 
stochastic process. This mapping gives, at last, a concrete meaning to the 
statement made repeatedly throughout this book that chaos is associated 
with a 'random looking' evolution in space and time. There is no 
contradiction whatsoever between this result and the deterministic origin 
of chaos: in the probabilistic view we look at our system through a 
'window' (phase space celI), whereas in the deterministic view it is 
understood that we are exactly running on a trajectory. This is, clearly, an 
unrealistic assumption in view of our earlier comments on finite precision 
and roundoff errors. 

The simplest type of stochastic process satisfying eq. (7.83) are 
Markovian processes, for which memory extends only one step backward 
in time. The converse, however, is not true: a non-Markovian process can 
satisfy the master equation (Feller, 1959; Courbage and Hamdan, 199 1). 

Let us illustrate the above construction on the example of the tent map, 
eq. (7.1 6b). We choose the two-cell partition C  = ( C ,  , C,) where 
C ,  = [0, x , ,  J, C, = [x,, , 1 J ,  x , ,  = 3 being the nontrivial fixed point. 
This partition obviously satisfies the requirement expressed in eq. (7.73), 
by the verydefrnition of the fixed point and the fact that the angular point 
of f ( x )  at x ;: 3 is mapped to x = 1. More specifically we find 

entailing that the topological transition matrix {a, ,)  is of the form 

We come now to the construction of the stochastic transition matrix W, 
eq. (7.82). Referring to Fig. 7.22 we see that a point x, in C, has two 
pre-images in C ,  . There are thus two inverse branches sending C, into C, , 
entailing (cf. (7.78)) that 
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since If'\ = 2 for the tent map. In contrast a point x ,  in C, has one 
pre-image in C2 and one in C, ,  entailing that 

Introducing (7.84) and (7.85) into (7.82) we obtain 

The eigenvalues ,Ii and eigenvectors ui of this matrix are 

The first one corresponds, in our coarse-grained description, to ttre 
properly normalized invariant state P, of the system. Notice that its 
structure is compatible with the invariant distribution p , ( x )  = 1 (eq. 
(7.39)) obtained earlier from the Frobenius - Perron equation. As for the 
second one, it is responsible for the relaxation of an initial state, 
coarse-grained over the two-cell partition, toward this invariant state. 

Fig. 7.22 Two-cell I - I 

partition (C,,  C,) in / / 

the tent map, defined 
by the end points 0, 1 

and the fixed point 
x, ,  . A point x, E C, 

has one pre-image 

. f ~ : + ~ , ( x ~ )  in C1 and 
one preimage 

.l-;:+ ,,(x 1 ) in C ,  . A 
point x, G C, has two 

pre-images .l-,;:+ ,,(x2) 
and.f& ,,(x2) in C l .  

;,rxl \? 

fl<l + l ) ( ~ l )  f 2  f fi;1+2)1 
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The procedure can ea:sily be extended to more refined partitions. One 
interesting class is provided by the partitions formed by the end points of 
the interval and the points on an unstable periodic orbit of the map. For 
instance, for the three-cell partition of the tent map ( C ,  = [O, $1, 
c - - ~ 2 . 3  J, C3 = [% I]> where (5 4) are the points of the period two 
cycle, one obtains 

and 

dl  = 1, u, = col(2 5 ,z3' 5 5  ) (invariant distribution) 

This structure turns out to be general: as the number of cells of the 
partition is increased by taking cycles of increasing order, the eigenvalues 
(other than the invariant one) are determined by the nth roots of ( - 1). 

One of the applications of the master equation approach described 
above is to provide a natural description of deterministic chaos in terms of 
strings of symbols having well-defined statistical properties (Nicolis, 
Nicolis and Nicolis, 1989; Ebeling and Nicolis, 1992). This view has 
already been discussed in Section 7.4. Among the various quantities that 
one can introduce to characterize such sequences are the entropies defined 
earlier in this section (eqs. (7.65), (7.67), (7.69)) which give a measure of 
their information content. The possibility of casting the dynamics into a 
discrete closed-form equation provides additional insight, as it gives 
information on the way these quantities evolve in time. For instance, 
starting with probability one from a particular cell of the partition 
P , ( i )  = Sf:, one can evaluate the change of entropy after one iteration. 
One has from (7.81 ) 

Upon averaging over all as using the invariant distribution P , ( a )  one 
obtains 
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which is nothing but the analog of the Kolmogorov-Sinai entropy in our 
master equation description. 

A master equation of the form (7.83) is also characterized by an 
irreversible approach to a unique invariant distribution P,(i), such that 

To see this we introduce the quantity 

where F(x) is a convex function of its argument. A familiar choice of such a 
function is F(x) = xlnx,  in which case (7.90a) reduces to  the relative 
entropy 

We now consider the time evolution of H,. Using eq, (7.83) we have 

At this point we notice that, by (7.89), 

Invoking the property of convex functions 

we may thus transform (7.91) into 

or, using the properties of the stochastic matrix Wjk, 

where by (7.92) the equality sign applies only when P, = P, . This is 
reminiscent of the H-theorem of statistical mechanics (Kac, 1959). It 
shows that at the level of the probabilistic description the unpredictability 
of deterministic chaos beyond the Lyapunov time is replaced by full 

in the sense that the statistical state of the system evolves in 
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a regular manner. This suggests the interesting possibility of statistical 
forecasting of complex dynamical systems giving rise to  chaos. 

Last but not least, the master equation approach to deterministic chaos 
provides a systematic approximation scheme for computing the eigen- 
values and eigenfunctions of the Frobenius- Perron operator itself, whose 
spectral properties still remain largely unknown (McKernan and Nicolis, 
1994). A full technical presentation of this complex subject is outside the 
scope of the present book. For some interesting alternative recent studies 
we refer the reader to  Gaspard (1992a,b), Hasegawa and Saphir (19921, 
and Antoniou and Tasaki (1993) among others. We close this section by 
pointing out that there is also an interesting connection between the 
eigenvalues of the Frobenius-Perron operator and the decay properties of 
the time correlation functions, introduced in Section 7.6 in connection 
with the property of mixing. These are, in turn, related to the singularities 
of the power spectrum - the Fourier transform of the autocorrelation 
function - in the complex frequency plane (Ruelle 1985,1986). For certain 
types of system (typically those with uniform attractors) it can be shown 
that the only such singularities are poles, entailing that the autocorrela- 
tion function decays exponentially in time. The general case remains, 
however, open, 

7.9 Spatio-temporal chaos 
We have seen, in Chapters 1 and 6 of this book, that large classes of 
spatially extended systems may undergo a sequence of transitions leading 
to  regimes displaying aperiodic dependence in both space and time, which 
we referred to rather loosely as spatio-temporal chaos. We already know 
from Section 6.8 that certain normal form equations such as the complex 
Landau-Ginzburg equation lead t o  such a regime beyond the instability 
of the uniform limit-cycle solution, and that defects seem to play an 
important role in its onset. From Chapters 1, 2 and Section 6.9 it is also 
clear that many other equations encountered in physical sciences, such as 
the Navier-Stokes equation, the reaction - diffusion equations and the 
Kuramoto-Shivashinski equation may also generate spatio-temporal 
chaos. The objective of this final section of the present chapter is to have a 
new look at this phenomenon in the light of the tools and ideas of chaos 
theory developed in the previous sections. 

Just as temporal chaos differs from other forms of time-dependent 
behavior by the coexistence of a large number of interacting time scales, 
spatio-temporal chaos will likewise be associated with the property of 
displaying a large number of interacting space scales. As it happens this is 
also one of the signatures of fully developed turbulence, a ubiquitous 
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feature of large-scale flows. This analogy constitutes one of the main 
motivations for studying spatio-temporal chaos. 

As noticed already in Section 3.1, a spatialIy extended system possesses, 
in principle, an infinite number of variables. We have seen already that in 
some cases truncation to a finite small number can legitimately be carried 
out. By the very definition of spatio-temporal chaos given above, such 
truncations should break down in the presence of this regime. In other 
words, in studying spatio-temporal chaos one has to cope at the outset 
with the additional complexity arising from the presence of an infinite 
number of degrees of freedom. Three key questions arise under these new 
circumstances: 

Can one identify well-defined scenarios leading to  spatio-temporal chaos? 
Is it still possible to characterize the attractor of an infinite-dimensional 
dynamical system giving rise to spatio-temporal chaos? 
How (if at all) is sensitivity to initial conditions manifested in such a 
system? 

In the following we deal with these questions and give some concrete 
illustrations of the phenomenology of spatio-temporal chaos. 

A Some scenarios leading t o  spatio-temporal chaos 

In contrast to the situation described in Sections 7.3-7.5, the transition to  
spatio-temporal chaos has not yet been characterized by global quantitat- 
ive laws comparable to, say, the ones governing the period doubling 
cascade. Still, experience acquired through linear stability analysis, 
numerical simulation and laboratory experiments suggests a number of 
interesting features that should undoubtedly be parts of the more 
comprehensive theory yet to  come. 

The main point relates to some ideas already developed in Section 6.5: 
in systems of large spatial extent the size L becomes a natural control 
parameter. By increasing L from small values while keeping the other, 
more traditional, control parameters fixed the threshold of a first 
instabidity can be reached. As L is increased further, the number of 
unstable modes grows (in the Kuramoto-Shivashinsky equation it does 
so linearly with L) and new instability thresholds are encountered. 
Frequently these thresholds lead first to periodic, multiperiodic or  weakly 
chaotic behavior in time; next to space symmetry-breaking that may 
include the appearance of defects; and eventually to spatio-temporal 
chaos. The latter can have, in turn, some structure in space in the form of 
irregular ~ a t c h e s  of spatial activity immersed in 'laminar' well-organized 
domains referred to  as s~atio-temporal intermittency (Kaneko, 1989; 



222 7 Chaotic dynamics 

Chate, 1989; Daviaud et al., 1990, 1992); or a completely incoherent, fully 
'turbulent' type of spatial activity. 

When a second control parameter is varied in addition to  L various 
instability thresholds can again be reached, even at fixed L. A typical 
signature of large systems is, then, that the larger the L the closer these 
instability thresholds will lie relative to  each other. 

An interesting question is how to characterize the complexity of the 
observed pattern. A number of interesting ideas have been advanced such 
as spatial and spatio-temporal Fourier spectra; symbolic encoding of a 
spatial pattern by introducing a partition in physical space expressing the 
values of the state variables relative to  preassigned thresholds; or 
statistical quantities like entropies, the histogram of 'laminar' regions as a 
function of their size, life-time distributions, and so forth. Details of these 
attempts, still in a largely exploratory stage, can be found in the above 
mentioned references. 

B T h e  a t t r a c t o r  of sys tems giving rise to spatio-temporal  
chaos 

It has been stressed repeatedly in this book that spatially distributed 
systems possess an infinite number of degrees of freedom. We have seen 
that when these systems operate in the close vicinity of the transition to  a 
regular spatial pattern, say the Rayleigh-Benard instability, a drastic 
reduction can take place. The relevant variables then obey a normal form 
equation and lie on a low-dimensional attractor. The question we raise 
here is: what is the nature of the attractor when the system operates in the 
regime of spatio-temporal chaos? 

In Chapter 3 we have introduced the concept of the universal attractor, 
the largest bounded invariant set of phase space toward which all 
trajectories of the dynamical system converge as time tends to  infinity. We 
know already that the structure of such an attractor may be quite 
complicated even in systems with a small number of variables, since the 
attractor may be a fractal set. A remarkable recent result already brief y 
mentioned in Section 6.5, is that in many spatially distributed systems, 
although the phase space is an infinitely-dimensional function space, the 
universal attractor has finite fractal dimension (Constantin and Foias, 
1985; Constantin, Foias and Temam, 1985). Still it may be quite 
complicated and attract the trajectories very slowly. For this reason it is 
desirable to embed the attractor in an inertial manifold (Constantin et ul., 
1989): a finite-dimensional invariant manifold E toward which the 
solutions tend with at least a uniform exponential rate, in the sense that 
the distance 
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dist (+t(Xo), z) 5 C e-kr  (7.94) 

for t > to > 0, c being a positive constant. 
The flow restricted to  the inertial manifold is equivalent to that of a 

system with a finite number of degrees of freedom. We refer to the 
evolution laws in such a phase space as an inertial<form. An inertial form 
constitutes thus an optimal finite-dimensional representation of the 
original system as far as long-term dynamics - and hence bifurcation 
analysis - is concerned. 

The results surveyed above are, essentially, existence theorems. They 
leave open two questions of crucial practical importance: (a) can the 
dimensionality D of the universal attractor be estimated; and (b) can the 
inertial form be inferred from the original evolution laws? 

An appropriate way to formulate (a) is to ask how D scales with the size 
parameter L, it being understood that in the limit L+m, D will also tend 
to infinity. Typical estimates give the power law behavior 

with a greater than unity - for instance, a = 13/8 for the Kuramoto- 
Shivashinsky equation (Nicolaenko, Scheurer and Temam, 1985). For 
large size systems of interest this leads to  large numbers of little practical 
relevance. There is evidence (Manneville, 1985; Pomeau, Pumir and 
Pelck, 1984) that in some cases D may actually scale linearly with L. 

We come briefly now to  question (b). Consider the standard form of the 
evolution laws of a spatially distributed system, eqs. (6.52). We assume 
that the linear operator 9 has a spectrum consisting of negative 
eigenvalues 2, b A, b . . . and a complete orthonormal set of eigenfunc- 
tions. In terms of these eigenfunctions one can then construct an operator 
P, projecting X from the original phase space T into the subspace 
y = P,T spanned by the first rn eigenfunctions, and its orthogonal 
complement Q, = 1 - P,. Operating with P, on both sides of (6.52) one 
gets 

where p E P,T, q E Q,T. This equation is not closed, as it must be 
supplemented with an equation for q. In most approaches the inertial 
manifold is represented as a mapping q = +(p) from the space P,T into 
the space Q,T. The inertial form then reads 

Usually the mapping $(p) can only be determined in an approximate 
manner. For a recent survey we refer the reader to  Brown, Jolly, 
Kevrekidis and Titi (1990). 
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C Sensitivity to  initial conditions in spatio-temporal chaos 

As mentioned in the end of Section 7.7, a multivariate dynamical system 
possesses a number of Lyapunov exponents equal to its phase space 
dimensionality. In a spatially distributed system this will result in an 
infinite number of exponents. If the conditions of existence of a 
finite-dimensional universal attractor and inertial manifold discussed 
previously are met, the number of positive Lyapunov exponents will 
remain finite, although possibly very large, for any given value of the size 
parameter L. But in the limit in which L+ cc one expects that, similarly to 
the attractor dimension D (eq. (7.95)), this number will tend to infinity. 
Since the largest exponent is likely to remain bounded, this will result in a 
continuous spectrum of positive Lyapunov exponents. The question 
therefore naturally arises, of whether in the presence of chaos this new 
feature will leave a typical signature in the way sensitivity to initial 
conditions will be manifested. 

In Section 7.7 we saw that, already in one-dimensional chaotic 
mappings, sensitivity to initial conditions may be quite intricate. In the 
limit of uniform attractors characterized by the same local rate of 
divergence in each point of phase space it reduces, however, to an  
exponential law whose exponent is given by the (unique) positive 
Lyapunov exponent. In order to disentangle the role of the continuous 
spectrum from that of the nonuniformity of the attractor we therefore 
focus on the case of spatio-temporal chaos displaying a constant local rate 
of divergence. 

Since there is no known example of a continuous time system in which 
such a property holds true, we turn to a useful alternative model of 
spatio-temporal complexity provided by coupled map lattices (Kaneko, 
1989). Specifically, we consider a one-dimensional lattice of diffusively 
coupled cells. 

where n is a discrete time, j the lattice point, x a continuous variable and 
f (x) a function describing the local dynamics, typical examples of which 
have been given in Section 7.3. 

Let Z,G) be a reference state solution of (7.98) corresponding to 
spatio-temporal chaos. The tangent space of the attractor of the system in 
this regime is defined by (see Section 7.7) 
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Fig. 7.23 Three- 
dimensional plot 

showing the space 
dependence of the 

variable x for three 
consecutive times after 

a transient period of 
1000 time units in a 

100-cell coupled 
Bernoulli lattice : 
D = 1, boundary 

conditions are periodic 
and initial conditions 

are sampled randomly 
from a uniform 

distribution. 

We notice that if fl(?,(j)) were a constant lo, eq, (7.99) could be solved 
exactly. O n  the other hand, this is precisely the case of constant local rate 
of divergence for which we have been looking. The advantage of coupled 
map lattices is to allow one to realize this possibility. An example is 
provided by the choice 

This dynamical system, referred to as the Bernoulli map, is quite similar to 
the tent map (eq. (7.16b)). When used in eq. (7.98) it generates, for 
appropriate choices of D, spatio-temporal chaos as illustrated in Fig. 7.23. 
T o  see what happens in the tangent space we expand in a Fourier 

where we have assumed periodic boundary conditions. Substituting into 
(7.99) we find the following equations for the mode amplitudes r,,(k) 

(notice that Lo = 2 for the Bernoulli map). The solution of this equation is 
strictly exponential, 
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with 

where o, = InA, is the maximum Lyapunov exponent. The set of {o,) 
provides the full spectrum of the Lyapunov exponents. We notice that in 
the limit N 4  cc the spectrum becomes continuous. The contributions of 
the modes k such that k << N can then be approximated by expanding 
cos [(2z/N)k], yielding 

In the context of sensitivity to  initial conditions we must see how t,(i) 
behaves in time. T o  this end one substitutes (7.103a) into (7.101) after 
determining a, from the initial conditions. Choosing far simplicity initial 
perturbations around the reference state in(j) localized on the box j,, 

and using (7.104)none finds after some algebra 

Fig. 7.24 Time 
evolution of an initial 

error 
1 to 1 = 2.5 x lo-' at 
the central box of a 

100-cell coupled 
Bernoulli lattice with 
D = 1 averaged over 

1000 samples (filled 
squares) as compared 

to the theoretically 
deduced law, eq. 

(7.106) (crosses) and 
to a purely 

exponential law 
(empty squares). 

where the validity of the asymptotic evaluation of the sum requires 



n > (2n2D/;1,)-'. 
Eq. (7.106) shows that the accumulation of Lyapunov exponents 

.around the maximum value a, arising in the limit of a size parameter 
N -, co, introduces a modulation of the purely exponential growth e " " ~  of 
an  initial error E in the form of an inverse power law (Nicolis, Nicolis and 
Wang, 1992). Fig. 7.24 summarizes the result of a numerical simulation 
carried out on the full nonlinear system, along with a comparison with the 
analytic result of eq. (7.106). The system, composed of N = 100 cells, is 
first run with random initial conditions for a sufficient amount of time to 
reach its attractor. After this transient period a small localized perturba- 
tion is imposed on the central cell and the trajectories of the perturbed as 
well as the unperturbed systems in each box are subsequently monitored. 
The filled squares of the figure depict the evolution of the absolute value of 
instantaneous error in the central box as deduced from the above two 
trajectories. Crosses indicate the analytic result of eq. (7.106), and empty 
squares a purely exponential amplification with a rate equal to  the 
maximum Lyapunov exponent a,. We see that the numerical and analytic 
results are practically indistinguishable for short times for which the 
linearized regime is expected to be valid, whereas, on the contrary, 
appreciable deviations from a purely exponential law show up at a rather 
early stage. 

As it turns out this conclusion applies to a whole class of spatially 
distributed systems generating spatio-temporal chaos. This suggests that 
a n  inverse power law modulation of exponential error growth can be 
regarded as a characteristic signature, at the level of sensitivity to initial 
conditions, of spatially distributed systems of large extension. 

Problems 

7.1 Using the x-axis as the Poincart- 'surface' of section construct the explicit 
form of the Poincart- map induced by the normal form equations for the 
Hopf bifurcation, eqs. (5.55). Check that the fixed point of the 
recurrence corresponds to the limit cycle solution of the flow and that 
the stability condition (7.10b) is verified for a supercritical Hopf 
bifurcation. 

7.2 The Schwarzian derivative of a function f at x is defined as 

Show that for the logistic map Sf(x) < 0 for all x. (The relevance of this 
property stems from the theorem ( ~ e i a n a ~ ,  1989) that for unimodal 
maps, Sf(x) < 0 implies that there exists at most one stable periodic 
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orbit for each parameter value.) 

7.3 Show that the logistic map at p = 0.959 75 possesses a stable 
period-three orbit (x, = 0.149 888, x, = 0.489 172, x, = 0.959 299). By 
the theorem mentioned in Problem 7.2 this is the only stable solution 
available for this value of p. On the other hand, a remarkable theorem 
by Sarkovskii (Devanay, 1989) establishes a hierarchical relation 
between orbits of different periods by showing that if a map possesses a 
periodic orbit of period k it automatically possesses an orbit of period / 
provided k Q I ,  with: 

3 r> 5 r> 7 Q . . .2.3 Q 2.5 D . . .2'-3 r> 2'.5 b . . . 2k3 r, 2k5 . . . 
~ 2 ~ b . . . 2 ~  b 2 l  b l .  

It follows, therefore, that for p = 0.959 75 the logistic map possesses 
unstable periodic orbits of all the periods of the above list. Notice that it' 
a unimodal map has only finitely many periodic orbits, then their 
periods are necessarily powers of two. 

7.4 Consider the Bernoulli map 

and its analog with negative slope 

Sketch the graphs of these maps and determine the number and stability 
of their periodic orbits of period n. 

7.5 A qualitative description of instabilities leading to chaotic dynamics in a 
variety of chemical systems and in mathematical models of chaos such 
as Rossler's model (eqs. (4.41)) can be obtained from a one-dimensional 
map possessing a maximum followed by a minimum. The simplest 
realization of this structure is the cubic map (Fraser and Kapral, 1982; 
Kapral and Fraser, 1984) 

f ( x ,  a ,  b )  = ax3 + (1 - a)x  + b(l - x2), a > 0 

Determine the fixed points and the period two solutions of this 
dynamical system and study their stability in the two parameter space 

(a,b). 

7.6 Using eq. (7.30) for the invariant density p, prove that p,(C) = p,(f - 'C ) .  
What kind of regularity properties should one impose on j' for this 
relation to make sense? 

7.7 Using the definitions of Section 7.7 construct the analytic form of the 
probability distribution of the local Lyapunov exponent ~ ( x )  = In Ij'(x)l 
for the tent map and for the logistic map at p = 1. Calculate the first 
two moments of this distribution and compare with (7.58) and (7.62). 
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7.8 Consider a piecewise linear map consisting of three segments 

with a, > 0, a ,  < a ,  < a ,  (such maps qualitatively describe the dynamics 
of homoclinic systems referred to in Section 4.5, see Arneodo et al. 
(1993). 

(a) Determine the conditions on the parameters such that each of the 
three intervals of definition of f (x)  is mapped by the dynamics into a 
union of intervals. 
(6) Under these conditions compute the invariant density and the 
Lyapunov exponent and check that the first stages of error growth are 
superexponential, in agreement with Section 7.7. 

7.9 Consider the tent map 

(a) Prove that for r = (J5 + 1)/2 the Frobenius-Perron equation 
induces a master equation on the partition. 

Compute the invariant density and show that the system is mixing. 
(b) Prove that for r = J2 a coarse-grained description in terms of two 
cells (which ones?) is still possible, but that the system now loses its 
mixing property while still possessing a nonsingular invariant density 
(Nicolis, Piasecki and McKernan, 1992). 

7.10 Consider three diffusively coupled logistic maps (eq. (7.98)). Perform 
linear stability analysis of the homogeneous fixed point and of the 
homogeneous period-two orbit in the domain of parameters in which 
each of them is stable toward homogeneous perturbations. Can a 
diffusion-induced instability occur in this system? 
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Proof of the 
principle of 
linearized stability 
for one-variable 
systems 

The evolution equation in the original variable X reads (cf. eqs. (3.6)) 

where F is a scalar function of the single (scalar) variable X. Introducing the 
decomposition of eq. (3.20) into a reference steady-state solution X, and a 
perturbation x, 

we obtain (cf. (3.25) and (3.26)) 

Here FF) denotes the kth derivative of F with respect to X evaluated at X,. For 
convenience we choose F: to be the control parameter figuring in the original eqs. 
(3.6). 

The 'auxiliary' linearized system associated to (A1.3) is 

and admits the solution 

which is obviously asymptotically stable for E. < 0, unstable for ,? > 0 and 
Lyapunov stable for 1 = 0. 

To see how the full nonlinear equation behaves under these conditions we 
multiply both sides by x, transforming (A1.3) into 
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where r = x2 is a nonnegative variable. By construction, the function g(x) on the 
right hand side of this equation is such that 

g(0) = 0, g'(0) = 0, g"(0) = 2A (A 1.6) 

Using Rolle's theorem, familiar from calculus (Sokolnikoff, 1939), we may 
therefore write 

and consequently 

We now consider, successively, the cases iL < 0, A > 0 and 3, = 0. 
(i) i < 0. From (A1.6) this is tantamount to g"(0) < 0. By continuity this 

entails g"(0x) < 0 in a sufficiently small neighborhood of the origin. It follows 
from (A1.8) that 

or equivalently that I x ( decreases to zero and X, is thus asymptotically stable, just 
as predicted by the linearized eq. (A1.4a). The situation can be further illustrated 
by plotting the original function F versus X (Fig. Al.l(a)). Again, since A < 0 
F: < 0. By continuity F'(X) remains negative in a vicinity of X,. A small positive 
perturbation leading the system to X,  will 'see' a negative value of F. By (Al . l )  X ,  
will then decrease toward X,. A similar argument can be made concerning the 
evolution of a negative initial perturbation leading the system to X,. This proves, 
once again, the asymptotic stability of X, in the nonlinear regime. 

(ii) A > 0. From (A1.6) g"(0) > 0 and, by continuity, g"(Ox) > 0 as well. From 
(A1.8) r and thus I x 1 increase then in time, thereby establishing the instability of 
X,. The situation can again be illustrated on the graph of F (Fig. A 1.1 (b)) .  In short 
we find, again, agreement with the behavior predicted by the linearized eq. (A1.44. 

(iii) A = 0. In this intermediate case g"(0) = 0. Nothing can be said now about 
gu(Ox), since the property of a function to vanish on a particular point is 
'nongeneric' in the sense that, typically, it does not extend to a neighborhood of 
that point. No general statement on stability can thus be made, in other words, the 
conclusions of the linear analysis based on (A1.4) are not necessarily vaiid. A more 
detailed study is needed: this was precisely the assertion made in Section 3.6. 

An example of what may happen in the nonlinear range when the linearized 
problem predicts Lyapunov stability but not asymptotic stability is given in Fig. 
A1 .l(c). We see that an initial positive perturbation will evolve farther and farther 
from X,, whereas a negative one will evolve toward X,. Clearly, the fixed point is 
no longer Lyapunov stable. 

To illustrate further the connection betheen the stability properties of the 



:32 Appendix 

original nonlinear system and its linearized version we consider the logistic 
equation (2.5 1 ), 

We are interested in the stability properties of the reference state of population 
extinction, X, ,  = 0. The linearized equation around this state reads 

It is asymptotically stable for k < 0, unstable for k > 0 and Lyapunov stable for 
k = 0. 

On the other hand the full differential equation (A1 . lo)  is separable and can 
thus be solved exactly. One obtains straightforwardly 

Fig. A1 .1 Illustration F 
of the mechanism 

shind the principle of 
linearized stability. XI 

(a) A c 0, (b) 1 > 0, x (0)  

) A = 0  
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where X ( 0 )  is the initial condition. We observe that: 

For k < 0, lim,,,X(t) = 0 : Xs, = 0 is asymptotically stable. 
For k r 0, lim,,,X(t) = N : X , ,  = 0 is unstable, and the system reaches the 
second fixed point solution x,, = N available. 

Exceptionally, in this particular problem the agreement with the predic- 
tions of the linearized equation extends to the case of Lyapunov stability 
(k = 0 )  as well. 



APPENDIX A 2  

Hopf bifurcation 
analysis of the 
Brusselator model 

We use B  as the bifurcation parameter. The explicit form of eqs. (5.1) is (cf. eqs. 

(2.44)) 
/ \ 

As we saw in Section 4.4, eqs. (4.36k(4.38), the fixed point ( A , B / A )  undergoes an 
instability a t  

B , = A ~ + I  (A2.2a) 

at  which the real part of the eigenvalue of the linearized operator 9 vanishes while 
the imaginary part is 

Im to, = $2, = A  (A2.2b) 

T o  evaluate thesolutions in the vicinity of B, we insert (5.7), (5.8). (5.46)and (5.47) 
into eqs. (A2.1). We outline hereafter the calculations to the first few significant 
orders. 

A O(E) 
Eq. (5.48) takes the explicit form 

The critical eigenvector u associated to iA2.3) is given by 
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or, taking the first line of this vector equation, 

Since normalization of u is arbitrary we choose to write it as 

or ,  using (A2.4), 

The solution of eq. (A2.3) is thus 

The adjoint 2 + ( B c )  of 2 ( B , )  and its critical eigenvector u+ (associated to the 
eigenvalue - iA) are given by 

and 

Notice that uf eiT is the null eigenvector of the operator J; defined in (5.51 b). 

O ( c 2 )  
From eqs. (5.1 1 ), (5.50) and (A2.1) we get 



Using (A2.6) and (A2.7b) we write the solvability condition for this in- 

homogeneous equation as 

The integration over T cancels the contributions of all parts in the curly bracket 

except those containing eiT. This yields 

from which it follows that 

The second order eq. (A2.8) now simplifies to 

The solvability condition (A2.10a) being identically satisfied we proceed to solve 

this equation by noticing that, on the grounds of (A2.6), the right hand side 
features contributions either T-independent or depending on T through the 
factors eZiT or e-2'1'. We thus seek a solution of (A2.11) in the form 
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Substituting in (A2.11) one finds, after a straightforward algebra, 

From eqs. (5.12), (5.50) and (A2.1) we get, keeping in mind that y ,  = 0, 
d c l d ~ ,  = 0: 

The solvability condition for this inhomogeneous equation can be written 
out explicitly using (A2.6), (A2.7b), (A2.12) and (A2.13). As in the O ( E ~ )  
case, only the parts of the right hand side depending on  T through the 
oscillating factor e iT will contribute. This yields 

Performing the scalar product and reestablishing the original variables, par- 

ameters and time scale we finally arrive at the explicit form of the normal form 

equation (cf. eq. (5.53)) 
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Notice that the factor 3 in the linear term of the right hand side is just the derivative 

of the eigenvalue w of the linearized operator with respect to B evaluated at the 

criticality (cf. eq. (4.36)). 
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