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The aim of this book is to develop a unified approach to nonlinear science which
does justice to its multiple facets and to the diversity and richness of the concepts
and tools developed in this field over the years.

Nonlinear science emerged in its present form following a series of closely
related and decisive analytic, numerical and experimental developments that took
place over the past three decades. It appeals to an extremely large variety of subject
areas, but, at the same time, introduces into science a new way of thinking based
on a subtle interplay between qualitative and quantitative techniques, topological
and metric considerations and deterministic and statistical views. Spectal effort
has been made throughout the book to illustrate the development of the subject by
physical examples and prototypical experiments, and the mathematical tech-
niques by reference to simple models. Each chapter concludes with a set of
problems.

This book will be of great value to graduwate students in physics, applied
mathematics, chemistry, engineering and biotogy taking courses in nonlinear
science and its applications, as well as to researchers and teachers involved in one

way or another in this field.
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Preface

Nonlinear science emerged in its present form following a series of decisive
analytic, numerical and experimental developments that took place in
close mnteraction in the last three decades. Its aim is to provide the
concepts and the techniques necessary for a unified description of the
particular, yet quite large, class of phenomena whereby simple determinis-

tic sveteame give rise to complex hehavior associated with the anpearance
JDL\-{ § s | bl" AL LR \JUIAJ!JJ"I LA LICL VAR/L uupv\uutuu FY LLIL VAW uyl—’““ LANSY

of unexpected spatial structures or evolutionary events. Such systems are
encountered in a great number of disciplines notably in classical
mechanics, statistical physics, fluid dynamics, chemistry, optics, atomic
and molecular physics, environmental sciences, engineering sciences or
biology, in the context of both fundamental and applied investigations.

While the concern for unification is central in every attempt of man to
explain the naturai world, the particular approach foliowed by nonlinear
science in the pursuit of this goal is characterized by a great or1g1na]1ty

thaot Aiffarantintaa 1+ froam nthar A lv\ ﬂAn Iﬂ.nl/\ﬂr!'l‘l’\n t tha #e-
Lllal ulllhl \.glll Al 1L 11UVl Ul-ll\/l uJD P 11Wd ULIUL 15 IE LU Lliw L1

realm of physical sciences. Nonlinear science introduces a new way of
thinking based on a subtle interplay between qualitative and quantitative
techniques, between topological, geometric and metric considerations,
between deterministic and statistical aspects. It uses an extremely large
variety of methods from very diverse disciplines, but through the process
of continual switching between different views of the same reality these
methods are cross-fertilized and blended into a unique combination that
gives them a marked added value. Most important of all, nonlinear
science helps io u.u’eﬁtlfjt the a appropri riate level of uGSCI‘Ipuuu in which
unification and universality can be xpected The fundamental laws of
microscopic physics such as Newton’s equations or Schrédinger’s
equation, or of macroscopic physws such as the Navier-Stokes equations
or the law of mass action, are inadequate for understanding or even for

formulating the complexity induced by the evolution of nonlinear
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systems. In contrast attractors, fractals and multifractals, normal forms,

Lvanunov exnonents, entronies lfnmrmnf measures and correlation

MySep el v,.v,.-u, SATAN praleS,y A VRALGRAIN ALTGINATS Qe Vvl atavii A

functions are parts of the new scientific vocabulary proposed by modern
nonlinear science and provide a pragmatic way to meet a chalienge in
front of which classical approaches fail.

The aim of this book is to develop the material of an introductory
course to nonlinear science which, while doing justice to its multiple
facets, is not merely a compilation of topics but rather one (undoubtedly

ont of manv) narticular wav tn traat the antite field in a gtraichtfar Nar rd
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coherent manner. The book is addressed primarily to graduate level
students and to researchers whose background is in physics, in applied
mathematics, in chemistry or in engineering. In preparing it I tried tofilla
gap that I have perceived in the literature ever since I began in the late
1970s—early 1980s to teach this subject to the fourth year students of
physics and chemistry at the University of Brussels: while there are

avrallant hnankec an narticrnlar aonarte Af naanlinear Avrnamaire lilka 1—\1"'"1-410_
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tion theory, chaos, fractals or ergodic theory, thete is (with some rare
exceptions) a marked tendency for uneven coverage of these subjects.
Sometimes this takes extreme forms where nonlinearity is identified with
chaos or on the contrary with everything but chaos; where difference
equations and low-order systems dominate entirely over spatially ext-
ended systems; or where probabilistic aspects are either forgotten
altogether or merely used as auxiliary material in the definition of a

quantities such as attractor dimensions or Lyapunov exponents.

The book is addressed primarily to the practitioner of nonlinear science
rather than to the theorem prover. The exposition is largely self-
contained, but inevitably every now and then advanced knowledge from
other fields is required. In such instances I have tried to appeal to common
sense and to anticipate links with later chapters of the book Moreover,
despite repeated reference to and examples of conservative systems the
book eventually carries its author’s personal bias and interest in
dissipative systems.

The principal role of the first two chapters is to motivate the
development of the more technically oriented last five chapters. Chapter 1
provides an overview of the experimental evidence of nonlinear behavior
in the physical sciences and biology thanks to which unifying concepts
such as instability, bifurcation or symmetry-breaking are sorted out in
view of later developments. In Chapter 2 the evolution equations
corresponding to the systems and phenomena surveyed in Chapter 1 are
laid down. A number of ‘canconical’ models used extensively later for
illustrating the techniques of nonlinear science are also derived from these

general equations. In Chapters 3 — 5 the techniques of nonlinear science

average
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are introduced on dynamical systems with a finite number of variables.
We consider, successively, the geometry of phase space, the concepts of
invariant mamfold and of attractor, stability, and the bifurcation of new
branches of solutions with special emphasis on normal form theory.
Chapter 6 is devoted to spatially extended systems. It focuses on new
problems such as pattern formation arising from the spatial degrees of
freedom, and on the possibie extensions of normai form theory. Chapter 7

deals with chaotic dynamics. This immense subject, to which tens (if not
hundreds) of books have been devoted cannot, of course. be treated

IILERAALWART § ULVELD I Ve Ul e v WL ML oW, MW L u.-,

exhaustively in a single chapter. The particular approach I have chosen is
to provide some classical introductory material and to focus for much of
the remainder of the chapter on the statistical aspects of chaos, which
usually are not covered adequately in the literature. I am convinced that
these aspects along with spatio-temporal chaos introduced in the last
section of the chapter will dominate research on chaos in the next years.

Tn nreanarinag thic hanlk T have areatly henafitted fram dicencainang with
a1l pivpPdlilig Ulls Q00R 1L LdVE giCduy DCLCLIIICG ITOI GISOUBHIOIS Wilii

and the critical comments of my students, coworkers and colleagues. To
the students of my nonlinear class I owe much of the choice of material
and the ‘experimental’ proof that a 30-hour introductory course on
nonlinear science of the kind 1 had in mind is possible. I am most indebted
to C. Baesens with whom I had prepared an early (1981-2) version of my
lecture notes entitled ‘Phénomeénes non-linéaires’. C. Nlcohs provided

Jrnvaliialla haly i tha fAinnl
Al l cuuauu.« ll\—-ll) 11l Lilw l_l

corrections. To the critical reading of 1. Antoniou, P. Borckmans, D.
Daems, T. Erneux and J. Weimar I owe the elimination of several
misprints and mistakes as well as certain improvements of the first typed
version that 1 circulated in December, 1992, Finally, it is a pleasure to
thank S. Wellens and 1. Saverino for the competent typing of successive
versions of the manuscript and their patience, and P. Kinet for efficient
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My rescarch in the subject area covered in this book is sponsored by the
University of Brussels, the Belgian Government, the Belgian Fund for
Scientific Research and the European Commission. Their interest and
generous support are gratefully acknowledged.
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1.1 What is nonlinearity?

Introductory science textbooks — and much of our educational system, for
that matter — are built on the idea that a natural system subjected to
well-defined external conditions will follow a unique course and that a
slight change in these conditions will likewise induce a slight change in the
system’s response. Owing undoubtedly to its cultural attractiveness, this
idea, along with its corollaries of reproducibility and unlimited predicta-

bility and hence of ultimate simnlicity. has lone dominated our thinkine
wriia ‘J ALAANE LEW/LL L LEALALREELLY riisd ‘ Vl‘-J pe L B lvll& \VASSERNUNTaAR T UAR EaES ) \rllllll\ll‘b

and has gradually led to the image of a linear world: a world in which the
observed effects are linked to the underlying causes by a set of laws
reducing for all practical purposes to a simple proportionality.

Appealing and reassuring as it may sound, this perennial idea is now
being chalienged and shown to provide, at best, only a partial view of the
natural world. In many instances — and as a matter of fact in most of those
mternermg with our E‘:vc“:ryuay cxperience — we witness ra.uwa.l quaulati'v'e
deviations from the regime of proportionality. This book has to do with
nonlinearity, that is to say, the phenomena that can take place under these
conditions.

A striking difference between linear and nonlinear iaws is whether the
property of superposition holds or breaks down. In a linear system the
ultimate effect of the combined action of two different causes is merely the
superposition of the effects of each cause taken individualiy. But in a
nonlinear system adding two elementary actions to one another can

induce dramatic new effects reflectine the ongset of coonerativity hetween

axx Wil anaih LY S L vl v A is . VLISWL U WU PSRRI VLY UL VY wisda

the constituent elements. This can give rise to unexpected structures and
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1 Nonlinear behavior in science

Fig. 1.1 Schematic
representation of the
motion of a mass m on

a vertical rotating

hoop.

events whose properties can be quite different from those of the underlying
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pattern formatlon, or an irregular markedly unpredictable evolution in
space and time referred to as deterministic chaos. Nonlinear science is,
therefore, the science of evolution and complexity.

By focusing on a specific class of behaviors encountered in many
different contexts nonlinear science cuts across traditional scientific
disciplinary divisions. It constitutes, today, one of the most active and

pu.u._y growing branches of science.

The aim of this first chapter is to show how nonlinearities arise in a very
broad range of natural phenomena, from classical mechanics to biology.
At this early stage of our program the exposition will be qualitative and
will appeal to undergraduate-level background knowledge and to com-
mon sense. In the subsequent chapters the tools of nonlinear science will
be developed. This will gradually lead to a deeper understanding of the

various phenomena touched upon in the present chapter.

physics. In thls section we 1llustrate the ublqulty of nonlinearity in
mechanics (Andronov, Vitt and Khaikin, 1966; Thompson, 1982), using
the very simple example of the hoop. We consider (Fig. 1.1) a rigid vertical
ring of radius r in the field of gravity. A mass m is initially placed at an
angle 8, from the lower end of the vertical diameter and is allowed to move
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1.2 Nonlinear behavior in classical mechanics 3

Fig. 1.2 Bifurcation of
new equilibria 8, 6_
as the angular velocity
o of the hoop exceeds
the threshold value w.

as a whole 1s at rest, it

ae

along the ring with no [riction. As long as the rin

will nerfarm a narindic motin
¥y iia HULJU‘ i1kl 4 P\JILUUJU POPLE A A W,

remain fixed for ever on 4 (if 8, = 0), the equilibrium state of our simple
device.

Now let the ring be rotated around its vertical diameter with a constant
angular velocity w, as a result of an external coastraint (here an
appropriately applied torque). Experiment shows that as long as w is
small the mass m still oscillates around the same equilibrium position A as
before. But, beyond a critical threshold w,, onc observes that the situation
changes completely and the mass oscillates around a new equilibrium
position corresponding to a nonzero value of the angle 8. Actuaily there
exist two such equilibria, placed symmetrically around the vertical
diameter. There is no preference for either of the equilibria to be chosen:
the choice is dictated by the initial position and velocity of the mass which
in many respects is governed by chance. Still, in a given experiment only
one of these equilibria will be realized and the mass wili accordingly
oscillate around it. To the observer, this will appear as an asymmetric
realization of a perfectly symmetric physical situation. We refer to this
phenomenon as symmetry breaking, the particular symmetry broken
being here the reflection symmetry around the vertical diameter.

It is convenient to organize this information on a diagram (cf. Fig. 1.2)
in which the equilibrium position 6, characterizing the state of our system,
is plotted against the anguiar velocity w — the constraint acting on the
system. Below the threshold @_only one position is available, correspond-

ing to 6 = 0 (branch (a) in Fig. 1.2). Beyond @, this state cannot be

MREAS SRRV NRILARNS.

sustamed. We express this in Fig. 1.2 by the dashed line along the branch
(a’) extrapolating branch (a). For each w > w_two new equilibria become
availabie. Joining the corresponding values of the angles we obtain two
branches of states (b1) and (b2) which merge with (a) at w = w, but
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1 Nonlinear behavior in science

separate from it at 0 # @, . This is the phenomenon of bifurcation, which

hant thic vaolnme and which will turn ant to he ana ofthe
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most characteristic signatures of nonlinearity.

In summary, we have seen using a very simple mechanical device that
beyond a critical threshold of constraint nonlinear phenomena are
switched on in the sense that the system responds to the constraint in a
manner that deviates dramatically from the law of proportionality
referred to in Section 1.1. One of the manifestations of this nonlinear

Iesponse is that the system now uiSpOSES of lIll.Ill.lpIC solutions between
which it can choose. As the value of w gradually grows we switch
spontaneously from the classical regime of pendulum-like oscillations
around a unique equilibrium to a regime of oscillations around a variety
of possible equilibria. It is significant that the same — quite ordinary -
physical system can present different types of behavior as the values of a
characteristic parameter built into it are varied.

It is easy to figure out the qualitative mechanism at the root of this
phenomenon The motion of the mass m is governed by two adverse

factors fF\n 1 1): the weicht ma that tends to move it downwards, and the

1.1 p. 0 VOLEILL Mol LEILGL LWiid LW LU YV & 10 WU VW IV Gy Gliie vy

centnfugal force mw?r sin# that tends to maintain it away from the
downward vertical position A. Intuitively, the higher the w the stronger
the tendency to sustain a motion away from A will be. This will be
substantiated by the more quantitative formulation of the next chapter.

As we shall see shortly, the above features are not limited to our simple
example but are prototypical of a large class of natural systems. In the case
of the hoop it so happens that they constitute the exhaustive list of the
types of complex behavior that become possible in the nonlinear range.
But this is by no means a universal limitation. The action of an external
periodic forcing on a nonlinear oscillator of the kind depicted in Fig. 1.1
(through, for instance, a periodic variation of the radius, r =
ro + r, sin Qt) already gives rise, under certain conditions, to an aperi-
odic motion of the mass m referred to in Section 1.1 as deterministic chaos.
Similar phenomena arise in coupied nonlinear oscillators like the
composite pendulum and in celestial mechanics in connection with the

ceiebrated three-body nrnh]r—-m A more systematic classification will be

wiwiira ten [ 2SR wlway VAN LN 3 ANS A Al S ARAVL W L viw wala S YV iia U

outlined in Sections 2.1 and 3.3. Finally, we note that electric circuits give
rise to nonlinear phenomena very similar to those arising in mechanical
devices (Linsay, 1981). This is quite natural, since the laws governing
these two types of system can be mapped into each other provided that
mass is replaced by inductance, displacement by charge, restoring force by
inverse capacitance and friction\by resistance.



1.3 Thermal convection 5

Fig. 1.3 Schematic
representation of a
horizontal fluid layer
heated from below.

1.3 Thermal convection

We now turn to macroscopic physics and survey nonlinear behavior in
connection with thermal convection — the bulk motions of fluids generated
by temperature inhomogeneities.

Thermal convection is at the origin of important, spectacular naturai
phenomena. Some exampies are the circulations of atmosphere and
oceans, which determine to a large extent short- and medium-term

weather changes and continental drift. the motion of continental nlates

Grviivi waaldames Qaite RELARb,y ARW LARUURLAVLL UL LAALRRUILILAANGSR pranale

induced by large-scale movements in the mantle. In this section we shall
be interested in the more modest laboratory-scale experiment first
performed in 1900 by Bénard which, despite its apparent simplicity, leads
to the observation of a number of astonishing properties (Chandrasekhar,
1961; Koschmieder, 1981; Velarde and Normant, 1980).

Imagine a thin fluid layer between two horizontal conducting plates in
the field of gravity (Fig. 1.3). The plates are maintained at fixed

LRI LIWIAE U Elcavity Pravvs Guiv Liads llLHlllUU QAL EiAws

temperatures T, and 7, T, belng larger than or equal to 7', through
appropriate heating from below. Suppose first that AT=T, — T, = 0.
The layer will then sooner or later reach the state of thermodynamic
equilibrium, characterized by the absence of bulk motion and by a
uniform temperature and density throughout. Now let a temperature
difference AT =T, — T, > 0 be gradually applied. This thermal con-

ctuaint tha analao Af the marhanira
obr Ml,‘b, Lilw (.I.lJ.(.l.lUE Vi Ll 1livwvitallivoa,
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velocity w in the example of the previous section, displaces thé system
from equilibrium and gives rise to heat conduction from the lower (hot)
plate to the upper (cold) one and a concomitant temperature distribution
along the vertical. As long as AT is weak the behavior will be limited to
this, In particular, the fluid will remain at rest and an observer moving
along a horizontal plane will still perceive a uniform temperature and
density environment.

The situation changes completely when AT exceeds a critical threshold
AT,. The fluid ceases now to be at rest and begins to perform bulk

movement organized in the form of well-structured convection cells (Fig.

T, ——




1 Nonlinear behavior in science

Fig. 1.4 Qualitative
view of convection
(Bénard) cells.

4), known as Beénard cells (this is precisely the regime of thermal

canvactinn) In a given eall the Aind moveg 1
W wivd 1

ward fallawe the nunner
VILVV\.«LIUJA}- ANl slvvll S AA LALEN LI ¥ Ll l.lvl

noves upward, follows the up
boundary, then sinks downward, follows the lower boundary, and starts
all over again. If this motion occurs, say, in the clockwise direction in the
adjacent cells it will occur in the opposite, counterclockwise direction.
The cells have a characteristic size which is determined once the geometry
— and particularly the depth d — is specified. Notice that despite the fact
that the fluid moves, the velocity, temperature and density at a given point
are time-independent. From the macroscopic point o
have a stationary nonequilibrium state.

We have seen that two adjacent cells rotate in opposite directions. Ata
given point in space, therefore, a small volume element of the fluid can find
itself at two distinct states in the sense that it can be part of a cell rotating
clockwise or counterclockwise. Actually, since for a system of large
horizontal extent the whole structure can be shifted by any amount along
the horizontal direction there is a whole continuum of states available.
But since the most characteristic manifestation of this multiplicity
remains the direction of rotation of the cell, we will argue in the following

Frmaur thanafara un
1

in terms of a two-fold multiplicity. Now, nothing in the experimental
setup allows one to assign beforehand a preference for either of these two
directions: the particular direction that will be chosen at a particular point
of our apparatus will merely be dictated by the locally prevailing
conditions at the moment of the experiment which, to a large extent, are
determined by random elements such as minute local temperature
fluctuations, dust particles and mechanical vibrations. Still, in a given
experiment, a volume element of the fluid located around this particular
point will eventually realize only one of these two types of motion. Just
like in Section 1.2, we witness here an asymmetric realization of an
initially perfectly symmetric physical situation. This symmetry-breaking

phenomenon is associated with the breaking of the chiral symmetry
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1.3 Thermal convection 7

Fig. 1.5 Qualitative
explanation of the
origin of thermal
convection.

associated with the sense of rotation. Alternatively, for an observer

moving along the horizontal plane homogeneity will be broken: since

AnalSVaia Saaas AV A adAaae@ia prallaa Uasareany ViUl wide Oliiww

there 1s internal spatial differentiation w1th1n a pair of adjacent cells, to
recover the same environment one must now move a distance twice the
size of the-cell. In other words the Bénard convection also breaks the
translational symmetry in the horizontal direction. The situation is
somewhat analogous to a liquid-solid transition, where the full isotropy
and rotational symmetry of the liquid phase are broken in favor of the less

. . . . . . .
svmmetric crvstalline solid. A maior difference is that in a crvstal the
UJ AAAAAA WLl AW Wi J ORLLIINIIW VIR, R l.llbI.JUl WLV WLIVY 1 LLIALLY RLL % J PRl LRLW

characteristic length associated with translational symmetry breaking is
microscopic, comparable to the range of intermolecular forces. In
contrast the characteristic size of a Bénard cell is macroscopic, of the order
of a millimeter or more. In some sense one may think of such large-scale
patterns as macroscopic, ‘dissipative’ crystals of a completely new kind.
Just like their equilibrium analogs, such structures can also be classified

accenrdino tn their anatial cvmmetriee fWalgraaf DNawal and Rarckmane
QULULI LIS LU VLWL DpALIAL S YIMIIIVLLIVO ( YY alglidbl, Lrvwil aliu 2ULURILLIALLD,

1982; Manneville, 1991). One may thus expect structures belonging to the
cubic, rhombohedral or tetragonal systems, many of which are indeed
observed in thermal convection experiments.

Fig. 1.5 shows a qualitative explanation of the phenomenon using, just
like in Section 1.2, the competition between two adverse factors. Owing to
thermal expansion the fluid becomes stratified, with the part close to the

Iawoer mlata Ahasantaricad ey o lawar damoider thaon tha s v mart This
Wwil pldie vildaratvitiizold Uy a 1owel ucuauy tnan the upper pait. LS

gives rise to a density gradient that opposes the force of gravity — a
potentially unstable configuration. Consider a small volume of the fluid
near the lower plate. Imagine that this volume element is slightly
displaced upward by the random action of disturbances that are
inevitably acting on any real-world system. Being now in a colder - and
hence denser — region it will experience an upward force that will tend to

plily further the dbu&ﬁdli‘g MOVEMEQit. u on the other uauu, a small
droplet initially close to the upper plate is displaced downward, it will
penetrate an environment of lower density and the initial descent wili be

further amplified. We see therefore that, in principle, the fluid can generate

T =




i Nonlinear behavior in science

Fig. 1.6 Bifurcation
diagram for the onset
of thermal convection

beyond a critical

lUJ.ll}JUl ature UJHC

nice

AT

¢

ascending and descending currents like those observed in the experiment.

The reacnn thaca surrente do not annear ac enon ae A7 1c nnt atrictly ZorD
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is that the destabilizing effects are counteracted by the stabilizing effects of
viscosity, which generates an internal friction opposing movement, as well
as by thermal conduction, which tends to smear the temperature
difference between the displaced drop and its environment. This explains
the existence of the critical threshold AT, observed in the experiment.
In analogy, once again, with Section 1.2 we may organize the above
information in the form of a bifurcation diagram (Fig. 1.6). A convenient
state variable to be plotted against the constraint AT is now the vertical
component of the velocity, w, at a given point, say in the middle of the
layer. Before the threshold AT, the fluid is at rest, w = 0. Beyond AT, at
the particular point under consideration one will observe an ascending
(w > 0) or a descending (w < 0) movement. These two branches of states
coalesce at AT, with the state of rest, but bifurcate out of it for AT > AT,

£
1

UprlLC the co plClCly different natures of th 3 3

the systems considered in
Sections 1.2 and 1.3 we sense here some unity: in both cases nonlinear
behavior, associated with multiplicity of states, emerges through a
bifurcation mechanism when a constraint acting on the system exceeds a
critical threshold, the states born from bifurcation being qualitatively
different from the state prevailing before bifurcation by the fact that they
display broken symmetries. As will become gradually more and more
evident in this book this scenario is typical and underlies huge classes of
nonlinear phenomena which arise in widely different contexts.

One of the reasons that make the Bénard problem so important in
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nonlinear science is that, in addition to this first bifurcation, the system
can also undergo a whole series of successive transitions unveiling
practically the entire repertoire of nonlinear behaviors known to date.
Several transition scenarios have been discovered, thanks to the use of
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increasingly sophisticated optical techniques. As it turns out, they depend
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horizontal extent L of the system; and the fluid’s intrinsic parameters such
as viscosity or heat conductivity. Typically, for I' around 2 or so (a *small’
system), when AT is increased to a value several times larger than AT, say
AT, . convection is no longer steady but becomes periodic in time. The
lrequency of the oscillation is in the macroscopic range and is intrinsically
determined by the system (Dubois and Bergé, 1981). Beyond a still higher
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biperlodlc. Two cases may now be dlstmgmshed. In the first one the two
frequencies w, and w, have a common divisor, say Q. In practical terms
this is guaranteed once their ratio w,/w, is rational, that is to say, equal to
the ratio of two integers p and ¢: w,/w, = p/g. The common divisor Q 1§
then Q = w,/p = w,/q and plays the role of the frequency of a global,
simply-periodic motion. In the second case this condition is not fulfilled, a
fact that one usually summarizes by the statement that w, and w, are
‘irrationally related’. The doubly-periodic regime is, then, quasi-periodic.
Since the irrationals constitute the overwheliming majority of real
numbers, one expects that this latter case will be the most typical one to be
realized in the experiment. Finally for a temperature difference AT beyond
a new threshold AT, the time dependence becomes chaotic. In the time
domain this shows up through aperiodicity of a more noisy type than
quasi-periodic behavior, despite the deterministic character of the
underlying system. This type of behavior is reminiscent of turbulence.

A very convenient gu itative distinction between periodic, m_l_mn-
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periodic and chaotic regimes is provided by the power spectra constructed
by Fourier transforming the time series data of a relevant variable X(t,),
k=1, ..., N (Bergé, Pomeau and Vidal, 1984):

o]
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Pw)) = |X(w)? =‘ (1.1)

; (an)]X(t

wherew; = j/(NAt),j =0,...,N — land At = 1, — ¢, _, . For periodic or
quasi-periodic behavior the power spectrum consists of only isolated lines
of well-defined frequencies, whereas chaotic behavior is marked by a
broad band continuous spectrum containing an important low-frequency
part. Such a transition from periodicity to chaos in the Bénard experiment
is depicted in Fig. 1.7.
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both (deterministic) chaos and (random) noise. There exist more
elaborate ways than power spectra, allowing one to characterize chaos
and to discriminate it from both periodicity and random noise. They will
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Fig. 1.7 Fourier
spectra drawn from
velocity measurements
in the Bergé - Dubois
experiment of the
Rayleigh — Bénard
instability (Dubois and
Bergé, 1981): (a)
periodic, (b)
quasi-periodic and (¢)
weakly chaotic
regimes. In (b),
measurement at two
different points reveal
two different,
irrationally related
frequencies. R, s

a dimensionless
measure of the
critical temperature
difference AT,.
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The quasi-periodic route to chaos established by the above experiments
has a historical significance since it provides a refutation of the ideas
prevailing until the 1970s on the nature of turbulence. Specifically, it was
thought that turbulence arises from an infimity of transitions, each
generating a new frequency until a continuum of such frequencies
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turbulent-like behaviors may arise after a finite (and small} number of
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Fig. 1.8 Convection
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transitions, first proposed theoretically by Ruelle and Takens (1971)
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light on this major problem. However, one should be aware of the fact that
the chaotic behavior observed under these conditions is far from the fully
developed turbulence characterizing large-scale real-world flows.

Two other transition to chaos scenarios can be observed in small
systems under different conditions. In the so-called intermittency route,
after a first transition to a time-periodic flow one observes a further
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ion to a chaotic state characterized CY 10Ng n..luu,au,u pErioas o1
nearly periodic behavior interrupted, at more or less random intervals, by
short-lived bursts (Bergé et al., 1984). In the so-called period doubling
cascade, after a first transition to simple periodic behavior a long series of
transitions to complex periodic oscillations is observed in which the main
frequency is a subharmonic of the previous one. Eventually chaotic
behavior sets in (Libchaber and Maurer, 1980). These scenarios will be
discussed more fully in Chapter 7

Let us turn now to systems of large horizontal extent, characterized by
an aspect ratio which is much larger than unity (Ahlers and Behringer,
1978; Pocheau, Croquette and Le Gal, 1985). A transition to a chaotic
convection is again observed, but there are some major differences with
the behavior observed in small systems. First, the successive transition
thresholds are now squeezed into a small vicinity near the threshold of
stationary thermal convection, AT,. Second, in addition to the weakly
chaotic behavior typical of small systems ‘hard’ turbulence becomes

rmthl(-‘ Third. and nerhans most significant of all. the convective motion
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is ordered only on a local scale. Specifically, it appears (Flg. 1.8) that
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different patterns (corresponding to different bifurcation branches in Fig.
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are created and subsequently undergo a complex dynamlcs which appears
to be the prelude to spatio-temporal chaos, a regime in which in addition
to aperiodicity and irreproducibility in the time domain one also observes
an erratic distribution of hydrodynamic variables in space.

The behavior found in the Bénard experiment turns out to be typical of
a large class of phenomena arising in fluid dynamics (Chandrasekhar,
1961; Lin, 1955; U‘u:y‘Ou, Hulin and Petit, 1 1771) such as the motion of a
fluid between two concentric rotating cylinders (Taylor vortex flow),
thermal convection in a mixture (Soret flow), and transitions in the
presence of a free surface (Bénard-Marangoni convection). In the
following, the Bénard problem will be one of the typical models to which
we will refer to illustrate the ideas and tools that we shall put forward to

understand nonlinear phenomena.

1.4 Nonlinear phenomena in chemistry

For a long time chemists thought that a homogeneous, time-independent
state should eventually emerge from any chemical transformation. The
first clearcut experimental evidence that this view is incorrect came in the
1960s from a redox reaction known as the Belousov-Zhabotinski (BZ}
reaction (Zhabotinski 1964 ; Nicolis and Portnow, 1973; Noyes and Field,
1974).

,..

A I.yplbdl BZ reageiit Comnsi ists of such ordi inary pi‘Od ucts as a salt which
generates bromate (like KBrO, ), an organic reductant (like malonic acid
CH,(COOH),) and a salt capable of generating a redox couple (like Ce,
(SO4)3), all dlssolved n sulfuric acid. The composition of the system can
be followed visually through a change in color and, more quantitatively,
by placing specific electrodes in the solution or by measuring the optical
absorption caused by a particular substance.

Thanks to the design of open reactors (Pacauit and Vidal, 1978) the

for

)
reaction can nowadays be carried out without interruption long

nerinde nf tHimea — a necesggarvy condition to nrrnm at a nnqnt]tatnm
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understanding. We first survey briefly the behavior of the BZ reaction in a
well-stirred open reactor (Fig. 1.9) in which homogeneity is ensured by a
vigorous stirring of the mixture, hereafter referred to as ‘CSTR’. Two
types of parameter control the behavior of this system: the concentrations
of chemicals pumped from outside, and the rate at which they are pumped
in the reactor, that is to say, the volume pumped from the feed stream into
the reactor per unit time. The latter quantity J;, divided by the volume of

the reactor V, gives the inverse of the residence time 1, of the corresponding
chémical i within the reactor,
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Fig. 1.9 Experimenial
sctup for an open
chemical system.

11, =JJV (1.2)

Under slow pumping conditions (all J, small) the chemicals will remain in
the reactor for a very long time and will, for all practical purposes, reach a
state of chemical equilibrium just as if the reactor were closed. However,
for large J, the chemicals will leave the reactor very quickly, essentially
with the conceniration of the feed stream and will be unable to react
significantly and equilibrate with the bulk., The residence time t can
therefore be used as a convenient control parameter playing the role of the
constraint, much like the angular velocity @ in Section 1.2 or the
temperature difference AT in Section 1.3.

We now survey the principal modes of behavior of BZ-like reactions in
an open well-stirred reactor for a range of values of the residence time
between the two above-mentioned extremes (Vidal and Pacault, 1981;
Bergé et al., 1984). As it turns out, there exists a critical threshold 7, below

hich stationarv behavior is no lonoer possi 1hle and sustained oscillations
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are observed. The amplitude and period of these oscillations are
intrinsically determined by the dynamics once the parameters (tempera-
ture, concentrations in the feed streams and residence times) are specified.
The birth of this new regime is associated with the breaking of
translational symmetry in the time domain, since then the phase of the
system’s variables changes within an oscillation period. As in Sections 1.2

and 1.3, the transition can be represented in the form of a bifurcation
stirrer
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Fig. 1.10 Complex
periodic oscillations in
BZ reaction (Simoyi et

1
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diagram in which the oscillatory branch bifurcates out of the stationary
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Fig, 1.10 depicis a sequence of transitions leading to complex periodic
oscillations of various types, as the residence time is varied (Simoyi, Wolf
and Swinney, 1982). Further change of the constraints leads to a regime of
chemical chaos, in the form of a random-looking mix of small- and
large-amplitude oscillations. As in the thermal convection problem, the
chaotic regime can be reached in a variety of different ways depending on

the values of the constraints, including the period doubling cascade, a
transition through quasi-periodic behavior and intermittency.,

A qualitative explanation of the oscillatory behavior in the BZ reagent
was proposed by Field, Kords and Noyes, (1972). Although their original
mechanism has been modified over the years, it still provides the basis of
our knowledge of this system. The main point to realize is that the BZ
reaction involves two different processes, 4 and B, which alternately

switching from B to A. More specifically:

e When the Br™ concentration is appreciable, the following reactions
take place,

RINIELANRIRIRIRLN LI
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(A.1)Br~ + BrO; + 2H" - HOBr + HBrO,
(A.2)Br~ + HOBr + H* - Br, + H,0

[ REay el iigs

(4.3)Br™ + HBrO, + H* - 2HOBr

e Once Br~ concentration is sufficientiy lowered, the oxidation of Ce>*
to Ce** is carried out autocatalytically thanks to the liberation of the
free radical BrQ.

1EL LKA %y

(B.1)2HBrO, » HOBr + BrO; + H*

(B.2)HBrO, + BrO; + H* - 2Br0O,. + H,O
(B.3)BrO,- 4+ Ce** + H* - Ce** + HB1O,

Autocatalysis takes place through the bromous acid, since two
molecules of this substance are produced by (B.3) for each one
consumed in (B.2).

e Finally, Ce** is reduced back to Ce®* while at the same time it
regenerates Br ™, thus allowing the process to start all over again, The

Ly 1 LLLR il 11 U} L

global reaction for this transformatlon can be written as

fir1nM.4+ Al FrarFaVYehs gl T/f‘*{\ Ti\ i AT .
{C)10Ce*™ + CH,(COOH), + BrCH(COGH), + 4H,0 + 2Br,

—10Ce** + 5Br~ + 6CO, + 15H*

Notice that the mere fact of switching from pathway B to pathway A
through process C is not sufficient to explain oscillations. An additional
ingi’eumul—-uuupcxauvu_y —is needed to sustain a u_yuuu Ucuavwl and is
provided by the positive feedback {autocatalysis) of bromous acid onto

itself. We may express this schematically through the following diagram:

/Y Br- \bromate

/ P 4 Egroz A
K C )
\J

malonic acid

Being limited to a single feedback, the above mechanism cannot

generate more than one relevant time scale. Consequently, it cannot
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explain the quasi-periodicity, composite periodic oscillations and chaos
found in numerous experiments. Richetti and coauthors have proposed
an augmented Field - Koros—Noyes mechanism involving an additional,



16

1 Nonlinear behavior in science

negative feedback whereby in the presence of hypobromous acid (HOBr),

HQBr, is congsumed in a2 manner that ig .?.'J‘:.Guu;ul"f"‘ in Br~. The
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competition between these two mechanisms of cooperativity then brings a
second time scale into the problem. This suffices to explain, in principle,
the appearance of complex oscillations including chaotic ones (Argoul,
Arnéodo, Richetti and Roux, 1987; Arnéodo, Argoul, Elezgaray and
Richetti, 1993).

We now come to the behavior of the BZ system in an unstirred reactor

idal amd Dancnnly 1094 Tiald and Ducvgar 1005 lrawr Ninnlic Rovas
\vidad: ana cacauit, 1704; riCiG ana purger, 1500, Uray, iviCOl11s, Daras,

Borckmans and Scott, 1990). For a long time experiments were limited to
closed reactors, typically in the form of a shallow layer of solution
contained in a petri dish. Fig. 1.11 depicts the typical behavior found
under these conditions, namely regular patterns in space and time in the
form of propagating wave fronts. The waves appear primarily in two
different forms: circular fronts (a) displaying a roughly cylindrical
Sy‘r‘lﬁ‘letry' around an axis perpendicuiar to the layer, usually referred to as
target patterns; and spiral fronts (b) rotating in space clockwise or
counterclockwise. It is also possible to obtain, although under rather
exceptlona] conditions, the multlarmed spirals shown in Fig. 1.11(c). In
each case the wave fronts propagate over macroscopic distances without
distortion and at a prescribed speed. As in the Bénard problem we can
associate the formation of these fronts with space symmetry breaking:
transiational symmetry breaking in the target wave case and chiral
symmetry breaking in the spiral wave case.

More recently stationary inhomogeneous patterns arising through

symmetry breaking have been observed in a variant of the BZ reaction,
the chlorite —iodide — malonic acid reaction, thanks to the design of new
open, unstirred chemical reactors which allow the development of
spatially inhomogeneous states while avoiding parasitic hydrodynamic
motion. Figure 1.12 depicts the gel reactor designed to that effect by De

Kepper and coworkers (Castets, Dulos, Boissonade and De Kepper,
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chemical reservoirs, A and B, where the concentrations of reactants are
kept constant and uniform by appropriate mixing and a continuous flow
of fresh reactant solutions. The reactants are separated in such a way that
neither solution A nor solution B is individually reactive: the chemicals
diffuse from the edges into the gel where the reaction takes place. The
typical diffusion time to establish stationary concentration profiles across
the gel strip is of the order of an hour. To make the concentration changes
visible, the gel is loaded with a starch-like color indicator which does not
diffuse through the gel. The color changes from yellow to blue with the

change of the [103]/[1,] ratio during the redox reaction. The color
pattern is monitored with a video camera.
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Fig. 1.12 The open
unstirred reactor
designed by De
Kepper and coworkers

Frr th is 1
for the realization of

stationary spatial
patterns. The gel strip
is fixed between two
flat plates 1 mm apart.

D -~
Reactants are fed

through the
well-mixed reservoirs
A and B.

At the beginning of the experiment, the development of a series of light
and dark stripes parallel to the edges reveals the emergence of a
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concentration pattern in the central region of the reactor. Although this
pattern is nontrivial, the stripes preserve the symmetry imposed by the
feed. But over a well-defined range of the malonic acid concentration in B,
some of these stripes ultimately break up into lines of periodic spots as
depicted in Fig. 1.13. This constitutes a genuine symmetry-breaking
phenomenon in the direction transverse to the imposed gradient. The
indefinitelv. the
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Fig. 1.13 Enlarged
image of the region of

tha reactar Fie 1 17
LU LOaViLUL, K ig- L-12,

in which the pattern is
appearing (Castets et
al., 1990). Distances
are in miflimeters.
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correspond to reduced
states, light ones to
oxidized states.

nongeometric properties; in particular, it is much smaller than any

geometric size of the reactor (includine [hw‘l(npcu\ bv at least one order of
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magnitude. This is very different from the stationary patterns in the
Bénard problem, whose characteristic length is determined by the size of
the experimental device.

In the above experiment, visualization of the pattern is perpendicular to

the direction of feed. An alternate possibility is visualization parallel to the

direction of feed, which is, in turn, chosen to be perpendicular to the
nsion IOnuqnn and Swinnev. 1991) Fu\' 114 rp\mols
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in this case a very large variety of patterns such as hexagons, stripes and
mixed states. Transitions from stationary spatial patterns to spatio-
temporal chaos (chemical turbulence) are also observed in conjunction
with the formation of defects separating different domains, much as in the
Benard problem. These phenomena will be analyzed in detail in Chapters
6 and 7.

ome further examnles of chgmiga_!!\’:.

S
had r
mediated nonlinear behavior.

In addition to their fun
chemically-mediated nonlinearities provide the natural explanation of a
large body of complex phenomena in a wide variety of contexts. In this
section we survey some characteristic examples from the fields of chemical
engineering and biology (see e.g. Nicolis and Baras (1984), Gray et al.

(1990) and Murray (1989)).
Much of the chemical industry is based on heterogeneous catalysis. In
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accelerated by the presence of a surface on which the chemicals are first
adsorbed and then converted to active forms capable of undergoing
reactions that would be impossible otherwise. For instance, the oxidation
of ammonia or of carbon monoxide is usually carried out in the presence
of a platinum catalyst; similarly in the decomposition of nitrous oxide,
N,O, a catalytlc copper oxide surface is used.
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Fig. 1.14 Stationary
chemical patterns
formed in a
contintously fed
unstitred reactor
(Ouyang and Swinney,
1991). Visualization is
paraliel to the
direction of feed: (a),
(b) hexagons; (¢)
stripes; (d) mixed
state.

phenomenon. First, since the total number of sites in the catalyst is finite

adenrhi -
the substances i in the bulk phase inevitably compete for adsorbing sites:

they thus exert a negative feedback on each other. Second, some of the
adsorbed substances facilitate a structural change of the catalyst surface,
which may further affect the adsorption probability of this very substance
or of other substances. It is, therefore, not surprising that heterogeneous
catalysis provides today some of the best-documented examples of
nonlinear phenomena, from homogeneous sustained oscillations to

vn“nnn Al PR P S o Ad

vpag,auug waves or even (o atauuual_y concentration pawerns. A
particularly clear illustration is provided by the beautiful experiments of
carbon monoxide oxidation on platinum under ultra-high vacuum
( < 1072 mbar) pressure conditions (Cox, Ertl and Imbihl, 1985; Ertt,
1991; Imbihl, 1992).

Combustion, the burning of hydrocarbons, the process by which heat
engines function, is another class of important chemical transformations.

The overall reaction can be represenleu scnematlcauy as
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fuel + oxygen 2 oxide + heat (1.3)

Now, according to the well-known Arrhenius law of chemical kinetics, the

rate constant k of a reaction 1s an increasing function of temperature
(Kondratiev and Nikitin, 1981)

Q..
e
=
o
=

reactants must overcome in order to break the chemical bond.
exothermic reaction like (1.3), the heat liberated will increase the
translational kinetic energy and thus the temperature; this will increase
the rate constant k(T), eq. (1.4), and thus the rate of production of heat;
this, in turn, will increase T and k({T) further, whereupon more heat will be
liberated, etc. This thermal feedback, which is ubiquitous in all combus-
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behaviors, the most obvious example of which is the appearance of flame
fronts separating the region of fresh reactants from the region of burnt
ones.

One of the typical manifestations of nonlinear behavior in biology is
self-sustained oscillations {(Goldbeter, 1990; Segel, 1984; Murray, 1989).
They are observed at all levels of biological organization, from the
molecular io the b‘upci'Cﬁﬂ kar,orevento the social [p\’)pumu()‘ﬂ) Olie, with
periods ranging from seconds to days to years. Among these the best
understood are biochemical oscillations at the subcellular ievel. Their
most characteristic feature is that they involve enzyme regulation at a
certain stage of the reaction sequence. The enzymes responsible for
regulation are usually not simple Michaelian enzymes but, rather,
cooperative (allosteric) ones in the sense that their conformation is affected
Dy tﬂe HXd.llUIl Dl (.,Url.dlﬂ metaﬁ(‘)mt:b clll(_l bUDSCL{UCﬂ[ly IIlllUEHLCb Ult:
catalytic activity of the enzyme. This cooperativity introduces, precisely,
the nonlinearity necessary for complex behavior.

Another common manifestation of nonlinearity in biology is the
coexistence of multiple steady states (see ¢.g. Thomas and d’Ari (1990)).
Two very interesting contexts in which this behavior is likely to be
manifested are the functions of the nervous and the immune systems,
where it is thought to provide a prototype of the phenomenon of memory
(Kaufman and Thomas 1987). A less spectacular, but weli-documented
example is the ity of microorganisms to switch between different
pathways of enzyme synthesm according to the medium in which they are
embedded (Jacob and Monod, 1961). A source of nonlinearity common to

all these phenomena is the almost stepwise response of the biomolecules
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to various effectors or even to their own or to the other unit’s activity.

A most nnppghnu example of symmetry breaking in living systems is
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morphogenesis. In the course of embryonic development one witnesses a
sequence of events leading from a unique cell, the fertilized egg, to a
multiceliular organism involving specialized cells organized in an enor-
mous variety of shapes and forms. Significantly, in developing tissues one
frequently observes gradients of a variety of substances such as ions or
relatively small metabolites. It has been conjectured that such gradients

nravide the ticone with a kind of tonnrdinate gustem’ that convevs
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positional information to the individual cells, by means of which they can
recognize their position with respect to their partners and differentiate
accordingly (Wolpert, 1969). Chemical symmetry-breaking bifurcations
(cf. Fig. 1.13-1.14) provide an appealing prototype for understanding
these processes. Further examples of space-dependent nonlinear behavior
in biology include the propagation of a nerve impulse, the calcium-

Il YA~} A "R R Iﬂﬂ 1IT’AYVIAC N1 Mo 1‘ T o mk"o nap Q“fi f}"n “Df“l]';qf'
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gates formed by unicellular organisms like amoebae or bacteria.

For a long time it was thought that chaos in biology is tantamount to
nuisance. A logical consequence of this attitude was to view it as the
natural reference for understanding certain forms of biological disorder.
This idea has been implemented in a number of convincing examples
related, for instance, to respiratory diseases or to arrhythmias of the

13 veela (3 acae and Maal-ae 1092y Tadoyitic raclicad that hagan A
CaraidacC ifiusCiC (\Jidss aiia Luaul\cy L700). 1ulddy itis realized that Uty O11u

this aspect chaos is likely to play a constructive role of the utmost
importance in the highest levels of biological organization, particularly
brain activity (J. S. Nicolis, 1991; Babloyantz and Destexhe, 1986;
Destexhe, 1992). Consider as an example the electroencephalogram
(EEG), a widely used record of the electrical activity of the brain
generated by the sum of elemental sustained low-frequency (0.5-40 Hz)
neuronal activities eman Jug from small volumes of cortical tissue jUSL
underneath the scalp (Flg. 1.15). The upper five panels of the Figure
describe the EEG of a normal human subject in two stages of awareness
((a)-(b)) and three stages of sleep ((c)-(e)), whereas the lower two describe
the EEG associated to two pathological situations. All records show an
irregular succession of peaks, although (f) and (g) look definitely more
‘coherent’ than (a)-(e). The analysis of the time series associated with
these records using the techniques of nonlinear dynamics developed later
in this book reveals the presence of deterministic chaos, whose complexity
depends on the stage of brain activity. Significantly, in pathological states

aorora
appiv

such as epilepsy chaotic behavior is milder than in the healthy state. This
suggests the rather unexpected idea that a healthy physiological system
needs a certain amount of internal variability whose loss, witnessed by the
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Fig. 1.15 EEG records
during various stages
of brain activity
{courtesy of A.
Destexhe)
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transition to a more ‘ordered’ state, signals the appearance of pathologi-
cal behavior. It is important to realize that this healthy variability is not
the result of random noise. Deterministic chaos combines here, in a subtle
manner, order and reliability on the one side, and disorder and
unpredictability on the other. One is therefore tempted to speculate that a
regime of deterministic chaos provides a system with the readiness needed
to recognize a variety of external inputs and respond flexibly to a changing
environment.

Population biclogy provides another example in which chaos may well
be present. Experimental data are not clearcut, mainly because of the
large environmental noise that is inevitably superimposed on the
dynamical behavior. Still, taken in conjunction with mathematical
models, they do suggest that irregular variations in time and space are
ubiquitous (May, 1974, 1976). Such variations may have an important

role in problems involving competition and selection.

Problems

1.1 Using eq. (1.1) show that the power spectrum of a sinusoidal signal
displays a sharp peak around the signal frequency. Comment on the
origin of the fine structure around this peak, particularly on its relation to
the number of data points N. What happens for a nonsinusoidal periodic
function in the form of a square pulse of width A repeated every T time

units?
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1.2 Identify the nonequilibrium constraint(s) analogous to AT of the Bénard

1.3

roblem (Section 1.3) and ¢ of the CSTR (Section 1.4) driving the
P L ! L\ ) g
biclogical thythmic or patterning phenomena surveyed in Section 1.5.
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subcellular microstructures possess a systematic built-in handedness.
Comment on the possible role of this handedness at the molecular level in
the origin of the macroscopic left-right asymmetry observed in vertebrates
(Almirantis and Nicolis, 1987; Brown and Wolpert, 1990).

anv kev molecule
any x&y moiecuie
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The state variables of a mechanical system are the spatial coordinates {r;}
and velocities {v,}, or the generalized positions {q;} and momenta {p,},
i=1,..., N,ofthe N constituent particles. These quantities vary in space
and time owing to the interactions between the particles and/or to the

forces of external origin acting on them. The evolution laws are Newton’s
equations,

d’r, .
3.2 Fi({rj}) i=1,...,N (2.1)

AS a3

m

or Hamilton’s equations (Goldstein, 1959)

dq,/dt = 0H/op, }

dpydt = —6H/dq, i=1,... (2.2)

in which m; stands for the mass of ith particle and H for the Hamlltoman
Egs. (2.1) and (2.2)

Egs. (2.1) and (2.
fundamental laws of nature depend on the particle coordinates in a
nonlinear fashion, a typical example of which is Newton’s law of
gravitation.

Eqs. (2.2) constitute a set of 6N coupled ordinary differential equations.
It is well known from calculus that the integration of such a system
amounts to finding 6 N independent first integrals of motion. Hamiltonian
y‘ tems constitute, however, a particular class in the sense that, under
e general conditions, it suffices to know only 3N first integrals. As
dlouvill demonstrated, if the latter are sufficiently regular mathematical
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functions of the variables, the system can be integrated by simple
quadratures.

Liouville’s theorem tells more. Under the above conditions it shows

25
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that it is, in principle, possible, by means of appropriate transformations
which preserve the Hamiltonian structure and which are known as
canonical transformations toca 5. (2.2) into the form (Goldstein, 1959;
Lichtenberg and Lieberman, 1983)

dI/dt = }?

Ad A s (T 1N HE | 3 AT (23]

Q@yal = ax{dp) 1= 1,..., 20V

in which the I s are suitable combinations of the constants of motion. We
refer to I; and ¢, as action and angle variables, respectively.

Eqgs. (2.3) define the particular class of integrable systems. The behavior
of such systems is easily obtained by siraightforward integration:

AAAAA

we realize that the behavior w1ll b ultzperzod:c If the frequencies- {w;
are rational functions of each other, there will be a common dmsor
frequency and the behavior will actually be simply-periodic as alluded to
already in Section 1.3. The general mathematical expression of this
condition of commensurability is that there are integers k, k,, ..., notall
zero, such that

iotg w0y at [ ) I i~ Feamnriam~ine aril]l la 1evn
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related and the multiperiodic motion described by (2.3)-(2.4) will be
quasi-periodic. Such an aperiodic motion may look quite intricate.
Relation (2.5) defines the important concept of resonance, the relevance of
which will become clear later on in this book (see especially Chapter 5).

Any Hamiltonian system with one degree of freedom, that is to say, onc
pair (q,, p, ) of coordinates and momenta, is integrable since it possesses
one regular constant of motion, the total energy H. The hoop (Section
l 2), the simple pendulum and the linear harmonic oscillator are therefore

integrable systems. A Hamiltonian system with two deerees of freedom s
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1ntegrable if there exists a sufficiently regular first integral independent of
H. For three degrees of freedom three first integrals are needed. In the
two-body problem in the presence of central forces, whose importance
stems from its relation to the motion of celestial bodies, their existence
follows from conservation of linear and angular momentum (in addition.
of course, to that of energy). More generally, all systems that can be

~ 1- nlad avctania Af ana dagras afferandAam ara intagrakls
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ThlS is the basis of the extensive literature on small vibrations around a

- position of equilibrium, of which solid state physics is a particularly
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important illustration. Certain problems of nonlinear v1bratlons can also
be inteorahle, like the Toda lattice or the K

be integrable, like the Toda lattice
(Infeld and Rowlands, 1990).
Integrable systems dominated mechanics for almost three centuries.
During this period it was thought that all physically relevant systems
belonged to this class. As a result, multiperiodic behavior was considered
to be the typical — and even the only possible — behavior of a mechanical
system. Today the situation looks very different. Since the 1950s, thanks

trn tha higtanis namtrihitiang nf A T aliowAacsase ;o it 3o wandizad thot maaeer
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(and, in fact, in a certain mathematical sense ‘most’) of the naturally
occurring systems are nonintegrable (Lichtenberg and Lieberman, 1983;
Arnol’d, 1980). This has some momentous consequences, since by the loss
of integrability multiperiodicity is no longer guaranteed. This leaves room
for aperiodic unstable behavior and, in particular, for Hamiltonian chaos.
There is ample evidence of the ubiquity of this phenomenon, to which we
shall come back later. For now we want to 'p(nn[ out two important areas
in which chaos in classical mechanics is contributing to a radical change of
perspective. The first is celestial mechanics, in connection with the
celebrated three-body problem (Moser, 1973; Sussman and Wisdom,
1992; Laskar and Robutel, 1993). The second relates to the microscopic
foundations of statistical mechanics, the main question here being the
passage from microscopic, time-reversible behavior as described by egs.

(2.2) to the macroscopic, time-irreversible behavior as described by
hydrodynamics or chemical kinetics. Hamiltonian chaos provides the

missing link in that it shows how probabilistic concents can natu rally
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emerge from a system described by a well-defined, perfectly deterministic
set of laws (Krylov, 1979; Bunimovitch and Sinai, 1980; Penrose, 1970,
1979; Prigogine, 1962, 1980).

Let us now illustrate the laws of classical mechanics using the example
of the hoop considered in Section 1.2. We first recall that, as the hoop is a

one degree of freedom system, it cannot give rise to chaotic behavior.
l\fﬂnrnrthninoc as we s chall ¢ see in Chantere A4 and § 1t will ofv
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phenomenon of instability and bifurcation, in full agreement with the
experimental results described in Section 1.2.
The starting point is eq. (2.1)

—
[\
(=

S

v, F, being the tangential velocity and force (Fig. 1.1). Writing
o, = rdf/dt }
J

F, = (weight + centrifugal force),
= —mgsin 6 + mw’r sin 6 cos ¢

2.7)

we obtain from eq. (2.6)
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=-sinf(Acosfh — 1) (2.8a)

where we have set

Ry

’rfg (2.8b

uation exhibits guite clearly the nonlinearity inherent in

%
.
i)
o
=
5
S
=]
o

his equ. ly he
problem It also shows nicely how the constraint enters the dynamics in a
natural manner, here through the dimensionless parameter A which
expresses the relative importance of the two adverse factors — gravity and
centrifugal force — present in this problem.

It is instructive to consider the vicinity of the threshold value @_around
which the system switches to a new equilibrium position (Section 1.2).

Since in this ranee & 1s small (if initially small). one can expand eq (') Ralin
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powers of 6 and keep the first nontrivial terms. The result is:
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Eq. (2.9a), also known as the Duffing oscillator, presents a number of
interesting features:

(1) Itremainsinvariant under the substitution 8" = — 6. This reflects the

invariance of the original problem with respect to reflections around

the vertlcal axis.

Iti

enter only through the specific values of the parameters y and v.

Actually, as will become clear in Chapter 5, in the small 6 limit eq.

(2.9a) is universal, and describes any nonlinear oscillator enjoying

the symmetry property under (i).

(iii) It reduces to the classical harmonic oscillator when the nonlinearity
isneglected, provided that 4 can be written as g = — a2, where w, is

a (vanl vyolead) cnagnilor oo dzimaem vesr Acnneding ¢ tha Soaé ealas
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(2.9b) this can oniy be the case if A < 1. Beyond the threshold value
4, = 1,0r w, = (g/r) *? the oscillatory character is lost and € shows
explosive behavior. Nonlinear terms then become necessary and are

“the ones that eventually are responsibie for the bifurcation of the two
new equilibria in this problem.
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Fig. 2.1  Schematic
representation of a

system in a volume I

separated from the
environment by a
surface Z. J, stands for
the flux of the quantity
B from the environment
into the system (in units
of B per unit of surface
and time) and gy, for the
spontancous
production of B inside
the system (in units of B
per unit volume and
time).

2.2 The macroscopic level: balance equation of a
able
As we saw in Chapter 1, nonlinear behavior is also prominent at the
nacroscopic level. The state variables that are relevant at this level of
description are the collective variables associated with statistical averages
of microscopic guantities. Typical examples are bulk motion velocity,
pressure, concentration of a chemical in a solvent, etc.

A variable B(r) which refers to the system as a whole, like total energy or
momentum, is called extensive. One can associate to it an intensive

variable b(r,t), describing local behavior, through

B() = j dr b(r, 1) (2.10)
14

V being the volume occupied by the system. We are interested in how B(t)
evolves in time (Prigogine, 1947; De Groot and Mazur, 1962). Asa rule, B
will vary owing to two types of process (Fig. 2.1):

5 “r-;fln I‘lﬁn nvfnrn 1 wnrld A B/Ar Thaga ran
e 8 Alwl 1 ¥YYULIA, UCU/UL. 1 11%O0w wdll

flux of b, J, through the surface Z surrounding V.

Internal processes, d,B/dt. These are generated by the system itself even
when it is completely isolated, and can be modeled as a rate of production
of b per unit volume, a,.

It follows that

Py 1 1 r~ fad
ap Cleﬂ Cl,_= _ )
T sz*ZJ,, n+JVdra,, @.11)

where n is the outward normal to the surface . For a fixed but otherwise
arbitrary I, applying Gauss’ divergence theorem to the surface integral in
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(2.11) and substituting B from (2.10) on obtam

the ahove the oseneral balance a
e anov ai I <
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Bb(r, 1)/8t = —div J,(r, 1) + o, t) (2.12)

This equation is purely formal: since J, and o, are unknown at this stage,
it cannot provide as such information on the time development of b, Still,
it is an interesting relation as it allows one te classify physical quantities
into two large categories:

Conserved quantities, for which the source term ¢, — 0. Such quantities
vary only through the fluxes exchanged with the external world and
remain therefore constant in an isolated system. Typical examples are the
mass or the momentum and energy in the absence of external forces.
Nonconserved quamiues for which Op #0. A uyplczu c)&an‘lplc is the mass
or the mole number of a chemical constituent in the presence of chemical
reactions. In general o, has no definite sign. A notable exception is the
entropy source term o, which is bound to be a nonnegative quantity by
the second law of thermodynamics.

In what follows we consider, in turn, the particular form of balance
equations for these two types of quantities. As we shall see they will lead us
quite naturally to the fields of fluid dynamics and chemical kinetics.

3 Conserved variables in a one- component
ystem and the equations o of fluid dvnamics

=S ---- =y =

Consider a one-component fluid (Landau and Lifshitz, 1959a; Guyon et

al., 1991}, The most ohvious example of a conserved variable for such a
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system is the mass density, b = p. Mass is transported only through the
bulk motion, whose velocity we denote by v(r,t). Setting therefore
J, = pv, 06,=01in eq. (2.12) we obtain

dp/ot = —div py (2.13)

Consider next the momentum density, b = pv. Source terms for this
quantity can only come from external forces, 6, = pf. As regards the flux
we first have, as in the case of mass balance, the transport of pv with the

bulk velocity giving the contribution pvv, which is now a tensor of rank 2.

In addition, however, momentum can be transported through thermal
motion and interactions between adjacent volume elements of the fluid
whose global effect is described by the pressure tensor, P. Eq. (2.12)
becomes therefore

dpv/ot = —div(pvw + P) + pf (2.14a)
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Performing the time and space derivations and utilizing (2.13) one may

furthar trancform (2 14da) intn
iulviel dallsiOIll (L.a5dy W0
dv v 1.
T vV = — —divP 4 f (2.14b)
1 Ot o

where the hydrodynamic derivative d/dt expresses the total variation of v
along the motion of the fluid.

Egs. (2.14) feature p and v which are among the system’s state variables,
the external force term f which is supposed to be known, and the pressure
tensor P. As long as the last of these is not expressed in terms of the state
variables we will not have at our disposal a closed set of equations from
which the state variables can be evaluated. In fluid dynamics this closure is
achieved by a series of constitutive, or phenomenological relations (De
Groot and Mazur, 1962). Specifically, we decompose P into an ideal fluid
part and a part accounting for dissipation,

P=pl+o (2.15)

where in the ideal part p is the hydrostatic pressure and in the dissipative
part o is the stress tensor expressing the frictional forces exerted between

adjacent fluid regions. We adopt the local equilibrium assumption,
whereby locally the thermodynamic quantities depend on the same
variables as in equilibrium (De Groot and Mazur, 1962). It is shown in
statistical mechanics that this assumption is reasonable as long as the
constraints driving the system out of equilibrium vary in space and time
on a scale that is much larger than the scales associated with molecular
level processes. Under these conditions one may then, in an isotropic

system,
(a) use for p the equation of state

p=ppT) (2.16a)

where T is the temperature;
(b) express ¢ as

4

v, v, 2 .
= —nl — + = —Zdivvé® |} — {divveH 2.16b
Ju ?’, (arj + ar. 3 v lJ) C ij ( )
where # and { are, respectively, the shear and bulk viscosity
coefficients. In general these phenomenological coefficients are 7- and
p-dependent but in most applications considered in this book they
will be treated as constants.

Egs. {2.14)-(2.16) now constitute a closed set provided that an
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evolution equation for the temperature T can be derived. We obtain this

¥ th third
/ de“almy pu, g nirdé

important quantity characterizing the state of a fluid. We first recall that
in the presence of conservative forces the total energy density pe,

pe = p(z0® +u + ) (2.17)

where i is the_notential _enerov accnniated suith tha aviareal facane.. A
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conservea: ~tohi €q.1(2.12)one:has therefore
ope/dt = —divd, (2.18)
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ve10c1ty, pev, one must add a contribution associated with the mechanical
work P.v perforined by the internal stresses of the system as well as a
purely dissipative contribution J,, arising from the transport of energy
through thermal motion and intermolecular interactions:

J.=pev+P-v+ ], (2.19)

Substituting into eq. (2.18) and taking into account egs. (2.13)—(2.15) one
arrives at an equation for the internal energy u,

du du . /
Py = 'Ol:é‘—t + (v-V)u] = —div], — P-gradv (2.20)
As in the case of momentum balance, we need constitutive relations to

close this equation. In the local equilibrium regime these relations are:

(a) an equation of state

u=1u(p,T) (2.21a)
{(h) Fourier’s law of heat conduction
Jy,= —4iVT (2.21b})
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a 6)and (2.21)
and appropnate boundary conditions constitute the closed set of
equations of fluid dynamics from which the five hydrodynamic fields p,T
and the three components of v can, in principle, be evaluated. On
inspecting these equations one immediately realizes that they all feature a
universal nonlinearity of the form v-Vx, x being p, v or T, reflecting the fact
that the properties of a fluid are transported by the fluid velocity —itself a
fluid property. We may refer to this mechanism as the ‘hydrodynamic
feedback’. It is worth noting that this nonlinearity subsists in the limit of
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ideal fluids in which all dissipative eﬁ’ect e neglected. On the other hand
ac one gsees from (2.16bYand (2. 21h) digginative effects tvnicallv eive rige to
as one sees from (2.16b) and (2.21h) dissipative effects typically give rise to
linear contributions, unless the phenomenological coefficients #, { and 4

are state-dependent. The compiex behaviors surveyed in Chapter 1 in
connection with the Bénard problem stem, therefore, primarily from the
‘inertial” nonlinearity inherent in fluid mechanics.

2.4 Nonconserved variables in a multicomponent
system and the equations of chemical kinetics

We now consider a multicomponent system involving n chemicaily active
constituents i = 1, ..., n participating in r chemical reactions p =
1, ..., r (Nicolis and Prigogine, 1977; Aris, 1975). In addition to the
variables considered in the preceding section, in order to describe the
macroscopic state of the system, we also need the composition variables
{X(r, t)}. These may be mass densities, molar densities or mole fractions
but in what follows we will usually argue in terms of molar densities.
According to eq. (2.12),

8X,/ét = —div, + o, (2.22)

In addition to the universal transport mechanism of X, through the
bulk motion velocity, X,v, one must also consider a purely dissipative
contribution J¥ff associated with diffusion, that is to say, transport
through thermal motion and intermolecular interactions,

J, = Xy + Jditf (2.23a)
In the local equilibrium regime the diffusion flux is given by Fick’s law,

in which the additional simplifying assumption of an ideal mixture has
been made to allow us to neglect cross-diffusion terms.

Let us turn now to the source term ¢, in (2.22), which reflects the effect of
chemical reactions. We write formally a chemical reaction as

k() n
ZvX—»Zﬁ}pXj p=1,...,r (2.24)

i=1 i=1
in which v, v stand for the number of moles of the reactants and products
involved in the reaction and k, for the rate constant. The difference
vy, = V', — ¥y, gives the number of moles produced (v;, > 0) or consumed
(v;, < 0) in the process. Hence, if we denote by w, the velocity of the

reaction we are entitled to write o, as
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a-—Zmpp (2.25a)

Again, we need a phenomenological closure relation to express w, in
terms of the state variables. In ideal systems this is provided by the law of
mass action,

%zunnﬂ” (2.25b)

which expresses that the rate of reaction p is proportional to the frequency
of encounters between the molecules of the chemicals participating in the
reaction times a coefficient k,, which is generally state-dependent,
specifying the fraction of those encounters that will actually result in a
change of chemical identity. In an ideal system the frequency of
encounters is simply the product of concentrations, but in a nonideal one
the effect of intermolecular interactions must be taken into account
through the activity coefficients.

Thanks to egs. (2.23) and (2.25) the set o
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with the equations of fluid dynamics of Section 2.3 is c]osed Le
look in detail at the structure of these equations in some 1mportant
limiting cases.

A Well-stirred open reactors

.- nla «nnn"r\un
DUcCn reaciors

have already been introduced in Section 1.4,
Stirring inside the reactor entails that J* = 0 throughout. The remain-
ing flux term, — divX,vis nonvanishing only at the reactor’s boundaries.
In the part communicating with the feed streams it describes the entry of
fresh products at a concentration XY and in the outlet it describes the
evacuation process at the reactant concentration X; inside the reactor.
Introducing the residence time 7 (eq. 1.2), we may therelore write the
balance equations in a weil-stirred open reactor in the form

T
S~
(=]
r2
N
p ——

B Reaction—diffusion equations

and at constant temperature. Furthermore we ta ke the d1Hu51on coefti-
cients D, to be constant, an assumption that is reasonable as long as the
system is not close to a phase instability leading to unmixing. Substituting
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2.23b)and (2.25b) into eq. {2.22) one then obtains the reaction— diffusion

0Xy/ot =Y vk, [1X;" + DV2X, (2.27)
14 J
These partial differential equations, supplemented with appropriate
boundary conditions which express the way the reactor is fed from the
outside world, constitute a closed set of n partial differential equations
since they decouple compietely from the equations of fiuid dynamics.
Egs. (2.26) and (2.27) are intrinsically nonlinear, since a collision

process is bound to involve the product of at least {wo concentrations. In
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contrast with hydrodynamic nonlinearity, this chemical nonlineanty
arises through the dissipative terms in the balance equation. Furthermore
it is system-specific since it involves explicitly the mole numbers v;, and
therefore, ultimately, the nature of the reaction mechanism. On the other
hand, being independent of transport, chemicai nonlinearities subsist
even in the limit of a spatially uniform system (cf. egs. (2.26)). Chemical

kinetics nrovides fhprpfr\rp one of the very few genuine examnles of
P W
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nonlinear dissipative systems whose dyna:rmcs, although possibly very
complex, is governed by a finite and sometimes very small number of
degrees of freedom. In contrast to this, hydrodynamic nonlinearity is
invariably associated with spatial inhomogeneities. As a result in a typical
fluid dynamics problem one is confronted, at the outset, with a system
involving an infinite number of degrees of freedom.

2.5 The Bénard problem: quantitative formulation

As a concrete illustration of the equations of evolution of macroscopic
observables we outline in this section the quantitative formulation of the
problem of thermal convection described in Section 1.3 (Chandrasekhar,
1961; Manneville, 1991). In the idealized situation of a horizontal shallow

JRgEe. o d o A~ w3 i b o o o a. .
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negligible compared to the density itself or, in other words, the
logarithmic hydrodynamic derivative (1/p){(dp/dt)} to be vanishingly
small. Comparing with the mass balance equation (2.13) we deduce that

Ay ow
al

= 0O
vy = v

{7 2
(L. L0

which will be hereafter referred to as the incompressibility condition.
Let us turn to the momentum balance, eq. (2.14). In a closed cell surface
effects can be ignored and the only force present is gravity,

f= —gl, (2.29)
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1, being the (upward directed) unit vector along the vertical. Introducing

ﬂ'\p ﬂhpﬂr\mpﬂn]nn‘lnai rp]ahnnc . 14\ QﬂA (?16) accuminag that the
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phenomenological coefficients are state-mdependent and taking the
incompressibility condition (2.28) into account we arrive at the Navier -
Stokes equation

[ Av
L A\l V)VJ = —Vp —pgl, + yV (2.30)

According to the arguments at the beginning of this section, in a shallow
layer of fluid one might by tempted to treat p as a constant. However, if
this property is applied everywhere in eq. (2.30) one observes that
momentum balance becomes completely uncoupled from the thermal
constraint which, according to Section 1.3, should play an essential role in
the onset of thermal convection. We must therefore somehow incorporate
in eq-{2.30) the effect of density variation. Now, according to the equation

of state (2.16a),
p=ppT) (2.31)

In this relation the effect of pressure can be neglected owing to the
shallowness of the layer (isothermal incompressibility). Furthermore, as
long as temperature variations remain moderate one can expand (2.31)
around a fixed reference state (p,,T,), hereafter chosen to correspond to
the state at the lower piate, and write

p=poll — T — Ty)] (2.32)

where a is the coeflicient of thermal expansion. Typical values of this

coeflicient are o ~ 104K ! for water and o« ~ 107*K ™" for air
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justifying a posteriori the reasonableness of the expansion for temperature
differences of the order of several degrees or so.

It follows from the above that the density variations in the fluid, as a
function of temperature, are much smaller than the density itself,
analogously for density variations as a function of pressure. This suggests
that one may neglect the variation of p in the left hand side of

Navier Stalrae annation cine n ~a
ANQVIVET DLVAKDY vuduvia aun.zy, ma Ly piLa

iment, the
velocities and accelerations involved are small and vary smoothly in
space. We cannot apply a similar simplification to the right hand side
since, as observed earlier, this would climinate the physical mechanism at
the very basis of thermai convection. We thus arrive at the following

‘minimal’ version of Navier—Stokes equation,

[ov ] _ ) . e
b - = —Vp— pgl 2
p°|_ar+(v V)VJ Vp — pgl, + nVv (
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Let us turn finally to the internal energy balance, eq. (2.20). Decompo-
sing P as in ( s

n (2.15) we write the inte _rna! tress term P.grad v as

P.-gradv = pdivv + 6¢-grad v

The first part is zero on account of the incompressibility condition, eq.
(2.28). In view of eq. (2.16b) the second part is quadratic in the velocity
gradient, a small quantity in a Bénard experiment under iaboratory
conditions, and can therefore be neglected. Furthermore, in accordance
with the arguments leading to eq. (2.33) we neglect the variation of density
in the left hand side of (2.20) and replace the phenomenological coefficient
A1in Fourier’slaw (2.21b) by a constant. It remains to express the internal
encrgy u in terms of the experimentally more relevant variables p and T'by
the cqi.lauuu of state 2 21&) .in the case OfiﬁCOmpI‘ESS‘lblc ﬂund, oy the

simplified form

u=u(T)
du =c,dT } (2.33)

(notice that ¢, = ¢, in an incompressible fluid). Inserting all these
expressions and simplifications into eq. (2.20) we obtain

_DQC.,I_a.—T + (v-V)T—] = AV3T (2.35)
Lot d

Egs. (2.28), (2.32), (2.33) and (2.35) are the fundamental equations
governing thermal convection. They will be taken up again in Chapter 6
and will serve as one of our favorite models on which the concepts and
tools of nonlinear science will be illustrated. We recall here that their
specific form stems from: (a) the particular way of treating density
variations by replacing p by a constant everywhere except in the gravity
term; (b) neglecting the viscous heating term ¢ - grad v; and (¢) supposing
that the puenomenologicai coefficients 1, IL, %, Cp arc state- mdependuﬁt
We refer to these assumptions as the Boussinesq approximation. We have
justified this approximation here on the basis of intuitive arguments. A

more systematic dertvation exploiting the existence of a number of
smallness parameters in the problem has been elaborated by De Boer
(1986) and by Velarde and Gordon (1976). Notice that the Boussinesq
approximation fails when the depth of the layer becomes appreciable.
This is the case in many important real-world situwations such as
convection in the atmosphere or in the oceans.

A set of partial differential equations like (2.33) and (2.35) together with
conditions (2.28) and (2.32) does not constitute a well- posed problem

1N
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fluid layer is supposed to extend indefinitely in the horizontal direction the

Qp_ly rpqunrpmpnt 1s that Tand v remain bounded as the coordinates (x. v)
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tend to + oo. We may also model the infinite extent of the system along
this plane by periodic boundary conditions. The situation is somewhat
more involved along the z direction. There are, of course, two pairs of
boundary conditions that impose themselves by the very definition of the
Bénard probiem. The first expresses that the plates are maintained at fixed
temperatures,

T(x5 ¥, 0) = T07 T()C, y:d) = Tl (2'36)

The second expresses the fact that the fluid is confined, hence its velocity
along the vertical direction must vanish on the plates

wivy v = wiy v.Ay=0 7 373
Wi ) WX a) U w2 t)

where we have set v=(u, v, w). However, these conditions are insufficient
since (2 33)1s equivalent to an equation of sixth order in one of the velocity «
components. One needs, therefore, four more boundary conditions for the
velocity field. As it turns out these conditions depend on the nature of the

experimental setup. Two typical cases can be envisaged.

A Rigid boundaries
Suppose that the fiuid is piaced between two rigid plates. By continuity its
velocity must then vanish identically on these plates or, in view of (2.37),
u(x, y,0) = u(x,y,d)=0
v(x, v,0) = v(x,y,d) =0

It follows from (2.38) that the partial derivatives of u and v along any
direction on a horizontal plane vanish identically. In particular,

} (2.38)

dufox =0,0v/0y=0 in z=0,d

Combining with the incompressibility condition {2.28), we may transform
these conditions to a condition on the vertical component of the velocity,

(@w/B2),, . o = (@w/dz), , 4 =0 (2.39)

B Free boundaries

sake of mathematical simplicity we consider here the case of a fluid
confined by free boundaries, that is to say, boundaries on which no
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viscous stress is exerted. Using the expression (2. 16b) of the stress tensor
aloneg with the incombressibility condition (2 72\ e e agg this nronarty
along with the incompressibility condition (2 ess this property

as

= - b 8y T

Gy, = Gy, = m z=4U,d
or more e¢xplicitly,

ou 8w

oz 6 =

z X .

. m z=0,d (2.40)

ov  ow o

—+—=0

oz Oy

In practice these conditions are difficult to realize except under micro-
gravity conditions. On the other hand, in a fluid subjected to such
conditions one of the mechanisms at the origin of the thermal convection
instability — the gravity-induced Archimedes force — disappears. A more
elaborate study shows that an instability can still occur owing to the
temperature dependence of the surface tension, measuring the decrease of
surface energy arising from the decrease of cohesion in the fluid as the
temperature increases. We refer to this mechanism as the Marangoni effect
(Guyon et al., 1991).

As before one may transform (2.40) into conditions for the verticai
component w. First, it follows from (2.37) that the derivatives of w along

any horizontal direction vanish identically

- LENSAL AASLSAE ANSTELVE WAL S
wjox = dwfdy =0 in z=0,d
Combining with (2.40) one deduces that
dufdz = fp/oz=0 In z=0,d (2.41)

Consider now the incompressibility condition (2.28) differentiated once

0%u v w

—— t——+===0
czdx dzdy @ oOz”

Requiring that u, v are differentiable functions which possess bounded
derivatives one can exchange the order of derivations in the first two
terms. Taking (2.41) into account one obtains

(@*w/z2),, , o = (@W/oz?),, =0 (2.42)

O
=
=
[y
D:l

A number of variants

énard experiment can also be formulated

he riment can a orm
along similar lines such as a rigid lower and a free upper boundary. This

actually models the experiments performed by Bénard himself, in which
the upper surface of the fluid was in contact with ambient air.
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2.6 Some representative chemical models giving
r
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We have already stressed the fact that the form of the equations of
chemical kinetics is system-specific. In chemistry, therefore, there is no
straight analog of the Boussinesq equations of the previous section
describing, say, a chemical oscillator or a chemical system giving rise to
pattern formation whatever its specific characteristics might be. In this
section we survey a number of models that have been proposed over the
years to interpret various types of complex nonlinearity-driven behavior.
Many of these will be taken up in the subsequent chapters and used to
illustrate the concepts and tools of nonlinear science.

We start once again with the BZ reaction. The first successful model of

oscillato ry behavior in this svstem has been develoned by Noves and
oscitiat or t st

A1
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coworkers on the basis of the mechanism discussed in Section 14. It is
frequently referred to in the literature as the ‘Oregonator’.

Let X = [HBrO,], Y = [Br~], Z = 2[Ce**] be the concentrations of
the three key substances featured in the mechanism of Section 1.4. From
the analysis of this section we see that reaction (A1) describes the
conversion of Y to X, reaction (43) the simultaneous inactivation of X and

V sanctinna (PRI and IRV tha antanatalutie ganaratinm ~Ff VW ranantise (211
1, 1\4“UL1U113 \UL) [s3Q|VE \UJ} Lilw aulubalal] 1ic 5 ll\-rlal—lull UL Ay LLaU VL L1 )

the bimolecular decomposition of X, and the global reaction (C) the
regencration of Y from Z. Hence, we write the following steps (Field et al.,
1972):

——
b2
=N
(5]

e

Here the concentrations A = B = [BrQOj ] are supposed to remain fixed
(*pool’ chemical approximation (Gray, 1990)). P and Q denote waste
products, and f a suitable stoichiometric coefficient. Note that all
reactions are taken to be irreversible (thﬁ versible version of this model
has been studied by Field {(1975)). The rate constants k; contain the effect
of H™, of bromomalonic acid and any other species considered to act as a

‘reservoir’. Numerical values of these constants can be inferred by
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comparison with the detailed mechanism. They turn out to be widely
different, ranging from 1 to 10° M ™' 57!, This entails that the
evolves according to different time scales, a property that gives rise to
sharp, relaxation-like oscillations even close to the transition threshold to
oscillatory behavior. This is confirmed by experiment.

Historically, the first chemical model giving rise to sustained oscilla-
tions while being fully compatibie with the fundamental laws of physics
and chemistry was a two-variable autocatalytic model known as the
T vrraan latre (Mraicmaina med T aloerar IQEQ- T afnvnr anmd WNiaalic 10771
121 Uddvialu] [fllsUElllC ana LAdCVUl, 17U0 LCICVCET dana LVILUIID 1L7r1,
Lefever, Nicolis and Borckmans, 1988). Here the unique source of

nonlinearity is the autocatalytic synthesis of X according to

Alx \
B+ X8BY+C
} (2.44)
2X + Y83x
X4D /

in which the initial product concentrations A and B are again treated as
fixed parameters and C, D denote waste products. In the presence of
diffusion the Brusselator also generates a variety of spatial patterns
(Nicolis and Auchmuty, 1974; Nicolis and Prigogine, 1977), including
inhomogeneous stationary states similar to those discovered recently in
the experiments of the Bordeaux and Austin groups (cf. Section 1.4) and
spatio-temporal chaos (Kuramoto, 1984). This establishes the possibility
of complex nonlinear behavior in purely dissipative systems, even in the
absence of the inertial effects inherent in fluid dynamics.

Chemical reaction models involving a single variable may also give rise
to highly nontrivial behavior in the form of multiple stationary states and
propagating wave fronts. Such phenomena have been observed experi-
mentally, notably in the 1odate—arsenous acid reaction (Ganapathisub-
ramanian and Showalter, 1983) and, even more typically, in combustion.

-An elegant prototype mechanism for this type of behavior in isothermal
system is provided by Schlégl’s first and second models (Schldgl 1971,
1972).

R P 3
A+ AT22
9]
N $ (2.45a)
X=B
e J
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and
k1
A+ 2X=3X 1
L (2.45b)
X=B J

in which X denotes the unique variable and 4, B are again treated ‘as
parameters. As in the Brusselator, the unique source of nonlinearity is the
autocatalytic production of X.

A minimal one-variable model incorporating thermal effects is the
r_F ranl K amasanatolrit madal (Franl W amanatclii 1040 1

7
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dovich, Barenblatt, Librovich and Makhviladze, 1985). Consider a
well-stirred reactor in mechanical equilibrium, closed to mass transfer but
capable of exchanging energy with a thermal reservoir at constant
temperature 7,,. The chemical transformation taking place within the
reactor is an irreversible, unimolecular exothermic decomposition of a
fuel in gas phase (cf. eq. (1.3)). For simplicity one assumes that the
concentration of the reactant varies on a scale that is much slower than
heat transfer and may thus be taken as a constant (equal to its initial value
¢, ). The only remaining relevant variable is therefore the temperature 7.
To obtain an evolution equation for this variable we turn to the general
energy balance equation (eq. (2.20)). We set v = 0 (mechanical equilib-
rium} and model the heat transfer term in a way analogous to the mass
transfer term in the open well-stirred reactor (eq. (2.26)), known as
Newton's cooling law,

U
V J t¢actor

In the presence of chemical transformations the equation of state (eq.
(2.21a)) linking internal energy to T also features the degree of advance-

ment ¢ of the reaction, defined by dé/dt = reaction velocity w. It follows
that

"
oW
s

T ™
i

N\ — Al _ {
th) = “i£0 +/ v

du(T,E]_ { 6u\ dT {ou\ dé&
o P\ er) @ T \ae )y ar

d7
= pc,— + AHw
P
dT -
P, g, T keoAH (2.46b)
where p is the mass density of the mixture, ¢, the specific heart at constant
volume and — AH the heat of reaction. Substituting (2.46a) and (2.46b)
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Semenov equation

dT

Py = —kocpAHe FRT 4 (T, — T) (2.47)

As it turns out this equation quite successfully describes the first stages of
thermal explosion characteristic of combustion phenomena. When
supplemented with (heat) diffusion terms to model a nonstirred reactor
(Frank-Kamenetskii equation) it also gives rise to propagating fronts
thereby providing the basis for under standing the formation of a flame.

As stressed in Section 1.5, in many cascs the kinetics of biologically
relevant phenomena is compietely isomorphic to the kinetics of chemical
reactions. An interesting illustration of this analogy is provided by
population dynamics. Let X be the density of the population (number of
individuals per surface) in the supporting medium and A4 the density of
resources. One may reasonably decompose the processes contributing to
the evolution of X as foliows:

Birth,
A+ mXBaX (n>m) (2.48a)
Death,
X5D (2.48b)
Migration,
B3X (2.48c¢)

Regulation, consisting of the slowing down of the rate of growth k, as the
density of individuals increases and it becomes difficult for the supporting
medium to sustain further growth. A minimal model for this phenomenon
is fo set

k(X)=a—bX (2.48d)

- 1 PR, f el - FA Q7N | 1.
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1845). At this time it was in complete opposition to the prevailing theories
of Malthusian growth (exponential growth or decay, according to
whether the birth rate is larger or smaller than the death rate). Notice the
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Fig. 2.2 Time
dependence of the
solution of the logistic
gquation, eq. (2.51).
Parameter values:

N =1, k=0.1. Initial
condition: X, = 0.01.

striking resemblance of (2.48a)—(2.48d) with the four steps of Schlogl’s
first model, eq. (2_4%9\

first model Sa).
From (2.48a)-(2.48d) neglecting for simplicity migration and setting
m = 1, n = 2 we arrive at the rate equation

dX/dt = (a — bX)AX — k, X (2.49)
or, setting
k=ad —k,, N 1= b (2.50)
22 aA —k,

in the more compact form

dx b'e
= —kx(1-%) (2.51)
(e 13 \\ IV/

This is the celebrated logistic equation. It describes in a surprisingly
successfui manner population growth on various scaies (Montroli and
Badger, 1974) as a process in which after an initial exponential growth

stage (small X, k > 0) the system performs a fast transition toward a
plateau value X = N, N being the ecosystem capacity (Fig. 2.2). It should
be stressed that in the real world N is not constant but evolves in time on a
slow scale as a result of evolution or technological innovation. After
having reached a first plateau (representative, say, of an agricultural
society) X may thus subsequentiy jump to a number of successively higher
platecaus reflecting, for instance, the concentration of individuals in urban

contere
VAW RIULAL T,

The above reasoning can easily be extended to include coexisting
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populations or predator — prey interactions. It should be noted that mn

pnnn]nhnn hiolpov the generation time ic often comnarahle to the time
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scale of the dynamics (May, 1974). This entails that the continuous time
logistic equation must sometimes be replaced by its discrete counterpart

xn_l_l = ﬂxn - bxi (2.52)

which, as will be seen in Chapter 7, may give rise to a surprising variety of

Problems

2.1 Construct the expiicit form of the transformation to action-angie
variables mapping the harmonic oscillator hamiltonian,
H = p*/2m + (k/2)q” into the form H = wl. Identify the value of @ in
terms of the original parameters.

2.2 Write out the equation generalizing (2.8a) in the presence of friction
assuming that the friction force is a constant multiple of the velocity of
the mass. Derive the equation replacing (2.9a) in this case and comment

an ite eymmetry properties with res
on s sy S

yilloil y paVpui s Vi ab

and t = —t¢.

\.D
('D\-«

2.3 Derive in the Bénard problem a quantitative expression for the
Archimedes force and for the viscous frictional force acting on a small
spherical fluid volume of radius R displaced upward by a length element
6z by a random disturbance. Comment on the onset of the instability by
analyzing the relative magnitude of these two forces.

2.4 Carry out the detailed derivation of eq. (2.20) starting from egs.

(2.13)-(2.19). o

2.5 Derive the entropy balance equation for the Bénard problem in the
Boussinesq approximation using the local equilibrium assumption
(Section 2.3). Hint: express formally the entropy density as a function of
u and p and use the balance equations for ihese quantities (De Groot

and Mazur, 1962).

2
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the Brusselator, eq. (2.44) in

a uations o a
assumed closed to X, Y and open to the transfer of A, B, C, D with
X, #0, X, #0, X, =Xy =0and 1, =tg=1c=1p = ©.

2.7 The pool chemical approximation (Section 2.6) amounts to neglecting in
a chemical reaction the consumption of certain initial products during

STR,

1

R ot

I.[lt: l.lmc de.lﬂ UI Vdfld.llDIl Ul LIIC reaction lIllBllI]EUldLCS [Uld}’ 1990)
Derive the rate equations for A, B, X, Y in the Brusselator (eq. (2.44))
viewed as a closed system, Discuss in terms of the values of the rate
constants k; limiting cases where the equations reduce to a pair of
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equations for X and Y corresponding precisely to the pool chemical
approximation (Lefever et al., 1988).

2.8 Identify the nondissipative, time reversible and the dissipative, time
irreversible contributions in the evolution equations of the Bénard
problem and of a reaction—diffusion system. Check the invariance of
these equations with respect to space and time translations.

2.9 In Section 2.4 a distinction was made between ‘kinetic’ and
‘thermodynamic’ nonlinearities, the former being already present in the
nondissipative Itmit and the second arising from the constitutive

relations linking the fluxes with the constraints. Consider the

k1
isomerization reaction A=B. As shown in thermodynamics (De Groot

k2
and Mazur, 1962) the driving force of this reaction, also known as
affinity is & = p, — ug, ¢ being the chemical potential. Assuming an

ideal mixture, relate the flux J = w; — w, to this driving force. Discuss
_in terms of the distance from the state of chemical equilibrium

(W) oq = W2..,) limiting cases reducing this thermodynamically nonlinear
law to a linear one.

2.10 In the absence of external forces the general reiation iinking the diffusion
flux in an n-component mixture to the corresponding constraint is (De
Groot and Mazur, 1962)

a—1 _
J;liff _ Z LUV (“LJ T‘”’q)

i=1
where L;; is a set of phenomenological coefficients and the nth
component s plays the role of the solvent. Show how in an ideal mixture
involving one solute species in a solvent this law reduces to (2.23b) and
relate Fick’s coefficient D; to the phenomenological coefficient L;;.

2.11 Derive the extended form of eq. (2.47) to account for the consumption of
the reactant. What is the stationary state solution of the new equations?
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Dvnamical svstems
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3.1 General orientation

As we saw in Chapter 2 the evolution of the state variables of a system
obeying the laws of classical physics is given by a set of differential
equations of first order in time. These may be ordirary {ode) like
Hamilton’s equations (2.2) and the equations of chemical kinctics in a

wall_atirred ranctar famne (D VAN Ar narrial (ndaY lilka tha aaniatiane nf foid
YWLLITOLIL I WL LwaawLurl \\4\.10. \L.LU!} v l_/l-l' LEa \l}\l\r}, LW Lilw \J\-lbl(-l-l.lu 10 UL Liuvivg

dynamics (eqs. (2.13), (2.14)-(2.16) and (2.20)-(2.21)) and the reaction—
diffusion equations (eqgs. (2.27)). In this latter case, which is typical in a
macroscopic description, one deals in principle with an infinity of degrees
of freedom — the values of the state variables (which are now fields) at each
point in space as functions of time.

Although in certain problems this may constitute an essential aspect of
the pnenﬁmeuon under consideration, in other cases it may uappeﬂ that
this description can effectively be reduced to a finite number of variables.
As an example consider the typical form of a set of partial differential
equations.

X /0t = F({ X ir, )}, {V*X (r, 1)}) (3.1)

We endow our functional space with a scalar product and a norm and
introduce a complete basis of orthonormal functions {¢,,(r)}. Expanding
X,(r,t} in the basis

Xdr, 1) =}, ¢t} (32)

m
crithatituting inta aa (2 1) and ncine tha arthacanality nranartiae of the
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3 Dynamical systems

For any given form of evolution laws F; the scalar product (integration

over space) can be carried out exnlicitlv in eq. {'2 '2\ and one is left with an

i Sps SO UL LQLIIINAS Ve WAPMIRARRY S Ty Gaale VVaiw ¥ Awin yyaval @i

infinite set of coupled odes for the expansion coeﬂiments ¢;,- The coupling
reflects the fact that the spatial modes described by ¢, (r) do not evoive
independently: even if initially only one mode is present (c;,, = ¢, 6%,), a
cascading process will be switched on whereby all modes will sooner or
later become excited. Nevertheless, it so happens that in many cases the
amplitudes of these modes are scaled by a smallness parameter, thereby

allnwino the infinite hisrarchvu nafeae (2 1 ta ha tmmeated ta a finite arder
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Additional simplifications may arise by the judicious use of symmetry
arguments,

One famous example of a reduction of the above type, usuvally referred
to in the literature as the Galerkin method (Kantorovitch and Krylov,
1964), is the Lorenz equations (Lorenz, 1963). They arise by expanding
the velocnty and temperature ﬁelds in the Bénard problem in Fourier

cArial an rl lhy trnineating tha Fanriar amnlitudas annatinne dadiinad Fram
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(2.33) and (2.35) to three modes. The tesulting syste odes reads

dX/dt =6(—X + Y)
dY/dt =rX - ¥ — XZ 34)

dZ/dt = XY — bZ

Ul jae = o

where X, Y, Z are rescaled Fourier amplitudes and o, r, b positive
combinations of the original parameters of the Bénard problem.
The present chapter deals with systems that are amenable to descrip-
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the constraints acting on such systems do not depend explicitly on time
(autonomous systems) we write the typical form of the evolution laws as

dX/dt = F({X,},A) i=1,...,n (3.5)
or, introducing the vector notation

X = r'nlnmn(Y Y )

in the more compact form
dX/d:t = F(X, ) (3.6)

In writing eqs. (3.5) and (3.6) we have also accounted for the fact that a
real-world system involves a number of parameters A, hereafter referred to
as control parameters, reflecting its internal structure (viscosity or
diffusion coefficients) or the way it communicates with the external world
(thermal or shear constraints, residence time of a chemical pumped into a

reactor, etc). We know already from Chapter | that such parameters play
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Fig. 3.1 Phase space

trajectory of a

an important role in the system’s behavior, it is therefore natural to

1nnnrr\r\rofn tha ntn any deqr rn‘\
vl puiale nem INLC OUr Qescr Ly

Evenin the simplified form of egs. {3.6) in which space dependencies are
discarded, one is left with an intractable problem: the methods of modern
science do not allow one to derive explicit solutions of eqs. (3.6) as soon as
the number of variables n is larger than two, except in some pathological
limiting cases. The main reason for this is the nonlinearity inherent in the
equations which, as stressed in Chapter 2, is a universal property of the

vast majority of natural systems. We shall cope with this fundamentai
limitation by giving up the idea of a full quantitative understanding,

thereby focusing on the qualitative aspects of the dynamics. The basis of
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such a qualitative study is the notion of phase space.

-
=
=

3.2 Phase space

We embed the evolution of our system, as described by egs. (3.5)and (3.6),
into the abstract #-dimensional space spanned by the full set of variables
(X,, ..., X, ), which we shall refer to from now on as the phase space, I
By definition, an instantaneous state of the system is given by a particular

eat Af valuiee nf (Y Y \ _hance hy a uniague nnint P in nhage ecnace
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(Fig. 3.1). Conversely, a phase space point P can be characterized by its
coordinates (X ,, ..., X,)and defines, therefore, a state of our system in a
unique fashion. In other words, there is a one-to-one correspondence
between physical states of the system under consideration and phase space
points.

Consider now a succession of states (X, ..., X,, ... ) attained in the

Ccourse UI llmt: i. Dy UIC dDOVC drgumt:m l[l]b Wli CIIII]HC 1Il pl'l&S@ bpdbC
a succession of points (P, ..., P, ... ) joined by a curve C, the phase
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space trajectory (Fig. 3.1). Repeating the process for all possible histories

(Y Y Y ate one osneratee a continnouc famiiv of nhace snace
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trajectories, in other words, the evolution of a system amounts to a
mapping of I" into itself.

The tangent to the phase space trajectory at a given point is the phase
space velocity v = (vy, ..., v, ). By analogy with fluid mechanics it may bc
thought of as the velocity of a flow generated by the vector field, eqs. (3.6),
in I". Its orientation angles relative to the axes are given by o; = ds/dX,,s

Al 4l VR T | . T s tlan fammia b o M riting 7 v2h1g2
Umug Lac l ngin CiCIer 1t along unc LlaJCbLUly Writin g u.) = 0A)

and using egs. (3. ) ¢ obtain:
27142
) ] 67

e[ x (Y] [i 5 (

These quantities are well-defined everywhere in T except on points
X, = {Y } given by the solution of the set of algebraic equations

il 22U SLL A L RRaliiis

m|m

Fi(X, L3 = - = F (X} ) =0

We shall refer to these points as singular points. In an autonomous system
the singular points remain fixed in phase space for all times — hence the
terminology of fixed points also used to characterize them.

A system like in egs. (3.6), endowed with an evolution law ¢, such that
X() =X, = ¢,(X,) and embedded in T is referred to as a dynamical
system. The set of smooth phase space trajectories (i.e. trajectories not
containing fixed points} and singular points constitutes the phase portrait
of the system. By virtue of the one-to-one correspondence between the

euieraccinn nfotnkag ;n t1mme and Aaw in nhaca enaca nane can aceart that the
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determination of the phase portrait will give information on the full set of
all possible behaviors of a dynamical system. In the more modest
perspective of qualitative analysis, the objective will be limited to the
classification of the types of phase space portrait that can be realized.
Qualitative analysis is thus reduced to a weil-defined geometric problem.
It is for this reason that phase space is so central in the study of nonlinear
phenoimena.

One property that plays a decisive role in the structure of the phase
portrait relates to the uniqueness theorem of the solutions of the ordinary

differential equations underlying our dynamical system, egs. (3.6). This
result, which goes back to Cauchy (see e.g. Cesari (1963)), stipulates that:

if X,, is a point other than a singular point belonging to a certain open

su ]nna+ TT ~Af mhoas qrana T
(SRR 1) L} Pllaa\/ Blja.\/\a 4,

if F satisfies the Lipschitz property, i.e.
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|F(Y) - FX)| < K|Y — X| (3.8)

for some K < oo and with | - | the Euclidean norm, then

md

there is an interval iy <t <ty + T such that there exists in U a unlquc
solution X(£;X,,t,, ) satisfying (3.6) with the initial condition X (¢,) =

In the phase space representation, one immediately realizes that the
theorem automatically rules out the intersection of two trajectories or the
self-intersection of a given trajectory at any point other than a singular
point. This introduces topological constraints delimiting the type of phase
space motion. These constraints are particularly severe in one and two
dimensions, and it is not an accident that complex dynamical behaviors in
the form of deterministic chaos become possible only in three-or
higher-dimensional continuous time dynamical system

3.3 Invariant manifolds

A second element of great importance in organizing the phase portrait ofa
dynamical system is the compact invariant manifolds that may exist in the
flow. By this we mean objects embedded in the phase space that are
bounded and are mapped onto themselves during the evolution generated
by eqs. {3.6). By definition we exclude the trivial invariant manifold
constituted by T itsell, in other
whose dimensionality 4 s strictly

n.

R P . I Marn ~1 1.
Uiud, wo llllul. UulelVCb {0 mar llUJU.b

ss than the phase space dimensionality

The fixed points encountered in the preceding section, eq. (3.8), are an
obvious example of an invariant set, of dimension d = 0. Since by virtue of
(3.6) dX,/di = ¥, = 0 on these points, we conclude that fixed points in
phase space describe the stationary states that can be reached by the
UHUC[ l_ylﬁg Systt‘:r bUCI‘l as L[lc state Ul L[lC IHCL[ Ldl t',(_]l.llllDIlUm lﬂ lﬂB
example of the hoop (Section 1.2) or the stationary nonequilibrium values
of chemical concentrations in an open reactor.

The next obvious example of a compact invariant manifold is given by
one-dimensional objects in phase space in the form of closed curves free of
fixed points (Fig. 3.2). Once on such a curve the system goes repeatedly
through exactly the same states, in other words, it exhibits a periodic
behavior. As we saw in Chapter 1 this type of behavior arises in large
classes of natural systems, The importance of the geometrical view of
dynamical systems is now beginning to be clear since it allows us to

establish a correspondence between dynamical behavior and geometric
figures embedded in phase space.

To proceed further it is instructive to investigate the nature of invariant
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Fig. 3.2 A
one-dimensional
invariant manifold in
the form of a closed

curve  free of fixed

LA VLTS

points embedded in a
three-dimensional
phase space, coexisting
with a

<ional

zero-dimensional
invariant manifold in
the form of a fixed

point P.

Fig. 3.3 Phase
portraits of a
one-dimensional
mical system: {a)
a single fixed point;
(b) several coexisting

fixed points.
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manifolds in conjunction with the dimensionality of the embedding space
or, equivalently, the number of variables involved in the dynamics.
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The phase space is one-dimensional. Since the dimensionality of the
invariant manifold is strictly smalier than the phase space one, the only
possibility one is left with are zero-dimensional manifolds — the ﬁxed

nninte If wae fln"f ar pnni're n nhveical

lJUlll.l.O A1 YYw LWl vliliwl U\.lull Oll Pll)ﬂ.l Ll
bounded we arrive at a very restrictlve picture of the motion in phase
space, as illustrated in Fig, 3.3.
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B Two-variable systems

Since now # = 2, d can be either 0 (fixed point) or I (invariant curve}. A

one-dimensional manifold can be a closed curve free of fixed points (Fig.
3.2). In a two-dimensional space the only way to realize this while
avoiding at the same time self-intersection (in agreement with the
uniqueness theorem) 1s through one-circuit closed curves. However, in

view of the possible coexistence with fixed points, more intricate
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Fig. 3.4 Three types of

invariant sets
coexisting in a

two-dimensional flow:

fivad nainte
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(Py, Py, P,), a closed
curve C free of fixed

points and a pair of

heteroclinic trajectories
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invariant sets.
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configurations of one-dimensional manifolds can anse such as curves
joining fixed points (referred to as heterociinic trajectories) or curves
leaving a fixed point and subsequently returning to it (homoclinic

trajectories or senaratrix loops). A tynical examnle ig shown in Fie 34,
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Notice that one disposes of the full classification of the phase space
portraits of two-dimensional dynamical systems (Andronov et al., 1966),

C Three variables and beyond
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corresponds again to fixed points and d = 1 to closed curves free of fixed
points, or to curves joining fixed points familiar from the discussion in

Sections 3.3A, and 3.3B. It is worth noticing, however, that contrary to
the n = 2 case a closed curve (or a homoclinic trajectory) may now be of
the many-circuit type without violating the uniqueness theorem,

Let us now look for some genuinely new possibilities in the form of
two-dimensional invariant manifolds free of fixed points. Among the
familiar surfaces in elementary three-dimensional geometry the cylinder,

the cone, the | hvnprhnlnl{l or the naraholoid are to be excluded since they

P UviVis vifv pPRIQUWIVIG Biv WU Uv VAL WA Salivae Lidwy

are not compact. The sphere (and all other surfaces homeomorphic to it)
is an allowed possibility. However, as shown by Poincaré it may be
mapped in a unique fashion onto a plane tangent to its ‘south’ pole by
means of a projection using the corresponding ‘north’ pole as center.
There is, therefore, no specifically new behavior expected in connection
with this type of invariant manifoid.

g Familine hat yramer tursmnmtaet fae Ay
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and the k-fold torus (torus with k > 2 holes). It is
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Fig. 3.5 Successive
steps in the
construction of a torus
(after Patterson
(1959}).

orus must possess at least 2k — 2 fixed

er than the simnle one free of
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fixed points. Fig. 3 5 depicts a simple torus. It can be constructed by first
joining together two opposite edges of a rectangle, a process giving rise to
a finite cylinder. By subsequently joining the two remaining edges of the
original rectangle one produces the torus.

A phase space point moving on a torus can be parameterized by two

angular coordinates 9 and ¢ (see Fig. 3.5). As a result the motion is
Lt ds P . . P T nlame tha 0 angiilar canrdinatae ors
ULPCI woaic, ll LI.IC lJ Ulo 1 13 4 2 alglg e LWGO dallgulal LCUULULLLdild dlt

rationally related,

closed curve winding p and g times on the torus, respectively, along the
two angular directions. But if no relation of the kind of eq. (3.9) can be
found the motion will be quasi-periodic and will be represented by a helix
winding on the torus without ever closing to itself and without any
self-intersection. The torus topology allows this flexibility, contrary to the
plane or sphere topologies. We conclude that two- d1mens1onal tori
embedded in a three-dimensiona u
of quasi-periodic behavior. As stressed in Chapter | such a behawor s
encountered in large classes of nonlinear systems under nonequilibrium
constraints.

The above arguments carry through in higher-dimensional dynamical
systems, where 2, 3,...up to (n - l)-tori can be embedded in an
n-dimensional space. The natural question to be raised is whether this
famiiy exhausts the list of ailowable invariant manifolds. Aithough a fuil
classification of compact surfaces in a multi-dimensional space is still an

onan nrnh]Pm Oane can 1mncr1nP a nrrnr: other anQII’\‘Ii‘IfIPQ nf rnmnarf
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invariant nonintersecting sets such as the Mdbius band in three dlmen-
sions or the Klein bottle in four dimensions. Such possibilities are
sometimes realized — for instance, in connection with homoclinic behavior
in certain multivariate dynamical systems (Wiggins, 1990). However, the
behavior of trajectories on such manifolds does not seem to introduce new
elements beyond the ones considered above.

.__.

b
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Fig. 3.6 Construction
of a fractal by

successive

fragmentation of an
object of size £ into N*
copies of reduced size
{0 <r <1},

n=12,..

. (after Tel

(1987)).

D Fractal manifolds

Our exploration of the geometry of phase space has led us to identify the
prototypes of stationary behavior (fixed point), periodic behavior (closed
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of the prototype of chaotic behavior which, as shown in Chapter 1, is
abundant in large classes of natural systems. In this subsection we show
that the flexibility afforded by a phase space of sufficiently large
dimensionality, more precisely n > 3, allows one to envision manifolds of
a new kind capable of carrying chaotic nonself-intersecting phase space
trajectories.

In looking for invariant manifolds other than the manifo
conventional geometry referred to in the previous subsections one is
implicitly raising the question of the existence of objects that are neither
points (d = 0), nor curves (d = 1), surfaces (d = 2) or hypersurfaces (d = 3
and beyond). Modern mathematics shows that such objects do indeed
exist. They are ‘intermediate’ between two conventional manifolds of
dimension d and d + 1 in the sense that although their Lebesgue measure
{or more plainly their ‘volume’) in the (d + 1)-dimensional space is zero,
they are nevertheless ‘larger’ in some well-defined sense (to be specified
below) than sets constituting the d-dimensional manifold.

The canonical algorithm to construct such fractal sets (Mandelbrot,
1977; Feder, 1988; Schroder, 1991) mimics a process of successive
fragmentation, a simple example of which is depicted in Fig. 3.6. From a
d-dimensional object of characteristic size ¢, N conformal copies of
reduced size /7 {0 < r < 1) are generated. From each of them N further
reduced copies of size #r* are generated, and so forth. In the limit of
infinite frapmentation one arrives at an infinite set of points (or, at most, of
(d — 1)-dimensional objects) whose dimensionality should normaliy be
zero (or, at most, d — 1). Yet one intuitively feels that this set has more
content than that. To implement this idea in a quantitative fashion one
introduces the concept of fractal dimension, D,. For the simple example of
Fig. 3.6 this can be done most conveniently by counting how the number

) kool le e
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N_of members of the set of a given size ¢ varies with £ in the limit of small e,

e\ Do
NF:(Z) =0 (3.10)

Notice that this reproduces the topological dimensions of the familiar
manifolds of Euclidean geometry. Turning now to the example of Fig. 3.6,
we see that there is N, = 1 object of size #, N, = N objects of size ¢7,
N ,2 = N? objects of size £r* etc ... . Substituting into (3.10) one finds

Nn — r“’“"DQ

or, taking logarithms and simplifying by n,

12 ln N IR IERY
Dy = (3.11)
In (1/r)
A fa lar {lhgtratinn Af the alnva mearadnra i tha calalhentad Montar
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set in which the unit interval is subdivided into three segments of length
1/3 from which the middle one (without its boundaries) is deleted. Each of
the two remaining scgments is next divided into three equal parts with the
open middle once again deleted, and so forth. Setting N = 2andr = 1/3in
(3.11) one obtains D, = In2/In3 = 0.63. The Cantor set is therefore in
this sense intermediate between a point {(d = 0)and aline (d = 1). Itisa
ﬁ"c’EC al UUJeu, in the sense that its ECT neralized dimension is Sti‘iCuy larger
than its topological dimension d = 0.

Having established the existence of fractal sets one can now imagine
invariant manifolds consisting of an infinity of sheets such that a section
taken transversally to the sheets is a Cantor-like set visited successively by
the phase space trajectory in a nonreproducible fashion as time follows its
course. In a two-dimensional space this cannot be achieved without
sel-intersection of the tr d_]CLLUUCb But in a Spacc of umlcumt‘)ﬁauty
greater than or equal to three, such configurations become possible,
typically by a process of successive foldings produced as the trajectory is
winding on the manifold (Fig. 3.7). Such objects, which we shall refer to as
strange sets are the carriers of chaotic behavior.

The fractal sets introduced so far in this subsection enjoy the property of
strict self-similarity, since the presence of a single scale r in the reduction
process guarantees that in each generation the resuliing objects are
conformal copies of the original one. A more typical case is that of
many-scale fractals, where the subdivision of the original object into N
objects is carried out with different reduction factorsr;,i = 1, ..., N.This
results in a complex, highly inhomogeneous structure referred to as a
mudtifractal. One can still define for such objects a fractal dimension D,
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Fig. 3.7 The folding
process leading to
fractal sets in a phase
space flow (after
Abraham and Shaw

(1985)).

but this dimension now appears as a sort of statistical average. Indeed,

applying eq. (3.10) to both sides and recognizing that N,(g) = N(g/r;) we
obtain

or finally
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The new aspect is now that, in addition to D,, one needs new parameters

to characterize the ln_hnmncrpnmhr of the set. These so-called generalized
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dimensions, D, (Feder, 1988) play in the theory a role analogous to the
moments of a probability distribution. We do not develop this point
further here but rather refer the reader to the abundant specialized
literature.

3.4 Conservative and dissipative systems.
Attractors
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that, under mild condmons, a complete specification of the state X =

(X, ..., X,) at any one time allows prediction of the state at all later
times. In practice, such a complete specification amounts to disposing of
an infinite amount of data. This is operationally meaningless since the
process of measurement, by which the observer communicates with a

nhvyeical cuctam 1e limitad l‘\‘! a finita nracicinn In tha nhace cnaca
plriyosibdl syoilill, o Uil o LB PIVUISIVIE. 10 Ui pralgov opabe

representation this will show up through the fact that the experimentally
accessible state will not be given by a point but rather by a volume AI',,
surrounding such a point, whose linear dimension is roughly given by the
precision of the measurement. From the standpoint of the observer all
points contained in Al'y represent the same (macroscopic) state; in
contrast, in the idealized point-like description afforded by eqs. (3.6)each

thana wmint hn srimezsad AT nvnne - al ~AnamAl Faurnen wxhhinle

Uf Liivav lJUllll.b lb I.U uC VICWCU as a Qincy ClIL uuucu \.aUllUll.lUll ITOIM Wi
emanates a phase space trajectory (Fig. 3.8).

Gibbs invented a new mode of approach enabling one to cope with this
duality. He introduced the concept of a statistical ensemble (Gibbs, 1902)
constituted by a very large number of identical systems, all subject to
exactly the same evoiution laws and external constraints, but differing in
their initial conditions. In this view, the relevant quantity to be considered
is the probability p,r () of being in a phase space celi AT at time ¢ or,
taking the limit of small AT" and introducing the corresponding probabil-
ity density p,

Parl) = p(X;, ..., X,,0d X, ..., dX, (3.13a)
with
i AN
p= lim = (3.13b)
Ntol AT —0 AF

where AN stands for the number of states in AT’ and N, for the total
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Fig. 3.8 Phase space
trajectories emanating
from the representative
phase space points
inside an initial
volume Al',.

number of phas pa states available. The relevance of Gibbs’ invention
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complex behawors surveyed in Chapter 1, For such behaviors, and
particularly for the chaotic regime, the phase space motion becomes very
complex, and it is no longer meaningful to argue in terms of individual
trajectories. The probabilistic description underlying the idea of Gibbs’
ensemble provides one with a valuable alternative for describing the
evolution of complex systems, which will be developed further in Chapter
7.

In order to predict the probability of occurrence of particular values of

1ahlee S ¥ UV Ane muct cet ub an annatinan af sunlition far o
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The uniqueness theorem of solutions of (3.6) formulated in Section 3.2
ensures that the number of phase space trajectories emanating from a
certain set of initial data is conserved. This entails that p, which plays the
role of the density of trajectories, behaves like the mass density of a fluid
(eq. (2.13)) provided that the physical space coordinates {r;} in eq. (2.13)
are replaced by the phase space ones {X,} and the velocities {v,} by the
evolution laws {F;}. One thus obtains

% | 2—5 (pF) =0 (3.14)
o Sox; !
ol i ab o Al af o P abl o e Ao S 4D T ALY e B b laandiam o &l o
ICHULTHIIEE UIC dclvativll Ul e plroauct 1 ‘.) 19) ana 1NuuvyJauviilg uic
hydrodynamic de rlvatlve by analogy to eq. (2.14b) one can further
eq
1

transform this
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de dp 0
@~ YLy =—pdivF
or
dl
1P _divF (3.15)
at

Integrating this relation formally from 0 to ¢t one obtains

1 1 [
Yol _ ' ardive —(divF), (3.16a)
L Py tJo

where the bar denotes the time average and p, = p(., £), p; = p(., 0). On
the other hand, introducing expression (3.13b) for p and taking into
account the fact that by the uniqueness theorem the number of states AN
is conserved, one can further transform the above relation to

1 A, —
—r' In -E = (le F)r (316]))

4]

Eqs. (3.16) are the starting point of the classification of dynamical systems
into the two important classes of conservative and dissipative systems.

A Conservative systems
A Conservative systems

By definition a dynamical system is called conservative if
divF =0 (3.17)

It foilows from (3.15) that dp/dt = 0, which is nothing but the Liouviile
equation familiar from classical statistical mechanics {Prigogine, 1962).
Alternatively fram an (2 168hY 1t follawe that AT — AT hat ic A cnvy

t
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the measure of a phase space volumeis conserved during the evolution of a
conservative system. This is the content of Liouville’s theorem, another
important resuit of classical dynamics (Goldstein, 1959; Lichtenberg and
Lieberman, 1983).

Animportant class of conservative systems is the Hamiltonian systems.
Indeed, using Hamilton’s equations (2.2) one can see straightforwardly
that eq. (3.17) is fulfilled .dentlcauy However, the concept of a
conservative dynamical system is more general than that of a Hamiltonian
system since, for one thing, the number of variables involved need not be
even as in the Hamiltonian case.
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B Dissipative systems

In a nonconservative system divF # 0. We will define the class of
dissipative systems by the more restrictive condition

(divF), <0, t=t, (3.18)

From eq. (3.16b) it follows that for such systems there is, on the average.
contraction of phase space volume beyond a certain interval of time,

AT, < AT, t>t, (3.19)

This entails that in the limit i — co the trajectories of a dissipative system
initially emanating from a certain phase space volume AI'; will tend to a
subset of phase space of zero volume, i.e. a subset whose dimension will be
strictly less than the phase space dimension. This set is referred to as an
attractor of the dynamical system. Since by the above definition attractors
are invariant manifolds, one can apply to them the analysis of Section 3.3.
On this basis one expects to find in dissipative systems zero-dimensional
(fixed point) attractors; one-dimensional (periodic) attractors, referred to

ag limit mmlac two-dimencional and hicher-dimensional fnnam ﬂPI" odic)
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attractors in the form of invarant tori; and fractal attractors. Thc largest,
compact, invariant set having the attracting property is referred to as the
universal attractor. Clearly, every evolution of a dissipative system from a
certain time on remains on this universal attractor for ever.

From the above short discussion one can realize why physically
relevant nonconservative systems must obey the more restrictive condi-
tion {3 10} Ii’idﬁﬁd had the mequamy Sig‘ﬁ been i‘ﬁvﬁi’S’c‘d the systein
would eventually escape to infinity, Such an explosive behavior is ruled
out in physical systems, which are characterized by finite values of energy,
mass and other macroscopic observables. Notice that the phase space
volume contraction need not hold everywhere: it suffices to have this
condition satisfied on average. This is what happens in the Brusselator
model (eq. (2 44)), where Fy =k, A —(k,B + k)X + k;X*Y, F,
k,BX — k,X*Y and divF = —(k,B + k,) + k;X{2Y — X). In contrast,
certain systems like the Lorenz model (eqs. (3.4)) satisfy the more strict

dNS!ﬁau\qty condition of divF being negative PVPT‘VW"IPI"P divF =

aakaavaisia Wilig RAWESSLAY LR L L

—(o + b + 1). A similar property holds when a linear-damping term of
the form —yd@/dt is added to the equation of evolution of a conservative
oscillator like the Duffing oscillator, eq. (2.9a).

(v mavt ~Abldanticca mall ko tA Ahaoractariza tha mvariaant manifalds
Ul ICAL UUDJLLLIYE Widl DG L vilaldaulolldye i luvallaiil liallnuvidly
introduced in the preceding sections in a more detailed manner
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Fig. 3.9 Geometric
view of stability.

Consider a system — dissipative or conservative — evolving according to

eqs. (3.6). We suppose that bv a mechanism that we need not snecifv here

RSV LAAAL LU ) & ARUARLEiaddall LAl W LIV RO Spaly UL T,

the system has reached after a certain lapse of time a ‘reference’ state X,
on an invariant manifold. In principle, by the very definition of invariant
manifold, one expects that the system will remain therein for ever and will
undergo a dynamical behavior dictated by the particular type of manifold
considered.

In actuality, a real-world system never stays in a single state as time

variae Tn heoin with mact euctame are in contact with o comnley
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environment with which they exchange matter, momentum and energy in
a practically unpredictable manner. In addition, most of the systems
encountered in nature intrinsically generate their own variability in the
form of thermodynamic fluctuations. As a result the instantaneous state
X(r) will continuously deviate from X, by an amount x(¢), referred to as
the perturbation,

X(t) = X, + x(1) (3.20)

. .
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a dynamica
initial deviation x(0) of the kmd defined above. In particular we want to
know whether, upon the action of the perturbation, the system will
remain close to the reference state or on the contrary will deviate
significantly from it. It is here that stability, one of the key concepts of the
theory of dynamical systems, enables one to envisage things in a clearcut
manner.
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and U, two regions surrounding X (represented as a point in Fig. 3.9)

whoge characteristic gizes are given rpenpofﬂmlv by ¢ and & ('m th 5
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generally depending on ¢). We adopt the following definitions:

X, is stable in the sense of Lyapunov if, for any given neighborhood U, of X
there exists a certain neighborhood U, such that any trajectory
emanating from the interior of Uy never leaves U..

X is unstable if no such neighborhood Uy, can be found.

X, is asymptotically stable if it is stable and if, in addition, any trajectory
emanating from the intenior of Uy, tends to X as t— o0,

To this geometric view of stability onec can associate an analytic
formulation, provided that one endows phase space with a norm, |.|.
Specifically one has

Lyapunov stability if, for any ¢ > 0, there exists a d(¢) > 0 such that for
any X(0) with | X(0) — X,| < 4, one has | X{(t) — X,| <eforallt = 0.
Asymptotic stability if, in addition, | X(z) — X,| - 0 as t>co.

In this latter case X will be an attractor of the dynamical system. Clearly
then, asymptotic stability can hold only in dissipative systems.

The great value of the above definitions is to reflect the intuitive idea
that stability, and especially asymptotic stability, is a property that
makes, in a way, a given state physically legitimate. Indeed, in view of the
ubiquity of perturbations and fiuctuations in nature, a state lacking
stability would become unobservable after a certain lapse of time.

A second most lmnnrmn‘r nmnf is that stability allows one to formulate

(L VLU VLV § F LV L T ¥ (O S =5 Y 1 SF2aab A8 ralifly v iall sonegto iormu

systematically, and in quantitative terms, the onset of compiex behavior.
Specifically, let X first represent one of the fixed points of the dynamical
system (egs. (3.6)),

F(X,, 1) =0 (3.21)

The determination of these particular invariant sets reduces to a problem

Af alaahra that can in nrinecinle he colved IFXY hannene ta he ctahla the
Ul digviila uldl bdll, 11] pPLHIVIPIG, UL OULVLAA. d1 Gg Lapplils 10 UL Sia uil Ui

system’s behavior will essentially be determined by the knowledge of X,
and the classification problem raised in the first sections of this chapter
will be solved. Conversely, the onset of behaviors of a type more complex
than the fixed point one will be signaled by the failure of the stability of the
fixed points, whereupon the system will be bound to evolve toward
invariant sets of a new type

In view of the above it now becomes crucial
testing the stability of a given invariant set, say a fixed point. In some
exceptional cases this can be done as a straightforward application of the

very definition of stability. As an example consider the classical harmonic

o Anwrioa
LU UCVIDG
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Fig. 3.10 Proof of
Lyapunov stability of
the fixed point of the

harmonic oscillator,
eas. (3.22).

oscillator to which we have already alluded as a limiting case of the hoop

nrahlam (ea (7 Ga) 4« 0 cuhic tarm naolacte, r‘\
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v =df/dt and the angular frequency @i = —pu one can write the
equations of motion as

ntroaducimo t
MICGueing .

do/dr = » L (3.22)
J

dv/dt = —wi

which define in the phase space a continuum of ellipses surrounding the
equilibrium point § = v = 0 (Fig. 3.10). We want to test the stability of
this fixed point. To this end we consider a neighborhood U, in the form of
asquare of side ¢. Among the integral curves of the system there exists one
that 1s tangent to the vertical sides of the square and contained entirely in
its interior. We choose th
ncighborhood U,,,. Consider now an initial condition inside this
neighborhood. By virtue of the uniqueness theorem a trajectory emana-.
ting from this initial condition will never cross another integral curve (not
containing a fixed point) and will thus remain, by construction, inside the
neighborhood U,. We conclude that the fixed point (0,0) is stabie in the
sense of Lyapunov. Such points, surrounded by a continuum of elliptic
trajectories, are aiso referred to as eilipric points, the motions around them
being qualified as stable motions.
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A very different case corresponds to having a positive coefficient g in the
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hoop problem (eq. (2.9a)). Neglecting for a moment again the cubic term

dofdr=o (3.23)
dv/dt = w30 |

which now define in the phase space (x =v + @y, y=v — w,f) a
continuum of hyperbolas around the equilibrium point {0,0). The motion
consists (Fig. 3.11) of a contraction along the y direction and an
expansion along the x direction. Arguing as above one will find that the
equilibrium point is unstable (Section 1.2, Fig. 1.2, branch (a). We call
such points hyperbolic points, the motions around the 1

unstable motions.

In both egs. (3.22) and (3.23) the phase space volume is conserved, since
condition (3.17) is satisfied. But while in the first case its shape remains
essentially unchanged, in the second case it is highly deformed since an
initial volume in the form of a square will eventually become a rectangle

whose horizontal side will tend to infinity and whose vertical one to zero.

We alraadvy find in thic cimnle avamnle the inorediente Af mare comnley
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phenomena related to chaos that will be studied in more detail later.
So far we have not used explicitly the property that egs. (3.6) are
autonomous. We shall now inquire into the repercussions of this property
in stability. Let X,(¢) be a solution of egs. {3.6). It is then clear that any
function X {t + t) where 7 is an arbitrary constant (the phase) is still a
solution of the same equations. In other words, autonomous systems

vhilit thlha aeAanaerty Af franalatianal invariancs 3n f1via Thaoca tnfinmitalar
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many solutions, differing from each other by the phase, define an orbit, C

in nhace snace.
1AL ylluuv ul_l

We say that C is orbitally stable if, given & > 0, there exists a 8 > 0 such
thatif X, is a representative point of another orbit within a distance é from
C at time 0, then its image X remains within a distance ¢ from C for any
t > 0. Otherwise, C is orbitally unstable. If C is orbitally stable and the
distance between X and C tends to zero as t—oo, C 18 asymptotically
orbitally stable.

uyap‘uuu v sta

P T4
problems 3.6 and

3.6 The principle of linearized stability

The straightforward assessment of stability on the basis of the definitions
laid down m Section 3.5 works only in rather exceptional cases. A
systematic, analytically tractable algorithm is clearly nceded to tackle
more general and more complex cases.

The starting point is to substitute eq. (3.20) into (3.6). Utilizing the fact

that the reference state X, is itself a particular solution of these latter
equations one obtains

dx/di = F(X, + x, 4) — F(X,, ) (3.24)

We assume that F can be Taylor expanded in formal power series of x
around X,. This is always possible if F has a polynomial structure and

leade than tn a fin I te nu ml"\nl‘ nl‘ fnrmo i t mav fpnlnrp 11 ”’\ Pnnr]rhﬁnn
AW LD LlAwil LW AE L1LIL LAARL 5 (S e S J \:lu.&lv luL L2 WwAJAAVIL LI AL
in more intricate situations:
/5F ) i/ &F
FX,+x,A)=FX,)+|—=]| -x+3z XX + ... (3.25)
y y 3X /g, T T 2\0XaX /

Substituting into eq. (3.24) one sees that the inhomogeneous term cancels
and one is left with a homogeneous problem for the perturbation vector x:

dx/dt = L(A)-x + hx, 4) (3.26)

linearized part nonlinear contributions

where we introduced the short hand notation

S cw

L) = (g;) (3.27a)
h(x, 1) = (55)(2:)() ‘XX 4+ ... (3.27b)

The linear operator £ (1) is simply the Jacobian matrix of F ¢valuated at
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the reference state, whereas h(x, 1) contains contributions that are

nonlinear in ¥ and has_therefore, the property hix 1\ = n.f | x |2‘| orif the

= ClRans 21lRa3, PwEVER Ry bW prARS Y Ry Ry Sy =

series (3.27b) can be differentiated term by term, (éh/dx) —» Oas |x| - 0.If
the reference state X, is time-independent (fixed point) then both & and h
will be free of any explicit time dependence.

Comparing (3.26) and (3.6) we see that the former is an equivalent
version of the Iatter in which the origin of coordinates in phase space has
been placed on X,. The (trivial) solution x = 0 of the (homogeneous)

system nfea (176Vic rlearly the analaa af the refarence state X nf the
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initial problem defined by eqgs. (3.6).

In dynamical systems involving a finite number of degrees of freedom
h(x,4) is a vector in phase space, whereas £ (4) is a n x n matrix whose
elements are given by &, = (0F /0 X, ) (1 ji= .., n). For instance,
in the Brusselator model in a well- stlrred medmm (eqs. (2.44)), taking for
simplicity k; = 1 one has

Fy=A—-(B+ 1)X+X2Y,FY=BX—X2Y, (3.28a)

le fixed poin Y = (4 B/A). Choosging

0 n
12,83/ 72 5. AOVsIE M P mta

state one finds stralghtforwardly that

[ o \
b,
- A 2
B_ 1 A2\ {Ax +2xy+xy\
gz\ —B _Az , h= B 2 24 2
\—Zx — xy——xy/
(3.28b)

q.3.2 ) constitutes still a highly nonlinear problem which, as a rule, is
actable as the original problem, egs. (3.6). At this point, however, a
most important result can be invoked to enable further progress. This
theorem, also known as the principle of linearized stability, compares the

stability properties of the following two problems:

-~ :..A..
as ifrac

== pl
=

The ‘auxiliary’ linearized problem, in Wth

omitted,

1gher order terms are

dx/dt = £L(1)-x (3.29)
It stipulates the following:

If the trivial solution x = 0 of the linearized probler
asymptotically stable, then x = 0 (or equivalently X = X
totically stable solution of the nonlinear problem, eqs. (3.26) or (3.6).

If the trivial solution x = 0 of the linearized problem is unstable, then
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0 (or equivalently X = X,) is an unstable solution of the nonlinear

X =
nroblem
problem,

The theorem is unable to provide information in the case in which the
trivial solution of (3.29) is Lyapunov stable but not asymptotically stable.
Still, it is of the utmost value since it reduces the passage from stability to

lStd.Ulllly, O11C Ul lllC lU[lUd.llll:lJ.l.d,l b1 UUlClllb Ul Uylldlllibdl DybLCl 1> UICUI Y,

to a linear problem — a much more traditional and tractable problem of
analysis.

Intuitively the theorem seems reasonable since, after all, stability
reflects the response of a system to small perturbations for which the
expansion of eq. (3.25) can be truncated to its first significant (here linear)
term. Rigorous demonstrations can be found in the abundant mathemat-
ical literature. To give a flavor of the argument we reproduce in Appendix
A1 the proof for a one-variable system and illustrate it on the logistic

tion {Pn (2.51)). In the mult tivariate case two versions are nqnnﬂv

encountered. The most traditional one (Nemytskii and Stepanov, 1960;
Cesari, 1963; Sattinger, 1972) amounts to the statement:

If all elgenvalues of # in

; o 1
Dy lllp LU U.bd. y th SO1

parts, then x = 0 is unstable.

(3.26) have negative real parts then x = O is an
"t [ P N it

P T
uLivil. 1

In this form the theorem is proved either by the method of successive
approximations or by the use of Lyapunov functions (the so-called
Lyapunov’s second method).

A more far-reaching formulation (Arnol’d, 1980; Guckenheimer and

almee 10072 Avrrawemith and Dlmﬂp 1300 which actually o0es harl tn
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Poincaré and is known in its modern version as the Hartman—Grobman
theorem, is as follows:

If (1) has no zero or purely imaginary eigenvalues then there is a
nomeomorpmbm (.IBHDCG lIl some IlClgﬂUUI'I_lC_)(_)U Ol A m r” ICC&JI)’ ld,l(l ig
orbits of the nonlinear flow of (3.26) to those of the lmear flow of (3.29).
The homeomorphism preserves the sense of orbits and can also be chosen

to preserve parameterization by time.

The proof of this important resuit is surprisingly simple and can be
found in Arnol’d (1980). When X, is such that .#(2) has the above

sroberty. X ia callad o bhunonhalis av nandeacs
pr jJUl LY, g 15 Lautl a AYpPeErsoiic or nona

case, then, the linear and nonlinear flows are topologically equivalent. A
simple illustration on the Brusselator model, eq. (2.44), is depicted in Fig.
3.12.
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Fig. 3.12 Hlustration
of the
Hartman—Grobman
theorem on the
Brusselator model, eq.
(2.44), for k; = 1,
A=21In(a) B=45
and the fixed point is
a stable focus. The
trajectories of the
linearized system
(dashes) and of the
nonlinear system (full
lines) spiral toward the
attractor. In (b} B=5
and the system 1s in a
state of marginal
stability. The
trajectories of the
linearized system are
closed curves
surrounding the fixed
point and are
topologically different
from those of the
non-linear system,
which spiral toward
the fixed point,

(a)

Problems

3.1 Let Y(X) be the phase space trajectory of the dynamical system
dX/dt = fiX, V), dY/dt = g(X, Y). Derive an expression for the time
needed to evolve from (X,, Y, ) to (X,, Y;) in terms of f or g and the
equation of the trajectory.

3.2 The definitions of stability of Section 3.5 apply as well to any reference

anlutinn X (+3 Aaf the avalutian aauation

nne nt nacace
SULULIVIL Al f Ul Wiv LyUiuuvil Liualbivig,
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invariant manifold. Prove that every solution of dx/dt = —Ax, A > 0 is
asymptotically stable for ¢t > 0. What happens for t < (?

3.3 Write out the explicit form of eq. (3.15) for the one-variable system
dx/dt = —Ax, 2 > 0. Solve the initial value problem and the
corresponding eigenvaiue probiem. Comment on the resuits in
connection with the stability of the state x = 0.

(3.2N
\oa).

anl
e i
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3.5 Stability versus boundedness (Cesari, 1963). (a) Every solution of

Avids — 1 ic mnlaanmdad Qhaw that amy Aana Af thacs anliutinane rhacan ac
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a reference state, is nevertheless stable in the sense of Lyapunov. (b) The
solutions of the equation dx/dt = x — x® are bounded. Show that x =0
is unstable and x = +1 are asymptotically stable.

3.6 The system

(%)
=

3.8

19

3.10

dx dy
—=—yx*+ ). —=x(x*+)?
3 = YTy = XAy
has the two-parameter family of solutions x = C, cos (C3t + C,),
y = C,sin(C}t + C,). Show that all solutions but x = y = 0 are
Lyapunov unstable, but that all integral curves (compact invatiant
manifolds) are orbitally stable.

Noninvariance of stability with respect to a coordinate change (Cesari,
1963). Find the evolution equations generated from those of Problem 3.6
by performing the change of variables x = rcos (r’t + ¥), y = rsin

(r*t + ). Show that all solutions of the system for the new variables
{r.}) are Lyapunov stable.

Using the results summarized in Section 2.1 prove that any integrable
system can be transformed by an appropriate change of variables to a

ctrnemn a1l AF clancn nnls PRGN, T cimemizsnnnr cbolale 1Mot nes 4lhhaca avne
a_yau:ul d.ll 01 WilUbE bUlULIUllB arc J_,_yapuuuv alauic. vyliadti <dlo Lics<e llUW
variables?

Consider a dynamical system on the two-d torus defined by the
equations df/dt = F(f ¢), dp/di = «F(6, ¢) where « is a positive
trrational number, and F (8,¢) a continuous function satisfying the
Lipschitz condition, 2xn-periodic in the arguments & and ¢, and positive
everywhere except at (0,0) where F(0,0) = 0. Describe the motion
generated by these equations with special emphasis on stability and

compare it with the uniform motion generated by df/dt = 1, d¢p/dt = «.
Show that the system of coupled logistic equations

dx X, +X
dx, _ XI(I—ITZ)

X, +X
_kX2(1 - AT 2)
\ 1y /

admits a continuum of degenerate steady-state solutions.

ok mgame 2 n o o cde lazlia o A= o [P P ~os ~

Determine the stability of these solutions and draw the p 148¢ purtrait.
Sketch an intuitive interpretation of the results from the standpoint of
population dynamics and evolution theory (Gause, 1934; Allen, 1975).



CHAPTER FOUR

Linear stability
analysis of fixed
noints
r'v---‘n-'

4.1 General formuiation

The objective of this chapter is to set up quantitative criteria of stability of
the fixed points of a dynamical system. This will be possible thanks to the
principle of linearized stability which, as we saw in Section 3.6, reduces
stability to a linear problem, egs. (3.29).

In a system subjected to time-independent constraints the evolution
laws F (eqs. (3.6)) do not depend explicitly on time. Furthermore, if one is
interested in the stability of fixed points the reference state X is
time-independent and so is also, by virtue of eq. (3.27a), the linearized
operator £ (4). It follows that egs. (3.29) admit solutions that depend on
time exponentially,

X = ue” 4.1)

Substituting into egs. (3.29) one finds that u and the characteristic
exponent «» must satisfy the relations

{1V . — (A Da)
=% \IL,’ w v \_".LCI,]

or, in more explicit form,
Z £ (A = oy, (4.2b)

In other words u and w are, respectively, eigenvectors and eigenvalues of
Z(A) and stability is thus reduced to an eigenvalue problem. An
important point is that independently of the properties of u, which takes
into account the structure of x as a vector in phase space, knowledge of the
eigenvalue w provides one with a full solution of the problem of stability.
Indeed, separating o into real and imaginary parts we have from (4.1)

| X | ~ e(Rew)i ei(lmm)t (43)

71
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It foHows that

if Rew < 0, | x|is exponentially decreasing and hence the reference state
x = 0(or X = X,) is asymptotically stable;

if Rew > 0 the perturbations grow exponentially and hence the reference
state 1s unstable.

These two regimes, for which the principle of linearized stability
applies, are separated by the regime where Rew = 0. We call this
borderline case between asymptotic stability and instability marginal
stability. Notice that the occurrence of instability and marginal stability 1s
compaltible with both conservative and dissipative sysiems. In contrast
asymptotic stability implies by necessity a contraction of phase space
volumes and can therefore occur only in dissipative systems.

The eigenvalue problem, eqs. (4.2), allows us to understand better the
paramount importance of the control parameter(s) 4. Indeed, a variation
of A induces a variation of & and, through it, of the eigenvalue w. Two
typical possibilities are depicted by curves (a) and (b) of Fig. 4.1.

In (a), w crosses the A-axis with a positive slope. This will be refiected by
the fact that as A increases, the system will switch from asymptotic stability

to instahilityv. As the reference fixed noint will no loneger he a nhvsicallv
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legitimate solution for A > A_, a qualitative change of behavior is to be
expected when 2, is crossed. For this reason we shall refer to 2, as the
critical value of the control parameter. In contrast, in (b) the real part of
the eigenvalue remains negative for all values of 1: the fixed point is always

Fig. 4.1 Two typical Rew A\
dependences of the ,ﬂ

real part of the
eigenvalue of the
linearized operator,
eqs. (4.2), versus the unstable
control parameter A:
{(a) the reference state
is asymptotically
stable for A < 2, and
/

unstable for 4 > 4 ;
(b) the reference state m— f <

remains asymptotically A
stable for all values of (5) *,‘
A | ‘ ‘

asymptotically stable
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asymptotically stable and no qualitatively new regime is expected to arise
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able system possesses a whole spectrum of eigenvalues, some of which
may behave as in (a) and others as in (b). For the transition to instability
to take place it suffices that one eigenvalue behaves as in (a). The
important point is that a given, well-defined system can switch between
stability and instability according to the conditions to which it is

subjected: stability is thus reduced to the parameter dependencc of the
l' Linpaorizad ~oavot e
1
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It is clear by now that the central problem of stability theory is the
determination of w. An explicit calculation can be carried out from eq.
(4.2b) which we write in the more suggestive form

Y (L) — w8, =0 i=1,...,n (4.4)
i=1

This set of homogeneous algebraic equations for {u;} admits a nontrivial
solutlon pr0v1ded that the determinant of the matrix of coefficients of {u;}

det | £,(A) — w,(A)87] = 4.5)

where we have introduced the index m to account for the fact that eq. (4.5),
which 1s an algebraic equation for w,, will in general admit several
solutions. For typical values of the parameter one can legitimately expect
that, unless & has some remarkable symmetries buiit in, the eigenvalues

w,, Will be distinct. The general solution of the linear system of egs. (3.29)
will then be given by

x= ) C,u,e™ (4.6)
m=1

where C,, are integration constants determined by the initial conditions.
Under the same conditions one knows from linear algebra that & can be
diagonalized by a similarity transformation involving a nonsingular
matrix T,

D=T ! %-T (4.7a)

Dy=wd¥ ij=1,...,n (4.7b)

iy

and the columns of T are given by the eigenvectors of £. Operating on
both sides of (3.29) by T~ ! one can transform this system to

T 'dx/dt =T 'LTT '-x
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or, introducing the new variables
z=T 'x (4.8)
and taking (4.7) into account,
dz/dt =
or finally
dzjdt=wyz, i=1,...,n 49)

The above results (egs. (4.6)-(4.9)) can be generalized to include cases in
which the matrix & has multiple eigenvalues. This happens frequently in

the presence of symmetries or, more exceptionally, when the control
parameters take some particular values. Actually one should distinguish
between two types of multiplicities of aneigenvaluew,, (m=1,...,r)of

a matrix &

the algebraic multiplicity z,,, which is the multiplicity of v, as a root of the
characteristic equation (4.5)

the geometric multiplicity v,, (sometimes referred to as nullity), defined as
the number of linearly independent vectors g such that

(& —w,l)g=0 (4.10)

Notice that one has necessarily v,, < u,,.
Given now an »n x n matrix & of eigenvalues w,, of algebraic and
geometric multiplicities ¢, and v, respectively, one may show (Gant-

macher, 1959) that there exist nonsingular matrices T such that
J=T ' 2T (4.11a)

is the direct sum of N irreducible matrices J; of orders n,

{n 4 »n L J. " =ﬂ\ rafarrad fn oo Tardan hlacke The
LU RPN T Sk T ey Toyy IUIVIIVGE ad> viUrabn WO, v

dimensionality n_of J, depends on the relation between the u, and v,,. If
U = v, thenn, = 1and J, = w,.Ifv, < u, then n, > 1. In this case each
Jordan block can still be uniquely associated with an eigenvalue w,, and
has the following typical structure

l (4.11b)

if w,, is real, or



4.2 Systems involving one variable 75

J = ‘ (4.11c)
|
Y
with
Rew, —Imao,) (1 0\
Rm:(lm . Rea)m)’ =10 1

if w,, is complex.
The relevance of these more sophisticated transformations will become

obvious in Chap{er 5. where P){r\ll(‘If exambples of Jordan blocks will be

sy ivie wihaplaivin CAGRIIpIAUS aUARS Waan

given. For now we come back to the generic case of distinct eigenvalues
and survey, in the next three sections, a number of representative cases.

4.2 Systems involving one variable

Egs. (3.6) reduce in this case to the single equation
dX/dt = F(X, ) (4.12a)

The phase space is one-dimensional and the linearized system, egs. (3.29),
becomes

dx/dt = (OF/0X )y x {(4.12b)

The linearized operator £ (1) reduces to a number, also identical to the
characteristic exponent c,

1) = Z ) = @F/6X)y (4.13)

This number is by necessity real. Two typical situations can be realized,
depending on whether «(4) is in the negative or in the positive half axis:

(a) o is negative

. |
@ o]

The phase portrait around the fixed point is given by

-
X

$

where the arrows account for the tendency of trajectories initially in a
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(by @ is positive

=

The phase space portrait is given by

- — »
X

S

The trajectories now diverge from X . Since sheer explosion to infinity is
not expected in a physical system, they will presumabiy tend to a new
attractor. In a one-dimensional phase space the latter can only be another

PP PN

FRug | PRV L

t some uypit.au_y umw) distance from A . The two

fixed point, located
cases (a) and (b) are parated by the critical case of margmal stability

w=L)=0

for which linearization becomes inadequate.

A one-variable nonexplosive system is necessarily dissipative. Interest-
ing examples, given in Chapter 2, are the Schlogl models (egs. (2.45)), the
Semenov model (eq. (2.47)) and the Verhulst model (eq. (2.51)). Taking

the last as an illustration one has

F =kX(1 — X/N)

There are two fixed points X; =0, X, = N, with

k

(BF/0X)yx

(OF/0X)y , = —k (4.14)

Recalling (eq. (2.50)) that k is an excess parameter expressing the
difference between reproduction and death rates we see that the state of
extinction is the unique physically acceptable state for k <0 and is
asymptotically stable in this range (see also Appendix Al). When k > Q

tnta b | ) Lestd o namn e zoeea e i, e o 4

llllb Staic Dllll Ez\lblb ULlL UULUIIIGD UullsiLauvic. J"l IIUW, [lUllLllVld.l bldl.ﬁ
X,, = N is born which ‘inherits’ the stability of X,,. We see that
one-variable systems can produce nontrivial behavior reminiscent of
some of the experimental results surveyed in Chapter 1. The possibilities
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are, however, far more limited than for two-variable systems to which we

The nhacs crmara 12 N fu:f\=rﬂm;1ncinnr:|1 and the linsarizad amnatinne
yxluo\.z DH“U\J AQ LINSYY LYYW OLILAWAIDIV/ LG LA LVidw 1RMAWALE LA U'\-j““t*vl‘v
(3.29) take the form
dx,/dt = 2, x, + £ ,%, % @.15
dye /dt = .. x. + F_ _x_ ) )
el 21-%1 ° 227VE J

(Z1y — Oy + L5ty =0
4.16
ZL oty + (F 2z — Oty =0 m=12 } (419

Here u,,, ., u,,, are the two components of the eigenvector u,, associated
with the cigenvalue w,, (m = 1 or 2). The characteristic equation for the
latter {eq. (4.5)) takes the explicit form

—Tw,+A=0 m=1,2 (4.17a)

where 7" and A are, respectively, the trace and the determinant of the

(e

matrix {&;},

T=%,+%Zy ]
(4.17b)
A=$11$zz_$12$21 JL
The solution of the quadratic eq. (4.17a) is
T+ (I*—4A)V2 T4 @2
Wy = 5 = 5 4.18)
where 2 is the discriminant. The nature of the roots depends on the signs

of T, A and . The various dlstmct possnblhtles (Jordan nd Smith, 1977;
Andronov et al., 1966; Cesari, 1963) are classified below, using the
representation in the plane (Imw, Rew).
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%2 > 0: two real eigenvalues
£fAaYy A NN vrnnto havua thha cama ci1on
\HJ L3 -~ U, LUVILD Lid Ve Lilw S3dllivw Dlsl.l
al) T <0 @) T >0
Im® Im @
- - -
Re @ Re w

(b) A <0, roots have opposite signs

b T <0 b2 T >0 (b3) T =0
Imo im @ Im ®

Re ® Re » Re ®

(c) A =0, at least one of the real roots is zero

) T <0 (€@ T >0 () T =0

| e
)

o~ 1 e
im i Wim

) 1
i 1

~y
-

g

- - Fdn
# Re w Re w i Re ®
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% < 0: two complex conjugate eigenvalues

(d) T <o (@2) T >0 (d3) T =0

Imw Imw Im w

Re o Re m Re o

% = 0: a double eigenvalue

(el) T<H (e2) T>0

Im w Imw

0]
D

3
E

Cases (b3), (c3) and (d3) arc the only ones that can be realized in
conscrvative systems. Indeed, T =5, (éF/6X,)y = (divF), , and by
definition divF = 0 in such systems. In a dissipatisvc system thesc three
cases along with (cl)-(c2) and (c1)- (c2) are nongeneric, in the sense that

. . . . . .
thou roaire a ciriet snuaiity swhich fran Anly ke roalizad (1 at allt fare
Lty ILyuilv a Suill Chudiily Winllil Cainl Oy OC ICailZed (1 du dany 101

specific values of the control paramecter 4. They are important in the sense
that they are borderline cascs. In particular (c1) and (d3) define the
borderline between asymptotic stability and instability.

Barring degencracics we shall now consider more explicitly (al) (a2).
(bl) (b2)and (d1) (d2), our objective being to determine, in these generic
cascs, the shape of the phase portraits around the refcrence (ixed point.
We start by writing the solution of (4.15) in the explicii form (cf. cq. (4.6))

x()=C.u,, e*" + C,u,, e* 3
FOR I 1 11 & L1

} (4.19)

-’Cz(f) = Clu_lz et Czuzz e

where the coeflicients u;; (i,j = 1,2) are to be calculated from cqs. (4.16)
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Fig. 4.2 Two-
dimensional phase
portrait around an

asymptotically stable
node obtained from
numerical integration
of the system

dx,/dt = x;, — 2x,,
dxz/dt = 3x, —4x,.
The trajectories come
from infinity with a
slope u,,/u,, = 2, and
converge to the fixed
point with a slope
ending to u,,/ii;, = 1,
egs. (4.21a) and
(4.21b).

and C,, C, are fixed by the n1t1al conditions. To go further we need to

gsnecifv the tyne of gituatio
I—l A JAiwv CALS

LIl iy LY U

(a) Two real roots of equal sign (% > 0, A > 0)
Suppose first w, < w, < 0, Differentiating the two relations (4.19) with
respect to time and dividing we obtain

dx;, o, Ciuy, e + @,Chuy, e
_0,Cuty, + 0,Couy, @27 420
_wlclull +w2C2u21 e(“z—ml)r ( . a)
Similarly, dividing the two eqs. (4.19) we obtain:
X Ciu,, +C,u elwz —@u)t
T Cm o (4.20b)

X, Cyuy, + C,u,, g@2ot

1t is useful to consider first two limiting cases, corresponding to special
types of initial conditions.

1 = 0. eq.(4.20b) reduces to

(4.21a)

X2/X( = Uyy/Uy,

In the (x,, x,;) plane this is an equation of a straight line passing
through the origin. As the ws are negative, trajectories starting on this line
tend to (0,0) in the course of time (Fig. 4.2)

X
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C, = 0. eq. (4.20b) reduces to

XafXy = typftty, (4.21b)
whick 11 Fha mlome ramragonte amatlhos moier Af cteoisbie o a
Willvll 111 LLIG \J\,z’_)\,l} Pldllc ICPLCDCJJLD AlluLlilvl Pall Ul Dl.l.dj.EllL 111w
trajectories directed toward the origin (Fig. 4.2).

We consider now the general case C, # 0, C, # 0, corresponding to
initial conditions on the plane outside the above two lines. When t — oo the
negative exponential in (4.20a} will tend to zero and the trajectories (no
longer straight lines) will tend to the fixed point with a slope equal to that

of the straight line (4 21b). In the opposite limit t-—> — oo the mmrmenhal

in (4.20a) explodes. The remaining terms can be neglected, and the
trajectories come from infinity with a slope equal to that of the straight
tine (4.21a). We obtain in this way the configuration of Fig. 4.2. The
corresponding fixed point will be referred to as a node. In Fig. 4.2 the node
is asymptoticaliy stabie and is, therefore, the atiractor of our dynamicai
system. Had we chosen w, and w, positive a similar topological

confisuration would have bheen realized. in which the traiectories would
Wil LI

VULILSWIGUUL WU WU 1A Vy VLML 1uQiiasd, 11 VL) 1EUS YV LS AL

now diverge rather than converge. We then speak of an unstable node
which can be referred to as a repellor (in contrast to the attracting node).

(b) Two real roots of opposite sign (¢ > 0,A < 0)
Suppose, without loss of generality, that @, > 0 and w, < 0. In the
particular case C, = 0 the influence of the growing exponential disap-

pears in (4.19) and the corresponding trajectories are straight lines given

(<8 B LEA AL adleidim;m vilgweriiL IS Qi A2 asialid

again by eq. (4.21a), approaching the origin. We refer to this pair of
straight lines as the stable manifold, W, of the fixed point. When C, =0
only the unstable mode is excited in {4.19). Because of the cancellations
taking place in eqs. (4.20) the trajectories are still straight lines, given now
by (4.21b), but this time they are directed away from the fixed point. We
shall refer to them as the unstable manifold, W, of the fixed point. All other

fraiectarie o hvunarhala like wha

¢ ar - Q ntntee ac f—a o and r— — o0
tiajulULILs alv iy pPul UVad=Line WU

ag
Qo IILPIULUD L% 2= A = 8 L I r e

;

are, by the same argument as in the previous case, the two straight lines
(4.21a) and (4.21b), as seen in Fig, 4.3. These lines divide the phase space
into four regions between which passage is prohibited by virtue of the
nonintersection of trajectories imposed by the theorem of uniqueness of
solutions. They are referred to as separatrices, the fixed point itself being
qualiﬁed as a saddle point. As the phase portrait of Fig. 4.3 shows, a saddle
point combines a stabilizing action in one direction with a destabilizing
one along another direction. Eventually the instability takes over unless
the system is itself found initially on the line of eq. (4.21a). Since this line is

of measure zero in the plane this situation is untypical: a saddle point in a
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Fig. 4.3 Two- *2
dimensional phase AR NAN

portrait around a
saddle point obtained \\\\ |
from numerical
integration of the \) \\\\
system \ “._ h,
dx,/dt = 2x, + 2x, \N\ \
dx,/dt = —2x, — 3x,’ AR
The siopes of the _I| \\‘k_ \ \II : X,
stable and unstable ) -3
manifolds (dotted J
lines) are, respectively,
U22/u21 = —2and \\\ (\
wyfuy = 3. - \\\\

dynamical system is, therefore, a repellor. In a realistic system a runaway
to infinity cannot take place. The separatrices will then bend and will
either tend to new attracting sets or (in high-dimensional systems) be
reinjected back to the vicinity of the fixed point. These phenomena are
tjypical Ly 101 nlinear and will be discussed further later in thi
Notice that saddle points can occur in conservative as well as in
dissipative systems whereas, as stressed already above, nodes can only

occur in dissipative systems.

5 I'“Oi‘()gl'"p

{AY T~ Fﬂm lavw ,rAanitionta raate with A nAanvaniching ranl

\\-’ [BRAATER S IRE] |CA uunlusa\.c TWJAJILS YYILEEL A IIUIIVO‘\ID‘I‘IIS P Cal
part (Z < 0,T # 0).

Since w, = o}, it follows from (4.16) that u,, = u%,,u,, = u%,. Since x,

and x, are real, eq. (4.19) entails that C, = C%. Setting
N, = H i IQ (422)

1,2

one may then write eqs. (4.19) as

x (1) = e*(C,u,, e + cc)
x,(t) = e"(C,u, , e + cc) } (.23
Introducing new amplitude and phase variables C, K, y and x through
Cyuyy =2Ce" } 424
Upafy, = Ke* -

we may transform (4.23) into the more transparent form
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x,(t) = Ce*cos(Qt + y) l
| (4.25)
X,(t) = CK e* cos(Qt + Kk + y) )|

These relations predict an oscillatory behavior around the fixed point. The

oscillation is damped if 4 < 0 (i.e. T < 0), and amplified il p > 0 (.e.

T > 0). In the first case the fixed point is an (asymptotically stablc)

attractor, in the second an (unstable) repellor. Notice that while in egs.

(4.24) and (4.25) C and y are determined by the initial conditions, the
A4

parameters K and x are intrinsic, as they are determined by the linearized
problem.

To obtain the phase space portrait around the fixed point we switch to
the canonical representation in which the matrix & is diagonalized (cf.

egs. (4.7)-(4.9)),
dz/dt = (p + 1Q)z (4.26)

Only one such relation is needed in the present two-variable system, since
the second equatlon featuring the eigenvalue p — 12 would merely be the

complex conjugate o

through

fA ™Y - . FS M P
(4.£40). Lnroducing uie poulal CO IUlIldU:h I, (,U

z=re" 4.27)

and separating real and imaginary parts we further transform (4.26) into
dr/dt = 1

S (4.28)
do/dt = |

or, eliminating the time between the two equations,

T ( ) (4.29a)

do \L/
or finaily

r = r, el el (4.29b)
where r, is an integration constant. This equation represents a family of

logarithmic sp1rals If 1 < 0 the representative point will tend to the origin
(Fig. 4.4); otherwise the trajectories will spiral away from the origin, In
both cases the fixed point is referred to as the focus. The domains of
asymptotic stability and instability are separated by the critical condition
T=0, or u=0. In this case eqs. {4.28) reduce to a family of circles
surrounding the origin, which is referred to as a center (Fig. 4.5). As
pointed out earlier an attracting focus can only arise in dissipative

systems, whereas a center is compatible with a conservative (e.g.
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Fig. 4.4 Two-

dimensional nh age

portrait around a
stable locus obtained
from numerical
integration of the

canonical form of eq,

(4.26) with p = —0.2,
Q=1.

Hamiltonian) system. In a dissipative system the center is nongeneric, in
the sense that it is an exceptional situation in which the parameters

Dresen thn mualilame waaf o ateiat Aasaralits, Thi Hirvihnn
P l. lll LllU l)lUU.I.UlJl HIIUDSL Ddlibly <l dLLILL C\-lualll.y llllb lb 1u1uu:1

reflected by the fact that under the slightest change of parameters the
topology of the phase portrait will undergo a qualitative change, switching
from the form of Fig. 4.5 to that of Fig. 4.4. We refer to this phenomenon
as structural instability. In the same sense a node, a saddle point or a focus
arising in a dissipative system is structurally stable. Hamiltonian (more
generally conservative) dynamical systems, although nongeneric and
structurally unstable in the abstract space of all possible dynamical
systems, are nevertheless generic from the standpoint of physics. They
remain robust under a special class of transformations, the only ones that
seem to be allowed by the laws of nature, which we already referred to in
Section 2.1 as canonical transformations.

-
e
9
E:
3
®
-
2 0
Q
=3
-
a.

~
=
Y
3
N
o

v

~
wv
~+

1]
3
v

problem of the hoop as a typ1ca1 example of a two- dlmenswnal
conservative dynamical system. The equation of evolution of this system
was derived in Section 2.1, eq. (2.8a). For the purposes of the stability
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Fig. 4.5 Phase portrait

ne tha e 0 N3
whnen the nmit K=y is

taken in eq. (4.26) and
Fig. 4.4. The fixed
point behaves as a
center

Im 2z

-5

analysis it will be convenient to transform this second order equation into
a pair of first order ones:

dﬂ/dt =7
dv/dt = (g/r) sin 6(4 cos § — 1) } (4.30)

According to the general procedure laid down in the preceding sections,

tha firct gton ic ta datarmine the ivad mainte haroe O i1c givan hy
LiW 1L OL ﬂl-\tl_} Loy LW Wwlwl il LW 1AM yUlllLD \US, U}’ Wilivil v US 13 5"\1.1 v
sin #,(4 cos 6, — 1) = 0. In the domain of variation of §, — 7 < # < 7, the

solutions to this equation are

Bo=0 (4.31a)

6, . =arccosA” (4.31b)

Tho firct calntinn avicte Fnr all maramoatar valiiac hit far the carnmd Ana tha
L llw LIL3LIVIUVIVLIL WALd WD LY all lJ(«l.L Giliwivi vcuu\.u), UL IV VW O TEIU UMW LW
condition 4 > 11is required. Referring to (2.8b), this means that the hoop

must rotate with an angular velocity o such that (cf. also Fig. 1.1)

w =, =I(g/r"? (4.32)
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The next step is to introduce perturbations around the fixed points,

0=20,+ 0
v=9Jdv

} 4.33)

Linearizing cqgs. (4.30) with respect to é6 and dv we obtain, using (3.27a)
and (4.15),

déd/dt = dv
/ (4.34)
7l
dév/dt ==[cos §,(Lcos @, — 1) —Asin? 650 -
r
In the notation of (4.17) this corresponds to
T—N A _g{1_1\ fard — A — 0N (A 18a
£ — V, [_\0 — r ll R IL} VL v — Uso — | "f-JJ(«l,

T=0,A, =%(12— 1) forf,=0, andiz1 (4.35b)

For A < 1 only (4.35a) has to be taken into consideration. One has
A, > Owhichin the classification of Section 4.3 falls in case (d3): the trivial

fixed nmn_t is stable in the sense of T yapunov and behaves lhike a center.

For A > 1, however, Ay < 0and case (b3) applies: the trivial fixed point is
unstabie and behaves as a saddle. Under the same conditions A, in
(4.35b) is positive and the nontrivial fixed points behave as a center. This
exchange of stability is in full agreement with Fig. 1.1 and the physics of the
problem as discussed in Sections 1.2 and 2.1. Notice that in the presence of
friction the situation would change in a qualitative way. Lyapunov

afnhilite wranld la ranld ad hy acumntatic o
Blaullll_y WULLIWG UL LUPI“L«D\J U] aa_y P LULIW D

unfold to become a focus.

We now turn to dissipative systems considering the Brusselator model
(egs. (2.44)) as a representative example. The linearized equations around
the unique fixed point (A4, B/A4) have already been written down in (3.28},

dx/dt = (B — 1)x + 4%y
dy/dt = —Bx — A%y
and the characteristic equation (eq. (4.17a)) reads
W —(B-1—A%0 +A*=0 (4.36)

Since in the notation of Section 3.3 A > 0, the fixed point can never be a
saddle. The discriminant

= (B—1— A%)? — 442
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Fig. 4.6 The five

mmaatlala
yuamuns

(nondegenerate)
configurations of the
roots of the
characteristic equation
Af s theas_Adimrangi o 1
Ul & LtilioA~ ullllUllDlUllal

dynamical system in
the complex plane.

can be further written as
P =[B—(A4+1)*1[B— (4 —1)%] (4.37a)
whereas the trace T 1s
T=B-1-— A2

As the parameter B varies while the second parameter A is kept fixed, the
fixed point switches from asymptotic stability to instability at 7= 0, or

B, =42+1 (4.38)

It can behave as node or focus, depending on the vaiue of B relative to
{4 — 1)? or (4 + 1)?, as summarized in the diagram below:

Stable node Stable focus Unstable focus Unstable node
— = ! - = B
(A_|)2 Bc=A2+| (A+|)2

4.5 Three variables and beyond

In a system involving three variables the characteristic equation {eq. (4.5))
around a fixed point will be an algebraic equation of third degree with real
coefficients, which can have either three real roots or one real and two
complex conjugate roots. Fig 4.6(a)-(e) depicts the various (generic})
possibilities for the positions of these roots in the complex plane, it being
understood that to each of these cases correspond cases (a')-{¢’) obtained

by reflection with respect to the imaginary axis. There exist, in addition,

Im w Im @ Im®w
(a) () - ()
o
) Re w T T Rew 6 = Re ©
Im @ lm m
(d) (e)
o o
—-— o

(]
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Fig. 4.7 Three-
dimensional phase
portrait around a fixed
point obtained from
umerical inte g'cui(‘}ﬁ
of the canonical form
of eq. (4.40): (a)

= —0.135,
O

=

(case (d) of Fig. 4.6).

degenerate cases whereby the real part of at least one of the roots is zero,
the real parts of two ro
equal, and combinations thereof. As stressed in Sections 4.2 and 4.3 these
are borderline cases signaling the passage from asymptotic stability to
instability. They are important in their own right, but since they can be
handled along similar lines as before we do not consider them in this
section and focus, instead, on some of the new possibilities arising from

the presence of an additional varlable In this perspective cases (a) and (b)
nf tha nnds

1NN
EINVEN ) i LI,

niuaate nair) are
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roots (not l‘\P]ﬁﬂg}ﬂU to a comnplex co

T3 1AV Uwilias

and caddla ~f
LIVIN W aiiv DLI.\ILLI\.’ v
two-dimensional case, and need not be considered further.

Cases (c) and (d) are new, since they are combinations of situations

corresponding to a node and to a focus. Writing the solution in the form

ha
\le

Fal T L LU el

xR =

€% + C,u, e (4.39)

and switching to the representation in which the linearized operator is
diagonal one may reduce the original (coupled) equations for the
perturbations x,, x,, X5 to a complex equation corresponding to the pair

..,.,.l nnnnnnnnnnnn Aty + 4L
1vdl ULV VOULIWDPOILIULIE U (1]

e vl e AL o

~AF 4l o nl vinn o P
Ot lllC bUllil}lCA UIEC11 Vaiucy wl’ wz aiivl a

third eigenvalue w,,

~
¥

dz/dt = (u + iQ)z

dg/de = wry! } 440

This entails that the fixed point behaves kke a (stable) focus in the
subspace spanned by the cigenvectors u,, uw,, while aiong the third
direction u, it is approached monotonically at a rate equal to ;. The
corresponding three-dimensional phase portrait is depicted in Fig. 4.7.
The trajectories are directed toward the fixed point following a funnel
converging to this point (a), or a paraboloid of revolution (b), according

PR, PR S e = 1% 1 1{'\0!\.\
to whether ncwl g <y < 0or wy < ncwl g < ] (Ar 101 d, 1960).
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Fig. 4.8 Three-
dimensional portrait
around a saddle-focus
(case (¢) of Fig. 4.6),
obtained from
numerical integration
of egs. (4.40) with

= —015, oy =0.05,

—~

=1,

Case (e) is by far the most interesting. In the same representation as
a}\r\ue t a uxed nnint hahavec in the ciihenace enannad hu i . ac a
UUve, Ll PULLIL ULayos 1l Ui SUUSpPalin SPQliiivia Uy sy, usy ao a

stable focus, while along the third direction u, the trajectory evolves away
from this point. In the three-dimensional phase space the trajectories
evolve away from the fixed point following an inverted funnel (Fig. 4.8).
This configuration, which is reminiscent of both a saddle and a focus, is
referred to as a saddle-focus. In the case (¢) of Fig. 4.6 the corresponding
fixed point possesses a two-dimensional stable manifold (u,, u,) and a
one-dimensional unstabie manifoid (u, ), but in the symmetric case {¢’) the .
stable manifold would be one-dimensional and the unstable one two-

dimencinnal
SARLAANWINANTILCL L

The importance of the saddle-focus in dynamical systems stems from
the fact that it combines in a single dynamics a stabilizing trend coexisting
with a destabilizing one, while allowing at the same time for oscillatory
behavior. In the linearized case the trajectories will inevitably tend to
infinity, but in the original nonlinear problem the exclusion of runaway
effects will force the stable and unstable manifolds and, consequently, the
trajectories themselves to bend and to remain confined. In the absence of
an attractor in the form of another fixed point or a limit cycle this may
result in a very intricate motion consisting of an aperiodic succession of
unstable stages removing the trajectory from the fixed point, followed by a
reinjection back to the vicinity of the fixed point. It can be shown
(Shil'nikov, 1965) that this will actually be the case if the parameters are
such that the system operates near a situation in which the stable and
unstable manifolds merge. This possibility, to which we have alluded

already briefly in Section 3.3B, implies the existence of homoclinic
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Re z
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trajectories. Such trajectories are structurally unstable since the merging
be fulfilled

c uiniieq.

condition reguires that certain egualities hetween nara ars

condition requires that certain equalities between paramet

But the important point is that, if some inequalities depending on the
cigenvalues of the saddle-focus known as Shil’'nikov conditions are
fulfilled, the destruction of a homoclinic trajectory will give rise to a rich
structure in phase space allowing for deterministic chaos. For this reason,
the saddle-focus and the associated homoclinic orbit can be regarded as
important organizing centers for chaos in three- and higher-dimensjonal

Avnminnl vatama Wa ctrace that tha Aavilaility allavwad gy tha ¢#laied
uyllallllhal yalblllﬂ YV OLIWVOD Llidl LIy 1IGALLY ll ] ALV Yy LR Uy CLIA LILIL

dimension is essential, since in a two-dimensional space a sequence of
bendings and reinjections would be impossible without intersection of the
trajectories, which is prohibited by the uniqueness theorem of the
solutions of egs. (3.6).

Homoclinic behavior has been found in the Lorenz model introduced in
Section 3.1 (Sparrow, 1982; Glendinning and Sparrow, 1984). An elegant
modél buuwulg the role of 1101‘1‘1061uuul.y in the onset of chaos has been
introduced by Rossler (1976, 1979). 1t consists of three coupled equations
with a single (quadratic) nonlinearity,

dx/dt = —y —z )
dy/dt = x + ay } {(4.41)
dz/dt = bx — ¢z + xz )

The characteristic equation around the fixed point x=y=2z=101s
@ +c—a)*+(1+b—ac)w+c—ab=0 (4.42)

and may generate, when the parameters are varied, a saddle-focus
satisfying the Shil’nikov condition. Furthermore when a =0.38, b =
0.30, ¢ = 4.82 there exists a homoclinic orbit, shown in Fig. 4.9. If ¢
decreases toward ¢ = 4.5 this orbit disappears and a chaotic attractor is

aanaratad the gtructure of urh1n]—1 ie chawn ih ]-_c‘ o 410 ((Fac
E\Illvl “l.vu CilW I U‘ru A YYLERAWALE LU LIRS YY L) L . [# ]

Nicolis, 1983).

Homoclinicity as a route to chaos arises in higher-than-three-dimen-
sional systems as well. There are some interesting new phenomena in
connection with the possibility that the stable and unstable manifolds
themselves can now be high-dimensional, but their detailed analysis is
beyond the scope of the present monograph.
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Fig. 4.9 Homoclinic
orbit associated with
the fixed point (0,0, 0)
of Rossler’s model,
eqs. (4.41), for
parametet values
a=0.38, b =0.30,
c=4.82.

Fig. 4.10 Chaotic
attractor obtained
from numerical
integration of Rossler’s
model, eqs. (4.41), for
a =032, b=0.30,

¢ = 4.50. The
trajectories are
injected on the same
side of the unstable
fixed potnt, a situaiton
referred to as spiral
chaos.

N
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Problems

4.1

4.3

4.4

45

4.6

2 Determine the fixed nointe and their lHnear stability of the

Show that the Semenov equation (eq. (2.47)) can admit up to three steady
state solutions and determine the linear stability of these solutions using

the cooling coefficient « as a control parameter. What happens when
consumption of reactants ts allowed (cf. also Problem 2.11)?

Rrusgelator in
russeiator mn

vl By e livy JaR L S

a CSTR under the conditions of Problem 2.6.

Derive eq. (4.42) and find the domain of parameter values for which the
trivial fixed point (0, 0, 0) of the Réssler model (eq. (4.41)) behaves as a
saddle-focus. Analyze the linear stability of the nontrivial fixed point of
the mode! (Gaspard and Nicoiis, 1983).

The Volterra-Lotka model (Lotka, 1924; Volterra, 1936) describes the

pfpdﬁfnf‘AﬂI“P v dvnamics in the form

lll or-prey dyna n the form
dx/dt = kx — sxy

dy/dt = sxy - fy

where x and y are respectively the prey and predator population densities,
k the prey birth rate, f the predator death rate and s the frequency of
predator—prey encounters. Determine the fixed points of this system and
their linear stammy‘ {a) if k is regarded as a comstant, {b) if a regulation in
the sense of Verhulst (Section 2.6) is introduced, k = @ — bx. Show that
under the change of variables # = Inx, v = Iny the equations are
transformed (in case (@)) to a Hamiltonian form and identify the effective

Hamiltonian (Kerner, 1957).

The Willamowski—-Rdssler model
Ky ka2
A+ X=2X X+Y¥Y=2Y
k_y k_»
k3 k4
A+ Y=A, X+Z=A,
k_3 k_a
ks
A, +Z =27
k_s

PR -

gives rise to chaotic dynamics while satisfying all ihe requiremecnts
imposed by thermodynamics and chemical kinetics (Willamowski and
Rassler, 1980; Geysermans and Nicolis, 1993). Determine the fixed points
of the rate equations and the parameter values under which saddle-focus
behavior is observed in the simplified case k_, =k_,=k_, =0,
k,=k,=1

Fig. 4.11 represents (left) a voltaic arc connected in series with an
inductance and shunted by a capacitance and (right) the dependence of

‘the voltage across the arc on the current i. {(a) Derive the equatlons for
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Fig.4.11

4.7

4.8

m

the current i and voltage u across the capacitance. (b) Determine the fixed
points and their linear stability using the slope of the w(i) curve at these
points as a control parameter. (¢) Study the cases C =0, L # 0 and

C #0, L = 0 and compare the results with the ones obtained in (b) in the

limit of very small C or L (Andronov et al., 1966).

The global energy balance of the planet earth is described qualitatively by
the equation

C(dT/dt) = (incoming solar energy) — (outgoing infrared energy)

=0 — o(T)] — ecT*

the solar constant, # the albedo, & the Stefan constant and & an emissivity
factor accounting for deviations from black body radiation (Crafoord and
Killén, 1978). By modeling the albedo as a piecewise linear function of T
with two extreme horizontal branches and an intermediate one of

nm:mfuna slone, show that this eguation may admit three steady state

< sp at Uil cgualionl Lay atlllll LU LAY Slall

SO]LIthI‘lS, two of which are stable and one unstable. Discuss
quantitatively the case:

where T is the space averaged surface temperature, C the heat capacity, Q

« =08 T<T,
o= 0.25 T>T,
o=a—bT T, <T<T,,a=275b=00085

Parameter values: Q@ = 340Wm~ 2, ¢ = 0.61.

A qualitative description of the coupling between mean ocean temperature
and sca ice cxtent is provided by the system of equations (Saltzman,
Sutera and Hansen, 1982; Nicolis, 1984)

dn/de = 8 =y
d6/dt = b0 — an — %0

where n and @ are, respectively, suitably scaled deviations of the latitude
of sea ice extent and of the mean ocean temperature from a reference
state. Compute the fixed points of this system and determine their type
and stability in terms of the parameters q and b.

R
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5.1 Introduction

The importance of linear stability analysis is to show that a qualitative
change of behavior may occur within a single, well-defined dynamical
system beyond the critical value 4, of the control parameter at which the

SYSiem SW] tches from dbymptouc bllellly to lIlb[lelILy HOWGVGI as soon

as one enters the domain of instability the linearized equations become
inadequate, as thev predict runaway to infinity, In order to investigate the

existence of new physically acceptabie solutions which emerge beyond the
threshold of instability the full, nonlinear equations will have to be
analyzed. This is the objective of the present chapter.

The starting point is given by egs. (3.26),
dx/dt = £(4)-x + h(x, 1) (5.1

ALV s crzsmse oA vt livnmcias ¥
YYo suppuoae l.l dal lilicadl sla

o

along the lines of the previous chapter has established the existence of a
critical value A_ such that the linearized operator & (/L;) admits an
eigenvalue with vanishing real part, Re w, = Re w(4,) = 0. The linearized
version of (5.1),

l—Fh--s

dx/dr = £(1)-x (5.2)
then admits at 4 = 4 a solution of the form (cf.eq.(4.1))
x = ue™e) = y el (5.3)
Substituting into (5.2) and setting 4 = 4_ one finds that
el —£L@4)J-u=0 (54)
in other words, the operator

J, =iQ1 — LG (5.5)
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admits at least one eigenvector u corresponding to a zero eigenvalue. We

alen exnress thig nronertv hu the statement that J admits a nontrivial null

CUSU WAL oS iRl PRI R Y LAEW SLGQLTIIRLALL LIRS aF p SAUILLILS @ Fil R

space. The question is now, what is the behavior of the solutions of the full
nonlinear problem (egs. (5.1)) for values of the control parameter 4 in a
certain neighborhood of 4. The following two theorems give a surprising-
ly comprehensive answer.

Theorem 1 (Sattinger, 1972). If

x = 0 remains a solution of (5.1) in a neighborhood of 4_,

w, is a simple eigenvalue that is a simple root of the characteristic equation
(or more generally a root of odd multiplicity)

then 4 = 4, is a bifurcation point, in the sense that there is at least one new
branch of solutions cutgoing from (x = 0, 4.). This branch either extends
to infinity or meets another bifurcation point.

T’annv/n 2 If v i o girnla aiganunliia nnd tha ndditiAnnl feaugnorealisg
CuUr ik & F Y wc 1y a Dllllplb blscllvalub QLI Ll auuuiLiviiatt Lf o ver ot
condition is satisfied,
d
CRewr)|  #0 (5.6)
dA‘ A=1

guaranteeing that the Rew versus A curve in Fig. 4.1 crosses the A — axis at
A =4, then

the bifurcating solutions will be stationary if Q. = 0 in (5.4);

the bifurcating solutions will be time-periodic if Q, # 0 in (5.4) (Hopf
bifurcation);

in both of the above cases supercritical branches (bifurcating in the region
of 2-values for which the reference state has lost its stability) are stable and

arshanitinal Anace hafiiersats nn in tha sracian nf J=1rrx'1||ao frar whirh tha
JUVCT LWL VLIV (UiLul vallillyg 1l LG 1ALV VL AT vadlubs 1V wil l wIiE LIl

reference state is stable) are unstable, provided that the remaining
eigenvalues of #(4,) have negative real parts.

Fig. 5.1 summarizes the various possibilities

Rather than reproduce here one of the proofs of these theorems found in
the mathematical literature we shall adopt a physicist’s constructive
approach in which the validity of the theorems will be verified by the
analytic construction of the solutions of the full nonlinear problem. This

approach is outlined in the subsequent sections.
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Fig. 5.1 The three
elementary
bifurcations at a
simple eigenvalue
arising under the
conditions of theorems
1 and 2: full and
dotted lines represent,
respectively,
asymptotically stable
(S) and unstable (U)
branches of solutions.
In (@) and (b) the
amplitude of the
solution is plotted
versus the control
parameter; {(c)
schematicaily depicts,
in addition, the
continuous family of
solutions
corresponding to the
different vaiues of the
phase of the
oscillatory motion.

XX’ g,

We have repeatedly siressed the difficulties arising in the solution of
nonlinear problems. We therefore give up the idea of obtaining exact
resuits of a global character, and limit our attenti

B

on to the local behavior of
the solutions in the vicinity of the bifurcation point 4,. Furthermore, we
suppose that the new solutions emerge at 4, in a continuous fashion, tht}é
excluding vertical branchings or jumps.

These hypotheses allow us to expand x in the vicinity of 4, in power
series of a small parameter. The iatter must certainly be related to A — 4,
since at A = A, the norm | x| of the solution goes to zero There is no

reason, ho

LB iay

]F cince In

AN waEny Ganalenas Ll Qasawuwl LV 1 GElEtens Al

wever, for this small parameter to bhe 1 — ,3“

principle nothing guarantees the analyticity of the squtlons ind— 4.
Later on in this chapter we shall in fact encounter several examples of
manifestly nonanalytic dependence.

— A s LS M.,
U S
RV ™~
S ™~
(a) (@)

transcritical bifucation

[%4]

Hopf bifurcation
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To allow the system itself to fix the dependence of the solutions on
t

A — A we introduce an anxiliarv emallness narameter ¢ with reshect

A, we introduce an auxiliary smallness param h respect
which we expand both x and 2 — 4_:

Q

v e W i f‘2‘r [ PR A
A G.t’\l T G Az T \J.I}
A—do=c¢y, +e%, + - (5.8)

where the coefficients y,,7,, ... are to be determined from the perturbation
analysis.

Eqgs. (5.1) feature not only x but aiso its rate of change with respect to
the independent variable ¢. At criticality, and for the case of Q =0
considered in this section, eq. (5. 3 entails that at the level of a linearized

AL A W ARl walad DUACLAN ARy a2 LAl L A - [ARN FON LD Y A

description x does not vary at all with time after a transient period during
which the stable modes (eigenvalues of %(4,.) with negative real parts)
have relaxed exponentially to zero. By continuity, one expects that for 4
close to A_ the solution x of the full system of egs. (5.1) will be a slowly
varying function of time. This critical siowing down, reminiscent of the
theory of equilibrium critical phenomena (Stanley, 1971) suggests the

intradnctinn af naw mare relavant time cralac r_ ate throuah

AALYL VA UIWRLAL/ AL VL W "’ ALIV/ AN LAWiW VELLIL HILLAW OWALAWD lrl’ 92 Lo B L 3 lLUuE’lJ
g=aa+zsza+--- (5.9)
p | ~ n) ‘
ar Uty OUT4

We shall refer to the scheme defined by egs. (5.7)5.9) as multiscale
perturbation expansion (Keworkian and Cole, 1981). Under certain
conditions met in typical applications the convergence of this scheme can

be gunrnn‘rppd but the radius of convergence can, in eral, not be

La i e vile &A% g ALV R 3% LERAZ m nerat

determined.

Substituting {5.7)-(5.9) into egs. (5.1) we get, to the various orders in &,
the following systems of equations:

A Ofe)
We obtain a single contribution,

L(A)x, =0 (5.10)
B O

We obtain four kinds of contribution. First, the operator £ (4_) may act
on the second order term x, in the expansion of X, eq. (5.7). Second, we
may evaluate the operator £#(/) at a 4 close to 4., and have it act on Xy

cohift xiill ba oy mmacond Foeian o 11, afiegt taver ~fa Tavulae avrmanoist

Tllib Sniit Wil oc CA}J‘].CDDCU iuliiially U_y LllC OfStiCrini oia 1 d_le'l GAPCLII:uUll
of #(A) around A, and will thus yield the contribution 7y, ,(4,) - x,,
where derivatives are denoted by subscripts. Third, to order £* we will
have a contribution coming from the quadratic part ofhin eqgs. (5.1) which
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will be denoted formally as the second order term of a Taylor expansion

around zero, Finally, to this order we will have a first contribution of the

LU i vy A ATECIER ¥ g WA LAELD VLUAWE VYW O VYLAL MG YW B LLIOE GULIRLIU W LI Wl vl

time derivative in the left hand side of (5.1) featuring the new time scale ;.
We thus obtain the full equation to order &*:

1
L)Xy = =0 & (4.) %, — 5hxx‘x1x1 + 0x, /01, (5.11)

:q2

An example of explicit form of the various operators appearing in this
equation is given in Appendix A2.

C O£
Proceeding in the same manner as above we obtain
LA)x, = —y, L) x, —v, L A1) -x —LIn2ep (1 ).x,
c/ 3 1 AVTTC/ 2 2 AVTTC/ 1 241 AANTTC/ 1
1
- %?lhxxk(ac)'xlxl - ghxxx(lc)'xlxlxl
ox; 0x
—h, ()X, + 22+ o F=q;  (512)
oty Oty

Similar expressions can be written to an arbitrary order in &. The initial
nonlinear problem has thus been replaced by an infinite sequence of linear
problems. However, as we shall see shortly, egs. (5.10)-(5.12) already
contain the essential information needed for understanding bifurcation.

5.3 The amplitude equation: transcritical
bifurcation

We want now to construct the solutions of eqs. (5.10)-(5.12). We potice
that to O(g) the structure of egs. (5.10) is identical to the linear stability
problcm eq (3.29)) at the criticality point 4 = 4. The solution takes

AAAAAA £ (A AN P o o oo WY
therefore the form (u €. 4.1)I10T W =, = U)

1 =T, Ty, 0 (5.13)

We have factored out the amplitude ¢ of the solution, which is
undetermined at this stage in view of the fact that eqs. (5.10) are
homogeneous. It is therefore understood from now on that u is completely
determined from the linearized problem. For instance, in a two-variable

oxotmamn sream boaoca Tae oo A 1 £0

system we have from (4.16):
LA Juy + L (A, =0
LA uy + Lys(AJuy =0
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with &, (4)L;,(A) — £ ,(A)Z ;5 (A.) = 0 from which u can be com-

1
u=| guuc)} (5.14)
£,5(4)

Furthermore, since the slow time does not appear explicitly in egs. {5.10)
we have allowed in (5.13), for a dependence of ¢ on the various slow time
scales introduced in the perturbative expansion, eq. (5.9).

We next turn to O(e?). Inserting {5.13) into (5.11) we obtain

g(lc).xz = _C}’lgl(ic)'u - %czhxx(lc)'““ + ;Tcu = qZ(“> ¢, Ac)

1

These relations constitute an inhomogeneous set of equations for x,, si

the right hand S]de depends on the solution of the equations of the lower
order. One is tempted to write, formally, its solution as

Xy~ & HA) -, (5.16)

The point, however, is that £(4.) is not everywhere invertibie since by
(5.4) {and Q_ = 0) it possesses a nontrivial null space. In such a case the
action of ﬂ”m inverse operator accordine to (5 16) will produce divereent

Fiihe BRIV RAOL UPRIAINL QULAAJIRRZIE VW R\ vea VY Saa PRV AL FoAe

results, unless the parts of q, responsible for the divergence can be
eliminated. An important result of analysis, known as the theorem of the
Fredholm alternative (Sattinger, 1972; Iooss and Joseph, 1980) prescribes
how this can be achieved. To formulate the theorem one has to endow the
space with a scalar product and define the ddjoint operator & ¥ (4_). In the
present case of dynamical systems involving a finite number of variables

thacs g gitvsmmly Fallag tha anianatinanl Jafliaitiane Afcralos men

LIICDU wall bllllpl_y 1UILO W LIIC COnvenuodnal UCllll.l.l..lUllb Ui dlcaladl pl Udubt d..l.ld
adjoint of a matrix familiar from linear algebra (Friedman, 1956). For
instance, taking once again the example of a two-variable system,

(#2000 #£:.00)
\&:00) £5,02.)/

Let us introduce the null eigenvector u™ of £~ through

L) ut =0 (5.17)

€ (A)

ha eigh
1ie E

hand Slde q, of (5 15) shoul be rthogonal (with the choice of scalar
product discussed above) to the null eigenspace of #*(1.),

u',q,)=0 (5.18)

-

tive bupuxawa, ulcu, that
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This relation, also refeired to as the solvability condition, follows
Sh"ainh tfarwardly hy taline the cralar nraduect of hoth qidec nf eq (5 15)

vl ul&ll AVIVWALMLY UY LGRiise VIl DLl pPlUMULL Ul UULIL iuwvg e (Vi)

with u* and by applying subsequently the definition of the adjoint
operator. The point is that just like u, the vector u™ is completely
determined by (5.17). Furthermore it is unique, since we consider
bifurcation at a simple eigenvalue. Eq. (5.18) reduces, therefore, to a single
equation for the undetermined amplitude ¢. To find its explicit structure
we substitute q, as given by (5.15):

et Z,000) — 32t g (0w + 2 @t ) = 0

ot,
or
de/dt, =y, Pc — Pyt (5.19)
where the coefficients P, and P, are given by
Pi= @', 2,000
(u™,u) ‘
P,=— é(uﬂhx (A.)-un) (5.20)
2(ut, u) xee
They are numerical coefficients determined entirely by the structure of the

mitial aAaniatinng and tha nlhitinn of
l Licll bbluul.luuo (YR LN Ll-l\l D\Jlutl\_}ll w1 L

llnearlzed operator.

In addition to ¢, eq. (5.19) still features the so far undetermined
parameter y, . Now, one may notice from the first equation (5.7) that the
important quantity determining x to the dominant order is ex, rather
than x,. We therefore introduce the normalized amplitude

fe 0o 3
1w \JI‘S\JII Yo

z=¢C (5.21)

We further multiply both sides of (5.19) by ¢? and eliminate 7, and t, in
favor of the initial physical parameters 4 — A_ and ¢, through inversion
{again to the dominant order) of (5.8) and (5.9). Eq. (5.19) is then
transformed to

dz/dt = (A — AP,z — P,7* (5.22)

As long as P, # 0 it admits two fixed points
F0 =0 , } (5.23)

=(l—a)="

zsl ( c) P2

Plotting these solutions in terms of X one finds the graphs (@) or (a') of Fig.



5.3 Transcritical bifurcation 101

5.1 according to whether P, /P, is positive or negative, these being the two
nnccithle farme nf tra nor-r;h'nol hifurratinn Tha ctahility Af tha hranchecg ic
PUDDIUIV 11130 W LICGALIOV I LI GL AT ML AR LINIL. 1 LI Dl.aUl].lL_y Ui Uil UVidiliviivYy 1LY
found by setting

z=Z,+(

and by linearizing in {:
di/de = [(2 — 4)Py — 2Pz |{
yielding a characierisiic exponent
=(1—A)P, — 2P,z

or:

w=—(1—21)P, forz, =z,=(4A— }.c)gl— £ (5.24)
P, J

To evaluate the sign of P, we differentiate both sides of the eigenvalue
equation (4.2a) with respect to A and evaluate the result at the critical
point A = 4,

Li(t)-u+ L), = [%—l u+ ou;

.

where u = u(4_) is the critical eigenvector. Taking the scalar product of
both sides of this equation with u* and using (5.17) we obtain, recalling
that w_ =0

(u+,21(ic)'u)=[ﬂ] (U™, u)

P, =[ T JAC (5.25)

la Bl 4 L--,-.. Li-z4 dla i ;o cmsamenca e PR 2
LIl 15 DuUutL L CApICbbJUl.‘L prcd[lllg 111

1 1S lD

the transversality
condmon (5 6). We may assume without loss of generality that
(d(z_)/d,/l), > 0, hence P, > 0. Eas. (5.24) imply then that t

m the nontrivial
(bifurcatmg) branch z,; is stable in the range A > A_, in which it is
supercritical, and unstable in the range 4 < 4, in which it is subcritical.
The above analysis provides one with the constructive proof of
theorems ! and 2 of Section 5.1 for transcritical bifurcation. A number of
important points that have emerged from the analysis deserve special

mention.
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A kY

(i) Eq. (5.22)is universal, in the sense that its form is independent of the
a o nfth

[l
-

e nndarlving madal The latter entare anlu thranch
IV UL Uv BliuCiiyillg MOoGEL. 1 N8 1atilr eniers Ullly iU UEIL

the numerical values of the coefficients P, and P, . All dynamical systems
undergoing a transcritical bifurcation are thus described, to the dominant
order, by this equation. For this reason we shall refer to (5.22) as the
normal form of transcritical bifurcation.

(il) While the original system is, in general, a multivariate system,leq.
(5.22) is a single scalar equation. In the vicinity of the bifurcation there is
thus a dramatic reduction in the description of a dynamical system in the
sense that the only relevant variable appears to be the normalized
amplitude z, which will be referred to for this reason as the order parameter
(Landau and Lifshitz, 1959b). We call the reduced subspace of the full
phase space in which the dynamics of the order parameter is taking place
the center manifold (Guckenheimer and Holmes, 1983). All other variables
follow z passively according to ¢q. (5.13). This enhances enormously the
power and range of applicability of bifurcation analysis as well as the

importance of low-dimensional dynamical systems.

5.4 The amplitude equation: pitchfork bifurcation

The analysis of the preceding section obviously fails when P, = 0. At first
sight this would seem to be a very exceptional situation, but on a closer
examination of eq. (5.20) one realizes that it may be typical in systems
displaying symmetries. Such symmetries are manifested most naturally in

mraonannn Af cmotiol Adamesna ~AF fonnd s on urn ann Brutlha MNMhoetan L
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but may well subsist when the reduction to a finite number of variables
described in Section 3.1 is operated.

Be it as it may, an immediate consequence of P, = 0 in eq. (5.19) or
(5.22) 1s that the normal form equation is reduced to its linear part which
shows unphysical runaway behavior beyond bifurcation unless, of course,
it reduces to a trivial identity. This will be so provided that

Se/oe, =0 } (5.26a)

The solvability condition (5.18) being still (trivially) satisfied, one may
solve the simplified second order equation (eq. (5.15)) to obtain

Xy =L ') [~ *h,,(4) - uu] + cy(t,)u (5.26b)

where we have added to the particular solution of the inhomogeneous eq.
(5.15) the general solution of the associated homogeneous equation. To
determine the amplitude c one has now to turn to the third order equation,
eq. (5.12). For y, = 0, no t,~dependence, and x,, X, given by (5.13) and
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(5.26b) this equation simplifies to

L)Xy = —cy, P4 ) u+ _jc u— icth, (A,) uun
Ts
+ %C"’h (A’CJ “{g— (;tc)‘[hxx(&c)'u“]}
- CC2hxx(A«c) llll - q3(ll, C, ic) (5.27)

These retations constitute again an inhomogeneous set of equations, this
time for x,. To compute this unknown vector one must ensure the

Y o I ol IR G I 1 a4l - € 10w
invertibility of £{4_) through the solvability condition (cf. eq. {5.18))
+ —
(u >q3) - 0 (528)

Substituting q, from (5.27) and following the lines of the preceding section
one finally ends up with

R | n L RV S, 2 NN o ¥
where P, is given by the first relation (5.20) and

(jl)_-,[% XY
ut,u

"3

3

Notice that in view of P, = 0, the solution of the homogeneous equation
does not contribute to the solvability condition. Switching to the
normalized ampiitude z = & and eliminating y, and z, in favor of the
physical parameters A — A, and ¢ through the inversion of eqs. (5.8) and

(5N naw with vy — Nand na + —dermendanca) ane can write (5 2Q) 1 mn H‘\
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more suggestive form

y_ 4, Fa] o \rﬁ’ n 3 f& 1
az/ai = {A — A )Pz — P32z (5.31

N’

c

As long as P; # 0 this equation may admit up to three fixed points,

Zgo =0
= £ [(4 — A)P /P51 (5.32)

Plotting these solutions against A one finds the graphs () or (b’) of Fig.
5.1, according to whether P,/P, is positive or negative, these being the
two possible forms of pitchfork bifurcation. The stability of the branches
can be studied exactly as in the previous section, the result being that
supercritical branches are stable and subcritical ones unstable. We have
thus extended the constructive proof of theorems 1 and 2 of Section 5.1 to

clude the case of puCthi‘k bifurcation.

The comments at the end of Section 5.3 apply fully to eq. (5.31) as well:
it is a universal equation, effectively reducing the initial multivariate

problem to a single variable. All dynamical systems operating in the
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vicinity of a pitchfork bifurcation can be cast into eq. {5.31), which for this

reason can be regarded as the normgl fnrm for thig tvne of hifurcation
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A new feature not encountered in the transcritical bifurcation is that at
the stationary state the order parameter z depends on the distance from
bifurcation in a nonanalytic manner (eq. (5.32)). This is the mathematical
manifestation of the qualitative change of behavior across a pitchfork
bifurcation and, more specifically, of the fact that for 1 as close to 4_ as
de31red one finds two branches of coex1st1ng states havmg identical

surveyed in Chapter 1.

5.5 Limit point bifurcation

The basis of our analysis of the preceding sections was the assumption,

spelled out explicitly in the statement of theorem 1 of Section 5.1, that the
reference state remains an exact solution of the system equations in a
neighborhoad of the bifurcation point. This means, in particular, that
F(X,, 4) and all its derivatives with respect to 4 vanish at A = A_. In this
section we examine the type of behavior that can take place when these
conditions are not satisfied. To simplify notation we limit ourselves to one
variable,

Let X, be a reference state that exists, say, up to the value 1, of the
control parameter 4, F(X,., A.) = 0. Suppose furthermore that at 4_ it
loses its stability through a simple real eigenvalue that becomes zero,
(0F/éX), = 0, where the subscript ¢ indicates that the derivatives are to be
evaluated at X, and 4.. We expand the evolution equation

dX/dt = F(X, ) (5.33)
around (X, 4,)
d—X_"b(XscSAc)_I'— - sc)+ ('J'—/]‘c)
dr \ox /. ) \az )
3 ZE) KXt (5.34)
\OX ) x T

The first two terms vanish on the grounds of our assufnptions.
Introducing the notation

z=X—-X_ h!
= (OF/0h)y (A — A;) % (5.35)
4 = —%(62F/6"2stc, g )

-
k
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Fig. 5.2 Dependence z,
of the amplitude z, of S
the solution on the
parameter u in the
vicinity of a limit
point bifurcation. /
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1

z,, = + (u/q,)"? (5.37)

which exist in the region pu > 0if ¢, is positive and u < 0 if g, is negative.
They are plotted against 7 (for qz > 0) in Fig 5 2 To check stability we set

dC/d[ = _ZqZZs,iC

This shows that if g, > 0, the positive branch z, , is stable and the
negative onc z, _ is unstable. We conclude that as u decreases from
positive values, the stable and unstable branches ‘collide’ at ¢ = 0 and
subsequently are annihilated. For this reason we call ¢ = Qa limit point, or
fold. Its presence signals once again the appearance of singularities, as

2Rl ARG VLALE BGAil A% il (LA AGa AL

illustrated by the nonanalytic dependence of z, , on u in eq. (5.37).
The above analysis extends straightforwardly to the multivariate case
One still ends up with an equation of the form (5.36) satisfied by a suitable
combination of the original variables, which can therefore be regarded as
the normali form of a dynamicai system operating in the vicinity of a iimit
point bifurcation (Guckenheimer and Holmes, 1983). A widely encoun-

tered realization of this type of bifurcation is when two fixed r\nlptc that
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coalesce at 4 = 0 behave for i # 0 as a stable node and as a saddle, in the
sense of the classification of Sections 4.3 and 4.5. For this reason it is also
referred to in the literature as a saddle-node bifurcation.

5.6 Kinetic potential, sensitivity, structural
stability

The reduction of bifurcation of steady-state solutions at a simple real
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cigenvalue to a one-dimensional dynamics entails the interesting conse-

quence that the nnrrpql form eguations (3.22). (5 ’11\ or (5. ?F\\ derive
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necessarily from a potential,
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with, up to an arbitrary constant,

2 3
= —(4— ic)Pl% + PZ% (transcritical bifurcation) (5.39a)
. 4

U=—(~Ai)P,5+P z— (pitchfork bifurcation)  (5.39b)

—
h
9
O
o]

“—

The structure of the potential U bears a straightforward relation with the
fixed points of the dynamical system and their stability. Indeed, by (5.38)
the fixed points are extrema of U and vice versa

(BU/dz), =0 (5.40)

S
Caddscn o = - ¥ A“,J 1 .......... (& 20 wxrbblh cncammnn t b P omiva svmmrr 2 loe
hlwiRg| 15 L = L T 13 dlld llCdllLlllE [J 0} WiliLll lCDpUhl LY (5 Ullv 1L Jd._y idV)

t
cast the sta‘mhty problem in the form
difdt = — (2U/0z%). ¢

It follows that:

if z, is a minimum of U, (8?U/dz? ). >0 and z is stable;
if z_ is 2 maximum of U, (62U/az7') < 0 and z, is unstable.

|
L

ig. 5.3 desc
as the underlying dynamical system undergoes a pitchfork bifurcation,
choosing, to fix ideas, P, > 0 and P, > 0. We notice a striking analogy
with the Landau theory of order—disorder transitions or the van der
Waals theory of liquid-vapor transition {Landau and Lifshitz, 1959b;
Stanley, 1971; Ma, 1976) with the notable difference that U is here not a

thermodynamic potential but, rather, a kinetic one determined by the

tha halias
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the nonanalytic dependence in eq. (5.32)

bty
<
[£]
Jagt ]
o
¢
(7]
P

4+~ Fa Pt
S LU FIe )

Zo~ 1A — 4,12 (5.41)
is also encountered in Landau theory, where the role of the control
parameter is played by the temperature. In the theory of critical
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Fig. 5.3 Kinetic
potential associated
with the pitchfork

bifurcation. ea

R % U

{5.39b). Parameter
values PPy, = P, = 1.

phenomena the exponent 1,2, referred to as critical exponent, 1s character-

istic of a mean field description. which ow known to break down in the
- WAL YY
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immediate vicinity of the critical pomt (Ma, 1976). In dynamical systems
with a finite number of degrees of freedom the mean field exponent is
exact, but qualitative changes may be expected in spatially extended
systems as discussed further in Chapter 6.

Despite the above mentioned appealing analogies one should refrain
from identifying bifurcations in nonlinear systems under constraint with

equ 1 lhritin mhnooe trnﬂa;f'

arnmis hasia Af thasa fura ~la
\‘l llUl [FS o] l_llla.D-U

ansitions. The microscopic basis of these two classes
of phenomena is indeed very different. When fluctuations are incorpor-
ated in the description these differences show up in a number of properties
such as, for instance, the parameter values at which the coexisting
attractors z_ and z, are equiprobable (Nicolis and Turner, 1977; Nicolis
and Lefever, 1977). Another major difference is that, contrary to
equilibrium phase transitions which are mediated entirely by the inter-
molecular forces, bifurcations in systems under constraint i““lg about
space and time scales which are macroscopic.

An alternative, interesting vision of the three fundamental bifurcations
at a simple real eigenvalue can be achieved when one realizes that the limit
point bifurcation can actually be viewed as the result of an imperfection
perturbing a transcritical or a pitchfork bifurcation. Consider, for
instance, the equation

dx/dt = ax® + bx* + ex+d

which reduces to the normal form of pitchfork bifurcation for b =

CD
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Fig. 54 The regions
of existence of one and
three real solutions of
eq. (5.42) in parameter
space.
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and to the limit point bifurcation for g = ¢ = 0. What happens when all
e b

long as it is not strictly zero, by a change of time scale and the quadratic
term can likewise be eliminated by a shift of the variable x. One then
obtains the canonical form of the cubic equation

dz/dr = —z3 4+ Az + 4 (5.42)\
=&/ v T sy

where t=!a"'|t,z=x —b/3|a|, 2 and u are combinations of the
original parameters and the negative sign in front of z* accounts for
stability.

We know from clementary algebra that e 12) can have up to three
fixed points. Moreover, as the parameters vary the three solutions merge
and we are left with only one (real) solution. One can determine a relation

between parameters separating these two regimes. specifically,
—433 + 2742 =0 (5.43)

These curves are represented in parameter space in Fig. 5.4. The region of
three real solutions ends at a point (the origin in the figure), in which there
18 a singular dependence of 2 on p. This i1s known as a cusp singularity
{Thom, 1962).

Figs. 5.5(a)and () provide two different views of the dependence of the
solutions on the parameters. In Fig. 5.5(a) z, is plotted against u for fixed
A. The resulting S-shaped curve indicates the coexistence of multiple

15 ~
n
-
one solution
A
_ 1 }
- 13 2

three solutions
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Fig. 5.5 Effect of
parameters in the
bifurcation of steady
state solutions of eq.
(5.42). (a) Hysteretic
behavior of the
solutton at fixed A
(here A = 1), as the
parameter y is varied.
The limit point
bifurcation remains
robust. {b) Destruction
of pitchfork
bifurcation when the
parameter p, acting as
an imperiection, is not
identically zero (here
u=0.05).

solutions for a certain range of parameter values. Stability analysis
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two of these
simultaneously stable. The bistability region ends at the limit points g,
and y, in the vicinity of which we see the behavior shown in Fig. 5.2.
Under these conditions an increase of i beyond u, and up to u,, followed
by a variation in the opposite direction, will lead to a hysteresis cycle
reminiscent of some of the experimental facts surveyed in Chapter 1.
In Fig. 5.5(b} z, is plotted against A at fixed y. We now obtain two

Aafinmad fawv 1 yalivag ~F ] “wd tha ~thas
O1ic, \1 }, aCNnea 10 au vaiues Gi 4, aiia the ountl, \L;,

defined for A > 1 and exhibiting a limit point singularity at 4, For A < 1
only one stable solution is available, but for A > 1 we have bistability as
before. We realize that for no nonvanishing | x|, however small, can the
pitchfork bifurcation (Fig. 5.1(b) and Section 5.4) be observed. The
imperfection expressed by the presence of p therefore destroys this
bifurcation. In contrast the limit point bifurcation proves to be robust,

b][l(./f.', ll lb IECOVCIGU l[l DUL[I Flgb .) _)(u) dllu [U} Dl.ll ll /L dIiU ,u are Vd.llC(_l
simultaneously there will always be a particular combination of values
(u=0, A going through zero in our case) for which the pitchfork
bifurcation wili be recovered, as the system will be able to traverse the
cusp singularity in a symmetric fashion.

The above discussion illustrates the deep concept of structural stability,
to which we have already alluded in the preceding chapters. It shows that
certain phenomena, such as the pitchfork bifurcation, occur only if the
parameters present satisfy at least one equality. Inasmuch as in a physical

system such a strict reanirement will he difficult to meet. we expect that
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these phenomena will disappear under slight changes of parameter values:
we describe them as being structurally unidtable. On the other hand there
exist other phenomena, like the limit point bifurcation, that persist (even
though they may be shifted) under changes of the control parameters
affecting the structure of the evolution laws; these we call structuraily
stable. To account for the full set of potentialities of a given dynamical
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system, including the structurally unstable situations delimiting different

tunace nf etrctnrally ctahls hehaviae it 3
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sufficient number of parameters. This number depends on the type of
phenomenon to be described and on the degree of nonlinearity — for
instance, it is equal to two for the full classification of bifurcation
phenomena in the presence of a cubic nonlinearity (eq. (5.42)). A more
comprehensive study of this question brings us to the concept of universal
unfolding and to catastrophe theory (Thom, 1962; Dumortier, 1991) whose
technical details are beyond the scope of the present monograph.

In many physical systems imperfections of the type studied above arise
in the presence of external fields. In chemical reactions, when certain types

1e AQ t1al ta he ahla tA contral a
SLA UL Uvila vaUl, 1t 13 vca\dl IOl WU UV alav U LUV a

of external constraint related to pumping of material in the reactor are
present, imperfections may likewise arise. This is nicely illustrated by the
second Schlogl model (eq. (2.45b))

dX/dt = k,AX? — k, X + k,B — k, X (5.44)

Introducing the new quantities

X
=1, = k,(k, A/3k, )t
Gy T RaABR)
ks 1 -k 1 k,B
=32 o =03 S+ 42
k, (k,A/3k,) ky, (kABKE ik A/K,)

(5.45)
ane pan chanls ctratghtfarcgardly that tha 1nitial fanr.naramatar gugtam
Vil Witll il Ulluléll‘l\.’l waluly LAl LLEG HMIILICR]l 1V UL Palalll\#lbl D_yblblll
reduces to a two-parameter one, described by eq. (5.42). The ‘imperfec-

tion’ y is, in principle, present as a resuit of pumping A and B in the
system. But there exists a relation between 4 and B, given by 4 = O ineq.
(5.45), for which its effect on the evolution of the concentration variable is
canceled. The system then undergoes a pitchfork bifurcation.

5.7 The Hopf bifurcation

We now turn to the case where, at the critical value of the control
parameter 4 = 4_, the imaginary part Q_ of the (simple) critical eigenvalue
o, of the linearized operator (whose real part vanishes by the very
definition of criticality) is nonzero. According to eq. (5.3) this entails that
at 4., x varies periodically on a fast time scale, given by 27/Q_. As
explained in Section 5.2, in the vicinity of A, an additional siow
time-dependence is expected (crltlcal slowing down). To account for all

thaga ﬂA(‘(‘1L\I]I"IAS X

hoaya tn o r\f tha milticral artnirhatian avnn
I.ll-\.rD\t WDD LFLLILIL L
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of Section 5.2 and replace eq. (5.9) by the new scaling relation

=
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d 0 d L, 0
- = nsc_ _|L S _TL 82 _TL {5.46}
dt oTr ot o1,

fast scale

Witheq. (5.46),eqs. (5.1) may now be solved perturbatively, by expanding
as before x and 4 in power series of ¢ (eqs. (5.7), (5.8)). We briefly outline

=L ool Mo Vg W ULARALY RSl

the structure of the equations of the first few significant orders.

A Og)

We obtain an additional contribution to (5.10) arising from the presence
of the fast time scale:

9. 21— 2()]x, =0 (5.47)

C A
U1

This homogeneous system of equations (identical to the problem of linear
stability analysis) admits solutions of the form

Y Vs 2iT 1 (& AQ)
A9 Lltys Lo L T WA \-.10)
where u is given by eq. (5.4) and is, therefore, the null eigenvector of the
operator J_ defined in eq. (5.5). The amplitude ¢ remains undetermined at
this stage and is allowed to depend on the slow time scales, which do not

A

enier cxpucmy 1n €q. (D “417).

B Higher orders

3 - A" T2 B

To G(e?), O(e®) etc., substitution of (5.7), (5.8) and (5.46) into egs. (5.1)
will give rise to a sequence of linear inhomogeneous equations of the form

PR
Jr-xj=[Qcﬁl—S’(AC)]-xj=qj(xj_l,...,xl] j=z2 (549)

In order to determine the solution x; one needs to ensure that the operator

JT lb mveruoie This IS ﬂOWEVCI' not HELCBbdl’lly irue since acuurumg to
egs. (5.47) this operator has a nontrivial null space. To ensure invertibility

a solvability condition must be fulfilled, in the form of orthogonality of q;

and the null eigenvector of the adjoint operator J} . Orthogonality and
adjointness must here be defined in an extended space which, in addition
to being the finite vector space considered in the preceding sections,
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includes 2z-periodic functions in time. In this functional space (Friedman,
e oduct will be defined as

LY L A2 o Sewriiivhae GO

n
j 22
.

(a(T),T)) = Jf dTa*(T)-b(T) (5.50)

0
where a* -b stands for the classical scalar product, a* being the complex
conjugate of a. The adjoint operator J7 can be identified by the property

or, performing integration by parts in time,

0 +
I —Qcﬁl—,ff () (5.51)

iT

u* being the null eigenvector of the adjoint of J_ in eq. (5.5).
Applied to the second order equation the solvability condition yields

=0y, = (5.52)

owing to the fact that (u* ¢'",h_ -ueTue'T) vanishes identically. The
second order equation can then be solved, the result being a n-periodic
solution (second harmonic of (5.48)) plus a time-independent part. Since

the second order solvabilitv condition is trivial this solution still features
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the amplitude ¢. To determine it one must therefore proceed to the third
order in ¢. The solvability condition to this order now gives a nontrivial
result which, on transforming back to the original variables and
parameters, reads

dz/dt = (A — A )P,z — Py|z|%z (5.53)

P I NN

where the coefficients P, (still gtven by eq. (5.25)) and P, are in general

complex quantities P, = P} + iP{, P; = P, + iP4. Eq. (5.53) constitutes
the normal form of the Hnnf h1f'||rr*9 tion (Ma sden and McCracken, 1976;
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Guckenheimer and Holmes, 1983).
To solve eq. (5.53) it is convenient to introduce polar coordinates

z=re (5.54)

Separating real and imaginary parts one obtains
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dridt = (4 — A )P,r — Pyr? 1
dg/dt = (A — A,)P) — Piyr? f (5.55)

The first relation is independent of the phase variable ¢. It can be handled
as eq. (5.31), characteristic of the pitchfork bifurcation, except that r must
be always nonnegative. Taking up the results of Section 5.4 we conclude
that at A = 1_ r undergoes bifurcation from the trivial solution r, = 0 to
the nontrivial one

ro= [(’1 _P)’. _lllz (5.

which extends in the domain 4 > 2 if P; /P’ > 0 and in the domain 4 < 4,

if Py/P% < 0, Furthermore, supercrltlcal branches can be proven to be
stable and subcritical ones unstable.

At the level of the first eq. (5.55) the solutions just found are

tlme independent, but at the level of the z- varlable {eq. (5.54)) they are
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or

I'f r

Pﬂ

¢ =dy+ (P’{ — )(A At = ¢y + A (5.57)
The frequency AQ of the z-oscillation corrects the value Q (eq. (5.49)) by
terms of the order of 4 — A_. In the phase space (Im z, Re z) the trajectories
are winding toward the invariant curve | z | = r,, which we have referred to
as the limit cycle {Fig. 5.6). The representative point moves on this
attractor at an angular velocity equal to AQ. We have thus produced a
constructive proof of the bifurcation of time-periodic solutions in the
vicinity of a criticality corresponding to a simple pair of complex
eigenvalues. Notice that the period and the amplitude of the oscillations
are intrinsic in the sense that they are determined entirely by the evolution
laws, independent of the initial conditions. Many of the experimental data
surveyed in Chapter 1, such as chemical oscillations and biological
rhythms, feature this property. This is to be contrasted with oscitlations in
conservative systems, whose characteristics depend on the initial condi-
tions.

Just like in Sections 5.3-5.5 one may remark that eqs. (5.53) or (5.55)
are universal: they constitute the normal form of any dynamical system

operating in the vicinity of a Hopf bifurcation. One notable difference
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~ig. 5.6 Phase portrait
beyond the Hopf
bifurcation, as
deduced from the

normal form cquauuu
(5.53). Parameter
values: P, = P3 =1,
A — 4, =1, frequency
at criticality Q, = 1.
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with the bifurcation at a real eigenvalue is, however, that the order
parameter z is complex. The subspace of phase space on which the
reduced dynamics is taking place is, therefore, two-dimensional. An
explicit calculation of the periodic solutions of the Brusselator model
following the above scheme is performed in Appendix A2.

5.8 Cascading bifurcations

Bifurcations at simple eigenvalues analyzed in the preceding sections are
well understood since they can be reduced to a local problem around the
reference state X, assumed to be known explicitly. Furthermore, since
they are fully described by a scalar or a two-component vector order
parameter, the phase portraits which they generate can be classified

completely (Andronov et al., 1966) and can only give rise to structurally

stable attractors in the form of fixed points or limit cycles. As shown in
Chapter 3 this is mainly due to the topological constraints imposed on the
trajectories embedded in a one- or two-dimensional phase space, and
more particularly to the fact that self-intersections are not allowed.
What happens beyona the first (local) bifurcation from X, is, on the
other hand, generally a global problem. For instance, the first bifurcating
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Fig. 5.7 Illustration of
the mechanisms by
which a global
problem related to a
secondary bifurcation
(a), reduces to a local
one (b), in the vicinity
of a high codimension
bifurcation (c), thanks
to the simultaneous
control of two
parameters A and u.

solution emerging at i_, may lose its stability at some critical value 4.,
where a new solution branch may bifurcate. But typically 17, will be at

- finite distance from 4_, . The problem of extending the primary bifurcating

branch (known explicitly only near A, ) up to 4;, and of constructing the
new secondary bifurcating branch becomes, then, a highly nonlinear and
generally intractable problem.
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On
control parameters in addition to A and to vary them until critical
situations of a new kind are reached. Fig. 5.7 illustrates the idea for two
control parameters A and p. At g = pu, we obtain an ordinary one-
parameter bifurcation diagram displaying a number of primary branches
a,, b, ... as well as a secondary branch a,. Both 1., 4., and the

amplitudes of the solutions depend now on y. One may therefore imagine

that hy calapting 7 in an annronriate manner for eome value 11 — 7. tha
vial Uy ovitllilig M il all appivpliate iialidvi, 1V SULLIC Yaluv 4 = [y Uic

distance between 44, 4., and 2;; will become smaller and the branches a,,
b,, a, will begin to interact. On further varying 4 one might even reach a
situation corresponding to parameter values (4, 4) in which the two
primary bifurcation points will coalesce. [t may be expected that at this
point many different branches of bifurcating solutions will emerge.
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5 Nonlinear behavior around fixed points

However, on slightly varying 2 and g from this situation the branches will
split and a secondary bifurcation will take place (Bauer, Keller and Reiss,
1975; Keener, 1976). The point is that since X, and (4, u) are known
explicitly from algebra and linear stability analysis, the initial global
problem has been reduced, in principle, to a locai one. We refer to it as
higher codimension (here two) bifurcation, in the sense that the parameters

must saticfy more than one strict Pﬁuallt\l phvmr‘q]lv speaking such
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bifurcations should arise either in the presence of symmetries, or when two
or more mechanisms of instability interfere simultaneously with the
dynamics.

The simplest cases of higher codimension bifurcations are:

(i) Two real eigenvalues go through zero
At criticality one gets a double zero eigenvalue w, = 0 of &, that is to say
an eigenvalue of algebraic multiplicity u, = 2. In the terminology of
Section 4.1 two subcases may arise, depending on the value of the
geometric multiplicity v,.

(1.1) Geometric multiplicity v, = 2

The transformed linearized matrix & (eq. (4.11a)) will contain at
criticality two Jordan blocks of order n, = 1 containing a zero matrix
element (the vanishing eigenvalue), which can be grouped into the 2 x 2

Jc - ‘: :' . a

Obviously, (§) and () are two linearly independent null eigenvectors of J .

(.2) Geometric multiplicity v, = 1
The transformed linearized matrix will contain at criticality a Jordan
block in the form (cf. eq. (4.11b)):

J =1 »
. (0 0 (5.58b)

The only null eigenvector is now u, = (}). To complete the basis of the
2 x 2 critical subspace one introduces generalized eigenvectors (Sattin-

P, 100N

ger, 1972; Tooss and Joseph, 1980)
Joup =y, - (5.59)

In the present case there is only one such additional eigenvector. Notice
that hv (R 50 ]2 u. =0

..... S rer Jy ) e
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(i) One real eigenvalue goes through zero and one pair of complex
conjugate eigenvalues (with Im w # 0) has a vanishing real part
At criticality the eigenvalues of % remain distinct. The corresponding
Jordan block will be (cf. eq. (4.11¢)):

(0 0 0\
Jo=10 0 o (5.60)
\o0 —w o/

(iii) Three real eigenvalues go through zero
At criticality one gets a triple zero eigenvalue of #. As in (i) one may
distinguish various cases, depending on the value of the geometric
multiplicity v,. For v, = 1 the transformed linearized matrix contains a

Jordan block of the form (cf. eq. (4.11b)):

]

010
J=lo 0 1 (5.61)
\o 0 o/

(iv) Two pairs of complex conjugate eigenvalues (with Im o s 0) have
vanishing real parts
As in case (ii) the eigenvalues of % remain distinct at criticality. The
corresponding Jordan block in the transformed linearized matrix will be

(cf. eq. (4.11D)): /g \

0 o 0
—w; 0
¢ = 0 (5.62)
b 2
\ 0 —w, 0 /

As in the preceding sections of this chapter, the perturbative approach
can again be applied to derive the equations to which the dynamics is
reduced. Let us illustrate the procedure for the criticality of type (i.1). We

want again to solve eqs. (5.1), this time near (Z, i). Since we dispose of two
control parameters we eniarge the expansion (5.7)-(5.9) to

\
X =gx; + ---
- 5.63
H—u=eu; + (3.63)
T 1
d/de = /01, + )
Quhgtitntine into (5 1Y we nhtain tn tha Argt ardar in »~ o AMAoonentilc
HULOLILU LIS LY (Sl ) YW UULALLL, TU LY LD ViDL 1 6, a4 LVITNTVEVLIVU U S
equation similar to (5.10),
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The new point is, however, that owing to the type of degeneracy
considered (1, = v, = 2), 2(1, i) has now a two-dimensional null space

(uy, uy). Hence eq. (5.64) admits solutions of the form

N kY -~
Ciltgy - Juy T L

b4 — {+r
-~ Y

W, (5.65)
Lly -+ J%2 A% ’

1

To O(¢?) the analysis proceeds as in Section 5.2, except that owing to
the presence of the second parameter one gets the additional term
£, (A, 1)-x, in the right hand side of eq. (5.11). As before this relation
constitutes an inhomogeneous set of equations for the components of the

vector X,, whose solution requires a solvability condition. But since the
null space of £ (4, 1) and of its adjoint £ * is now two-dimensional there

will be two such relations,
(u;,q,)=0,(u;,q,)=0 (5.66)

which will provide one with a set of closed equations for the undetermined

amnlitndes » and -~ Tntroducing normalized amnlitndee - — e
ulll}llltuu\-{u bl “RLANE bz ALlAL1 Uuu\dlll& LA L LAAAL LA W) ullll_lll‘uuvﬂ Ll oy 1 3

¢, and switching back to the original parameters one finally ends
up with the following augmented set of equations replacing (5.22),

dz,/dt = [(A — )P, + (¢ — p)P )z, — P, 21 — Pyz,2, — Py,yz5

dz,/dt = [(4 — I)Ql + (1 — .‘I)Q’1]22 - Quzf — Q12212 — Q532

provided that the coefficients P, Q, (i,j = 1,2) do not all vanish
identically.
Let us analyze the bifurcation structure of the fixed points of these

equations under t

itions P, =Q,, = Q,, = 0. We
notice that these conditions imply that eqs. (5.67) are invariant under the
transformation (z,, z,)—(z,, —z,). Such situations may arise frequently
in spatially distributed systems, as we see in the next chapter.

The fixed point solutions are:
the trivial solution
Z10=220=10 (5.68a)

which we take as the reference solution
the semi-trivial solution

_(A‘DP1+(.“_.LT)P’1 ~
s = Pll » 2=V (568b)
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Fig. 5.8 Secondary
bifurcation branches

arisine from the

AiGiLds RXVAIE ud

interaction of two
primary branches near
a codimension two
bifurcation, eqgs. (5.68).

=00 + (1 — 12 )

jzlls[(& - /T)Pl + (u— ;I)P’l — Pllztls]ll/z } (5.68¢)
“ { LY J )

We notice that z,, can become equal to z}, for some A* = A(u), in which
case z,, vanishes according to the first relation, (5.68b) thus becoming

equal to z,,. At this point the interaction between the two primary
branches (5.68b) and (5.68¢c) nroduces, there fore, condary hifuir

a oo rho
LIVIOUO (V.U U J i (\J.00V ) P 3 viIUIUI aobiuiidalry vliuiia

as illustrated in Fig. 5.8. Other secondary bifurcation phenomena,
including Hopf bifurcations can arise in egs. (5.67) when (z',, z5,) is used
as reference state.

In the example of a doubly-degenerate real eigenvalue of geometric
multiplicity two considered here one arrives at a set of two normal form
equations displaying two order parameters. As noticed earlier in a

oIno ']CC(\{"I']"PA 17}‘1 a twn.dimencianal dunaminal
WILlE AOSVMIAalWLE FYILIL d tyvuTulliviiaiviial uyuauuucu

system, the phase portraits of this set of equations can be classified
exhaustively. In particular, they can only admit structurally stable
attractors in the form of fixed points and limit cycles.

The situation becomes more complicated in the bifurcations (ii)}-(iv)
listed above, where one obtains three or four coupled equations for an
equal number of order parameters. Here the normal forms at which one
arrives by perturbation theory can no longer
universal in the vicinity of (4, ). In particular, the effect of higher order
terms or of additional parameters has not yet been fully assessed: the
complete stable unfolding of the problem remains an open question.
Fortunately in many situations of physical interest the type of system and
the nature of the dynamics impose a particular type of unfolding. The

Zy




5 Nonlinear behavior around fixed points

question of universality, although very important from the standpoint of
mathematical completeness, thus becomes less relevant for the physics of
the underlying system.

A second characteristic feature of codimension two (and, of course, also
higher than two) bifurcations is that, in addition to fixed poinis and limit
cycles, new invariant sets of the flow are generated and give rise to global
bifurcation phenomena in the normal form, even though the latter has
been established by a local theory. In the presence of at least three order
parameters these global bifurcations may lead to chaotic dynamics. We
may thus conclude this section by stressing that codimension two
bifurcations already mark the limits of universality in the description of
nonlinear dynamical systems. As we shall see in the next two chapters,
universal laws may still emerge beyond this range. These laws are,
however, of a new type as they refer to a completely different level of

W Llw GERRY LRI LGLY il il

description.

5.9 Normal forms and resonances

was actually the first one developed in the 11terature, is to use the
Poincaré-Hartman—-Grobman ideas discussed in Section 3.6 to try to
determine the local homeomorphism transforming the nonlinear flow (eq.
(3.26)) into a linear one (eq. (3.29)). We know that in principle this can be
achieved when the linearized operator ¢ has no zero or purely imaginary
eigenvalues, but for the time being we ignore this condition and try to
perform the reduction process explicitly. We expect that at some stage of
the procedure the dlﬁicultles, if any, arising from critical eigenvalues will
show up and impose certain natural restrictions.

We begin by performing on the canonical form of eqgs. (3.26) a linear
change of variable (eq. (4.11a)) transforming the linearized operator &
into a diagonal form A. We ignore at this stage the complications arising
from eigenvalues of algebraic multiplicity strictly larger than the geo-

metrical one and assume from now on that the Jordan blocks of A are of
order 1. Eqs. (3.26) become, in these new variables vy,
dy/dr = Ay + v(y) {5.69)

where v is the transform of h under the action of the diagonalizing
transformation. In many problems of interest v will be a formal power
series of y.

We now attempt to eliminate from v(y) as many nonlinearities as

LPSUS VNS VAT U LY LI Ayl

possible by means of a change of variables close to the identity;

Yy =12+ ¢(2) (5.70)
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where ¢(z) (to be determined by the process) is a vector polynomial of
order r > 2, that is to say a vector whose components are polynomials. A
“vector polynomial can also be viewed as the sum of vector monomials,
that is vector polynomials having one nontrivial monomial component

(e.g. 2T ... z',Z"‘) and all other components equal to zero; the number
m=m; + . . will be the order of the monomial.
Substitutine ( 70 into (5.69) one obtains
uuuuuu L“L j \ U YR AN \ I 5 (¥ a9
Jd¢p dz
— A—szZ+Ad>+v[z+ $(z)] (5.71a)
dt Jdz dt ’

To eliminate the lowest nonlinearity of v (say of order r) it suffices to
require that the following relation be satisfied:

. 0o . e on
LA-cp:a—(':-(A-z)—A-gD:v(z) (5.72)
in which case {5.71) will reduce to
dz/dt = A -z + (terms of order higher than r) (5.71b)

The central point in the process is therefore to solve eq. (5.72), known as
the homological equation, for the transformation function ¢. To this end
we shall now open a digression and study the principal properties of the
homological operator L ,, eq. (5.72).

Letw,, ..., w,andu,, ..., u, be the eigenvalues and eigenvectors of A.
We shall show that (Arnol’d, 1980):

the eigenvectors of L, are vector monomials of the form z™u,, where

m m m
zh=z{ ..z
thhn Aicvnensralisna ~FT nen limane cmrvabicendl mane AL thha (0 ]
ine lgUquluUb 01 L‘A alC 11110l COLIIULLA L0 O LLIC 1(,Umf

To see this we evaluate the action of the two parts of L, on the vector
monomial

zMag = zT - -z (5.73a)

We have, noticing that u, is an eigenvector of A,
A-zMu, =Mz = oz (5.73b)

Furthermore, expressing explicitly the scalar products in the first part of
L ,we have:

or, remembering that A is dia
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cz™u
oz

S (A-z) =Y mmwz™u, (5.73c)

i

Combining (5.73b) and (5.73c) we arrive at

L, z"u, = (Z mw; — ws) z™u (5.74)

j
which proves the statement about the eigenvalue problem of L,.

We come back now to the solution of egs. (5.72). We express both the
unknown vector ¢ and the (known) right hand side as sums of vector

monomials,
V= Z Uy s 27U l
. (5.75)

Substituting into the equation and identifying the coefficients of equal
powers in each of the basis vectors u; we obtain

3

=
i
;™
=~
3
[N
h:

@
E

v
h, =" 5.76
™S mw; — (5.76)
provided that the denominators are not equal to zero. This condition 1s
violated when one of the eigenvalues can be expressed as a linear
combination (with integer coefficients) of at least two eigenvalues,

o=y mw;, Y |m| =2 (5.77)
i j
Now, this is precisely what happens in the vicinity of a bifurcation point.

For instance, in a Hopf bifurcation one has a pair of complex conjugate
eigenvalues w,, w, with vanishing real parts,

o, +w,=90 l
or (5.78)
Werefer to these situations as resonances —for instanc q. (5.78) defines a
resonance of order three. The point is that in the presence of resonance e

(5.76) does not make sense and the linearization procedure fails.

One way out of this difficulty is to give up the idea of eliminatingall the
nonlinearities and to limit oneself only to the ones that are not associated
with resonance. In practical terms we include in eq. (5.72) only the

A AG A A of vizY and auement con
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missing resonant part,

1L
1b) with the
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dz/dt = A-z + 3 w,(z) (5.79a)

where w.(z) is a sum of resonant monomials,

= Y, Wy g 270 (5.79b)

with

W, =Y mw; (5.79¢)
As an example, in the presence of Hopf bifurcation, the unique resonant
monomial has the form z3z, or, since 2:2 = z¥, | z,|*-z,. This s, precisely,

£ _.._
found in the pert

the nonlinearity that we
(eq. (5.53)).

In practice the computation of the normal form is carried out exactly at
the bifurcation (resonance) point. An appropriate unfolding exhibiting
the system’s parameters must be performed subsequently in the vicinity of
this point. As mentioned in the previous section the question of the
universality of the unfolding is still an open problem for most of the high
LO(.llIIlCIlblOIl Ullufca[l()ﬂb

The explicit construction of the normal form by the above method for
the Brusselator model (eqs. (2.44)) and for two coupled Brusselators has
been carried out by Wang (1983) and Wang and Nicolis (1987). In most
cases of interest the calculations are long and tedious. Fortunately the
advent of symbolic calculus has opened new possibilities. Normal form
calculations that would have been very hard to imagine just a few years
ago can now be performed on a routine basis (Rand and Armbruster,
1987).

An elegant variant of cl
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geometrical ideas related to the center manifold has been developed by
Arneodo, Coullet and coauthors (Arnéodo and Thual, 1988; Coullet and

Spiegel, 1983). One seeks for solutions of egs. (3.26) of the form

:l..
:3
D
-t
o
=
b
=
_
-
T

where u_ ; are the critical eigenvectors of the linearized
sense that they are associated with the eigenvalues Wthh have vanishing
real parts at criticality, and u,, ; are the remaining noncritical eigenvec-
tors. The amplitudes z; and w; constitute a new set of variables. Their
equations of evolution are obtained by substituting (5.80) into (3.26) and

i o linaor indaman Ao o

Uy Ublug the linear indaepenaence of iu!j One obtains:
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dz,/dt = ZA..,z-,—I-fi({zi},{wj}) i=1,...,d )

? (5.81)
dw;/dt = ZMJ‘J"W}’ +g({z).iwy))  J=d+1,..n )
T
d being the total number of critical modes.
From the second set of egs. (5.81) it is clear that at or near criticality the
w; vary on a time scale that is much faster than the time scale of z;, since the
nvalues of {M ) have a finite real part. It must therefore be pgssible

lgell'“l LJ'A J Lala ¥V siziivw X wiea |9 § Lw) ) 3

to perform some kmd of adiabatic elimination,

.

w; = Wi{z;}) (5.82
which upon substitution into the first set of egs. (5.81) gives a closed set of
equations for {z;},

dz,/dt = ZK-‘,z-, + q,({z;}) (5.83)
Eqs. (5.82) can be regarded as the equations of the center manifold on
which the relevant part of the dynamics lies (Guckenheimer and Holmes,
1983), whereas eqgs. (5.83) should be equivalent to the normal form

r)rr1 d ont by
CLL L A

Aoty licit coangtrn
L1 VAl UL U

equations. The explicit cons
perturbmg around the critical values of the control parameters and
involves, as one might have expected, solvability conditions ensuring the
invertibility of the homological operator. In many instances the pro-
cedure can be substantially simplified by invoking the symmetries
satisfied by the underlying system.

We end this section by pointing out that, in addition to the distance to
criticality, therg exists a second general mechanism ensuring t
of a multivariate system into a low order dynamics. Indeed, in many cases
physical systems away from any sort of criticality may still give rise to
widely separated time scales due to order of magnitude differences in the
values of parameters and/or the state variables. For instance, in chemistry
a catalytic reaction under laboratory conditions usually involves catalyst
concentrations that are much less than the initial or final product

" ﬂf-nrﬂ»-.«nn arnd mntac th L
L ativulls, dlill 1dilod Llldl are mucn

‘l_ gllcl LIldll lIlC lIlL[ lL rates IIl
the absence of catalyst. As a result, some intermediate steps involving
catalytic complexes proceed very quickly. In combustion the activation
energies of some of the exothermic reactions are very high so these
reactions proceed, at least in the early stages, much more slowly tHan does
energy transport. Similar examples can be found in hydrodynamics,

optics, biology and,other fields.



To formulate this problem quantitatively one performs an appropriate
scaling of variables and parameters casting the initial set of equations into

the farm
L1da
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dX/dt = F(X, Y,¢) (slow variabiles)
edY/dt = G(X, Y,¢) (fast variables)

where g« 1 accounts for the difference between scales. Tik
(Wasow, 1965) has spelled out the conditions under which from the
second set of egs. (5.84) the variables Y can be eliminated in the limit ¢ -0

in favor of X,

Y = W(X) (5.852)

-----

ahlAa
val 1c1u1(..o,

dXx/dt = F(X, W(X))

problem. This manifold carries the relevant part of the dynamics and
plays therefore a role analogous to the center manifold of bifurcation
theory. An illustration of the reduction process to this manifold is
provided by the ideas of a rate-limiting step and of a quasi-steady-state
approximation familiar in chemistry and, most particularly, in enzyme
kinetics; or by the overdamped harmonic oscﬂlator where Newton S
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discarded. For further illustrations of this important point we refer the
reader to Problem 5.10.

nr
\Jl
t

5.1 Consider the dynamical system
dx/dt = ix + y*
dy/dt = —x* + Ay

(@) Compute the fixed points and their linear stability. (b) Study the

eigenvalue problem of the linearized ovnerator in the limit A0 Is A =0

Gl POV Aal Ll Vptiaill

a bifurcation point and if not, which among the conditions of theorem 1
of Section 5.1 is not fulfilled?

5.2 The Lorenz model (eqs. (3.4)) gives rise to a pitchfork bifurcation at
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r = 1. Derive the normal form equation in the vicinity of this point,
compute the bifurcating branches and check their stability.

5.3 Show that in the hoop problem (Sections 1.2 and 2.1) the new equilibria
beyond @, appear through a pitchfork bifurcation. Derive the normal
form equation of this bifurcation and compare with eq. (2.9).

54 1In the region of three fixed points the Schitgl second model (eq. (2.45b))

and the Semenov model (eq. (2.47)) exhibit two limit points in the

ailQ G OISOV TLI0C! 2232038

variable versus control parameter diagram. Derive the explicit values of
the coefficients of the normal form equation {5.36) around these points.

5.5 The Saltzman model (Problem 4.8) generates a Hopf bifurcation for the
parameter values b =1, a> b. Using the procedure outlined in Section

~ AN A Tiv .
5.:’ dHU I‘\pp K 1'\ acl VU lllC IlUIllldl lU q U Il l.llU VlLlIll y

5.6 Compute the amplitude of the oscillations of the variables X and Y and

the correction to the critical frequency Q_ = A in the Brusselator model
slightly above its Hopf bifurcation point.

5.7 Show that the coefficient P, in the normal form of the Hopf bifurcation
(eq (5.33)) is still given by eq (5.25). Thls coefficient happens to be real

5.8 Consider the dynamical system
dx/dt = Ax + @y + xz
dy/dt = —wx + iy + yz
dz/dt = oz — (x* + y? + 2*)

Show that ¢ = —24 is a bifurcation point of quasi-pertodic solutions
emerging from the reference state (x(r), y,(t), z,) Where x_, y, are periodic
and z, time-independent. Hint: Switch to cylindrical coordinates
{Langford, '1979).

o dla a en o aian .‘_

D Aoy
Cacrive uic llUIllld—

D

n equations for the Brusselator and Saltzman
models using the procedu re of Section 5.9 (Wang and Nicolis, 1987).

5.10 The rate equations for the Oregonator (eq. (2.43)) read, after
appropriate scaling transforrnatlons of variables and parameters (Tyson,
1976)

dx/dt = s(y — xy + x — gx?)
) 1
dyjdv =—{=y —xy +f2)

dz/dt = w(x — 2)



127

the conditions of Hopf bifurcation using f as the control parameter.

() Using Tikhonov’s theorem (Section 5.9) perform the adiabatic
elimination of variable x and check whether the results of (a) subsist in
the reduced set of equations for y and z.
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6.1 General formulation

As we saw in Section 3.1 and throughout Chapter 2 the macroscopic
description of systems composed of many particles gives rise, typically, to
state variables that are fields in the sense that they depend continuously on
the space coordinates. The evolution laws of these variables are expressed
as partial differential equations of the form

X, (r,1)/0t = F,({X,(r, 1)}, {V*X (r, 1)}, A) (6.1)

They involve spatial derivatives like the Laplacian of temperature V27 or
concentration VZc, or the gradient of the velocity Vv and include as
particular cases the equations of fluid dynamics and the reaction—
diffusion equations. A dynamical system of the form (6.1), hereafter
referred to as the spatialiy distributed system possesses, in principle, an
infinity of variables — the values of the fields {X(r, {)} at each point in

snace counled throuech the transnort nhenomena generated bv the cnntlnl
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inhomogeneities. As shown in Section 3.1, in some cases this complication
can be bypassed by a Galerkin expansion (eq. (3.2)) truncated to the first
few modes. The present chapter is devoted to problems where this
reduction is not applicable and spatial dependences need to be incorpor-
ated explicitly in the description. We shali focus more specifically on the

new features arising from the presence of spatial degrees of freedom.
The ideas and technigues developed in the last thre

an s}
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the following canonical procedure for studying eqs. (

o d o

(i) First a suitable reference state X, which is an exact solution of egs.
(6.1), is identified. The choice of X is motivated by physical
arguments. Typically X, is a state describing the ‘simplest’ behavior
observed in the system — for instance, the state of rest in the thermal

—
[N
o0
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convection (Bénard) problem (Section 1.3), or the uniform steady
state in a chemically reacting system (Section 1.4).

-(ii) The next step is to test the stability of X, against perturbations. To
reduce the initial nonlinear problem to a linear one, one needs to
extend the principie of linearized stability of Section 3.6. This
extension, which amounts essentially to redefining an appropriate

‘distance’ in an infinitelv-dimensional space. has been carried outin »
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number of cases (Sattinger, 1972) and will be taken for granted from
now on. In the presence of spatial inhomogeneities the linear stability
operator replacing the operator Z in eqs. (3.29) is expected to
contain spatial derivatives. As a result the eigenvectors will span an
infinite-dimensional functional space and there will be an infinity of
eigenvalues associated with them. As we shall see in the subsequent

sections the most imnortant new element arising at the level of

LI 145 LIIUSY IipSUI G i Ciwiiivaay EaaSin ig @y v o Ivvuel

stability analysis from the presence of spatial derivatives in the
evolution laws is the possibility of spontaneous symmetry breaking
instabilities, that 1s to say, instabilities with respect to space-
dependent perturbations which are less symmetric than the evolution
laws or the reference state X,.

(1) Finally, the nonlinear behavior around X, beyond the instability

nainticevnlored by o nertuirhation methad clacelvy follaw I na Cartinn
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5.2, the aim being to obtain normal form equations for the amplitude
of the solutions to the dominant order. As we shall see the form of
these equations will depend crucially on the size of the system. In
systems of small spatial extent much of the analysis of the previous
chapter will extend straightforwardly. But in systems of large spatial
extent some new features will appear, due to the interaction between

Spatially distributed systems described by state variables in the form of
fields also arise in the microscopic description of the electromagnetic field
and of its coupling with matter as well as in elementary particle physics.

We do not address this Iype of proolem here. It is worth pOlHllIlg out,

however, that the origin of many of the symmetry-breaking phenomena
which arise in field theory and particle physics is quite analogous to that

arising in the macroscopic physics of spatially distributed systems.
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descrlbed procedure to the problem of the
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y, whose quantitative formulation in the
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Boussinesq approximation was laid down in Section 2.5. We choose as the
reference solution the (stationary) state at rest v = 0 for which eqs. (2.33)
and (2.35) reduce to (cf. also eq. (2.32))

Vps = —psglz

= —poll — (T, — To)gl, (6.2)
VT, =0 (6.3)

In view of the geometry of the experiment and the symmetries involved in
the problem we expect that p and T vary only along the z direction.
Integration of eq. (6.3) using the boundary conditions (2.36) leads then to

Tz) =T, — pz

with
¥Y LLLA

T,—T
p=—"—— (6.4)
d
Substituting into eq. (6.2) and integrating once again with réspect to z one

finds

[
3 /,_ 6.5
Notice that the characteristics of the system in this state are independent
of the kinetic coefficients # and A which appear in the full balance
equations.
We now study the effect of perturbations on the system around the
above reference state (7, p,, p,, ¥, = 0). Specifically, we set

3}
)

T=T,()+ 0r,1) )

p = p,(z) + dp(r, 1) o
» (6.6)
p = pyz) + op(r,t)

v = Jv(r, t): ov = (u,v, w) )
and linearize the equations of Section 2.5 with respect to 0, dp, dp, ov.
Since ov is a first order term it can only be multiplied by VT, in eq. (2.35).
The linearized version of this equation is therefore, using eq. (6.4):

PoC, (?3? — ,Bw) = AV20

or, introducing the thermal diffusivity coefficient

K= A/psc,
PoCp

—
N
~J

f—
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80/ot = Pw + kV20 (6.8)

e N L SR A

~ We consider next the Navier—Stokes equation (2.33). Substituting (6.6)
and taking the reference state relations (6.4) and (6.5) into account we
obtain

aov 1
= — —Vop+ vy - Lop1,
e ~ ~
ot Po Po Po
Introducing the kinematic viscosity
v=1/py (6.9)
and avalhiating SA fram tha amaniatinn AF ctata (7 2 SN Y § | S
aAllsd uvaluaqu, U}l 1LYl LLIw \.«\.luauuu Ul dSiLalw \‘..J‘.}, U’J -—_ pou[], Wwe
obtain the more convenient form
55v
= — —V&p + W2y + gafl, (6.10)
ot p,

Eqgs. (6.8) and (6.10) constitute the basic equations of linear stability
analysis of the Bénard problem. The introduction of the kinetic coeffi-
cients k and v instead of the initiai ones A and # is doubly advantageous.
First, k and v vary less sensitively with the material considered. Second,
the parameters p,, c, are absorbed in the definition of these coefficients
~ (pg still subsists in the pressure term, but this is immaterial as we shall see
shortly). Still, egs. (6.8) and (6.10) contain no less than five control
parameters (8, k, v, g, d), d being introduced by the boundary conditions.
Since the objective of stability theory is to identify the values of control
parameters at which a qualitative change of behavior takes place, it is
obviously advantageous to get rid of as many spurious parameters as

hﬁQQ1h|P A nnWPrfnl first sten in this direction is to exnress the Pnlmhnn_Q
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in dimensionless form, the additional advantage of this being to allow for
comparison of experiments obtained under different conditions. In the
present problem the following dimensional quantities are involved:

For the independent variables:
time ¢, [T]
space r, [L]

For the dependent variables:
temperature 8, [K]
velocity év, [LT 1]

pressure ép, [ML 1T 2]

To switch to dimensionless form we seek combinations of parameters

present in our problem that have the above dimensions. This leads to the
following scaling:

AVNROUWILls R Rllls



ri=r/d A

t' = t/(d*/x)

0 = 0/(vc/gad®) } (6.11)
50} = dv,/(x/d)
op’ = 3p/(pov/d*?) /

Substituting (6.11) into (6.8) and (6.10) to which we also add the
incompressibility condition (2.28) and suppressing the primes to simplify
notation we obtain the following dimensionless form of the linearized
Boussinesq equations:

00/6t = Rw + V*0 l

0ov/ot = P{ —Vdp + V2v + 61} 6.12)
divov=0 J
where we introduced the dimensionless parameters
R = agfd*/vk = agATd?*/vk  (Rayleigh number) ) (6.13)
= v/K (Prandtl number) j |
We have thus reduced the number of parameters to two. An additional

advantage of the reductlon to dimensionless form is that one of the new
parameters, the Rayleigh number, combines in an elegant and compact
way the factors at the origin of the instability (the numerator of the first eq.
(6.13)) and the stabilizing factors (the denominator).

One may simplify eqs. (6.12) further by reducing them to a closed form
for (0, ov). The elimination of dp can be achieved by taking the curl of both

sides of the second relation (6 17\ Introducine the nnrnmrw o,

0=V x v (6.14)
we obtain
£?—(B—PI_{I 6—9 | 69\+V2m1 (6.15)
t Lk‘y yx) J '

tor ralatinn o iho
ter relation and using the vector

1dent1ty V x (V x a) = V(diva) — V?a we obtain, using the first relation

20
V2o = P( —V 4+ V201, + vﬂsv) (6.16)
\ ve /

Projecting this equation on the z-axis we finally obtain
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d ., (62() a0 _, )
— =Pl—5+-— 6.1
(%Vw P\ax2+6y2+le (6.17)

| Together with the first relation of (6.12) this equation constitutes a closed

cot af twan eanatinng for (8 w) Tkpi ana I y
SO O oW L4YUaUUIIs 10T (W, W), 1t ana

the solution of the stability problem, is carried out in the next section.

(40
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Eqs. (6.12) and (6.17) constitute a set of linear homogeneous equations of
Fiact ~mdae v tizmrn el b PRPSPEY & oIS Tolns 4lhhmnmnln . .1 _. 24
HI>L oldcol 111 UHIC willll Ullbl.aul CUCLIVICIIL 1HCY LHCICIVIC 4dITIIL

'H(r,r)‘ et 'g(r)‘
(w(w)_e (W(r)) (6.18)

Substituting back to the original equations one finds

ol = V28 + Rw \
&0 %0 $ :
B =S S v (6.19)
P ax? oy J

We notice that in the right hand side spatial derivatives appear through
operators containing 0%/0x* + 0°/dy? and 0%/0z% in an additive fashion.
Egs. (6.19) admit therefore solutions of the form

Y 0
(ﬁ;) = (w‘:,) o (x, YW ,(2) (6.20)

where 0,,, w,, are space-independent and ¢,, ¥, are, respectively,

elogenfunctiong of the Q}'\nvp two operators
vlbvlllull\dLl\Jl‘q L LW duUy LYY UHV L1 o

To solve the eigenvalue problem for the ‘transverse Laplacian’
VZ = 0?/0x? + 8%/dy? one notices that, in the limit of a large aspect ratio
(cf. Section 1.2), the system can be treated as being unbounded in the
horizontal direction. Using familiar arguments similar to those applied in
wave mechanics one realizes that such systems can be modeled adequately
by periodic boundary conditions, in which case

Pp(x,y) = elkx + k) (6.21a)
The corresponding eigenvalue, obtained by acting on (6.21a) by V2, is
b 7 D »
then
— 1.2 (1.2 1.2y (£ 9110
Ay = — KT = — (K + K (0.210)
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where the periodicity of boundary conditions is ensured by the property

(6.21c)

Here L, L, are the system size along the x and y directions and n, n, take
integer values.
Turning now to the eigenvalue problem o

d?y,/dz?* = p,

subject to the boundary conditions (2.36) and (2.37) and to (2.38) and
{2.39) or (2.40)—(2.42). Since we are dealing here with the perturbations
rather than the initial variables, eqgs. (2.36) and (2.37) reduce to
(remembering also that we have rescaled our variables and parameters)

¥,(0) = ¢,(1) =0 (6.22a)
For simplicity we shall also choose the iree boundary conditions,
(d%,/dz?) = (d*,/dz?), =0 - (6.22b)

Under these conditions the solution of the eigenvalue equation for d?/dz?
becomes

Y, =sinnmz, 0<z<l1 (6.23a)
4 = —nin? (6.23b)

where n is an integer. Substituting into (6.20) we obtain 0 and W in the
form

/AN 70\
L~) = L k") e’k + iy gin nnz (6.24)
w

Win

Since k_, k,, and n determine the wavelength of the perturbations along
the x, y and z directions, the amplitudes 0,,, w,, may be interpreted as the

P r ramnmotnn b O 0 i BaAatteine gnrming AR/ n enfae 4

coeflicients of CXpalisioin of (EJI, w in Fourier series. We refer to them as
normal modes. Substituting further eq. (6.24) into egs. (6.19) we see that
space dependences are factored out on both sides and we obtain a set of
purely algebraic equations for the normal modes, which for comparison
with Chapter 4 we write in the suggestive form
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This system of equations admits nontrivial solutions provided that the
[ Oy \
.determinant of the 2 x 2 matrix acting on \ } vanishes. This condition

is nothing but the characteristic equation (eq. (4.5)) which assumes here
the explicit form

It links the eigenvalue w to the spatial characteristics of the perturbations
(k = (k2 + k2)'? and n) and to the control parameters R and P which take
into account the properties of the material and the constraints acting on

the system.
We notice from (6.26) that for given k and # the sum of eigenvalues is

always negative,
w, +w, =—(k*+n*n?) P +1)<0 (6.27)

It follows that the passage through an instability (if any) can only take
place when one of the (real) roots goes through zero while the second root
remains negative,

wl(Rc’Pc) = 0

w, (R, P.) <0 } (6.28)

This is known in the literature of hydrodynamics as the principle of
exchange of stability (Chandrasekhar, 1961). In this marginal state the
characteristic equation (6.26) reduces to

(k2 + n*n*)  —Rk*=0 (6.29)
which no longer involves the Prandtl number. In the spirit of linear
stability analysis ((“hanter 4) we lntern[et this e equation as a relation

between the control parameter R and the characteristics of the perturba-
tion (k, n):

R = R(k,n) = (k* + n*n?)3/k? (6.30)

If R exceeds the value of R{k, n) given by the above equation the product of
the roots in eq. (6.26) will become negative. This corresponds to the
situation

wy >0, w, <0

in other words for R > R(k, n) the reference state is unstable, behaving as
a (generalized) saddle On the o her hand for R < R(k, n) the product of

141 A .1.1¢n_.n|

e P — Al
the roots w, , w, 18 positive and ditional condition w, + w, < 0 (eq.

,.
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Fig. 6.1 Marginal
tability curve R(k)
(6.30) with n = 1)
rating the domain
symptotic stability
om the domain of
ability of the state
rest in the Bénard
lem with free—free
indary conditions.

(6.27)) allows us to conclude that both w, and w, are negative and hence
that the reference state is asymptotically stable.

Suppose now that one performs a Bénard experiment in which the fluid
is initially at uniform temperature (R =0, eq. (6.13)). By gradually
increasing the temperature gradient R itself increases from values
R < R{k,n) to values tending to R(k, n). The set of values of R for which

tha Sy
LIv o y»

given by curve (6.30) with n = 1. The resulting function R(k)is depicted in
Fig. 6.1. It possesses a minimum at

iqtam will Argt manatrata inta the Aamiain Aafingrahilids Al
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k,=m/\2 (6.31a)
or, reestablishing the initial (dimensional) variables through (6.11):
k. = n/{\/2d) {6.31b)
The corresponding value R_ of the Rayleigh number

R, = %ﬁ ~ 657.51 | (6.31c)

gives the frontier between asymptotic stability (R < R_) and instability
(R > R_). Tt is remarkable that this transition is mediated by a singie
universal parameter rather than by parameters reflecting the detailed
structure of the material or of the experimental setup.

A most important point in connection with egs. (6.31) and Fig. 6.1 is
that R_corresponds to nontrivial values of kand n, that is to say, to critical
perturbations having a finite characteristic wavelength in the x, y and z

directions given by
R [ '
R(K)

\ unstable /
1000 |-
Rc _____ v ‘

500 !
asymptotically
stable

1
11
0 | 2 Kk 3 4 5 k



6.3 The Bénard problem: linear stability analysis 137

I, =

2n 2n _
E: Ye f(_y—’ lzc =2d (6.32)

with (ki + k;)'? =k, = n/\/2d. 1t follows that the dominant mode in

the vicinitv of th e instabilitv will now be cnaha"v inhomogeneous. This i is
I IRREL Y Ul vl l\.a 11idLa lllly Win NOW CC opGuidii ALV VIV MO, & 11D 1Y

the signature, at the level of stability analysis, of the symmetry breaking
character of the transition. We thus have a simple elegant explanation of a
large body of the experimental facts on pattern formation surveyed in
Chapter 1. We notice that in the present problem the characteristic
wavelength is extrinsic, in the sense that it is directly proportional to the
depth of the layer. We defer further comments on this point to Section 6.4

dealino with chemical cvmmpfrv-hrpnlmna inctabhilitiec
dealing with chemical § ymmetry-breakin g mgtabiiifies,

It is instructive to explore the vicinity of the critical state (k_, R_). By
continuity we expect that w, will remain a finite negative number while
| w, | will be a small number. We may compute it by neglecting w? in eq.
(6.26) and by expanding systematically around the critical state, taking
eqs. (6.30)-(6.31) into account. To the first nontrivial order a straightfor-
ward algebra leads to

~a(R — R)) — bk — k_)? (6.33a)
where the positive numbers a and b are given by

a=2P/9n*(P + 1) 1 (6.33b)

b=4P/(P + 1) )
Fig. 6.2 depicts the dispersion relation (6.33a) for various values of R. We
notice that all the curves have a maximum ai k = k.. For R = R_ the
w = w(k) curve 1s tangent to the k-axis, yielding w_, = 0 as expected. For

Fig. 6.2 Graph of ® 05 -
versus k in the Bénard @
problem close to the

. .. R>R.
instability threshold /\
R = R_ (eq. (6.33a)). . k.

e WY \WULJoag
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Table 6.1

RC kc
free—free 657.51 2.221
rigid—free 1100.65 2.681

rigid-rigid 1708 3117
R > R, part of the curve lies above the k-axis, implying that there is a zone
of unstable modes of which the fastest growing is the one at k = k.. Now,
when the lateral extension L of the system gets very large the spectrum of
ks becomes continuous according to (6.21c). The number of unstable
modes for R > R_, however small |R — R

srfinitvy Thigig 10l Afm 1t
lllllllll_y- 111D 15 1 i

distributed systems of large extent.

Notice that for values of k significantly different from k_ the left part of
the dispersion curve crosses the negative w-axis and subsequently
continues in the negative k direction symmetrically with respect to this
axis. This is a direct consequence of the fact that the characteristic
equation (6.26) remains invariant under the transformation k— —k.

Tha enalntion ft
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ution o ary
conditions is carried out in Chandrasekhar’s classical monograph
(Chandrasekhar, 1961). Table 6.1 gives the critical values for the three
most widely studied cases. We notice that rigid boundaries exert a
stabilizing influence, as one might have guessed from the very fact that
they force all three components of the velocity to vanish on the two

horizontal boundaries.

6.4 Reaction—diffusion systems. The Turing
instability

We turn next to chemically reacting systems and choose as the reference
state a time-independent and spatially uniform distribution of chemicals
in the reactor. In the experimental setup of an open reactor described in

Corntinn 1 A4 thic will e arhiavad far o]l tmvantingl meimmecne F 4l o daeib Af
DLLLIUILL 1.5 WS WL U alliicvid (Ul di piatuladl purposcs il tn€ agpui vi

the reactor along the feeding direction is much less than its lateral
extension. Alternatively one may adopt the pool chemical approximation
whereby in a closed reactor the initial products are in large excess. The
intermediates then behave as an open subsystem during a substantial
period of time. Depending on the case we shall adopt for them fixed
(Dirichlet), zero flux (Neuman) or periodic (simulating an unbounded

svstem) boundarv conditions
system) boundary co
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Let {X,} be the uniform steady state reference solution (in the case of
fixed boundary conditions this implies that the boundary values of {X}
should be kept equal to {X,}). Setting

Y — Y L
r P ST ]

A is

=1, n (6.34)
1 1 6.34)

X; ey}
i s

substituting into eqs. (2.27) and linearizing with respect to x; we obtain

Ox; ov;
i = L x. + DV3x, =1,..., .
ot J.(aX,-)sx’Jr A " (6.3

where v, denotes the overall rate of change of X ; due to the reactions. Since
the coefficients dv,/0X ; and D, are time-independent, egs. (6.35) admit
solutions of the form

x(r
xir,

1) = nhir) et {6 161

where u is space-independent and accounts for the structure of x as a
vector in concentration space. Now by construction 0v,/0X ; are space
independent, and the Laplacian is the only operator acting on space
coordinates in egs. (6.35). It suffices therefore to choose ¢(r) to be an

eigenfunction of this operator subject to the boundary conditions that
apply to the problem under consideration:

V2, (1) = —knd,(r) (6.37)

Here mis a set of indices labeling the (infinite) set of eigenfunctions and the
minus sign in front of k2 accounts for the fact that V2 is a dissipative

onerator havino nonnaocitive e alieg Intice th
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to a uniform distribution and k # 0 to a nonuniform one.

Substituting (6.36) and (6.37) into (6.35) one realizes that the space and
time dependences are factored out on both sides of the equations. One is
thus left with a homogeneous set of algebraic equations for the compo-
nents u; of the vector u of the form

[~V

[
det] ( g; ) (@ + D)%

J

=0 (6.39)

In this equation it is understood that the coeflicients (dv,/0X ;), depend on
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Brusselator, eq. (2.44)), with the exception of the diffusion coeflicients
which appear explicitly through the terms D;kZ. In the limit where all
diffusion coefficients are identical, D, = D, one can absorb these termsina
redefinition of w,

o' = w + Dk} (6.40)

Fxnressed in terms of o', ea. (6.39) reduces, then, to the characteristic
KPTOso0h 1h1 Lhills U 2, 04, (0. 07 IR Rts, LU, C T

equation of a spatially uniform system. We know by that such a

system may admit bifurcations associated with one real eigenvalue
crossing zero (w’ = 0), a pair of complex conjugate eigenvalues crossing
the real axis (Rew =0, Im ' # 0), or various higher codimension
situations. In each case at such a transition point the eigenvalue w of the
original system will have by virtue of (6.40) a real part smaller than or

equ 1al ta 7zern o ven hv —nbz I{' {'nllnwc that
Cquads 10 2010, plved 10110WsS that

the first instability in a system having equal diffusion coefficients will be
associated with spatially homogeneous solutions (k,, = 0);

if k,, = 0 is excluded by the boundary conditions diffusion will play a
stabilizing role, postponing the instability that would take place in its

absence.
Letu

diffusion coefficients are unequal. Excluding for the moment higher

codimension bifurcations the following possibilities can be envisaged.

n I‘;')“ 112 ‘lfh;(‘h
v wich il f\rm ¥Y¥Ylliwil
accounts for the spatial characteristics of the perturbations. This relation
is of 2nth degree in k and is invariant under the transformation k - —k.

Solving with respect to 4,

A= Ak3) (6.41)

m/s =7

one expects to find a marginal stability curve having at least one
evtromunm Twn tuniral racac ara danmicatad in ciervoc (aland (LY AFTia £ 1
LIV WL, L WU LY pival vased al\.,'ubl)lblbu 11 VUL ¥Ld (W) aliu \U} UL1'1E. v.J,

limited for compactness to the positive k-axis only.

In (a), as 4 is varied from values corresponding to asymptotic stability
(here below curve (a)) to values leading to instability (above curve (a)), the
first transition will take place at A for which k,, = 0. This corresponds to a
space-independent situation. In other words, the dominant mode in the
vicinity of the first bifurcation point will be a homogeneous one and the

analvsis will reduce to that carried out in t
YV i1l i Wil S A= . 8 L witl IVl w1 19
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Fig. 6.3 Two typical
outcomes of linear
stability analysis
around a uniform
steady state in a
spatially distributed
reaction—diffusion type
system. (a) The
marginal stability
curve A(k) presents an
extremum at k =0
implying that near the
mstablhty threshold

homogeneous in space.
(b) The marginal
stability curve A(k)
possesses an extremum
at a nontrivial value
k= kmc’ implying the
emergence of solutions
displaying broken
symmetries beyond the
netability threshold.

1r nu-....uqu vaialsaaih

The situation is very different in case (b). Here the extremum A7 occurs
at a nontrivial value k,_ = k... where the dominant mode of the solutions

‘has a nontrivial space dependence displaying a characteristic length

I. ~ k,!. We are thus in the presence of a symmetry-breaking instability
similar to the one observed in the Bénard problem (Fig. 6.1) with one most

important difference: the characteristic length I, is here completely
e alatad hyu (A A1) tn the

\Aau.«u UY (V.71 vy mne

dently of geometry and boundary conditions. We shall refer to this type of
instability as the Turing instability, since it was foreseen in Turing’s
historic paper (Turing, 1952) on the chemical basis of morphogenesis.
This type of instability allows one to understand, at least qualitatively, the
experimental data described in Figs. 1.11-1.13.

It is interesting to 1dent1fy the reasons why symmetry breaking

cyetem’s narametere 1

ntrincic no 1
DFIrviil 5 pALGIiIVIVIO LI

Q1 o f 1
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Q
13

netahilitiec 1in chemi
IMsiavnties in ¢

whereas in hydrodynamics these lengths are always extrinsic. In chemistry

one witnesses the coexistence of a transport phenomenon, whose

characteristic parameter is a diffusion coefficient D of dimensions L2T !

and of a local relaxation phenomenon whose characteristic parameter is a

rate constant of dimensions T~ '. From these one can construct a

combination !, ~ (D/k)!/? having the dimensions ofa length. On the other
and 1in huydr M 1

transport, but one lacks a preferred characteristic time since hy-
drodynamic modes display a continuum of frequencies accumulating to
Z€ro.

As in the previous section, it is interesting to derive for the two cases
depicted in Fig. 6.3 the dispersion relation linking w to k in the vicinity of
the criticality. In the limit of small w all terms of (6.39) except the first and
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Fig. 64 Graph of o
versus K for a
reaction—diffusion type
system in the vicinity
of an instability: (a)
the (o, = 0, k__ =0)
instability, curve (a) of
Fig. 6.3; (b) the
Turing instability

(w,. =0, K, # 0),
curve (b) of Fig. 6.3.

form

(polynomial of 2(n — I)th degree in k,))-w
= (polynomial of 2nth degree in k)
in which the right hand side vanishes at criticality on the grounds of eq.
(6.41). Expandlng( k,,)locally around
€

rEres

the existence o

(6.33a),
wxa(li — 4,) — bk2 fork, =0 (Fig. 63, curve (a)) (6.42a)
and

w =~ a(l — A) — bk, — kmc)2 fork, #0 (Fig. 6.3, curve (b))
(6.42b)

These relations are depicted in Figs. 6.4(a),(b).
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6.4(a) is provided by one-variable systems such as the Schldgl model (e
(2.45)). Of more interest 1s the two-variable Brusselator model, which
undergoes a Turing instability. Using expressions (3.28) of the rate
functions and the uniform steady state solution (A4, B/A) as the reference
state we obtain the characteristic equation

ig.
eq.
|B—1— (DK% + w) A2

(6.43)

Setting w = w, = 0 at the instability threshold and using B as a control
parameter we find the explicit form of eq. (6.41) as
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,Dy A?

This function admits a minimum

D 1/2 2
B, = [1 + (D—l) A] (6.45a)

for

ki = A/(D,D,)"? (6.45b)

. R [y 3 wmem aam rinsi :
We see that, as anticipated above, B, and k,, are intrinsic. This statement

must be tempered, however, by the observation that, in pr1nc1ple not all
values of k,, are accessible. Indeed, taking for concreteness periodic
boundary conditions, we have k,, ~ (2n/L)m where L is the extension of
the system and m is an integer. In actual fact, therefore, for L finite the
critical value k,, will not be given by (6.45b) but by the closest number to
this expression ilaving the form (2n/L)m.

B A pair of complex conjugate eigenvalues crosses the
imaginary axis at criticality, Rew_= 0, Ima, # 0

Eq. (6.39) gives rise to two equations for the real and imaginary parts of
the critical eigenvalue. Setting Rew, = 0, one obtains two equations
linking A, Imw, and k2. Eliminating Imw, between these two equations
one finds a new relation A = A(k2) replacing eq. (6.41). Finally substitu-
ting back into one of the initial relations one obtains the value of Imw, in
terms of k,, and other noncritical parameters that may be present in the
problem.

In principle, both of the situations depicted in Fig. 6.3 can take place
here as well. The real part of the eigenvalue close to criticality will then
behave as in Fig. 6.4. Since Imw, # 0 we expect to have the onset of
time-periodic solutions with an intrinsically determined period beyond
the instability threshold. We may refer to this phenomenon as time
symmetry-breaking. In Fig. 6.3, curve (a) and Fig. 6.4(a) these emerging
solutions will be uniform in space, whereas in Fig. 6.3 curve (b) and Fig.
6.4(b) they will display a nontrivial space dependence associated with
space symmetry-breaking. We will speak, then, of spatio-temporal pat-
terns.

The first type of situation is the only one to arise in systems involving
two variables Taking again the example of the Brusselator and setting

N (A A wa Gind
Rew =0 in €4. (v.45) W< uuu
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—(Im,)* +i[B ~ A2 — 1 — (D, + D)k}l Imw,, + A?

12 nr\ 4
m

+ [A’D k2 — (B — 1)Dk2] + D Dok

Cl\

n {
=V \

The imaginary part of this equation gives a relation between k,, and the
control parameter B

B= A2+ 1+ (D, + D)k (6.47a)

which has the form of curve (a) of Fig. 6.3. The minimum of this marginal
stability curveis (k,, =0, B, = A% + 1) which is nothing but the onset of
oscillatory instabilit} in the spatially uniform Brusselator {eq. (4.38)). On
the other hand, taking the real part of (6.46) one obtains the expression of
the oscillation frequency

(Imw)? = A* + [A2D, — (B — 1)D,Jk2 + D,D,k%  (6.47b)

which reduces to (Imw,)* = A? at the instability threshold (k,, , B.). We
see, again, that Imw_ is completely intrinsic, as it is determined entirely by
the system’s parameters. Notice that criticality at k,, = 0is forbidden for
fixed boundary conditions. In this case the critical mode will be the mode
lying ciosest to zero aillowed by these conditions.

Let us now turn to the possibility that the oscillatory instability is
m‘r‘nmnsmwd by space cvmmetrv-hreakmn To realize this, systems

fe g SN ) A | o aX2234% w22 LA NTA3) P AN 2101

involving more than two variables are necessary. To see how this can
happen we write the characteristic equation (6.39) of a three-variable
system in the form

w* — Tlky)w? + 3k, )o — Alk,,) =0 (6.43)

where 7 and A have the same interpretation as in eq. (4.17a) and ¢ is the
sum of principal minors of rank two of the coefficient matrix of egs. (6.38)

with @ = 0. Let us look at the conditions imposed on (6.48) by an
oscillatory instability. We have, at the instability threshold,

w, , = +iQ
oy <0

Inserting into eq. (6.48) and equating real and imaginary parts we find:

from which follows a relation linking A to k,,,

T(, k)5 k) = A(4, k)

—
o
=
o

S
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The point is that this equation is of sixth degree in k. As a result the 4
versus k., curve can have a minimum 4_ at a nontrivial value k,,, , Which 1s

* precisely the property that we wanted to establish.

C Competing instabilities

From the above discussion it follows that a given system can exhibit
several different kinds of instability associated with Fig. 6.4(a) or (b), the
imaginary part of the critical eigenvalue at the threshold being possibly
zero or nonzero, depending on the system under consideration. In a
concrete physical situation the particular type of instability that will be

ranlizad firct will he the ane acenciated with the lawect lving fhrpehnlr] ng
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is gradually increased from values corresponding to asymptotic stablhty
in Fig. 6.3. This, in turn, is determined by the parameters present in the
problem other than the one controlling stability. As an example let us
derive the condition under which the Turing instability precedes the
oscillatory instability in the Brusselator. Referring to Fig. 6.3 we must
require that the minimum value B_ given by (6.45a) is less than the value

given by (6.47a) evaluated at k, =0,
1/2 2
[+ ()% <
1+l —=] A <4°+1
L \P2/

This imposes the following inequality on the ratio of diffusion coefficients,

(D1)1/2< —1 +(A2+ 1)1/2
D, A

N ~/

<1 (6.50)

entailing that the autocatalytic species X must diffuse less efficiently than
V Thic ~nnld ha anticinatad fram fhe }ntn|t.
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the case of fast diffusion of the autocatalytic species (responsible for the
instability) the nascent spatial pattern would tend to invade the whole
system, thereby reestablishing the initial uniformity.

When the equality sign is realized in (6.50) the thresholds for Turing
and oscillatory instabilities will coincide. This is a higher codimension
instability near which the complex phenomena already alluded to 1n

nment that in

gument that 1n
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Another mechanism by which criticalities associated with Fig. 6.3 could
compete is when, for a given value of the control parameter 4, the
marginal stability curve for a given type of instability, say curve(b), has
two extrema at two different values of k,. Since the A(kZ) curve is
symmetric with respect to the A-axis we need for this at least four variables.

In such a situation, which in the language of Section 5.8 corresponds also
hig oher codimension instabilitv. the linearized operator would have

foa r codn nstability, the linearized oper uld hav
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two nontrivial zero eigenfunctions at criticality (se¢ eq. (6.36)). One would
then be led to a situation similar to the one analyzed in egs. (5.65)-(5.68).
Typically the two values of k,, will be incommensurate. This can lead to
complex, spatially quasi-periodic patterns arising from the mixing of the
corresponding modes.

In a small system the above two-mode competition can be realized in an

alternative wav. Indeed. rememberinge that nn]v the valuec f’)ﬂrr/l\m m
altbl auvu Way. Luuveu, iviiviloviiig ICRE FELL Y LI Y GAluAnd \dwrv) A piy

integer, are permitted for k,,, we may require that at a given value of 4
slightly above the (generally inaccessible) minimum 4, of curve(b) in Fig.
6.3 two permitted values of k, lic on the marginal stability curve. This is
again a higher codimension instability which can be handled by the
methods of Section 5.8 (Mahar and Matkowsky, 1977).

6.5 Further comments on linear stability in
spatially distributed systems

The analysis of Sections 6.3 and 6.4 suggests strongly that the transition to
instability in spatially distributed systems presents some universal
properties that are largely independent of the details of the particular
system under consideration. All that seems to matter is:

the form of marginal stability curve 4 = i(k,,), which depends essentially
on the number of relevant variables present;

the type of instability involved (w,=0 or Rew, =0, Imw, # 0 at
criticality).

Furthermore, if the reference state displays appropriate symmetries the
margmal stability curve depends on k2 only, and the system properties are

iny jant nndar the efnrmatinn I — I Tt 1¢ tharafnre nat nnrnr nunn
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that instabilities and bifurcations similar to those observed in the Bénard
problem and in reaction—diffusion systems occur in a great variety of other
systems as well, such as the Taylor vortex flow (Koschmieder, 1981),
dynamic solidification (Langer, (1980), laser physics (Newell and Mal-
oney, 1992; Lugiato, 1992; Lugiato and Lefever, 1987) and so on.

A distinct feature of instabilities in spatially distributed systems relates

tn tha tuma and tA tha nusibhaer AP s~ Aac that Ao o Aactalailicad o

LU Lv Ly pu aliu LU I.ll\.' HUIuvl U 1uucy Lllal Cail OC QCSTa0IZCa UUyUllU
the threshold. Consider the Bénard problem. According to eq. (6.24) the
solutions depend on two wave numbers k., k, in the horizontal plane. On
the other hand linear stability only fixes to the norm k_ of the vector
k = (k,, k,) at the threshold (eq. (6.31)),

xs My
2 2 K2 2
K2 4+ k2 = k2 = 1?2 (6.51a)
Clearly this uniaue relation mav be catisfied hy varinuc comhinatinng af
oAV LY 5 LLLAS ulll\iu\.' AAAAAAAAAAAA L) Vv odiuioliwug UJ YAlivud vuiuviiialiviin vg
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k. and k,. In particular the ratio k./k,, defining the orientation of the
vector k in the horizontal plane, can be arbitrary. We conclude that the
‘eigenvalue w, = 0 of the linearized operator is infinitely degenerate at the
instability threshold, since there is an infinity of eigenfunctions compat-
ible with the marginal stability condition

k., k,) will

As an example, the choice k= k., k, = 0 gives rise at criticality to a
vertical component of the velocity ﬁeld equal to

w = w, sin 7z cos k. x + cc

or, setting w, = (r,/2) €%, ¢ being a phase factor and r,/2 a (positive)
amplitude.

w = r, sin nz cos (k.x + ¢) (6.51b)

This corresponds to an ascending maximal fiux at x = (1/k,)(2nt — ¢), n
integer, and to a descending maximal ﬂu atx = (1/k)[(2n + D) — @], n

integer, representing a regu uccession parallel to the y-axis.

Similarly, the choice k, = k, = k_ \/ 2 gives rise at criticality to a vertical
component w of the form (up 0 a phase factor)

W = ) SiN 7Z COS (—k% x\ cos ( k/'f’ y) (6.51c¢)
W~/ \wW< /

This corresponds to a situation in which the fluid moves upwards near the

center of a square and downwards along its sides, representing a regular

succession of squares in the (x, y) plane.

An additional compucaaon, to which we have alrea
Section 6.4, appears when the critical threshold /_ is exceeded. In a small
system, since k_, ... are ‘quantized’, in the sense k, = (2n/L )n., n,
integer (for periodic boundary conditions), there will always be a value 4
close to A such that only one mode corresponding to a particular choice of
> ... will become unstable. But in a large system (L . — c0) the spectrum
of k values becomes continuous. For any supercritical 4 as close to 4_ as

ok a
=3

n
desired there will, then, inevitably be a whole continuum (k,.k,) uf k
values (Fig. 6.5) corresponding to positve eigenvalues of the linearized
operator. We are thus confronted with a complex problem of selection of
the solutions. This problem is far from being academic: it is manifested
forcefully in the results of many of the experiments surveyed in Sections
1.3 and 1.4.

In view of the above comments one is entitled to express reservations
about the very applicability of the techniques of bifurcation analysis to
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<ig. 6.5 The zone of

unstable modes
(shaded area) in the
;inity of the (w, = 0,
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spatially distributed systems since, for one thing, in the presence of infinite
degeneracy none of the known theorems (Section 5.1) guaranteeing
bifurcation seem to apply. In the next sections we shall discard this
difficulty and derive amplitude equations for the bifurcating solutions
using perturbative expansions. We close the present section by stressing
that in the light of some unexpected recent results (Constantin, Foias,
Nicolaenko and Temam, 1989), this is most probably not a futile exercise.
Specifically, for certain types of evolution equations of spatially distrib-
uted systems, one can show that the trajectories tend to a finite-
dimensional (generally fractal) attractor embedded in a finite-dimensional
phase space, referred to as the inertial manifold. This result may be
impractical in the sense that these dimensionalities may be quite high in
real-world problems. Still, it is of fundamental importance as it shows that
the complications arising from the presence of an infinity of degrees of
freedom may to a certain extent be bypassed.

6.6 Bifurcation analysis: general formulation

We now turn to the construction of the bifurcating solutions of the full
nonlinear equations (6.1) beyond the instability threshold. Asineq. (5.11)

we express these equations in terms of the excess variable, x; around the
reference state X,

Ox(r, 1)/0t = L(2,V)-x(r, 1) + h(1, V, x(r, 1)) (6.52)

where both the linearized operator . and the nonlinear contribution h
contain now space derivatives acting on x(r, t). We assume that linear
stability analysis performed along the lines of Section 6.3 and 6.4 has
revealed the existence of one of the above discussed criticalities (Figs.
6.1-6.4), entailing that at a certain value A, of the control parameter the

linearized equation admits solutions of the form
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X = uellm wc)!(pm(r)
=u eiQJqﬁm(r) (6.53)

where ¢,(r) is an eigenfunction of the space-dependent part of &
associated with the wave number k,, and satisfying the appropriate
boundary conditions.

To compute the solution of (6.52) when 4 deviates slightly from 1, we
expand, as in Sectlon 5.2, both x and 4 — 4 in power series of a Smallness

parameter ¢, excluding for the moment discontinuities arising for instance
from limit point bifurcations:
X=8X; +€X,+ --- (6.54)
A—de=ey, + ek, + - (6.55)

Furthermore, to account for critical slowing down we introduce slow

Il
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% 0
—=Q ——+e—+ei—+ ... (6.57)
ja i) aly ol o JN o I
ot o1 o7, 0T,
if Rew, = 0, Imaw, #~ 0 at criticality.

It remains now to see how to handle spatial derivatives in (6.52). Two
cases need to be distinguished.

A Systems of small spatial extent

As discussed in the previous sections the spectrum of k, is discrete in such
systems. For / sufficiently close to A, only one (or a small number of)
mode(s) will be destabilized. The correspondmg P n(r) in (6.53) w1ll then

determine tbe o

agierm FIVER B 8

the nonlmear range as well. In this case the action of space derivatives in
(6.52) is straightforward and no additional scaling needs to be performed.

B Systems of large spatial extent
As soon as one enters the unstable domain a continuum of modes will be
excited. Owing to the nonlinear term in (6.52) these modes will interact. If



150

6 Spatially distributed systems

one therefore formally performs an eigenfunction expansion of the type of
eg. (3.2) for x one will find that the equations for the expansion coefficients
(eq. (3.3)) will involve coefficients associated with linear combinations of
the k,,s of the different modes. Expressed in terms of the variable r rather
than k,,, this entails that the system involves more than one space scale.

In order now to infer the dominant scales among the continuum of the

ales present we express lr asitsreference value k,_ (thelatter being zero

LoOwai W Lapii 1S LA I ALY VR gy LR § LAV,

g. 6.4(a), or finite, Fig. 6 4(b)) plus a deviation Ak

L AL (£ Q)
me + AK (0.306)

. _ 1
K,m—f(,

and observe that at a given distance from the instability threshold A — 4.,
the range of Ak can be estimated by {(cf. eq. (6.42))

1/2
Ak~ 26— 0]
Lo
Accordingly a space derivative acting on x(r, t) will give rise to a ‘fast’

variation associated with k,, and a ‘slow’ one associated with Ak, the
latter being weighted by a factor (A — A,)Y? or, in the dominant order, by

—
o)
7))
=)

S’

a factor ¢'/? or ¢ according as y, # 0 or y, = 0 in (6.55):
a a + 1/‘) a + Z s 0\ 16 60d\
_— = — esi= . ¢
or OR (3p1 AR ' )
¢ d ¢ 0 6.60b
=gt oy = .
o OR ' “p, G =9) (6.600)

Substituting {6.54)-(6.57) and (6.60) into egs. (6.52) we get, to the
various orders in ¢, a set of linear equations for the successive approxi-

mations X, . The Ofs) equa ations are homogeneous and have the same

L ] LALLM AVRILS and sidv oaglll

structure as the linear stability equations. Their solution 1s, therefore, of
the form (cf. (6.53))

x,(r,t) = c(p, ue™T¢_(R) + cc (6.61)

where we have introduced, as in eq. {5.13), an amplitude c. This amplitude
is undetermined at this stage and is allowed to depend on the slow time

and space scales that do not appe ar exnlicitly in the Oie) pnan'
tJu\/\l DWCLEWD LLICLL MY LUy “PF <l Ul\t}ll\/ltl i1 l LW V\b] \./ <l L

plays in this respect the role of an envelope modulating the variation
expressed by ¢,.(R).

To the next orders the equations for X, k > 2 are inhomogeneous. To
compute them one has to impose, in the spirit of Chapter 5, solvability
conditions since the operator #(4,, V) acting on x, has a nontrivial null
space. These conditions provide one with equations for the so far
undetermined

plitude c, which are the analoes of the normal

Ly AL QLA SS i~ 11z
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equations of Chapter 5. The main novelty with respect to Chapter 5 is that
in systems of large spatial extent these equations are going to be partial
-differential equations, owing to the dependence of ¢ on the slow space
variable p. This procedure is illustrated in the next few sections on a
number of representative examples considering, to begin with, the case of
small systems.

6.7 Bifurcation of two-dimensional rolls in the
Bénard problem: the small aspect ratio case

Our first illustration of the machinery of bifurcation theory in spatially
distributed systems will be the, by now familiar, Bénard problem in the
Boussinesq approximation and with free boundary conditions. The

tarting noint tha manlinanr Dancsinagn aciiatioana

starting point is the nonlinear Boussinesq cquations derived in Section
2.5. Asshown in Section 6.2 there is a definite advantage in expressing the
evolution laws of physical systems in dimensionless form. We therefore
apply to these equations the scaling used in the study of linear stability
analysis (egs. (6.11)). A straightforward algebra leads to

00/t + (ov-V)0 = Rw + V20
0ov/0t + (Ov-V)ov = P(—Vdp + Vv + 01,) \ (6.62)
divov=20 i

where the dimensionless parameters R and P have been defined in eq.
(6.13). To simplify as much as possible we shall assume that the Prandtl
number is very high, P >» 1. Dividing through the second equation (6.62)
by P we see that one can neglect, in this limit, the nonlinearity (dv-V)dv
compared to (dv- V)0 as well as the contribution of the acceleration term
0ov/or. Furthermore, to eliminate the pressure term from this equation we
apply the curl operator twice and project on the z-axis. We finally obtain,
following (6.17), the following simplified set of equations

00/0t + (6v-V)0 = Rw + V20

o0 0%

ﬁha“yﬁww:o j(&&)

12 .C_ n
aiv ov = U

subject to the boundary conditions (6.22).
As stressed throughout Chapter 1, the evolution laws of a spatially
distributed system can generate a great varlety of patterns One of the

nrincinal reasons for this diversity. noted i
principal reasons lor (I VErsity, note
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in the orientation of the wave vector k. In what follows we shall seek
specific types of solution which for simplicity we take here in the form of
rolls. According toeq. (6.51b) this type of structure is two-dimensional. At
the level of eq. (6.63) this implies

5V = u(x, Z)lx + W(X, z)lz L
0= O(x. 2) (6.64)
U V\vy &) )

We are now in the position to perform the bifurcation analysis of the
solutions. We expand &, v, R and /0t according to (6.54)-(6.56),

0=891+8202+"' \
Ov = edv, + &*dv, +
S \ (6.65)
R=R_+eR + ---
0 0 5
—p g -
ot o1, 01, 4

and substitute into eq. (6.63). We keep spatial coordinates unscaled by
limiting ourselves to a small aspect ratio. To O(g) we obtain, taking (6.64)

into account,

V20, + Rw, =0 }
6.66
0%0,/0x* + V*w, =0 ( )

’

which is nothing but the linearized problem of Section 6.3 evaluated at
ition s, t

criticality. Its solution is, therefore, of the form (cf. egs. (6.20), (6.24) and
(6.61)),
N /1>
(w‘) - ( ‘/J) sin nzfe(z, .. )& 4 c*(z,..)e %] (6.67)
i/

In accordance with the formulation of Section 6.6 we have introduced a
(complex) amplitude ¢, which remains undetermined at this stage.
Accordingly we have normalized the Fourier coefficients &,,, w,, in such a
way that 0 —1 and ¥ = w/0,,. The latter is computed from the
(6.25) at criticality:

k2 2
p=12 T (6.68)

BT

Since the flow is two-dimensional (eq. (6.64)) we also need, in this order,
information on the horizontal component u(x, z). The most straightfor-

ward way to get this is to use the incompressibility condition (the third
relation of (6.63))

j 493 § Vi Vi (UL J g
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du,[dx = —0w, [0z
and observe that for periodic rolis it is satisfied by the expression

1 azwl
U, = —
Yok

GN

Indeed, differentiating (6.69a) with respect to x and realizing from (6.51b)
that the second derivative of w, with respect to this variable reproduces w,
up to a factor (—kZ), one obtalns the incompressibility condition as an

identity. Substituting w, from (6.67) one obtains the more explicit form
iy . -

u, = ——cos nz(c e — ¢* g7 ikx) (6.69b)

1= [ )

<

To compute the amplitude ¢ in eq. (6.67) we have to go to the higher
orders in the perturbation expansion. We discuss first the O(¢*) and then
the O(g*) equations.

A The O(£?) equations

Egs. (6.63)-(6.65) lead to the following set of equations for the unknowns
(0,w,):

V:Z R
awn(®)-(5 5)(2)

) “\gw v\,
[0 o o\

00, 08, 06, ‘4,
—_ R — R - - =
k@rl vy S, az) (0) (6.70)

\ 0 /
The right hand side can be evaluated using (6.67) and (6.69b). One obtains

/ /A L N A

(Slnn ( elkx 4 cc) — R sin mz(c e** + cc) + 2my | ¢ | *sin 2712\
0t

(0) -

N Vd

’ /

(6.71)

The solvability of (6.70) requires that (qoz) be orthogonal to the null space

of L(R.,V). One checks easily that with the boundary conditions
adopted

02
Vi
£ (R,,V) =( ﬁxz) (6.72a)
\ R, V¥

C
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and admits, for a zero eigenvalue, eigenfunctions with the same spatial
dependence as those of #£(R_, V),

ut = (Ji)e““" sin 7z (6.72b)
\¥ "/

where ¢ is computed from £ u* = 0 at criticality.
We may now express the bUlVlell[y condition capuuuy, Op ng a
Hilbert space scalar product in addition to the usual one of vector

calculus, to account for the space dependence of the functions involved:

1Y
(( 2 )exsinnz, (42)) = 0 (6.73)
\\V / \Y//

or, more explicitly, using the fact that the functions under the scalar
product are periodic in x,

1 2z * \

f A rk |— /ac dc ~— 2ikex D Jicin2 arofa 1 % o~ 2ikexy
LV P l l I ~ —1\1l+l hIOV] ILL\L T U w )

Jo Jo L \‘%1 dt, /

+ 2mj | ¢ | *sinnz sin 27z e"“‘“’“—l =0

Using the property that the integral of e over a period 2n/k_ vanishes
for m # 0 one sees that the above equation reduces to

Jc/dt, = Rypc

As pointed out in Section 5.4, this linear equation predicts unphysical

runaway behavior beyond bifurcation. The only way to avoid this

wra VIR YV ki, SRiky ay SIS LIRS

deficiency is to reduce it to a trivial identity, which can be achieved by

setting
R, =0 l
(6.74)

defot, = )

The solvability condition (6.73) being thus satisfied one may solve the
simplified second order equations (6.70):

VZBZ + Rcwz = 273!,[,1 lc| 2¢in 2nz
0%0,/0x* + V*w, =0 (6.75)
To this end we eliminate w, by applying the operator V# to the first

equation and subtracting the second equation multiplied by R_. This
yields:
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Expanding 6, in Fourier series one arrives at

1
0, = ——ylc|?sin2nz (6.77a)
2n
Substitutine into the secon A afeas (6.75)and taking into account the free
PULUOSHIILILIE LY LIV DULULIU UL VAo, (V-7 ) il o
boundary conditions, eq. (6.22), one arrives at the trivial solution
w, =0 (6.77h)
and hence, by virtue of (6.69a),
. — N V'l e L PPOY
U, = VU {0.7/C)

This completes the solution to the second order of perturbation theory.

B The O(£%) equations

To the next order one s led, using egs. (6.63)-(6.65), to the following set of
equations for the unknowns (6,,w,):

2 A

Q(Rca V) (WS) - (\aazz V4/ \W3,
X

/a0, 00 00, 80,  80,\

——R2w1+u1—a;2+w1§+u Ax‘+w2——‘)

(6.78)

\_/

The night hand si de can be evaluated explicitly using expressions (6.67),

s Ve 1]

(6.69b) and (6.77a)-(6.77c). One finds

oc . .
/sin nz (— glkex 4 cc\ + ¥ sin mz(c e** + cc)( — R, — Ylc|? cos 2712)\

‘(13‘) _ \7T, /
(0 _\ 0

eigenvector of £ introduced earlier in this section. Utilizing the same

w11

definition of the Hilbert space scalar product along with the periodicity of
the solutions in the x-direction we obtain

M1 "2& r 60
dz | *dxe **sin? gz | — e** + cc
0 ) 01,

.
+ Y(ce** + cc)(—R, — ¥ |c|?cos an)J =0 (6.80)



6 Spatially distributed systems

After explicit evaluation of the integrals one ends up with the equation

dc

52, = Ratie — Wlel

As in Section 5.4 we introduce the normalized amplitude z = &c and
reestablish from (6.65) the initial parameters t and R — R_. This leads to

8z/0t = (R — R )Wz — W?|z| %z (6.81)

ne Normar 10 O1

bifurcation. The Bénard problem in a system of small aspect ratio close to
the bifurcation of convective solutions in the form of rolls has thus been
reduced to a single ordinary differential equation for the amplitude of the
solution to the dominant order. The latter admits the nontrivial steady
state value

a nitchfaork
a  pPILIVI R

PN
| | S > ) 2 BERY r O™
|Z|—Ll/l(“ ‘“c)J \0.02)
which is nonanalvtic in the narameter R — R It bifurcates sunercritically
ytic in the parameter K — K. LIt bilurcates supercritically

and is, therefore, stable. Notice that the phase of the solution cannot be
determined by the third order solvability condition nor, in fact, by higher
order perturbation analysis. This was to be expected since, as noticed in
Section 1.3, in the absence of lateral boundaries there is no mechanism
capable of fixing a priori the position of a convection cell along the x-axis.
The solution of the Bénard problem to the dominant order can now be

written exnlicitly. Usine eas. (6.67) and (6.82) we abtain
tJA \IAI-AJ A & \-l \\} UI} AWk \} U‘_l’ ' vutu
.20 ( ) - ( \”2 ( \
( o (R — R)'"? ikex + ¢ sin mz + cc
\w(x, Z)/ /

+ O(R —R,) (6.83)

where ¢ denotes the phase. We have thus established analytically the
phenomenon of space symmetry-breaking which, as mentioned earlier in
this chapter, is one of the principal signatures of the complexity of
nonlinear spatially distributed systems under nonequilibrium constraint.

6.8 Bifurcation analysis in systems of large spatial
extent: complex Landau-Ginzburg equation

We now turn to systems whose extent in at least one direction is much
larger that the characteristic iength of the critical mode predicted by linear

stability analysis. As pointed out in Section 6.6B, the blfurcatlon analysm
for such systems has to be completed by an appropriate sc

vl VUL ARV VY Sl appd (L)
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coordinates as well, (6.60a)-(6.60b). We already know that the specific
type of scaling depends on the type of instability experienced. In the
" present section we focus on a reaction — diffusion type system in the
vicinity of an instability corresponding to a pair of complex eigenvalues
crossing the imaginary axis at criticality, Section 6.4B. To be even more
specific we suppose that in the system under consideration the first

srnctahility Accine Y o PP hnn which we re
1iivstavilil l_y ULLuly al, ﬁ, — U A SILUALIVILI VYYIIIvLT YYo Ll

as time symmetry- breakmg The dlspersm nrelation for the real part of the
eigenvalue will then be as in eq. (6.42a) and Fig. 6.4(a),

Rew ~ a(A — 4,) — bk% + O(k*) (6.84a)

while the imaginary part of the eigenvalue will be given by an equation of
the type of (6.47b),

~ 4 2 4

Imwx~Q, + c(d— 4,)+ gks + O(k,) (6.84b)
Accordingly, one can anticipate a scaling of the time variable as in eq.
(6.57a). The scaling of the space variable will be similar to eq. (6.60), but

with the ‘fast’ variation d/0R absent since the most unstable (and hence
dominant) modes will display close to instability (Rew = 0) space
dependences modulated by small wave numbers. Recalling from the
analysis of the Hopf bifurcation in spatially uniform systems (Section 5.7)
thaty, = Oand Q, = Oinegs. (6.55) and (6.57b), owing to the periodicity

in the time vanable, one is finally led to the perturbative analysis of egs.
(6.52),
ox/ot = L (A, V)-x + h(4,V,x)
with
X =ex, +e’x, + - -~ (6.85a)
A— A, =&, + - (6.85b)
0 0 0
I’ a2 {6 QEA)
=N T E T \V.0J)
ot “oT 1
J 0
—:8_+ e (6.85d)
or op

Actually, in a reaction—diffusion type system with constant diffusion
coefficients one deals with a more restricted form ofeq (6 52), whereby his
V-independent and & can be split into a V-independent part plus a

JLe L e LR A 42+ 213390 L g nt 1% SN

contribution proportional to the Laplace operator:

-
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More generally, in eq. (6.52) & and h can be expanded formally in series
containing increasingly high derivatives in space. The structure of this
series depends critically on symmetry properties — for instance, in an
isotropic system only even derivatives will show up. Eqg. (6.86) can
therefore be regarded as the simplest realization of this structure.

Substituting now (6.85a)-(6.85d) into (6.86) and proceeding as in

CQantinne §2 §S7and 67 we oot tn the varinug arderc in ¢ the follawinog
P LIV Lt’ »f CALAINE W ) ¥¥ w 5\/‘.’ LV Ll ¥YULIV WO Viviwl o 111 b’ LW LMLV YY ll‘&
systems of equations.
A Os)

(Qca—Tl _ (,10))-x1 -0 (6.87)

This homogeneous system of equations is equivalent to linear stability
analysis. It therefore admits solutions of the form

x, =c(t,pue’ + cc (6.88)
B O(c?)
One obtains (cf. ea. (5.11)) the inhomaooeneous svstem of equationg
@, otams (CL. eq. (O.11)) the imnhomogeneous system of eguations
0. 21— 2y | -
Q.1 - ZL,(4) |- x; =h,, - xx (6.89)
L ol J L

is automaticaily satisfied. In view of (6. 88) one sees that the right hand side
contains contributions in e¢*7 ~2iT "as well as terms independent of

X = c?pye?T 4 c*ipre” N 4 o) ?p, (6.90)

it being understood that the coefficients p, and p, can be determined
uniquely once the detailed structure of the system is specified.

C O
To this order the slow space and time dependences are manifested for the
first time. One obtains (cf. also (5.12)):

0
(Qcﬁl - 20()"9)).’(3 = YZEOA(AC)'XI + hms(j“c)'xlx2

ox
+ hxxx'xlxlxl - —A-Tl + g1('{C)V,(21x1 = q3 (691)

v

N —
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The solvability condition of this inhomogeneous system of equations
requires that the right hand side be orthogonal to the null eigenspace of
- the adjoint of the operator acting on x; which, as discussed in Section 5.7,
is of the form u‘*e'”. We therefore obtain, following the previously

adopted extended definition of scalar product:

where the dot indicates the ordinary scalar product in a linear vector
space.

Substituting the detailed form of x, and x, from eqgs. (6.88) and (6.90)
we further obtain

2 A
Jo dTe'”uT*-Vzcl_it'm(){c)-uje” - é—gue“ + Ve[ L, (A.)-u] eV

1

+ %(h“,‘-uuu*)lc |Zce'T + [h,_(4.)-(p,u* + pou)]e’™|c|%c

+ (terms in e, eZiT,eﬁiT,e‘Z‘T,e‘;“T)} (6.93)

Clearly, owing to the integration in T only the terms in e'” will survive in
the curly brackets in eq. (6.93). This leads to an equation for the amplitude
¢ of the form

(0" -u) dc/0t = y,Pyc — Pylc|?c + Q,Vie (6.94)
in which the coefficients, P,, P, and Q, are uniquely determined from
(6.93) and the structure of the underlying system. We notice fhat, in

general, P, and Q, are complex-valued. D1v1d1ng through by u”
introducing the normalized amplitude z = ¢c and reestablishing the initial
parameters 4 — A_, r and ¢ through egs. (6.85) we finally obtain

0zjor = (A — A )z 4+ (1 + i2)V2iz — (1

V' A

+

if)|z]2z (6.95)

where we have performed afurther (e-independent) scaling to eliminate P,
and the real parts of P, and @,, both assumed to be positive.

With a certain degree of caution with regard to mathematical rigor in
line with the comments made in Section 6.5, one may consider eq. (6.95)as
the normal form of a spatially extended dynamical system in the vicinity of
an instability of the type (Rew, = 0, Imw, # 0, kmc = 0). This equation
brings a correction to the normal form of a Hopf bifurcation obtained
earlier (eq (5.53)) by 1ntroducmg a slowly varying envelope modulating

n!‘r\ﬂ it o T oo L

A A5 Y,
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Fig. 6.6 Spatio-
temporal complexity
generated by the
complex
Landau—-Ginzburg
equation (6.95) in a
two-dimensional
system: (a) spiral wave

ahtainad fare
O owdined 101

i—i.=1la=1,
£ = -0.6,
L. =L =350;(h)

L,=L,= 50 (Lega.
1989).

particular way of describing the coupling between spatially distributed
oscillators induced by diffusion has the great merit of universality, at least
in the vicinity of the bifurcation point. It was first studied systematically
by Newell (1974) and Kuramoto (1984) and, more recently, by Coullet
and coauthors (Coullet and Gil, 1988) who place special emphasis on the
role of the symmetries built into the system.

Eq. (695} is i
Ginzburg equation, since it generalizes the (real-valued) Landau-Gin-
zburg equation familiar from equilibrium critical phenomena. The latter
corrects, in turn, Landau’s mean field theory of critical phenomena to
which we alluded in Section 5.6, by allowing for spatially inhomogeneous
fluctuations (Ma, 1976). In the opposite limit of purely imaginary
coefficients and 4 = /_, eq. (6.95) reduces to the nonlinear Schrodinger

raoforrad t~ in tha 1i
IviIvIICU w111 LIg 11

Anation familiar fram the ctudvy
\-luull\lll. ICLIRLIBICL 1AAs111 LIl ‘Jtu\l-’

(Newell and Maloney, 1992). The fact that in the present context the
coefficients of the cubic and spatial derivative terms are complex is a
consequence of both the dissipative character of the dynamics and the
nonequilibrium constraints. It entails that contrary to its equilibrium
counterpart, this equation does not derive from a potential. This opens

of waves in nandiceinative gustemeg
L Y LL Y W 111 AANSILINE IO 1 s -~ (s ) DU Ps)

i, mnic
LUV EVIIVU WS L

propagating wave fronts to spatio-temporal chaos and the generation of
defects. Two characteristic illustrations obtained from direct numerical
simulation of (6.95) are depicted in Fig. 6.6. The analogy with the
phenomena described in Section 1.4 in connection with chemical
instabilities and defects is quite striking and highlights the importance of
the complex Landau-Ginzburg equation in large classes of natural

nhenomen
phenomen

To get a flavor of how this complexity can arise it is useful to sketch the
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linear stability analysis of the homogeneous limit cycle solution of (6.95)
in a one-dimensional system. From egs. (5.55)-(5.57) we have

z, = (5 — A ) e M AN (6.96)
Setting
z =z, + 8z(r, 1) e A A (6.97)

we obtain the following linearized version of (6.95):

36z/dt = — (I +if)(2 — A J)(0z + dz%) + (i + ix)V?5z  (6.98)
or, with 6z =38ze*, 8z =u+ iv and after separation of real and
imaginary parts,

dufdt = — [20: — 2) + K2Ju + ak® )
dufdt = — [2(: — 7.) + ak?Ju — k' ? (6.99)

The characteristic equation of this system reads (see Sections 4.3 and
6.4)

w? 4+ 2[( — i) + k¥ + [2(4 — A )31 + af) + k* (1 + 23] =0
(6.100)

In the supercritical region 4 — 4, > 0 the sum of the roots obviously
remains negative. The only instability that can arise is, therefore, through
the constant term vanishing and subsequently becoming negative. This
requires that the parameters « and f be such that

since in this range a homogeneous oscillation encompassing the system as
a whole may no longer be sustained. We notice that the instability is
induced by the presence of complex coefficients in eq. (6.95) or,
equivalently, by the presence of a nontrivial phase variable related to the
imaginary part of the order parameter z. In this sense, therefore, it can be
referred to as a phase instability.

6.9 Further examples of normal form envelope
equations in iarge systems

As stressed in Section 6.8 and throughout Chapter 5, the structure of
normal form equations depends on the type of instability experienced by
the system. In this section we briefly summdrlze the procedure leading to

ich eguations in laree systems in t

Sucn cyu LEv syoweld nwe
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the (Rew, =0, Im w, #0, k, =0) one considered in the preceding
section. c

A The Rew, =0, Imw, =0, k, #0) instability
This situation, which we referred to in Sections 6.3 and 6.4 as space
symmetry-breaking, includes as particular cases the Bénard and Turing

instabilities. The dispersion relation for the real part of the eigenvalue will
be as in eq. (6.42b), entailing that the scaling of the time and space
variables will be as in egs. (6.56) and (6.60) respectively. In particular, one
will have to account both for a ‘fast’ and for a ‘slow’ space vanable, R and
p.

Consider first a one-dimensional system. We anticipate that, because of
L .

spatial symmetries, 7, = 0 and (3/07 ) ... ) = 0 in the expans

following perturbation scheme:

X=8X1+82X2+"'

\
A=A =€, +
a_ .0 > (6.102)
ot ot
¢ 0 0 )
R
Inserting in (6.86) we find, to the order O(g),
22 7]
Lgou )+ 2 (A, )6R2J x, =0 (6.103)

This homogeneous system of equations admits solutions of the type (cf.
eq. (6.36) and (6.67)),

x, = c{t, plue®® 4 cc (6.104)
where we have taken into account that e*<® is the (critical) eigenfunction
of @*/0R? in an infinite system (with periodic boundary conditions), — k2
being the critical eigenvalue.

To O(¢?) one finds (cf. (6.89))
[ i 1 0%x,
Lyouc) + gluc)—aRzJ-xz =~ heoxix 2, () e

(6.105)
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Unlike in the previous section, eq. (6.89), the solvability condition is not
trivially satisfied since the last term in the right hand side still contains the
- critical eigenfunction e'*R . One has to impose, therefore, that this term be
orthogonal to the null eigenspace of the adjoint linear operator acting on
X, . We do not carry out explicitly the, by now familiar, manipuiations and
merely quote the final result, which is nothing but the requirement that
(r'?rn/ﬁ,lz\ = 0. This condition is identically satisfied owing to the very

badl Bl hd 41110 WUTIVILIV L 1D AN wLALIiR LA ) S vid i wws i5 [ 9§ L w
nature of the criticality. We may therefore proceed to write the formal
solution of (6.105) as

de oc* . o
Xz—p0|c| +P1ﬁ :kR+pcz zlch+pTKe 1k.-R+p=2kc*2e 2ik.R

o

(6.106)
where py, p,, P, are determined from (6.105).
To O(e?) one finds the equation (cf. (6.91))
_ e 2]
[_‘t’o(i )+ 2L (4, )aRZJ —7, [Em(i )+ L4, )8R2J .
| 0x, 0*x
h,(4.) xx, — ghx“'x1x1x1 + a— —L(4)- s 1
2.2,(3) 0%, _ (6.107)
1\ aRap - q3 .

The solvability condition of this inhomogeneous system of equations

equires
"21!:/1(:; .
dRe ¥ Ry**.q (¢, 7, R) =0 (6.108)

where we used the same extended definition of scalar product as in Section
6.7 and u* is determined by a procedure analogous to that leading to
(6.72) and (6.73). Owing to the integration in R only those terms of q;
which depend on R through e*¥ will survive in (6.108). After some formal
manipulations similar to those performed repeatedly in this chapter as

vvyell ag in (hantar § Ane fAnally ande nn with an aanation for I‘hP
1 Qa0 111 \/llal}l\.{l s A\ ViAW llllull_y wIINED ut] Yyiuil il u\luu lllllllllll
normalized amplitude z = ec of the form

0zj0t = (A — AP,z + D &*z/or* — P,|z|?z (6.109)

This equation differs from eqs. (6.94) and (6.95) by the important fact that
the coefficients P,, D and P, are real-valued, a consequence of the absence
of an imaginary part in the critical elgenvalue and the correspondmg

cigenvector fAhfllQ“\l chnm ne supe
Clshllv CLLlUL . (SavieQui iy, ng supc
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cients can be normalized to unity through an appropriate rescaling of z, r
and t.) This makes (6.109) structurally identical to the Landau-Ginzburg
equation which appears in the study of equilibrium critical phenomena. [t
is to be stressed, however, that the physics behind the two equations is

the sense of

ézfot = — oU/6z* (6.110a)
is given by
oz|* 1
U= [dr{—(/l—/lc)tz|2+ v +5|z|41 (6.110b)
) L Iarl = |

It has a kinetic origin connected to the dynamics, in contrast to the
classical Landau-Ginzburg equation which derives from the equilibrium
free energy functional.

Let us now turn to the extension of (6.109) in two dimensions. We are
interested in situations (cf. Sections 6.3 and 6.4) in which the basic
structure arising near bifurcation is one-dimensional (roll type of pattern),
along say the x-coordinate. The explicit form of the linearized dispersion

relations (eq. (6.33a) or (6.42b)) then reads (Mannevilie, 1991)
oz a(l — i) — b[(k2 + k2)'* ~ k ]?
x a(h — 2) — b{[(k, + Ak)? + AK2]Y? — k }?
~ a(d — A) — b[(k2 + 2k Ak, + AkZ + Ak2)'? — k]2

b
~ ald = i) = 35 (kebk, o+ AKE + AKDY? (6.111)

Comparing orders of magnitude on both sides and bearing (6.51) in mind
one realizes that

Ak, ~ Ak

<
=t

C2z/ox? ~ *z/ay*

This leads us to extend the scaling of space coordinates in eq. (6.60b), in
the following way,

(_o @

ax ox i, T

o .0

i (6.112)
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s 1
l

Fig. 6.7 Numerical
solutions of Turing
patterns in the
Brusselator model (eq.
(3.28) supplemented
with diffusion} in a
two-dimensional
system with periodic
boundary conditions:
(a) regular roll pattern
obtained for the
dimensionless
variables 4 = 4.5,

B =10, D =17,

= 56,

L=L = 64, b}
irregular pattern
displaying defects
obtained for the same
chemical and diffusion

L,=L,= 256 and
random initial
conditions (De Wit,

.......

Replacing the last of egs. (6.102) by (6.112) and again following the
procedure described above one arrives at

6 i 52)2
——— |z Py|z|% (6.113)
2k, Cy?) ?

This equation, referred to as the Newell-Whitehead—-Segel equation, can
be regarded as the normal form of a symmetr
leading to roll or stripe patterns and allowing for modulation in both x
and y directions. Fig. 6.7 illustrates on the Brusselator model. the type of
pure and modulated patterns that may arise under these conditions. Note
that when basic structures other than rolls are considered this equation
needs to be corrected further, since one has then to allow for quadratic

terms (Walgraef et al., 1982).
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B Secondary bifurcations. The Eckhaus instability

To get the flavor of the type of behavior predicted by the equations
derived in the previous subsection we consider eq. (6.109) with the scaling
P, =D=P,,

Il
—
b
|
'~
pes
]
+
(
w
[
[N
—
[#))]
—
—
g
—

One can easily check that this equation admits a family of time-
independent solutions of the form

7. = (4 — i — Ak?)1/? gildkr+ o)
zg=(Aa— A —AKT) T e

odulation of the basic

memd L o hee awlitrnesr mhagoa
dallld @ 15 dall dluliladly pliase.

where Ak is a small wave number describing the m
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study the stability of these solutions we set
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z= (A — A — AKP)[1 + Oz(r,1)] 4l P (6.116)
The linearized equation for 8z reads

06z L, 00z 3%z
at -_ \Ihiﬂ.c

As for eq. (6.98) we decompose Jz in real and imaginary parts,
oz = u + v, thus transforming (6.117) into

@u _ 22 /1 2 2 k@v A2u N
— A — A — 2Ak—
8t ( )u or or a2 (
ov du % (6.118)
— =2Ak— + —
ot 2 or + or?

We seek solutions of these equations in the form

(H) — (HO) eixr ewl
v UO

Egs. (6.118) are then transformed into a set of homogeneous algebraic
equations for u,, v, whose characteristic equation turns out to be

w? +2[(2 — 2, — AK?) + k¥ o + [2(4 — A, — Ak?) + k*]x?
— 4i2AKk? =0

Assuming x is small we may neglect quartic terms in k. The constant term
then becomes equal to

2k (A — A, — 3AK*) + O(x*)

entailing that an instability associated with a change of sign of w will
develop for wave numbers Ak such that

1= 1/2
| Ak| >( 3’“°) (6.119)

In other words, periodic patterns with modulation characterized by a
wavelength sufficiently far from the basic structure (Ak = 0) are unstable

AL I0R2 “ LA SIL 3L LWLl & ek

with respect to long wavelength modes. This is known as the Eckhaus
instability (Eckhaus, 1965). Evidence for the existence of this instability
has been reported in fluid dynamics (Lowe and Gollub, 1985).

If perturbations transverse to the basic structure are allowed then one
has to appeal to eq. (6.113). The analysis shows (Coullet and Gil, 1988;
Manneville, 1991) that for negative Ak an instability with respect to

large-scale wavy perturbations transverse to the pattern, referred to as the
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Fig. 6.8 Mode
selection arising from
fl’\p Felhane an

LAATIAUS ai

zig-zag instabilities: (a)
marginal stability line;
(b) Eckhaus instability

line; (c) zig-zag

In_Qfal'nht\r line. The

Sueiin

shaded area denotes
the region of allowed
modes.

zig-zag instability, takes place. This transition introduces a deformation of
the basic pattern and renders it two-dimensional. It has been observed

- experimentally in connection with the Bénard problem (Busse and

Whitehead, 1971; Busse, 1978).
It is worth noting that the Eckhaus and zig-zag instabilities provide a
partial solution of the selection problem raised in Section 6.5, since they

v tha callawmcn ~F ~avs tunac nf etructure that \nnn]ri annear tn ha
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allowed on the basis of linear stability analysis, see Fig. 6.8.

C Phase dynamics

A very interesting array of behaviors allowed by the normal form
equations derived in Section 6.8 and in the previous two subsections is

nnnnnn ; rorcating T Aanc inta a farm avhiliting am amvs

lCVCdlCU U_y LeLadLillg LuGaC Gq'uauuua inNto a iorm \-AlllUlLllls all alllplltudc
and a phase variable. To be specific, consider the complex Landau-
Ginzburg equation (6.95) in a one-dimensional system and set

z = A(r, t) e (6.120)

Substituting into eq. (6.95) and separating real and imaginary parts one
obtains

oA W\ L, P4, 048
- LY - ~ 2 6.121
at [(’1 o) (ar) “ar |A A Ty, G

é 0? op\? wd*A 2040
—¢=—BA2+—£—a(—9) —=— += % (6.121b)
ot or? \ Or A or Adr or

In the absence of space dependences these quations reduce to (5.55).
They show that, while the amplitude 4 reaches a plateau value through an
intrinsic relaxation mechanism with a 11 defin d characteristic time
A
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associated with the presence of a linear term (A — 4.)A, the phase ¢
follows the variations of A passively and, to the extent that A4 is small close
to the bifurcation, it varies slowly in time. Coming back now to the full
space-dependent equations this suggests that A can be eliminated and an
autonomous dynamics for ¢ can be derived (except for a very narrow
region around the instability threshold in which A will be subjected to
critical slowing down), provided that the spatial derivatives of ¢ and A in
the right hand side of eq. (6.121b) remain small.

The above envisaged reduction can be carried out most easily under the
more stringent assumption that A4 is space-independent. Neglecting the
time derivative of A4 in the first equation (6.121a) (a legitimate procedure
after an initial time layer, according to the previous argument) one
obtains an expression for 4 in terms of the phase,

Fa N\ 2 -

P
(A -4)— 6.122
A (A—4) (6r) 2 ( )
Substituting into eq. (6.121b) one obtains
2
¥ po-nrarapl e p-n(3)
t r r
or, introducing the new phase variable
y=¢+ pA—2I) (6.123a)
A r ;12 r /aqu\ 2 ’3
= — 6.123b
7 Urapga+ -5 (6.123b)

This nonlinear diffusion equation turns out to have a structure identical to
the Burgers equation encountered in hydrodynamics (Burgers 1948;
Ortoleva and Ross, 1973; Kuramoto, 1984). It describes nicely the spatial

VAWV Qaale AAUSS, 1S AN RIAIIIVLERY, 270 LR UL, A S L0 spiaiidal

complexity arising from the desynchronization of an array of spatially
distributed oscillators coupled through diffusion, as a result of the weak
stability properties of the phase variable. Now, as we saw in Section 6.8,
when 1 + aff < 0 an instability of the basic limit cycle solution occurs in
eq. (6.95). Under these conditions the ‘diffusion coefficient” of ¥ in
(6.123b) becomes negative. An ‘anti-diffusion’ behavior then sets in,

]Pﬂ(hno to 1ncreasi na]v larae values of the nhase oradient. Clearly. the

....... ncreasingly large values phase gradient. Clearly,

basic assumptions leading to (6.123b) need to be revised. A phenom-
enological way to achieve a saturation of the growth of the phase gradient
is to supplement (6.123b) by a fourth derivative term, — K{(d*y/dr*)
which has the additional merit of satisfying all the symmetry requirements
imposed by the invariance properties of the initial equations. The
argument can be justified by a more systematic procedure (Kuramoto
1984, 1990). Eq. (6.123b) augmented by such a fourth order derivative



Problems

term is known as the Kuramoto-Shivashinski equation. It gives rise to a
very rich behavior including the possibility of spatio-temporal chaos.

Notice that diffusion-like phase equations can only arise in dissipative
systems under nonequilibrium constraints: in nondissipative systems the
phase variable necessarily has a propagative character.

Phase equations associated with other types of instabilities can also be
derived (Walgraef, 1988 Brand, 1990). We do not dpvp]nn the technicali-

~ia TRIpLAaWE, LIO0, LAy LSSV SV AV YA iAW L wraiilwiail

ties here, but refer the reader to the original literature. We close this
chapter by noticing that the phase dynamics formalism provides a very
interesting insight into the origin of the defects characterizing nonequilib-
rium structures, referred to repeatedly in Chapter 1 and illustrated again
in connection with Fig. 6.6, The latter appear as singular solutions of the
normal form equations in which the amplitude variable A vanishes at the

‘core’ and the phase grad nt has a circulation of + 2z around any path’
however small, surrounding the core (Coullet and Gil, 1988).
Problems

6.1 Perform linear stability analysis of the Brusselator (eq. (2.44)) in a
square and in a circular spatial domain using either B or the size of the
domain as the control parameter. Identify possible high-codimension
instabilities arising from symmetry (Erneux and Herschkowitz-Kaufman,
1975).

6.2 Determine the conditions under which the Brusselator in a small
one-dimensional box admits a codimension 2 instability originating from
the coalescence of two time-independent modes of wave numbers m and

m + 1. Derive the solutions associated with the secondary bifurcation

Age o thic Afes a1 o2 . IMALL o aemd WA+ srale 1077
(S 1w} lU llllb Lllllbdl Dll.ud.llUll (iviallal ana lVldlI\UWDA)’, Lz1i1).

6.3 Compute the coefficients of the normal form equations (6.95) and (6.109)
for the Brusselator in one space dimension, respectively near its Hopf
and its Turing bifurcation.

(Answer: For (6.95) before rescaling (compare also with Appendix A2}

¢z B-B, (A2 i44* - 74%+4\ ., | _ &2z
i z—( it o )|z| 24 50D, + D) +idDy = D)) 55

For (6.109)

ar ~D,/D, B, 94%(D\/D,)'? (1 = D,/D,)
4D 1+ A(D/Dy)?] &2 \

it _ D /D) A
DAL O 2

&z 1+ A(Dl/Dz)"z B—- B, . —8A%D,/D,P"? + 542(D /D,) + 384 (D /D)2 —

[ ]
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6.4

[
wh

Pattern formation in the presence of a preexisting shallow gradient
(Gierer and Meinhardt, 1972; Almirantis and Nicolis, 1987). Consider a
two-component reaction—diffusion system

0X/0t=A+ fiX,Y,A) + D VX
0Y/0t = g(X,Y,2) + D,V?Y

in which the source term A exhibits a shallow gradient in space,

A= A, + ¢a(r), e « 1. Formulate the stability and bifurcation analyses
in the presence of such a gradient and derive the extended normal form
equation (in a small box) close to the Turing bifurcation. Show that in
one space dimension the presence of the gradient entails a shift of the
bifurcation point or the destruction of the bifurcation, in the sense of
Fig. 5.5(b).

U]

for instance, nematic liquid crystals subject to elhptlcal shear (Guazzelh

and Guyon, 1982) or condensed matter under irradiation (Martin, 1983)
there exists an intrinsic anisotropy breaking the symmetry between two

transverse orientation axes. Perform the stability analysis of the

homogenennsg ctate in a two- cnr ahle rea Phr\n_rhﬁ‘l cinn cvgtem in whie
nomogenecous statc 1n a two-varlabie reacuion—-qaiiiusion Sysicm i winlcin

anisotropy is accounted for by two different longitudinal and transverse
diffusion coeflicients D\, and D, respectively. Apply the general formulae
to the Brusselator model (Dewel, Borckmans and Walgraef, 1984).

6.6 The effect of imperfections in the Bénard instability (Ahlers, Hohenberg

6.7

14004 40ooy T

and LUCKC 1764 Licke ana bLﬂdHK 1980). UGI‘IVC the extended version
of the Boussinesq equations (Section 2.5) and of the corresponding
normal form near the Bénard instability threshold for a roll pattern
{Section 6.7) in the presence of a slight sustained periodic variation of
temperature at the lower boundary of the layer. Show that the

imperfection induces a displacement of the critical Rayleigh number in
the direction of increased stability.

Bifurcations in nonideal reaction—diffusion systems (Li et al., 1981; Li
and Nicolis, 1981; Othmer, 1976). Derive the extended form of
reaction—diffusion equations for the second Schlogl model (eq. (2.45b))
and for the Brusselator {eq. (2.44)) using the regular solution model in

which the excess free energy is given by

G, = Z W, /n

i<j

where {n;} are the mole numbers and w,; account for the interactions. By

ij
further assuming that only the interactions between the intermediates
(X, ...) and the initial products (A,B, ...) are nonideal, prove that the
nonideality correction to the diffusion coefficients is of the form

D(X) = Dy(1 — 2wX) etc. Investigate the effect of these COI'I'CCUOHS near
the cusp (for the Schldgl model) and the symmetry-br

a
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6.8

6.9

6.10

Brusselator) instabilities, with special emphasis on the interference

between such instabilities and the phase transition (unmixing) predicted

by the regular solution model.

The normal form of a dynamical system in the vicinity of the criticality
§

(Rery =Ims; =0 L = DYic aoiven by an eguation similar to (6 100)
{Re mo, =0,k = 0)1s given 0y an equalion simuar

to (6.109)
in which the order pa:a:metcr z is real. By redefining space, time and z
scales this equation can be written in one space dimension and in the
presence of an imperfection (in the sense of Section 5.6) in the form
(assuming P, > 0)

0z 0%z
Fr zz—-a)(z—b)+a,_

Check that in an unbounded system this equation admits for b = 1,
0 < a < 1 solitary wave solutions of the form

1
1+ exp[(l/\/Z)(r — vt)]

where the propagation velocity is v = (1/,/2)(1 — 2a).

For a = 1/2 these solutions reduce to a stationary state (kink) joining
states z = 0 and z = 1. Derive this solution directly from the normal
form by setting dz/6t = 0 and treating the resulting equation by methods

analogous to those of Chapters 3-5, in which time is now replaced by

anal those of Chapters 3-5, in which time now laced
the spatial coordinate r (Campbell, Newell, Schrieffer and Segur, 1986;
Malchow and Schimansky-Geier, 1985).

First order phase transitions in systems under constraint (Langer, 1980;
Langer and Miiller-Krumbhaar, 1983). In a great number of situations a
liquid-solia phase transition takes place when the solidification front
advances under the action of an external nonequilibrium constraint. A
model equation describing dendritic crystallization under such
conditions is

zZir, ) =z(r ~vt) =

oR oR R52R 0*R
—p vy
dt 0x dx*  dx
where R i1s the radius of curvature at the tin and v the velocity nf fhe
where 1S the ragius of curvature at the tip, ang v ng vaiocily ol 1

front. The minus sign of the second order derivative term accounts for
phase instability (negative diffusion) whereas the fourth order derivative
term describes stabilization through surface effects. Perform a linear

stability analysis of this equation around the reference state
R(x 1) = r, = const. and identify the characteristic lengths and time

AARA, LD ARty b Liia ract iV AVIIg LIS @Xite Al

scales present in the problem. Does the equation admit bounded
solutions in the fully nonlinear regime?

Precipitate pattern formation. An alternative interesting mechanism of
mterference between phase transmons and nonethbnum constraints is

P | 107701
et di., 1978).

a m .___
{(Feinr
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Let ¢ represent 2 monomer concentration, R(x,t) the ‘local’ radius of
particles formed by monomer aggregation. A minimal model describing
this process of precipitation is

c;_R = k[c — ¢*¥(R)]

t

@ = DV3, _ Amn‘lglﬂ W
ot T '

where ¢*4(R) is an equilibrium value of ¢ for a radius R particle, n the
particle number density, p the molar density and W the rate of
monomer production (if any). Perform a linear stability analysis of the
uniform state R = r,, (arbitrary), ¢ = ¢®9(r, ). Identify the type of

instability that can be realized, particularly in connection with the
existence of a characteristic length of intrinsic origin.



CHAPTER SEVEN

Chaotic dynam

CS

7.1 The Poincaré map

As we have seen throughout this monograph, in a nonlinear dynamical
system the first bifurcation from a fixed point leads to fixed point or to
hmit cycle behavior. Chaotic behavior, which according to the experimen-
tal data surveyed in Chapter 1 1s abundant in nature, can therefore arise
smoothly from 51mp1e fixed point behavior only through a sequence of

n—\n |n-‘-\ nrdar (ta 1r\r1r h'- \ fr citinng
15 111 511 VALUIWL \L\J |9} j ’ Ly ullﬂltl\}llﬂ

some stage of this sequence of transitions a periodic solution loses its
stability, a fact that is also reflected in the experimental data where chaotic
behavior seems to be much more intimately intertwined with periodic
rather than steady-state behavior.

The above comments suggest that to gain an insight into the onset of
chaos it is necessary to analyze the loss of stability and the subsequent
bifurcation behavior of periodic solutions. Unfortunately, this task is
unattainable. First, the analytic form of these solutions in the interesting
parameter region is not known except in a number of exceptional
situations. Second, even if the analytic form were known one would be led
to study dynamical systems of the form of eq. (3.26) in which both the
linearized operator & and the nonlinear part h contain an explicit
periodic dependence in time. This is, in principle, possible by Floquet
theory (Cesari, 1963; Hale and Kogak, 1991), but in practice it is mirch
more difficult to carry out on a quantitative basis than is the study of the
behavior around fixed points. The study of higher order transitions is, of
course, even more complicated.

An elegant way out of this difficulty has been invented by Poincaré. We
illustrate the idea in the case of a three-dimensional phase space (Fig. 7.1).
Let y be the phase space trajectory of a dynamical system and § a surface

o e thic traiectarv trancuer ‘_
wu u 15 LI1lo wi g ira I f

Ac a rifla at
AS A r'uif, at

he trace of y on § is a sequence o
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7 Chaotic dynamics

=~
=]

-face of section o
continuous time
1amical system. P,
P, ..., are the
i.n_tcrsect.o ns of the
ectory y, generated
from the Lorenz
del {eqgs. (3.4) with
=10,r=28,b=1%)
with a surface S
transverse to the
yjectory. The phase
ice flow induces on
§ a discrete time
amics mapping the
>osition variable of
. Xg to the position
variabie of P,,

X; = g(x,) and so
forth.

points Py, P, P,, ... at which the trajectory intersects the surface with a
slope of prescribed sign. The successive positions Xg, X, X, ... of these
points follow, in principle, from the dynamics. Indeed, if we write the
formal solution of (3.26) as

X, = ¢t(x0) (7.1)

then, clearly, X; = ¢ 7,,(x,) Where T(x,) is the time necessary for the
trajectory to return to S with the same sign of slope starting from x,,, and

(x. )etc ﬂusmhtpmvplv the nrecise form nf'rl) and the

Laalilitalt s paAlol AR 2R (<39 LUSR U W

similarlvx, = ¢,
witiiiieeriy =2 WT(x )i e
values of 7(x,) are impossible to determine. But if we label the successive
points not by the time at which they are visited but, rather, by their order,
then we realize that the original flow (7.1) induces on S a dynamics of the

form

X, +1 = 8(x,) (7.2)

where g(x) = ¢ 5, (x). This dynamics is no longer continuous in time: it is
a recurrence, since the time intervals between successive intersections are
finite. This is referred to as the Poincaré map, S being the Poincaré wrfarp

of section. By introducing an appropriate coordinate system in S, we can
write (7.2) in the more explicit form

1 =ﬂxn5 yn)

yn+1, = g(xniyn)

dimensionality is one of the important advantages of the Poincaré map.
The second advantage is that recurrences like eqs. (7.2) and (7.3) lend

7~

: /A
NN\ /

P (g(x,)) D {af afar A\
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Fig. 7.2 A cycle of
order two and its
signature on the
Poincaré surface of

/ .

themselves to numerical simulation much better and much more accu-
rately than continuous time dynamical systems. A third advantage is that

"by determining the object that will attract the P,s for long times, we will be

able to infer a number of key properties of the attractor of the original
dynamical system, since in actual fact we will dispose of a section (rather

than a projection) of this attractor. In particular, the stability properties of

these two ohiects

will he camnletaly identical
these ty bjects will

Ut LU PR Y Balai i .

‘Let us give some illustrations of this last point. By construction, a limit
cycle attractor will intersect the Poincaré surface of section with a given
slope at a single point P which will remain invariant under the dynamics,
i.e. for all successive intersections. At the level of eqgs. (7.2) and (7.3) this
will be refiected by the fact that the coordinates (x, y) of P will be such that

Xpt1 = Xps Ype1 = Yy OF

(7 A\
vaesy

In other words, a periodic solution corresponds to a fixed point of the
recurrence generated on S. An interesting generalization is to search for

Q‘fpf‘

[

attractors which nroduce on § a

S5 ] L oquUce on b

finite sequence of noints

Axiiai [EL 2 8 L o) puUiaies

consecutively such that x,,, |, ..., x,,,remain different from x,, (similarly
for y) until an iteration k is reached for which

Xp+k = Xp )

- joo

We call this a cycle of order k. Fig. 7.2 describes how a cycle of order two

A /|
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Fig. 7.3 A
quasi-periodic
attractor in the form
of a two-dimensional
torus and its signature
on the Poincaré
surface of section in
the form of a closed
curve C (after
Thompson, 1982).

looks in the original phase space. We notice (see also Section 3.3C) that
the additional twisting of the trajectory before closing to itself would be
impossible in a two-dimensional phase space as it would imply self-
intersection.

Another topologically interesting possibility, depicted in Fig. 7.3, arises
when the intersection points of the trajectories converge to a closed curve

. - 1 . - .
M an fl’\p Df\lr\f“] e o:n‘fclr‘p nf cartinn pr\"r\unnn fl’\p f‘
U L LW L VWG VY QULIOvwy UVl oW iivil. 1 VIV WIS LIV g

3.3 the corresponding attractor of the flow is a torus.

In the above perspective the signature of chaotic dynamics on the
Poincare¢ surface of section should be a set that is equivalent to neither a
countable set of points nor a smooth curve. We have encountered such
objects, the fractals, in our analysis of invariant manifolds of Section 3.3.
Their existence entails that the underlying attractor of the continuous

timme dunamical
al

chauld cont non nur\fot\lp nim
LIV U yllaniie SRV 019

a1 a I's) or nf cheate
AILGILL Al ULIVU UL ULV LIULITUVL

Vi o1iviuio

whose transverse intersection by a line produces a Cantor-like set. This, in
turn, requires that the attractor undergoes successive foldings as time goes
on (cf. Fig. 3.7). ‘

Fig. 7.4(a) depicts the Poincare¢ surface of section of the Rossler
attractor (eqs. (4.41) and Fig. 4.10) on a surface of section corresponding
to the plane y = 0, x < 0,z < 1 (Gaspard and Nicolis, 1983). We obtain a

claud of nointe By delimiting nart of th tirfaca Af
iy v Ul

aQ tinn hy a cmall
uyg v l_IUlllLD. u_y “\Jllllll\vllls Pall vl UlIv oullaw (9

il Uj £ olllgll

rectangle we observe that at later intersections this rectangle is rotated
and deformed into a stick-like structure which, in turn, is folded into a
horseshoe-like structure. Subsequent foldings will produce the Cantor-
like structure anticipated above.

A second view of chaos in the Rossler model is given by Fig. 7.4(b). Here

il
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Fig. 7.4 (a) Horseshoe
map induced by
Réssler’s model (eqs.
(4.41)) on the Poincaré

curface of cPr‘ﬁnn

(y=0,x<0,z<1).
The trajectories within
the rectangle rotate
around the
e-dimensional stable
mamfold of the fixed
point and intersect the
Poincaré surface after
having followed the
folding of the unstable
manifold. (b) The
one-dimensional map
obtained by plotting
the value of —x at the
{n + 1)th intersection
of the trajectory with
the Poincaré surface,
versus its value at the
nth intersection.

—
=)
—

—x(n+1)

®) -x(n)

we plot the value of x at the (n + 1)th intersection point between the
above-defined Poincaré surface and the flow, as a function of its value at
the nth intersection. The numerlcal constructlo shows that we obtain a
smooth bell-shaped curve. Th e i 5

this curve are not given by consecutive points but by points that appear to
be distributed randomly.

Fig. 7.5 depicts a second example of a return map, obtained this time
from a seven-variable model of the Belousov-—Zhabotinski reaction
(Richetti and Arnéodo, 1985; see also Section 1.4). The temporal
variation of Br~ion Concentration and a two-dimensional projection of
of the model equations are repre ed,
7.5(a) and 7.5(b). The return map itself, Flg. 7.5(c), is obtained from a
Poincareé surface of section whose trace is indicated by the dashed line on
Fig. 7.5(b). These results foliow very closely the time dependences,
attractor shapes and return maps obtained directly from the experimental
data (Turner, Roux, McCormick and Swinney, 1981).

In both Fig. 7.4(b) and Fig. 7.5(c), the important thing is that in the

Cp €5¢n lldllUIl dllU[UCU Dy l[lC rclurn map one lb leI[ Wl[n a onec-
dimensional recurrence, an additional advantage with respect to the
high-dimensional recurrence governing the full Poincaré surface of
section (Fig. 7.4(a)). Such dimensionality reductions arise frequently in
systems possessing widely separated time scales: as time "gocs on fast
processes associated with contraction wipe out any extension in certain

dlrectlons leaving only one relevant varlable associated with a slow

tha ottea~t~
lllCdLl rac wviv r
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Fig. 7.5 {a) Temporal
variation of the Br~
ion concentration
deduced from the
seven-variable model
of the
Belousov-Zhabotinski
reaction by Richetti

and coauthors; (b)

portrait generated by
the model equations;
(c) the return map
deduced from a
Poincaré surface of
section cutting the
attractor along a
hyperplane whose
trace is indicated by
the dashed line in (h).

7.2 One-dimensional recurrences: general aspects

The detailed construction of the Poincaré recurrence on the surface of
section, starting from a given dynamical system, 1s an extremely arduous
task that cannot be carried out quantitatively unless the solutions of the
equations of evolution (3.26) are known explicitly. As stressed repeatedly,
in most dynamical systems of interest this is not the case. Nevertheless, the
Poincaré map is the origin of a most fruitful approach to chaos which may

be summarized as follows:

One starts with a particular recurrence, or a family thereof, arguing that
there is bound to be a family of phase space flows reducible to this
recurrence through a judicious choice of the surface of section.

Qualitative, and whenever possible, quantitative analysis is performed on

the recurrence Ceortain features concerninag noccithle rautes to chaong ag
LLEVW LA WIL LWl Wwhs ol LELEAL Lwiabs Wil wu V\—’ll\-/vlll.ll‘& l_’\/uu‘ujv LV ULwl Vv williavo Lo

well as fully developed chaos that would be impossible to unravel from the
original flow are thus brought out.

By the previous argument on the existence of an underlying family of flows
amenable to the Poincaré recurrence, it is conjectured that the con-
clusions obtained from the above analysis should be generic for flows as
well, provided that the form of the evolution laws on the Poincaré surface

The this coniecture is checked by

validity of
i iiw VOILIAL L L2y e \-/UllJ\-/\-/L\fl-l\./ g S

J
experiment or by numerical simulation on model equations.
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Experience acquired during the last decade has fully vindicated the
interest in this approach to which, consequently, much of this chapter will
" be devoted. In this section we derive some general properties of
recurrences {Collet and Eckmann, 1980; Hao, 1989). In view of the
arguments developed at the end of Section 7.1 we focus on the
one-dimensional case

Xn+1 = f(xna 1) (7-6)

where p stands for a control parameter.
Let x be a fixed point solution of (7.6),

% = fl%, 1) (1.7)
In the spirit of Section 3.5, we introduce a perturbation &, from x through
X,=Xx+¢, (7.8)

substitute in (7.6), expand f in Taylor series around X and keep only the
linear contribution in ¢. One obtains in this way, using property (7.7),

Ensr = L%, 1S, (7.9a)

where the prime denotes the first derivative. This equation admits
solutions of the form

Ca=cp" (7.9b)
Substitution into {7.9a) yields
p=r(xn (7.10a)

On the other hand, from (7.9b) it is seen that £, will decay in time only if
|p| < 1. Wethusarrive at the condition of asymptotic stability of the fixed
point

1f(x, 0] <1 (7.10b)

The above analysis can be extended straightforwardly to cycles of order
k. Let {x,, ..., x,} be the set of points visited consecutively by the cycle.
Sincex, = f(x{, 1), ..., X, = f(x,_,, p),it follows that each of the points
{xy, ..., x,] satisfies the property

Xp =f(f.. . flx)) = fPx) (7.11)

k limes

i.e. it is a fixed point of the kth iterate of the map. Using the chain rule for
the differentiation of implicit functions the condition of asvmptoti
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stability (eq. (7.10b)) then takes the form
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(ARG TN LY SN A & FINY 235 [ I

[}

1
1

—
b2
p—



7 Chaotic dynamics

In studies involving one-dimensional recurrences y and f" are usually
chosen and normalized in such a way that if the initial data x, are taken
from a finite interval I = (a, b}, then the variousiterates x, , ..., x, belong
to the same interval. Therefore, the function f maps the interval I into
itself in the sense that the iterates may not fill the entire interval. We refer
to such systems as endomorphisms. An endomorphism with a smooth

inverse is referred to as a diffeomorphism Tvnicallv. one-dimensional

W oy Lo L ypavGany, UL TUAILLIISIV Al

endomorphisms leading to chaos are not invertible owing to the
elimination of the motion along the contracting directions. In contrast to
diffeomorphisms for such systems the past cannot be reconstructed in a
unique fashion.

7.3 Phenomenology of one-dimensional
recurrences: illustrations

Refore we proceed to the quantitative study of the mechanisms leading to
chaotic behavior and to the characterization of fully developed chaos we
illustrate the properties of one-dimensional maps on three typical
examples: the logistic, the circle and the intermittent map. These also
happen to be the dynamical systems on which much of the early
fundamental work on chaos theory has concentrated {Schuster, 1988;

Berge et al, 1984; Baker and Gollub, 1990).

A The logistic map

The specific form of eq. (7.6) associated with this dynamical system is

=
|/\ i/\

(
"X, = 4ux, (1 — x,), i (7.13)

A IA

p<l
x <1
Its genericity stems from the fact that any function possessing a

nondegenerate extremum behaves around this extremum as does the right
hand side of eq. { {7 1'2\ around x = 1/2.

2ia Sivaw Vi

The fixed point equation (7.7) possesses two solutions:

X;0 = 0, which exists for all values of the parameter p
x;, =1 — 1/4u, which exists as long as u > 1/4

The stability of these fixed points can be assessed from eq. (7.10b), which
for eq. (7.13) reads

|4 — 8ux| < 1 (7.14)
For x = x,, = 0 this leads to condition u < 1/4 in other words, the trivial
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Fig. 7.6 Evolution
toward the stable fixed

nnlnt in the lnnlehr\

Sui

map for u = 0.7.

solution is stable only as long as it is the unique fixed point of the system

For X = x,;, =1 — 1/4u, inequality (7.14) leads to 1/4 < u < 3/4, where

the left part of the inequality guarantees that x,, is in the unit interval.

Fig. 7.6 depicts the evolution of an initial condition x, induced by eq.
(7.13) for values of u slightly below 3/4. We observe that after a short
transient the iterates of x,, spiral around the nontrivial fixed point x, ,, to

ich thay auant and ag ~ Nantice that v i¢ the 1
L LTy CYOTin ua l-y Lbllu as n— 0. INOUILC tdarn Aqp 1O Ui

the graph of f(x) and of the bissectrix of the unit box. Having drawn the
bissectrix the iteration is visualized most conveniently first by going
vertically from x, to its image on the graph, then by shifting this image on
the bissectrix horizontally, then by continuing once again (vertically)
toward the graph of f(x) and so forth.

Beyond the stability limit u = § of the fixed point x,, a new solution in

the form of a cvele of arder two kee o
wulv 1V Ul a Lyuiv Ui Uigvl fwo takes ove

voar acg illngtratad i Fig 77 far
1, Ad HHIUdLLALLY lll 1 15 f.7 1Vl

u = 0.775. We refer to this phenomenon as period doubling. This solution,
which we denote by (x,_, x,, ) can be constructed analytically using eq.
(7.5),

or, after some elementary algebra,

1
Xy, = —@[1 o+ (161 — 8 — 3)1/2] (7.15)
T T T >
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7 Chaotic dynamics

Fig. 7.7 Evolution
oward a stable cycle
of order two in the
logistic map for
u=10.775.

Referring to curve (b) of Fig. 5.1, we see that the two points of the cycle
emerge from x,, through a mechanism of supercritical pitchfork bifurca-
tion at the critical parameter value ¢ = 3/4. Notice that at the level of the
evolution induced by f the two values x, , are parts of a single solution,
and are visited consecutively in the course of time. But at the level of the
second iterate /¥ each of x, | , x
solution. It is, therefore, at th
bifurcation is meaningful.

Let us jump, next, to the largest value of p allowed by eq. (7.13), u = 1.
One observes that for this value a typical initial condition in the interval
will evolve to a complex, aperiodic behavior shown in Fig. 7.8(a),(b). As
we shall see later, this behavior turns out to be one of the most clearcut

and best-established examples of deterministic chaos.

The ahnve dicenceinn chnwe that the lagictic man i1e canahle Af
4 11w LU ¥ W LAAW U ULV L [S2 8 LW A Lilcie LAAN, IUEIULI\/ llluy 10 \/“k’uul\/ vl
producing both regular, periodic behavior (Figs. 7.6 and 7.7) and

irregular, aperiodic behavior (Fig. 7.8). The question therefore naturally
arises, of whether these two types of regime are separated by a well-defined
transition. We shall see in Section 7.5 that this 1s indeed the case. More
specifically, the transition is manifested through an infinite sequence of

successive period doublings at increasing values of the control parameter

n(“ —_— Q/A i I \ ~1nim
Hily 3/5% HByseovs Hpseoof b

hm , , p,=p, <1
The logistic map at ¢ = 1 generates another, even simpler prototype of

chaotic behavior through the change of variable
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Fig. 7.8 Fully
developed chaos in the

laoistic man for 4 = 1:
10150 M ap 10l [ 1.

{a) successive
iterations starting from
xo = /5= 1)/2; (b)
time series generated

TE n
x, = sin? 2" (7.16a)
n 2
Substituting into (7.13) and using standard trigonometric identities one

arrives at

implying that
2 =my, if 0<nmy, <mn/2

nyn+1/2=n_nyn lf n/zgnynin

or finally
fix) o -
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7 Chaotic dynamics

Fig. 7.9 The tent map
T(x), eq. (7.16b).

T(x) ' 7\ ! K
0'75[- / \o ,"’ ]

\
050 | ' -
/’ |
4 |
0.25 b /

(7.16b)

The recurrence law T(x) of this dynamical system, referred to as the tent
map, is depicted in Fig. 7.9. It is topologically conjugate to (7.13), in the
sense (cf. Section 3.6) that there exists a homeomorphism (eq. (7.16a))
taking the orbits of (7.13) to those of (7.16b).

Since the absolute value of the slope of T(x}is everywhere larger than 1,
by egs. (7.10b) and (7.12) the fixed point and all periodic orbits are
unstable. Inspection of the graph of 7®(x) immediately shows that there
are 2* intersection points between this graph and e bissectrix. Of these,
two are the fixed points of T(x) itself (x4, = 0, x,, = 3). The remaining
2% — 2 points belong to period k trajectories. Thus, there is one period-two
trajectory (consisting of 22 — 2 = 2 points), two period-three trajectories
(consisting of a total of 2° — 2 = 6 points) etc. By construction, the points
belonging to these trajectorics have a rational abscissa on the x-axis. One

prove additionally that they are dense in {0,1].

(¢
o
=
=

B The circle map

We have seen (Fig. 7.3) that the motion on a torus induces on the Poincaré

surface of section a mapping of the circle into ltself Let us deduce the
explicit form of this mannmg bV a«nmmo first that the mot

Awiv AL L of hatadad ot LR (98 ix f 41



7.3 Phenomenology of one-dimensional recurrences 185

torus is uniform. In the angular coordinates 8 and ¢ already introduced in
Section 3.3C this gives rise to the following equations,

where @, , @, are the (constant) angular velocities. The solution of these

8(t) = by + vyt
B } (7.17)

Suppose that the Poincaré surface of section cuts the torus along the

‘meridian’ ¢ = 0 (mod 2n). The intersection of the trajectories on the

JROL} BLUYTalyy FRE R Lo A 2 aa iRl AUV gyt (O 2 R 8 8 (v}

equatlons reads

torus with this meridian will occur at times ¢, such that ¢(t,) — ¢, = 2nn
where n is an integer, or

t, = 2nnjw, n=1,2,...

Substituting into the first of egs. (7.17) one finds
0,=0,+2n—n (mod 2 m)

or, after normalizing and transforming to the usual form of a recurrence,
0,1 =0+0, (mod 1) (7.18)
with
= w,/w,

This dynamical system is known as the twist map and is depicted in Fig.
7.10(a). If a is rational (a case which has already been referred to as
resonance, see Section 2.1) the trajectory emanating from an initial point
8, will eventually return to 6, after a time T = p/w, = q/w, where pand g
are integers such as w,/w, = p/q. The corresponding trajectory on the

|n-1 nal tAarng will la o ~AlAacad -~ g ntitvioae alaeag tha O dirantinn
l 5 1al wui uD YY1l UL A LiIVauLl \-tul VC WlllU 5 p TILIICD alUlls LllC v UllbbLlUll

and g times along the ¢ direction. But if « is irrational the trajectory will
never return to its initial position: the motion will be quasi-periodic, and
will be represented by a helix winding indefinitely on the torus. As most of
the real numbers are irrational, this case will be typical for the twist map.

The twist map can be extended to account for nonuniform motion on

the torus. The correction must, of course, respect the periodicity condition

{e eq (7 181}
L G RLAF)
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Fig. 7.10 The circle
map, eq. (7.19), for

( /8 _ 1V/A and fAr
\V-} l,/_' Al 1V

increasing values of
the nonlinearity
parameter K: (a)

{ = 0 (twist map, eq.
(7.18)); (b) K = 0.9;

7.18));
(c) K = 2; (d) state
diagram in the
parameter space

(K, a). The motion is
periodic inside the
hatched regions
Arnol’d tongues) and
1asi-periodic outside.
it K =1 the rational
winding numbers
dominate and for

K > 1 the tongues
overiap. (1}-(3)
indicate various
possible routes to
chaos.

SO+ 1D =7(0)+1
The most widely used model of f(6) is the sine map
8,.,=10,+a— (K/2n)sin 2n0, (mod 1) (7.19)

As the nonlinearity parameter K is tuned different types of mapping,
depicted in Figs. 7.10(b) and (c), can arise. In case (b) K < 1, and the map
is invertible since f(#) =1 — K cos 2n0 can never vanish. In case (c)
K > 1| and the map is noninvertible, resembling near its extrema the
logistic map. This 1s at the origin of a variety of complex behaviors leading
eventually to chaos.
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7.3 Phenomenology of one-dimensional recurrences 187

As in the logistic map one may inquire about the transition from the
quasi-periodic behavior typical of (7.18) to the chaotic behavior generated
‘from (7.19) when K > 1. Curiously, this transition may involve as an
intermediate step regular regimes in the form of periodic oscillations. The
way these regimes arise is depicted in Fig. 7.10(d). For K # 0 the regions
of periodic behavior are no longer limited to the rational values of «, but

carreennnd to whole reoinnce (the ea-called Armmol’d tononee) whoee widthe
COITC5PONG 1O WiOIC [CEIONS (U0 sO-LailtG ATNC G LONgULs ) Wiost wWiGis

increase with K. Indeed, given a map like the one depicted in Fig. 7.10(b),
there exists a sufficiently high iterate f* whose graph will intersect for a
certain « the bissectrix at two points corresponding to one stable and one
unstable cycle of order k. Since intersection between two curves is
structurally stable with respect to slight changes of parameters, this
situation is bound to sub51st for a whole interval of valucs of a.

of these intervals the motion remains quasi-periodic. As a varies at fixed
K, the map displays therefore both periodic and quasi-periodic behavior.
But as K approaches 1, the rational intervals increase in size. At K = 1 the
set of irrational intervals reduces to a fractal. Beyond this value the
phase-locking regions overlap and several periodic oscillations can occur
for given (K, a) depending on the initial conditions. Chaos is also

Ahcarvad fAar cartain valniag af v Thraa diffarant matho ara denictad 1
UVUSLL YUU UL Lol Ldlll Yadluuvod Ul W, LI1LVW JLLiIvivILL l_)alllﬂ aivw UUPI\/LUU 111 1 15-

7.10(d). They correspond, respectively, to the transitions quasi-periodic-
ity—phase locking—chaos, (1); quasi-periodicity—chaos, (2); and simple
periodicity —period doubling—chaos, (3).

C The intermittent map

A sineur szmdo JU .4 ..\‘ ~ _.'n,\n ..,L,\... e .-J‘&‘I_,\ heamchas ~f tha man ig
A VeLy 1w I. B oltuatl 011 arises wrncin onc Ol wnc oraricnces o1 und aiap o
nearly tangent to the blssectrlx This case, which may actually be

encountered in both the logistic and the circle map or their iterates in
some parameter ranges, is depicted schematically in Fig. 7.11. After a
short transient, an initial condition x, enters in the narrow region between
the graph of the function and the bissectrix. At the beginning this process
resembles convergence to a fixed point of marginal stability and displays,
lﬂCrClU[C a Very lOﬁg umc delC DU[ blHLC lHC llXC(.l pUlDl UUCS not auuaﬂy
exist the iterates will eventually leave this region, evolve into the second
branch of the graph of f(x)near x = 1 and be reinjected shortly thereafter
back to the region of near-tangency. To the observer this will appear as a
series of long periods of quiescence interrupted at seemingly random times
by short-lived bursts —a property which one usually refers to as intermit-
tency and which is, indeed, one of the characteristic signatures of the
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Fig. 7.11 Generation
of intermittent
behavior through limit
point bifurcation in
the map

flx) =025 46+ x*
mod 1: (a) ¢ — 0.05:
the system possesses
one stable and one
unstable fixed point;
(b) £ = 0.02: the fixed
points have been
destroyed and the
system undergoes
chaotic behavior of the
intermittent type.

From the above discussion it follows that a one-dimensional map
possessing two fixed points which tend to merge and subsequently to
disappear as a parameter is varied, can potentially show intermittency
(Manneville and Pomeau, 1980). In the language of Section 5.5 this
transition amounts, therefore, to a limit point bifurcation.

7.4 Tools of chaos theory
In much of the analysis carried out in Chapters 4-6 we have been able to
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7.4 Tools of chaos theory 189

Fig. 7.12 lllustration
of the idea of
coarse-graining and
symbolic dynamics.

describing the spatio-temporal behavior of the amplitude of the bifurcat-
ing solutions in the vicinity of the transition point, which captured the

. essential part of the physics of the underlying problem,

As the discussion of the preceding sections has made clear, in contrast
to the fixed points, limit cycles and spatial patterns, the onset and the
principal properties of chaos constitute a global problem that is not

amenable to nerturbation theorv. New qnnrnqrhec are needed The

Ganaila Vae Pyl tul Uauivin iUl 5. 20 aLAICs j LU Lw S N 8 v

present section is devoted to a brief survey of these methods, which will be
applied subsequently in a number of case studies.

A first type of method stems from the idea, already implicit in the
discussion of Section 3.4, that in the presence of complex dynamics the
monitoring of a phase space trajectory in a pointwise fashion loses much
of its interest. One attractive alternative to this limitation is coarse-
graining: we partition the phase space into a finite number of cells f(’,l

A ILILAIL LI LY Foia o0 b 131 At A g

i=1, ..., N(Fig.7.12) and monitor the successive cell to-cell transitions
of the trajectory. One may look at the ‘states’ C, ..., Cy as the symbols
of an N-letter alphabet. In this view, then, the initial dynamics induces on
the partition a symbolic dynamics describing how the letters of the

alphabet unfoid in time (Coliet and Eckmann, 1980; Hao, 1989; Devanay,
1989). The investigation of this dynamics provides one with a powerful

tool for classifying trajectories of various types and for unraveling aspects

AL RGo22Y LA hiiiie L Valivs Jrvu andliorun ¥ aspveis

of the system’s complexity that would remain blurred in a traditional
description limited to the trajectories. Explicit examples will be given in
Section 7.8. An additional motivation for developing the idea of symbolic
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dynamics is that in many natural phenomena strings consisting of
sequences of letters play a central role. For instance, the DNA and RNA
molecules are linear strings written on an alphabet consisting of four
letters ‘A’, ‘C’, °‘G’, and ‘T” (or ‘U’), according to whether the nucleic acid
subunit (nucleotide) contains the bases adenine, cytosine, guanine and
thymlne (or uracil). Furthermore most of the messages transporting

tion or having a cognitive value such as books, musi iC, computer

11 ULl m&Yilie G Woeniaay i A UUU NS, 111w Liigleeied

programs, or electrical activity of the brain are amenable in one way or the
other to strings of letters.

Closely related to the ideas of coarse-graining and symbolic dynamics is
the statistical approach to complex dynamical systems and especially to
chaos (Lasota and Mackey, 1985; Eckmann and Ruelle, 1985). The
objective here is to add to the topological view afforded by symbolic

dvnamics a metric element, such as the nroba hﬂlh/ ripnmfv Pn (Y\ r\fﬁn{ﬁng

dynamics a m element, such as the probability densit x) of findin
the system in phase space point x at time n, mtroduced in Sectlon 34,or
(Nicolis and Nicolis, 1988) the probability p,(C;) of finding the system in
one of the cells of the partition of Fig. 7.12. In a similar vein one may also
introduce joint probabilities and correlation functions. The interest and

power of this description will be illustrated in Sections 7.6 and 7.8. Notice
that, applied to conservative systems, the statistical descrlptlon of chaos

hacames intimatelv rela H tay the fanndatinne of ctatic al mechanics In
OOCLOIIGS HiLdioly L\Jlu LU v i unnGanuiUis Ul u\,uLAuLluul IMCCiiaiiics, ili

this chapter, however, we shall limit the analysis to dissipative chaos.
A third type of method for tackiing chaos stems from the observation
obtained from numerical studies that, in many instances, the dynamics
exhibits a remarkable self-similarity. This property, which is also at the
basis of the description of chaos by fractal attractors (cf. Section 3.3D), is

nicely illustrated on the logistic map introduced in Section 7.3A
{DNevanav 10R01\

(Devanay, 1989).

In Figs. 7.13(a)-(c) the graphs f of this map for three different
parameter values corresponding to the trivial fixed point being the only
fixed point available (a), and to the nontrivial fixed point p being stable (b)
or unstable (c), are depicted. The graphs of the second iterate f for the
same parameter values as in (b) and {(c) are drawn in Fig. 7.13{(b'),{¢"). We
see that when pisa stable fixed point of f, the map f* possesses a single

Antract wwhan g 1 Wla far sivm e

.11 COnrasi, winlh pis un stable for map _/ them map
f® possesses three nontrivial fixed points. One of them is identical to p.
According to Section 7.2 the other two (p,, p,) define the stable period
two orbit of f.

Let p be the pre-image of p in the sense that f(p) = p. We fix our
attention on the portion of the graph of f® in the interval [p, p], which
for clarity is enclosed in a box in Figs. 7.13(b'),(c’). The following

observations are worth making:
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Fig. 7.13 Illustration
of the idea of

self-similarity: (ak(c)
the graphs of f(x), eq.
(7.13), for p = 0.2,
u=07and y =082
respectively; (b')-(c)
the graphs of f?)(x)
for values of u
corresponding to (b)
and (c) respectively.
p, p denote the fixed
point and its
pre-image. Notice the
similarity of the
behavior of /' in
[$.p] to that of fin
[0, 1].

The interval [p, p] is invariant under the action of /@, just like the unit
interval [0, 1] is invariant under the action of f.

'Despite marked differences between f* and f (number of extrema etc),

¥ restricted to the interval [p, p] resembles the graph of the original
quadratic map (for a different u value). Indeed, inside the box it has one
fixed point at the end point of this interval (Just like f at x = 0) and a

unique critical point within this interval (just like f at x = 1/2).

As p increases the hump of this quadratic-like map grows until a second,
nontrivial fixed point arises within [p, p].

In summary, the behavior of /® on [p, p] is very similar to that of f on
[0,1]. As u increases one may therefore expect that the new fixed point
born in [p,p] for [ will become, in turn, unstable and undergo
period-doubling (just like p did for f), producing a period four orbit of f.
Continuing the procedure outlined in Fig. 7.13 we may likewise find a

mall box in which the graph of /% (the second iterate of 12N will
resemble the original quadratic function, and so on. This suggests that
these functions are converging toward a universal function. If so, the latter
should be accessible through a renormalization calculation, expressing
that the action of the transformation connecting the original function f to
its image in the part of the graph of f*® inside the box eventually
converges to some fixed point. We shall discuss this problem further in the
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7 Chaotic dynamics

7.5 Routes to chaos: quantitative formulation

We now turn to the part of chaos theory that has attracted so far the
greatest attention among all other chaos-related subjects and is largely
responsible for the popularity of this theory in the scientific community.
Our aim is not to present an exhaustive analysis, which can be found in the
abundant original literature and in many excellent monographs, see
especially Schuster (1988), Devanay (1989) and Hao (1989). Instead, we
shall devote this section to a succinct compilation of the main ideas and
turn for the remainder of the chapter to some other aspects of chaos theory
which, although very important, are less covered in the literature.

We begin once again with the logistic map, ed. (7.13). The arguments
developed in Section 7.4 in connection with Fig. 7.13 and the idea of
self-similarity, suggested that f undergoes a series of period doublings as p
increases. In order to formulate this problem in a quantitative manner we
first construct a linear mapping taking the fixed point p to 0 and its left

14 /M

pre-image p to 1 (actually pexists and is on the left of paslongas u > 1/2):

1
——(x -
Py — Py

ux-/

e

(7.20)

where from now on we index all quantities of interest by u in order to
follow clearly the dependence on the parameter. Notice that L, expands
[p,,p,) onto [0, 1] with a change of orientation. Itsinverse L, ', obtained
by solving (7.20) for x is

LYo =p, + (b, —pu)x (7.21)

We now define the action of the renormalization operator R on f ,(x) by
DL A r a2 r —147. W\ no. . -1 £ N

, NR) = Ly Ly X)) V=X =1 \/.22)

One can check by straightforward algebra that Rf,(x) shares many of the
properties of f , in particular:

Rf,(0) = Rf,(1)=0 ]
[Rf(x}=12 =0 f (7.23)

Furthermore, as we saw in connection with Fig. 7.13, Rf, converts
periodic orbits of period two for f, into fixed points for Rf,. Aslong as Rf,
admits a fixed point p, (1) in the negative slope region (Fig. 7.14) one may
identify its pre-image p,(u), introduce once again a linear map taking
p,(u) to 0 and p, () to 1 and define a second renormalization. Hence we
get another period doubling bifurcation. Continuing this process leads to
a succession of period doubling bifurcations as u increases, as illustrat

!
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Fig. 7.14 The graphs
of f, and Rf, for the
logistic map, eq. (7.13)
and for (a) u=0 82

in Fig. 7.15. It is now conventional (Feigenbaum, 1978) quantitatively to
characterize the complexity of this bifurcation diagram by the following
two parameters:

The ratio
< _-u'l_u"—l (7 AN
o, = ——— \/.L"I'd.}
"tn+1 - lun
Numerical simulations show that as n— o & tends to a constant value

1 1 2, tends to a con:s u
to

= 4.669201 ... entailing that p, converges geometrically ome limit
< 1

i, = i — const/d" (7.24b)

The behavior at y, turns out to be aperiodic and attracting, the attracting
set being a fractal.

The separation d, of the two closest points of a periodic orbit at specific
parameter values {j,}, typically those for which the critical point x_ = 1/2
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7 Chaotic dynamics

Fig. 7.15 The
bifurcation diagram
for f,, showing the
successive period
doublings at 4,
(period two), u,
{period four), u,
(period eight) etc.

is part of the orbit (one speaks then of superstable orbits). Numerical
simulations show that the ratio d,/d, , , also approaches a limit as n— o0,

— (7.25)

n—oc ¥t i

which numerically is found to be a = 2.502907 ... .

A most exciting aspect of this period doubling route to chaos is
Feigenbaum’s fundamental observation (Feigenbaum, 1978) that as the
abhave lineite are wnanhad tha acq:iico alamean ~f £ and £12)
dDOYC 11w dlo U llCU, lllC Cqulvajcut..c Ol J lIJ LU l_] alivl J ll.[
[$,.p,] amounts t h existence of a unique real-valued mapping g such

that
g(x) = Rg(x) = —ag[g( — x/a)] (7.26)

where « is a scaling factor (related to (p, — p,) "in (7.22) and we have
switched to new coordinates in which the origin is placed on the fixed

naint » The nrohlem of determinine 72 and ~» amoaunts therefare fr\
}JUAIIL ‘/.u. i 11w l.}l Uiwiil Ul U\Jk\illll‘llllls H SALANE A ulll\.’ul]to’ LllVlVlUL\J

finding the fixed points of the renormalization operator R in the space of
real-valued functions. This can be done by successive approximations in
which g is expanded in series. One first observes that for any real v,

[ ]
vg(x/v) = —avg L; vg( ——x/voc)J

o

gx/v) = —aglg( —x/va)]

This scale-invariance property allows one to choose g(0) = 1. In a first
approximation, restricting the solutions to the space of even functions,
g(x) = 1 + bx?, one obtains then from (7.26)

174 Hy=3/4 1y Y3 u
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By identifying the coefficients of equal powers of x one finds b ~ —1.366,
a = 2.73, a result quite close to the ‘exact’ value of a given above. The
“agreement can be improved by including higher order terms. Rigorous
proof of the existence of the fixed point can be found in Lanford (1982) and
Campanino and Epstein (1981). The reader will have realized by now that
the whole argument is not limited to the specific form of the logistic map

inctasd tha antire familv of unimodal mane with
1113 L\ au, Ll.l\. WAIILILV  ddaiiiiny i RALILE SRR NACAL ulu.l_lo ¥WitLll CI.

nondegenerate critical point satisfying the condition of eq. (7.23). In this
respect, therefore, one is entitled to speak of universality.

Once the existence of a fixed point of R is established the question
naturally arises, how is this fixed point attained by successive iterations.
Since R converts periodic orbits of period 2" for f into periodic orbits of
period 2"~ ! for Rfu, we may express the action of the transformation as

fi;.n—l = Rfu.n = —a u,n,rfu,n(_g)—l (727)

[n the spirit of the previous chapters of this book, the natural way to
formulate this recurrence problem 1s to expand this general equation
defining the action of R around the fixed point g(x) and truncate to linear

tarm NaAaw wa naficrs fln'\f ar (7YY actually rivng haclkward in tha “4ime’
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variable n. The fixed point is therefore unstable, and repeated use of the
linearized renormalization transformation L will be dominated by the
eigenvalues of this operator whose absolute value is greater than one (cf.
Section 7.2). In other words only expanding directions around the fixed
point in the space of functions on which (7.27) is defined will be relevant.
Actually the fixed point turns out to be a saddle point. The basic reason
for this is that to achieve the fixed pu1 tg it is necessary to rescaie
control parameter p at each successive step. This defines a ‘critical line’
playing the role of the stable manifold of the fixed point. If one is not on
this line one can come close to g only up to some finite n. Rescaling beyond
such an n will drive the corresponding f, away from g, a property
implying that g behaves as a saddle point. A very similar situation arises in
the modern theory of equilibrium critical phenomena (Ma, 1976).
Appucu to the periOU uuuuuug transformation the above proceuuic
produces a dominant eigenvalue é = 4.669201 ..., thus providing the
fundamental explanation of the geometric law of convergence of i, to u,,
(eq. (7.24)). But the beauty of renormalization ideas as applied to chaos is
that, when appropriately adapted, they can also be used in a variety of
problems in which chaos sets in by other mechanisms than the period-
doublmg cascade. A rather stralghtforward illustration is provided by

arw o~ .....-.,-.... o 1. ~
ization argumicnis tnc
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average time spent by the trajectory near the bissectrix (Hu and Rudnick,
1982). A more elaborate, very important extension leading again to
universal scaling laws refers to the onset of chaos in the circle map, Section
7.3B (Feigenbaum, Kadanoff and Shenker, 1982).

The quantitative features underlying the various routes to chaos, such
as the scaling laws (7.24) and (7.25) have been amply confirmed by
eriments in such different areas as chemistry, fluid mechanics or [
physics. This justifies, @ posteriori, the approach to chaos based on the
study of Poincaré recurrences and suggests a remarkable universality
underlying the onset of chaos in large classes of natural phenomena. A
survey of the literature on the quantitative comparison between theory

and experiment in this area can be found in Schuster (1988).

7.6 Fully developed chaos: probabilistic description

We now turn our attention to the case where, by one of the mechanisms
discussed 1n the previous sections, chaotic behavior has set in. We have
already encountered a number of concrete illustrations of this behavior,
such as the logistic map for the value ¢ = I of control parameter (eq.
(7.13) and Fig. 7.8) or homoclinic chaos in the Rdssler model and in the
Belousov-Zhabotinski reaction (egs. (4.41) and Figs. 4.10, 7.4 and 7.5).

14T
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So far we do not dispose of quantitative criteria to characterize this
phenomenon in comparison to other types of aperiodic behavior like, say,
quasi-periodic oscillations. Our objective is to arrive at a sharper view of
chaos and to identify some of its key properties. The basis of this program
will be the probabilistic approach, to which the present section is devoted.

A number of reasons for undertaking a probabilistic description have
a] A\r heen allnded tn in Qartinn 2 A Tho ~ruiv nf tha arsume ant wne that

Iready been alluded to in Section 3.4. The crux of the argument was that
in nature the process of measurement, by which the observer communi-
cates with a physical system, is limited by a finite precision. As a result, a
‘state’ of a system is in reality to be understood not as a point in phase
space but, rather, as a small region whose size ¢ reflects the finite precision
of the measuring apparatus. Additional sources of delocalization of a
dynamical system in phase space also exist in connection, for instance,

with incomplete specification of initial data or numerical roundofs.

If the dynamics of the underlying system were simple the difference
between the point-like description and the delocalized description
described above would not really matter. The situation changes entirely in
the region of chaotic behavior. To illustrate this we depict in Fig. 7.16 the
time evolution of two nearby initial data, whose separation ¢ is supposed

to account for the various sources of imprecision or error, for the logistic
map at the value y = 1 of the contro]l param

On oto o~
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initial stage of coherent coevolution the two curves deviate and eventually
their difference becomes comparable to the size of the attractor itself. In
‘other words, chaos amplifies small errors. Put differently, experimentally
indistinguishable initial states will eventually evolve to states that are far
apart in phase space. To the observer this behavior will signal the inability
to predict the future beyond a certain time on the basis of the knowledge of

tha mracent cnanditiane This nranerty “J]"nr\h we alen refer to ag conciria
1€ prosent conaitions, 1 iis PIOPeItY, Wil Wo ais0 Il 0 as ucu.)ul.uu._y

to initial conditions and to which we shall return in Section 7.7, introduces
a fundamental difference between localized, point-like and delocalized
descriptions. It constitutes, therefore, an additional compelling moti-
vation for undertaking a probabilistic description which is the only one to
reflect this delocalization and to cope in a natural fashion with irregular,
unpredictable successions of events.

Consider a one-dimensional recurrent dynamical system, eq. (7.6).
Within the framework of a probabilistic description, the central quantity
to evaluate is the probability density p,(x) to be in state x at time n. Let x,
be an initial state. A point-like description of our dynamical system
amounts to stipulating that x, is known with an infinite precision. The
corresponding probability density is, then p,(x) = d(x — x,). Since after
one time unit x, 15 sent to f(x,), py(x) will obviously evolve to
p1=9lx — f{xo)].

Suppose now that the initial density p,(x) is a smooth function of x, in
the spirit of the ensemble theory point of view discussed in Section 3.4.
Obviously, the probability density after one iteration will be given by a
superposition of the above point-like evolutions over all initial states x,

represented in the ensemble. We may therefore write

-p

sensitivity to the initial

A '.

conditions in the ) X
logistic map, eq. .75 1o /\i‘ !
(7.13), for ;2 = 1. Full [ AL
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Fig. 7.17 The
struction leading to
1e explicit form, eq.

(7.29), of the
Frobenius—Perron
equation for the
logistic map, eq.
{3). x,y, X,, denote
© two pre-images of
tate represented by
point x.

Pus1(x) = Up,(x) = [dxoé[x — S (xo)1pn(xo) (7.28)

g

This equation, known as the Frobenius-Perron equation (Lasota and
Mackey, 1985), is the analog of the continuous time evolution equati
(3.15) for discrete time dynamical systems. In order to write it in a more
explicit form one has to perform the integration over the phase space I, in
other words, determine the roots x, of the equation f(x,) = x. The phase
space points x, satisfying this relation are referred to as the pre-images of
x, since they evolve to x upon one iteration. In a typical one-dimensional

endomorphism there are more than one pre-images to a given point x as

~ra cnaa ~lanriv 1n W 1‘7 T1Tc nn' u:p]l_bnr\nrn nranartiac nf the Aaltn
L0 ) UL | WL, } blball] nmi 1 Jlé f. UD 15 YYWILITRLIV YY1 PIUP\JI Livy VI L uwviia
function one may thus write (7.28) in the equivalent form
Pe1(X) = Z;—p (f;'(x) (7.29)
+1\X) = .
’ el VA E91) R

where f,”' stands for the branch of the inverse map leading to the
particular pre-image x,. One can check from (7.28) and (7.29) that the
Frobenius— Perron operator U preserves the positivity and the normaliz-
ation of p. Such operators are referred to as Markov operators.

The Frobenius - Perron equation can be used as the natural starting
point of a most illuminating classification of dynamical systems, based on
the properties of the invariant probability density p(x) (the stationary
solution of (7.28) and (7.29)) and on the ways time-dependent densities
may approach p, in time. We summarize below some salient features and
illustrate them on the various examples of chaotic mappings given earlier
in this chaptes.

f(x) 1 1 Ll -

0.75
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A Ergodicity
According to the Frobenius — Perron equation, the invariant probability
density p(x) satisfies the equation

pylx) = J degdLx — £ (xo)]p.(xo) (7.30)
I
[t induces on the subsets C of [0,1] an invariant measure given by
.
pul(C) = J dxpy(x) (7.31)
C

La hara tha mranicge meoning -1 o

in the scnse tha t,us(fﬁ 1C) ps\p), wicic uic pu:uac uu:aulug of J Cis
the set of all points x whose images will be in C after one iteration.

In general, under the effect of the dynamics a set C will be transformed
into a new one. If this is not the case, the set will be called invariant. We
express this property by

f-ic=cC (7.32)

The dynamical system defined by the iteration law f{x) will be calied
ergodicif every invariant set in the above sense is either the trivial set or the
entire interval, in the sense # (C) = Q or 1. In other words, the phase space
of an ergodic system cannot be decomposed into invariant measurable
subsets (other than the two previous ones) within each of which the
trajectories remain trapped during the evolution.

[t is useful to compare ergodicity, also known in the early literature as
metric transitivity, to a property of chaotic motion of a more geometric
nature, namely that an open set in the interval will eventually move under

the iteration to cover the entire interval. Fronrhmtv adds to the above

A iVl Yl Liil waiia AAiiA ¥ il BN alalls B AL

property of topological transitivity an important metric element, allowing
one to distinguish between ‘typical’ and ‘untypical’ trajectories.

A more direct relationship between ergodicity and p (x) is established
by the following theorem (Lasota and Mackey, 1985):

If the dynamical system f(x) is ergodic, then there is exactly one
stationary probability density p (x) which is Lebesgue integrable, in the
sense that the integral jcdxps(x) is finite. Furthermore, if there is a unique
stationary density p(x) and p(x) > 0 almpst everywhere, then f is
ergodic.

Ergodicity is thus intimately connected with the uniqueness and
smoothness properties of the invariant probability density. Here and

throughout the present section ‘almost everywhere’ is to be understood as

a nranerty beine fulfilled in all nointe af nhaco space except for a subset of
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measure zero, the measure to be used being the invariant measure (eq.
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(7.31)). Notice that, at this stage, there is nothing which excludes the
possibility of singular invariant densities in the form say of delta functions.
This is what happens, for instance, in systems possessing a unique fixed
point attractor.

Operationally, the invariant density is usually constructed by counting
the number of times different regions of phase space are visited by a typical
trajectory over a long time interval N, N—co. This is how one proceeds,
for instance, to compute numerically probability histograms from
trajectories. We express this idea by the relation (Eckmann and Ruelle,

1985):

—
~
(98]
L9S]

—

N . 1 - r N
p(x) = lim N Z S[x — fP(x0)]

N—xo

In a similar vein one may argue that the outcome of an experimental

observation (or numerical simulation) of a certain property A(x) of a
dynamical system is also related to the time average of its instantaneous
values over a long period,

i L5

g{)&) = il — (@)
N i=0

p—
~
(7S]
dx

N—

AT A V]
agj) WWoll

8 -—

The question therefore naturally arises of how p(x)and A(x)are related to
p,(x). The answer is given by the extended Birkhoff ergodic theorem:

In an ergodic dynamical system satisfying the condition u[f~'(C)] =

w,(C) for all sets in the unit interval [0,1] the following equalities hold in
almost all points in phase space:

Alx) = [dxA(X)ps(X)= (Alx)y (7.35a)

(equality of time and ensemble averages), and

p(x) = py(x) (7.35b)
(equivalence between the ‘physical’ probability density and the (unique)
time-independent Lebesgue-integrabie solution of the Frobenius-Perron
equation).

As a byproduct, egs. (7.35) guarantee that the time averages {7.33) and
(7.34) are independent of the initial state x, for almost all x,, in the sense
AD“"I'\DA ﬂl\f\‘

Let us Illustrate the concept of ergodicity on some simple examples. We
begin by the twist map, eq. (7.18). Eq. (7.30) reads

pi(0) = i' d0,d[0 — (8o + 2)]p(0,)

v U
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or
p.(0) = p(0 — =) (7.36a)

Let o« be rational, « = p/q, p and g being integers. Eq. (7.36a) then admits a
continuous family of normalized solutions

=2 Oéte—ke* AI)J (7.36b)

where 6* + (p/q)i,i =0, ..., g — 1 are the points of the circle visited by a
period-q orbit starting form 8*. Since this holds for any 6*, we conclude

that there is an infinity of (clnnnlgr\ invariant nrobability den
Lila L Lilwiliw ALIILJILJ lllbulul LLA VY CRAITaaAnL tl (WA wIsawyy ll‘,) Ll

supported on disjoint sets, v1olat1ng the uniqueness condition of the
previously enunciated theorem: the system is not ergodic in the full phase
space [0, 1]. On the other hand it becomes ergodic in the restricted phase
space consisting of the points of a periodic orbit emanating from a certain
initial ¢*. In contrast, if « is irrational, then the validity of (7.36) for all #s
entails that there is a unique, smooth solution p, = const or, taking

p, =1 (twist map) (7.37)

The system is now ergodic in the full phase space [0, 1]. Notice that in the
spirit of eq. (7.36b), this solution can be viewed as the unique combination
of an infinity of singular measures centered this time on the irrational
numbers in the continuum [0, 1].

As a second example consider the tent map T(x), eq. (7.16b). Eq. (7.30)
becomes

1/2 1

p(x) = J‘ dxod(x — 2x,)p4(xq) + J dxod[x — (2 — 2x4)]p,(x0)

Q 1/2

Performing the appropriate change of variables one finally arrives at

| i
py(x) = EI:ps (g) + ps(l — %)J (7.38)

which admits the unique smooth, Lebesgue integrable properly nor-
malized invariant density

py(x) =1 (tent map) (7.39)

entailing that the invariant measure of a set A4 for this system is, simply, the
length of the corresponding interval (Lebesgue measure). One can deduce

frams thic reciilt the invariant meahalil PRy S Ny iofio arm A
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= 1. Indeed, using eq. (7.16a) and the conservation of probability we
write

py(x}dx = p(y)dy

logistie tent
or, with p(y) =1,

p(x) = i%arc sin(x'/?)
g dx =«

1
ps(x) = —— — (logistic map) (7.40)
i alx(l — x)]'/?
A common property of all the ergodicinvariant densities {7.37), (7.38) and
(7.40) is to be delocalized in phase space, despite the purely deterministic

origin of the underlying dynamics.t As a result fluctuations around

varaagag are avinantad A lha cnmamarahlata tha cvaragag thameoaluag

aver agid alc CAPUMLUU lU UL VULl pPalauvic lU l.llC aver ARLud LICLIIIdLIYLDY, This is
to be contrasted with the behavior of the probability densities of
thermodynamic fluctuations in systems of interacting particles, which are
sharply peaked around well-defined most probable states, except in the
immediate vicinity of critical points of phase transitions (Stanley, 1971).
In this respect one may therefore view a chaotic dynamical system like the
tent map as being permanently in a ‘critical’ state.

B Mixing and exactness

Despite its interest, the concept of ergodicity deals essentially with static
properties such as the existence of an invariant density. Furthermore, as
we saw in the previous subsection it cannot discriminate between
dynamical systems as different as the twist map with « irrational and the
tent map of slope 2. New concepts, addressing dynamical properties, are
clearly needed.

One key quantity providing information on the dynamics is the time
autocorrelation function,

Cfe) = o= COA( + DA (741)

where the average may run over the invariant nrnh:—lhlhtv dPanfv p, or
over the time varlabl t(cl.eq. (7.35))and A =A4 ~ (A>, A bemg a

+ln addition to suich smoot

14
i ag@diiion (o sucn smoow 10

1, de ] h systems {logistic and tent) admit an

mﬁmty of singular, localized ones supported b the points of the unstable periodic orbits.

This does not compromise ergodicity, since these pomts are of measure zero with respect to
€8

the smooth invariant densities (7.39) or (7.40).
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certain observable. Similarly, one can define the cross-correlation be-
tween two observables 4 and B or analogous quantities involving
~measures of sets C in [0, 1]. Of particular interest in this respect, is the
quantity u(C, n f "C,), providing the measure of the set of points x
belonging to C, and to the set of points which will evolve into C, after n
time units. The dynamical system described by f(x) will be called mixing if

lim p(Cy N f7"Cy) = p(Cu(Cy) (7.42a)

S | ISP SRS TR S |
10T dlIl 5€CLl> 111 LC 11Ci val

action of poinis
starting in C, and ending in C, after a large number of iterations is just the
product of measures of C, and C,, independent of their position in I'. It is
easy to see that any mixing transformation must be ergodic.

There is a very useful connection between mixing and the properties of
the time-dependent probability densities, establishing (Lasota and Mack-
ey, 1985) that f(x)is mixing if and only if U"p is weakly convergent to p,

o om md S

for all ps in the set of probabiiity density functions, in the sense

lim (U"p, g) = (ps,9) (7.42b)

n— K
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where, (f,g) = j'dxf(x g(x) and ¢ is an L*-integrable function. Of more

1 Q shility that TI/h,

3 ¥ lUllltJ til L s P

converges to p, itself. It is here that the concept of exactness becomes
crucial.

Exact dynamical systems are defined by the property

lim p(f"C) =1 (7.43a)

for all sets C in [0, 1] with p(C) > 0. In plain terms this means that if we
follow the evolution of initial conditions within a set C of nonzero
measure, then after a large number of iterations the points will have
spread and compietely filied the entire phase space. It can be proved that
exactness implies mixing.

Ac before there is a useful connection between exactness and time-

S UaVAU a3 @ elliuer wWrnnaLveaVal UiVl LAGQRRIAWSS Qalhs LRIk

dependent densities which establishes (Lasota and Mackey, 1985) that in
an exact transformation

lim || U"p — p,|| = 0 (7.43b)

where the L' distance is here defined by

_ (
If=gll = J |f{x} — g(x}| dx

r



7 Chaotic dynamics

ig. 7.18 Evolution of
an initial probability
ensity whose support
1s the arc spanned by
he angle A, generated
(7.18)). The rigid
body-like rotation
eflects the nonmixing
character of the
dynamics.

and exactness on some simple examples. Consider first the twist map, eq.
(7.18). The time-dependent Frobenius—Perron equation (eq. (7.28))
becomes

n . (B =op
ran+1v-/ rn

(0 — a) (7.44)

Obviously a nonuniform initial condition—for instance, p(f) = 1/A if
6, <0 <0, + A, p(6) = 0 otherwise — will merely perform in the course
of time a rigid body rotation around an axis perpendicular to the circle
while keeping its initial shape, even if « is irrational (Fig. 7.18). We
conclude that the twist map does not drive the system to the uniform
distribution (7.37): it is a nonexact transformation. Using eq. (7.42b) one
can see that it also lacks the mixing property.

The situation is very different for the tent map, eq. (7.16b). Using
same procedure as in Section 7.0A, eq. (7.38), we can write the
time-dependent Frobenius—Perron equation for this system as

=) (-] e

This equation can be solved exactly by induction,

1 r /J—l x\ / j x\—'l
palx) =3 2, Lpobﬁ‘l'?)JrPo(F—?)J (7.46)

where p,, is the initial density. In the limit n— o0, noticing that x remains
confined in [0, 1], one sees that the right hand side approaches the integral
of p, over [0,1], which 1s equal to unity by normalization and thus
identical to the invariant density for this system (eq. (7.39)). We conclude
that

lim p,(x) = p,(x) (7.47)
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p, is to consider the functional

H, = sup p,(x) (7.48)

H B 1 I /x\ /1 x\‘l< ir‘ “ /f\ +Su /1 x\ﬁ
n+1—2sgp[pn(2)+pn( #ZJJ‘Z[ xPPn(z) xppn( 'EJJ
or finally, noticing that x/2 and 1 — x/2 also run over [0, 1],

H,  <H, (7.49)

This property is reminiscent of Boltzmann’s H-theorem, familiar from
classical statistical mechanics (Prigogine, 1962). It shows that the tent
map irreversibly and monotonously drives the system to a state in which
H,—and thus p, —no longer evolve in time. This state corresponds to the
invariant distribution p(x) = 1 constructed in Section 7.6A.

1.7 Error growth, Lyapunov exponents and
predictability

We come back now to the property of sensitivity to initial conditions (Fig.
7.16), in the light of the probabilistic formalism developed in Section 7.6,
Consider a one-dimensional recurrence in the form of eq. (7.6). Let x,,,
Xo + & (¢ « 1) be two initial conditions slightly displaced with respect to

each other. We foliow the trajectories emanating from x, and x, + ¢ and
evaluate after n time units the instantaneous error

us(nb xO) = Ixn(xO + 8) - xn(xo)‘ (750)
or, using eq. (7.6),
u,(n, xo) = |f™(xo + &) — ["(x,)| (7.51)

For any given ¢, as x,, runs over the system’s attractor the evolution of
u,(n, xo) for finite times is both x,-dependent and highly irregular. To

idantify cama ranmradincihla tranAdo o thoasalf o el s [N
luuuuly SUILIIV Lul_uuuu\.uunu UCNas we ucieione pCllUllu dn avcxagc O

(7.51) over the attractor. In the spirit of the probabilistic approach this
amounts to studying the quantity

(un)y = [ dxop(xo) |f ™ (xq + &) — ™ (xg) | (7.52)

where p(x,) gives the statistical weight of the various points on the
attractor. In most cases it appears reasonable to use as the weighting

invariant (i ffll'\nflnn n v Y —~ (T 1IN
immvariant aistrioution Ps\Xg ), Ll L7.0U).
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Fig. 7.19 Numerical
evaluation of the time
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mean error for the
logistic map and for
p = 1. The averaging

is performed over
10 000 samples
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differing in the initial
position x, which runs
over the attractor. The

initial error is
= 1074

Fig. 7.19 depicts the evolution of the instantaneous error, eq. (7.52), for
the logistic map (eq. (7.13)) averaged over the invariant distribution
(7.40). We observe that error growth follows a logistic-like curve (Nicolis
and Nicolis, 1991). Three different stages may be distinguished, which
actually turn out to be typical of a very wide class of chaotic systems: an
initial ‘induction’ stage during which the error remains small; ap
approximately at n* = In 1/¢; and a final stage, where the mean error
reaches a saturation value u,, of the order of the extension of the attractor
and remains constant thereafter.

The mechanism ensuring the final saturation of the error is the
reinjection already mentioned in Section 4.5 in connection with homo-
clinic chaos, which is also responsible for the fact that the attractor itself
remains confined in phase space despite the instability of the motion. In
the logistic system this is manifested by the fact that the interval
I, =[x,,,1] is mapped by the dynamics back into the interval I, =
[0,x,,]

Let us focus on the initial regime. Since the error remains small, an
expansion in which only the lowest order term in ¢ is kept should be
meaningful. At the level of eq. (7.51) this leads to

|d. ._(")I

dx,

u,(n,x,) =¢

= &£ (xo) e 1f (X)) (7.53)

where x,, ..., x,_, are the points visited successively by the ‘unperturb-
ed’ trajectory emanating from x,. While these points are to be determined
from the full nonlinear equations, the presence of the derivative terms in
(7.53)implies that the error itself evolves during this stage according to the
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linearized equations around this reference (chaotic) trajectory. These

equations define the tangent space of the system’s attractor (Gucker-
heimer and Holmes, 1983).

 Let us write u,(n, x4) as

u,(n, xo) = g™ (7.54)

1 n—1
a(n, xq) = - > In|f'{(x)| (7.55)
i=0

We know from Fig. 7.19 that for any finite ¢, however small, the error is
bound to leave the tangent space after a lapse of time of the order of
n* = ln 1/5 But in the 1deallzed case where the limit e—0 is taken »n* is

1€ may (lCllIlC 1rorr1

(7.511(7.55),
{71) ACITIVERY -t

o = lim llmfln S0 + ) = xy) = lim - Y In|f'(x
n— a0 s—»On & n—w 'Ti=0

(7.56)

where in the first equality, the limits are to be taken in the indicated order.
We call this quantity the Lyapunov exponent of the system. For ergodic
transformations the time average in (7.56) should be independent of the
initial state (except, perhaps, for a set of points of measure zero) and equal
to (cf. (7.34) and (7.33))

o = [dxp,(x)In |f"(x)] (7.57)

Notice that o dep pends on the control para
both through p.(x) and through f(x).
Applied to the tent map (eq. (7.16b)), eqs. (7.56) and (7.57) give

meter in a complex fashion,

g=1In2 {tent map) (7.58a)

where we used the expression p,(x) = 1 for this map (eq. (7.39)). For the
logistic map at u = 1 eq. (7.56) is difficult to evaluate straightforwardly

c1nr~p I £F'{x )\ variec ]nrﬂ:l"w the svstemn runs on the attrac tor. On the
Eebrh 1_[ A YaLIVO UVl LLIC Oy oLl L ullo Vil v Qi ftueva WL VIR § Ll

1y
other hand, substituting (7.40) in

aQ
Leang

/—\
LJ‘I

.57) one gets again an explicit result
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o J R — 1
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7 Chaotic dynamics

doubles after each iteration. More generally, in a system displaying a
positive Lyapunov exponent errors increase exponentially with time in
this double limit, with a rate equal to the Lyapunov exponent. In this sense
the existence of a positive Lyapunov exponent is tantamount to sensitivity
to initial conditions and may be regarded as one of the main signatures of
chaos.

it mav ceem thig vlpui which still dominates much of t
i (<8 el e | H 1 O

1113 WY, ¥V iREWaE Sud i1 UV ididaa [«RRVI- RS S S RUL ¢

literature on chaos, is unfortunately oversimplified. When confronted
with the problem of predicting the evolution of a concrete physical system,
the observer is led to follow the growth of a (at best) small but finite error
overa transient us ually small period of time. In this context, the quantity

(7.59)

This equation shows that error growth amounts to studying, for finire
times, the average over the attractor of an exponential function
<e"™*) > where a(n, x,) is given by (7.55). To recover for such ns the
picture of a Lyapunov exponent-driven exponential amplification of the
error one needs to identify (7.59) with the exponential of the long-time
limit of a(n, x4),

get mx0)> — peho (7.60)

In a typical attractor this is not legitimate sinc

e g(n,xg)1s x,-dependent.
At U/

This property stems from the fluctuations of the local Lyapunov
exponents (Nicolis, Mayer-Kress and Haubs, 1983; Grassberger, Badii
and Politi, 1988; Nese, 1989; Abarbanel, Brown and Kennel, 1991)

) (7.61)

For instance, in the logistic map with g =1 the variance of these

frrmtriatinmg g
llubluallu 13

1 2
86%> = {6 — (o)) = f dxp (xVnld — 8| — In212 — T
N 75/ MAR SV il |
Jo 12
(7.62)

which is of the same order as (o> = o itself, eq. (7.58b). It is only in the
exceptional case of uniform attractors, characterized by a constant local
rate of divergence of initial conditions, that (7.59) and (7.60) can be
identified. The tent map provides a concrete example but it must be

atracced that mact real-world attrastare da not on $hio amae i g
sStressed tnatl most 1¢dl-wornig anractors ao not sa ualy Llllb plopll I.y
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Fig. 7.20 Short-time
behavior of mean

error grow vth with
SAIUD BIUWUL wiudl

= 10~ obtained
from numerical
simulation of the
logistic map for p = 1
QVPTﬂnpri over 100000

initial conditions
scattered on the
attractor (circles); and

from the theoretical
expression of eq. (7.39)
(crosses). The shaded
circles correspond to a
purely exponential law
whose rate is given by
(o) =0 =In2

Let us illustrate the transient behavior of the error for the logistic map
at u = 1 (Nicolis and Nicolis, 1993). Fig. 7.20, open circles, describes the

. error growth curve obtained from direct numerical evaluation of (7.51),

averaged over 100 000 samples of different initial conditions and an initial
error of 107>, We observe a significant deviation from an exponential
behavior corresponding to the same initial error and a rate equal to the

nant 1n? (chaded cireclec) in aorsement with the
ll\fllt 111k \\Jlluuv IL\JL\IL)] 151 u&kvvlll\alll WY ALEL QLG

previous comments on the difference between (7.59) and (7.60). Writing,
in analogy to eq. (7.60),

<u£(n)> = g "ot (763)

we evaluate ¢, from the simulation data. The results, depicted in Fig.
7.21, show that o 1s actually n-dependent, starting at n = 1 with a value
significantly larger than In 2. This entails that error growth is neither
driven by the Lyapunov exponent nor follows an exponential law. This
property further complicates the problem of prediction of chaotic systems.

It is interesting to realize from Fig. 7.21 that for ¢ as small as 10™°, the
system never attains a regime where o ; becomes identical to {a). The
reason for this has already become clear in the discussion made in
connection with Fig. 7.19: at a time n* ~ In 1/¢ the error dynamics leaves
the tar ngent space and evolves toward its saturation value. In the Setui‘lg of
Fig. 7.21 this would give n* values equal to about 7, 12 and 21 for
¢ =1073,107° and 10~ ® respectively. These are very short times indeed
for the value of infinite time averages such as (o) to be established. To
keep the error dynamics in the tangent space for, say, 50 time units or so in
order possibly to reach a regime driven by {¢) one would need an initial

error of ¢~ 107?° Such small values hardly ever arise in practical
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Fig 7.21 Time
dependence of the
effective rate o, eq.
{(7.63), obtained

numerically as in Fig,
7.20 w1th =10""
(triangles); ¢ = 103
(crosses); and

& = 1072 (circles). For
each ¢ the simulation
is carried out till a
time n* ~ In(1/z)
beyond which the
linearized description
breaks down.

applications, at least at the macroscopic level. In this sense therefore the
Lyapunov exponent is to be regarded as one of the quantities which allow
one to characterize the attractor (more specifically its tangent space)
rather than as the principal quantity monitoring error growth and
predictability, In actual fact, as seen from the first equality (7.59), error
growth is determined by the n-fold time correlation of the system. Such

dvnamical properties are hard to evaluate nna] tica llv althoueh for the
Gyiialilin Cai Toperilces ale nald o dil aeany, aititoug or th ic

| 4
logistic map this can be done for the first few ns using symbollc calculus.
The results are in full agreement with the conclusions drawn from Fig,
7.20.
We have based the analysis of this section on one-dimensional maps. In
more complex —and realistic-—systems two further complications are
expected to arise. First, a multivariate dynamical system possesses a

number of Lvanunov exponents eqgual to 1ts phase space dimensionality
numoer ol Lyapunov exponents equal to 1ts phase space aimensionall ty.

For short times all of these exponents, including the negative ones
associated with motion along the stable manifolds, are expected to take
part in the error dynamics. Second, since a typical attractor associated to
a chaotic system is fractal, a small error displacing the system from an
initial state on the attractor may well place it outside the attractor. Error

dynamics will then 1nvolve a transient prior to the re- estabhshment of the
attractar dn

attractor, during whi
Nicolis, 1994).

We have stressed that deviations of error growth from a Lyapunov
exponent-driven exponential law may be generated by the nonuniformity
of the attractor. As alluded to already in Section 3.3D, nonuniformity is
also at the origin of the inadequacy of the fractal dimension D, to describe
the structure of such an attractor. Within the framework of the

T T T T
O
095 L .
?
% 8
R A Q -
AQQ
085 | A Qoo -
xxOOOQ
& SN
X OO
A % OO
075 - K¢)
A X
{ i L |




7.8 The dynamics of symbolic sequences 211

probabilistic description laid down in Section 7.6 one can propose a
natural remedy of this deficiency. As in Sections 3.3D and 7.4 one divides
“the attractor into cells of linear dimension ¢, introducing now the
additional important element to weight the various points by the
probability P;(¢) that the trajectory visits cell i. The generalized dimensions
D, are then defined in terms of the gth powers of P;(e) through (Renyi,

1070 Hentechel and Pracacecia 1083)
1717V, LIVLWOVIIVI dald rioldiviad, 170J)
N(g)
In NV p4
oo/,
B B
D, = lim (7.64)
co0d—1 Ing

where N(c) is the total number of cells. For any integer ¢ > 1, P? gives the
total probability that ¢ points of the attractor are within a given box. This
allows one to capture the effect of correlations between different parts of
the attractor, and thus the degree of its inhomogeneity.

As expected, for g = 0 one recovers from (7.64) the fractal dimension
introduced in eq. (3.11). For a general value of ¢, eq. (7.64) can be handled

' thada analAaca~n thAaoa ngad 1in tha alinatian Af tha it
U_y metnods anaiogous to those used in the evaluation of the Pcuuuuu

function in equilibrium statistical mechanics. This is the starting point of
the interesting thermodynamic formalism of fractals (Halsey et al., 1986;
Tel, 1987; Bohr and Tel, 1988), the details of which are outside the scope
of the present book.

T8 The dunamice af cumbhalis camanecac: antranv
¥ o \J | I A~ u,llull.l‘; i JIIIIHVII\. JC\‘“CII\-CJD ilwWl vl.l”
.
master equation
Wn clhall s ~nsrileiomn tha tanlea AF mrAalialilictio amalircio latd AAawwn 1in
e sndil now comoine trie toois ol provaouistic anaiysis 14id aown 1in

Section 7.6 with the idea of symbolic dynamics introduced in Section 7.4.
As we shall see, this blending will provide yet another interesting view of
chaos and, in particular, will allow one to sort out some remarkable
connections with random processes.

AsinFig. 7.12, we consider a finite partition C = (C,, ..., Cy)of phase
space into N nonoverlapping cells. Followingeq. (7.31), we also introduce
the measure u(C;) of cell i. A natural qucbuon to be raised in connection
with the developments outlined in the last two sections, is how to quantify
the idea that in a chaotic system a localization of the instantaneous state in
phase space becomes increasingly difficult as the resolution required gets
finer. Now this question is reminiscent of a central problem of information
and communication theories (Shannon and Weaver, 1949), namely, what
is the amount of data needed to recognize a signal blurred by noise.

N gthat the information <o

i man io o marmAdAR MTAAASOA R RN CoAooT
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7 Chaotic dynamjcs

states, one shows that the central quantity to be studied in this latter
context is the information entropy

Indeed, this quantity possesses all thepropertles compatible with the idea
i5 (
18 \

AL 1l e t
Ul llllUl aul

1959):

It takes its largest value for P(i) = 1/N, implying that in the case of
equiprobable events the amount of data needed to realize one of these
events is the maximum one.

The entropy of a composite system CD equals the entropy H(C) of
subsystem C plus the (conditional) entropy H.(D) of subsystem D under
the condition that subsystem C is in a given state, a property referred to as
subadditivity.

Adding an impossible event «, P{a) = 0, does not change the entropy of
the process.

Notice that information entropy bears an interesting relation with the
generalized dimensions D, eq. (7.64). Indeed, applying this relation for

s — 1 ~nma Ahtaing
q — [ UlIU vuLallid
N(e)
—~ Y Pe)InP(e)
D, = lim — 2 (7.66)

£—0 In (1/‘9)

referred to as the information dimension of the system. For a given value
D, (D, < D, by (7.64)) this allows one to determine how information
entropy scales with the size of the boxes in which the fractal object has
been subdivided

artition C =(Cy, ..., Cy), by
analogy to (7.65) we introduce the information entropy of the partition

N
H(C) = — ). w(C))In u(C) (7.67)
i=1
In general {C,} are affected by the dynamics. As in earlier sections we
denote by f*C, the set of points mapped to C, after kiterations. The set of
all (f7*C,, ..., f7*Cy) defines a new partition, denoted by f*C.
Continuing the process for n iterations we are led to define a partmon c™
whose cells are the intersection of cells of the partitions C,
f—IC, . f_"+1C,

C, A, A AL
1 N iy J le

—
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where i,, ..., iy run over 1, ..., N. One realizes immediately that as n
increases the partition C™ generated by C becomes finer and finer.
. Consequently its information entropy H(C®) will typically be greater
than H(C). This can be understood by realizing that with a finer mesh and
in the absence of any a priori information, more data are needed to localize
the system in a particular part of phase space.

The interect of the ahnve canctruction is that ohe attaing
that one attair

t 1 mi
1 0 IICICST O (N do0ve CONSruclon s mn ;he ]1 1t

n— oo, an intrinsic property of the dynamics known as the Kolmogorov—
Sinai entropy h,, measuring the average rate of creation of information in
time. We first define the rate of creation of information with respect to the

partition C:

h,(C) = lim [H(C™* V) — H(C™)] = lim lH(C‘"’) (7.69)

n— o Ha

In principle this quantity depends on the choice of initial partition C. The

K olmooorov—Sinai (K- S) entropy h  is just the supremum of all nnqcihlp
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values h,(C), as the partition C gets ﬁner and finer. Notice that for certain
partitions C, referred to as generating partitions, this latter limit and the
supremum may be avoided and one can write h (C) = h,,.

Loosely speaking, if A, is to be finite H(C™ ) should scale as n or, in view
of (7.67)-(7.69) the number of cells in the partition C** should increase
exponentlally with n. This is reminiscent of the exponential divergence of
by ¢

onditions in the tangent space of a chaotic attractor and

suggests that (a) the positivity i, should be a new way to characterize
chaos; and (b) there should be a connection between h, and Lyapunov
exponents. Both statements can, in fact, be justified rigorously. In
particular, if the dynamical system possesses a smooth invariant density
along the unstable directions of the motion one can establish the Pesin
equality (Pesin, 1977),

Y g (7.70)
a:> 0
where ¢, are the positive Lyapunov exponents.

One can show that the property of H(C™ ) to scale linearly with nis also
shared Uy most of the LyplCc"u random Processes mu-: for instance, Markov
processes (Khinchine, 1959). It may thus be regarded as the signature of a
process, be it (deterministic) chaos or (random) noise, in which at each
new step of the evolution a finite amount of variety is on average created.
This implies, in turn, that the memory of the underlying system is
short-range. It is legitimate to expect that in many natural systems,
partlcularly in biological systems this condition is not satisfied. The
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should be manifested, then, by a sublinear scaling of H{(C*) and thus by a
zero K-S entropy (Ebeling and Nicolis, 1992). Such systems may still give
rise to quite complex, aperiodic behavior. An interesting notion charac-
terizing this type of complexity is the topological entropy (Misiurewicz,
1976), defined for a one-dimensional recurrence f(x) as

L __ 1 Tan AJ
l’lf— 11 111 IV

=i
I~
p——
_\-l
~J

x
4
8

where N, is the number of monotone pieces of f™.

Let us now follow in a more detailed manner the action of the dynamics
at the level of the partition {C,, ..., Cy}. We impose on this partition the
condition that each element is mapped by the transformation f on a union
of elements (we recall that the cells of the partition are not overlapping).
To express this properly we introduce the characteristic function y-(x) ofa
set C through

1 ifxeC
Xe(x) = {0 fxéC | (7.72)

The above requirement then amounts to
N
Kpcp = 2 ji=1,....N (7.73)
i=1

where y; = 7, and the elements of the topological transition matrix {a,}
take values 0 or 1 depending on whether C; belongs to f(C,) or not.
One further condition that we impose is that the state of the system be
initially coarse-grained, in the sense that the initial probability density
po(x) is constant within each element of the partition. Writing
N 1

Po = yJ Po(j)_Xj (7.74a)

=1 Hj

where for convenience y; is chosen to be the Lebesgue measure (rather
than the invariant measure, eq. (7.31)) of cell j, we may then identify P, (j)
with the probability of finding the system in cell C,,

Pdﬂ=J.pdmdx (7.74b)
Cc;-

The main problem now is to evaluate the action of the Frobenius—
Perron operator on p,. According to eqgs. (7.28) and (7.29) we have

ypoa U

N 1 |
pi1x) = Upo(x) = X, Poli). -} =g 7 )] (7.75)

bl
Ja 3
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We notice that the sum over the branches a of the inverse mapping is
nonvanishing only if x e f(C,). For any C; c f(C;) we denote by Tais i)
‘those branches of the inverse transformation which map points of C; into
C;. This means, in particular, that for all a(i—j) the pre-images of C; by
this branch be contained in C;,

failiCic G (7.76)

Under these conditions, using eq. (7.73), we can rewrite eq. (7.75) as

i
p1(x) = Upylx) = Z Z Po(J) D S e
j=1li=1 j Ja(w;)lf[f(w;)( ):H
In contrast to py(x), the probability density p,(x) is, in general, not
coarse-grained, owing to the presence of x-dependences in the coeflicients
containing the first order derivatives,

xi{x) (7.77)

= ¥ e (
| Ai—»j' ali—j) If l—.f;t(i-'j)(x)]1
A considerable simplification occurs for maps for which these coefficients
are x-independent, like in piecewise linear transformations (Grossmann
and Thomae, 1977). Indeed, defining

=1
~
oo}
e

o
Py(i) = Z“‘, —iPald) (1.79)

;'—;

one can write eq. (7.77) in a form similar to (7.74a),
N1
Py = Z ;P1(i)xi (7.80)
i=1 Hi

entailing that the probability density is again constant within the elements
of the partition.
Eq. (7.79) can be conveniently rewritten as

P, = WP, (7.81)

where P is the one-column matrix col {P(1) ... P(N)}andWisan N x N
1’\ }'\\I
~J

matrix whose elements are

AVUSK CaVAIIVAARS O‘

; 1
Wij = &aii | . (782)
#J ; l A i—j i
As the Frobenius—Perron operator conserves the norm and the positivity
of probability densities the sums of W, ;over the rows are equal to unity: W

is a stochastic matrix. After n 1terat10ns the state of the system is thus

anf1ro]‘r deccribable in terms of nrohahilitineg D i tho ariiatien
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(Nicolis and Nicolis, 1988 Nicolis, Piasecki and McKernan, 1992)

P,., =WF, (7.83)
The structure of this equation is identical to that of the Chapman-
Kolmogorov equations used widely in the theory of stochastic processes
(Feller, 1968) which are frequently referred to in the physical literature as

midster equations MWicalic nnd Pricacine 1077 (iardinar 10221 T thar
dsier equaiicns (1NiLOIs aiil riigogiie, 17 1y NJaluliiCi, 1705 . 11 Ouili

words, under the conditions imposed on the partition (especially eq.
(7.73)), which also guarantee the propagation of coarse-graining with
time, we have been able to cast the deterministic dynamics into a
stochastic process. This mapping gives, at last, a concrete meaning to the
statement made repeatedly throughout this book that chaos is associated
with a ‘random looking’ evolutlon in space and time. There is no

rmi otio Ariol n
Lii 1llDLlU Ullsl 1

ontradiction wha
of chaos: in the probabilistic view we look at our system through a
‘window’ (phase space cell), whereas in the deterministic view it is
understood that we are exactly running on a trajectory. This s, clearly, an
unrealistic assumption in view of our earlier comments on finite precision
and roundofY errors.

The s1mplest type of stochastic process satisfying eq. (7.83) are

(@]

far vuhish mam e Ao anls aton haclgrar

processes, for which memory extends only one step backward
in time. The converse, however, is not true: a non-Markovian process can
satisfy the master equation (Feller, 1959; Courbage and Hamdan, 1991).
Let us illustrate the above construction on the example of the tent map,
eq. (7.16b). We choose the two-cell partition C = {C,,C,} where
=[0,x,,]1, C, = [x,,,17, x,, = 3 being the nontrivial fixed point.
ThlS partition obviously satisfies the requlrement expressed in eq. (7.73),

hytha vary dainitinm aftha Gead mvaint on oot tlhat tl o neu ln.___ﬂ:..
Uy UIv VUl y Uil uvi vl l.llC ll}\CU PUllll. d.llU lllC ld.Ll. Lilal L[lc an g Idl pU 11
of f(x) at x = } is mapped to x = 1. More specifically we find

fIC)=C,u(,, f(Cy)=C

entailing that the topological transition matrix {a;;} is of the form

a= (11 (1)) (7.84)

NS/

We come now to the construction of the stochastic transition matrix W,

an (7 Y Dafarring A~ E s 7)Y aan~ O emmnamt ae e £ Ve o dess
LY. 17.04). RUICTIITE 10 Cig. /.24 we SEC luat a POl X5 1N LZ flds Lwu

pre-imagesin C, . There are thus two inverse branches sending C,into C,,
entailing (cf. (7.78)) that

=1 (7.85a)



Fig. 7.22 Two-cell
partition {C“ Cz} in
the tent map, defined

by the end points 0, 1
and the fixed point
X A point x, e C,
has one pre-image
flzll_,”(xl) in Cl and
one preimage
1(1_,2)()( )in C,. A
point x, e C, has two
pre-images 7! (x.)

R TP PIC 3
and_fz(z__l)(xz) in C,.
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since |f'| = 2 for the tent map. In contrast a point x, in C, has one
~pre-image in C, and one in C,, entailing that
1 1 1 1
I A e | A ) (785b)
AT Z 1A 1oz Z
Introducing (7.84) and (7.85) into (7.82) we obtain
- 1
A & ¥4 2 ~
w=1, (7.86)
2
The eigenvalues A; and eigenvectors u; of this matrix are
Ay=1, u, =col(3°%) (7.87a)
Ay= —13, u, =col( —1, 1) (7.87b)

The first one corresponds, i

nrnnerl y normalized invariant

our coarse-grained description, to the

state P of the system. Notice that its
structure 1s compatible with the 1nvar1ant distribution p(x) =1 (eq.
(7.39)) obtained earlier from the Frobenius — Perron equation. As for the
second one, it is responsible for the relaxation of an initial state,

coarse-grained over the two-cell partition, toward this invariant state.
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7 Chaotic dynamics

The procedure can easily be extended to more refined partitions. One
interesting class is provided by the partitions formed by the end points of
the interval and the points on an unstable periodic orbit of the map. For
instance, for the three-cell partition of the tent map {C, = [0, %],
C,=[%%], Cy,=1[% 1]} where (%) are the points of the period two
cycle, one obtains

1 \
/ 5 0 1
11
w=|s 5 O
1
\0 3 0/
and
Ay=1, w, =col(}2'1) (invariant distribution)

+i o
;‘.2,3=l2—, u2,3=col(—131,i1,1)

This structure turns out to be general: as the number of cells of the
partition is increased by taking cycles of increasing order, the eigenvalues
(other than the invariant one) are determined by the nth roots of ( — ).

One of the applications of the master equation approach described
aboveis to provide a natural description of deterministic chaos in terms of
strings of symbols having well-defined statistical properties (Nicolis,
Nicolis and Nicolis, 1989; Ebeling and Nicolis, 1992). This view has
already been discussed in Section 7.4. Among the various quantities that

one can introduce to characterize such seauences are the entropies defined

i L L A et 2 A Gt 240 DL L VAo AL L LA P AR AR

earlier in this section (eqs. (7.65), (7.67), (7.69)) which give a measure of
their information content. The possibility of casting the dynamics into a
discrete closed-form equation provides additional insight, as it gives
information on the way these quantities evolve in time. For instance,
starting with probability one from a particular cell of the partition

Py(i) = 0¥, one can evaluate the change of entropy after one iteration.
One has from (7.81)

gy 2101

P (i) = Z W,k =

ij ja a:

Upon averaging over all as using the invariant distribution P_ («) one

it
oLdiiis

Q

AS =S, = =2 P (W, InW, >0 (7.88)
aj
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which is nothing but the analog of the Kolmogorov-Sinai entropy in our
master equation description.

A master equation of the form (7.83) is also characterized by an
irreversible approach to a unique invariant distribution P (i), such that

P,=W-P_ (7.89)
To see this we introduce the quantity
P (i
H, =% Pw(j)F(_"(,j,).\ (7.90a)
J \Poo(j)/

where F(x)is a convex function of its argument. A familiar choice of such a
function is F(x) = xInx, in which case (7.90a) reduces to the relative
entropy

P.(J)
P.())

We now consider the time evolution of H,. Using eq. (7.83) we have

ol e Pa®) P il
o == TPUNF| G |- L J}
J o 0

(7.90b)

H, =2 Pj

7.91)
At this point we notice that, by (7.89),
P_(k)
;P o)
Invoking the property of convex functions
F(Z mkxk) < YmF(x), Yom =1 (7.92)
k k k
we may thus transform (7.91) into
Hy. .\~ H,<Y P.() (Z Py o[ PaR] TP
e = = LB G P )T PG S
A+ ircing tha me~anmartiac ~f tha ctn~lhoction o b LIS
UL, UdIHE UL PLUpUILUILS U1 UG SLOUCIHASLUIC TTIdUIX vy jko
Hypy— H, <0 (7.93)

where by (7.92) the equality sign applies only when P, = P_. This is
reminiscent of the H-theorem of statistical mechanics (Kac, 1959). It
shows that at the level of the probabilistic description the unpredictability

of deterministic chaos beyond the Lyapunov time is replaced by full

nradictabilityv. in the sense that the ctatictical ctate o
plbun\-LuUluLJ .................... ~ oLauau\,al Dlalb v
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a regular manner. This suggests the interesting possibility of statistical

forecasting of complex dynamical systems giving rise to chaos.

Last but not least, the master equation approach to deterministic chaos
provides a systematic approximation scheme for computing the eigen-
values and eigenfunctions of the Frobenius — Perron operator itseif, whose
spectral properties still remain largely unknown (McKernan and Nicolis,

1994), A full technical presentation of thig (‘nmn]f-y cnhmnt is outside the

scope of the present book. For some interesting alternatlve recent studies
we refer the reader to Gaspard (1992a,b), Hasegawa and Saphir (1992),
and Antoniou and Tasaki (1993) among others. We close this section by
pointing out that there is also an interesting connection between the
eigenvalues of the Frobenius—Perron operator and the decay properties of
the time correlation functions, introduced in Section 7.6 in connection

with the property of mixine. These are, in turn. related to the si llnriticg

Avii VAN PPy TAAAZIAE. 2 IAVWONW Qi ik v 1IT e refated to the eid

of the power spectrum — the Fourier transform of the autocorrelation
function — in the complex frequency plane (Ruelle 1985,1986). For certain
types of system (typically those with uniform attractors) it can be shown
that the only such singularities are poles, entailing that the autocorrela-
tion function decays exponentially in time. The general case remains,
however, open.

1.9 Spatio-temporal chaos

We have seen, in Chapters 1 and 6 of this book, that large classes of
spatially extended systems may undergo a sequence of transitions leading
to regimes displaying aperiodic dependence in both space and time, which
we referred to rather loosely as spatio-temporal chaos. We already know

frnm Qoctinn 6 R that cartain nnrmql farm eqgu atin
AANSEAL AMFWA/LIVLA VLU LAY WAL LCLIAL 1AL L1 VL \Jkl (.I.Ll

Landau-Ginzburg equation lead to such a regime beyond the instability
of the uniform limit-cycle solution, and that defects seem to play an
important role in its onset. From Chapters 1, 2 and Section 6.9 it is also
clear that many other equations encountered in physical sciences, such as
the Navier-Stokes equation, the reaction — diffusion equations and the
Kuramoto—-Shivashinski equation may also generate spatio-temporal

chane The ahiactiva af thic final cantimm AFtha mracant chomtaric t~ havas a
WIIAL Y. &IV VUJULVLI YL UL LD llllﬂ.l b\allull Ul lllc Plbbb ll \.;uaplcl Id L l1ave a

ang anch ag the ~omnley
Uldlo sulil ad uiv CUILIPIVA

new look at this phenomenon in the light of the tools and ideas of chaos
theory developed in the previous sections.

Just as temporal chaos differs from other forms of time-dependent
behavior by the coexistence of a large number of interacting time scales,
spatio-temporal chaos will likewise be associated with the property of

displaying a large number of interacting space scales. As it happens this is

also one of the signatures of fully developed turbulence, a i
UUUUUU LAt "‘ haifind Y Wi tuLvuiviIve, a u lkiul

U
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feature of large-scale flows. This analogy constitutes one of the main
motivations for studying spatio-temporal chaos.

Asnoticed already in Section 3.1, a spatially extended system possesses,
in principle, an infinite number of variabies. We have seen already thatin
some cases truncation to a finite small number can legitimately be carried
out. By the very definition of spatio-temporal chaos given above, such

frnnanlnnc chanld heaal ri.«\!nn in the nrecence of thic reaime In athar
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words, in studying spatio-temporal chaos one has to cope at the outset
with the additional complexity arising from the presence of an infinite
number of degrees of freedom. Three key questions arise under these new
circumstances:

Can one identify well-defined scenarios leading to spatio-temporal chaos?
Is it still possible to characterize the attractor of an infinite-dimensional
dynamical system giving rise to spatio-temporal chaos?

How (if at all) is sensitivity to initial conditions manifested in such a

system

In the following we deal with these questions and give some concrete
iliustrations of the phenomenology of spatio-temporal chaos.

A Some scenarios leading to spatio-temporal chaos

In contrast to the situation described in Sections 7.3-7.5, the transition to
spatio-temporal chaos has not yet been characterized by global quantitat-
ive laws comparable to, say, the ones governing the period doubling
cascade. Still, experience acquired through linear stability analysis,
numerical simulation and laboratory experiments suggests a number of
intelwuug fcatures that should undoubtedly
comprehensive theory yet to come.

The main point relates to some ideas already developed in Section 6.5:
in systems of large spatial extent the size L becomes a natural control
parameter. By increasing L from small values while keeping the other,
more traditional, control parameters fixed the threshold of a first
instability can be reached. As L is increased further, the number of
unstable modes grows (in the Kuramoto—Shivashinsky equation it does
so linearly with L) and new instability thresholds are encountered.
Frequently these thresholds lead first to periodic, multiperiodic or weakly
chaotic behavior in time; next to space symmetry-breaking that may
include the appearance of defects; and eventually to spatio-temporal
chaos. The latter can have, in turn, some structure in space in the form of
irregular patches of spatial act1v1ty 1mmersed in lammar well-organized

Ciicy (Kaﬂﬁkl’), 1 989

AT
1

cr
(4]
(4]
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Chate, 1989; Daviaud et al., 1990, 1992); or a completely incoherent, fully
‘turbulent’ type of spatial activity.

When a second control parameter is varied in addition to L various
instability thresholds can again be reached, even at fixed L. A typical
signature of large systems is, then, that the larger the L the closer these
instability thresholds will lie relative to each other.

An interesting question is how to characterize the complexity of the
observed pattern. A number of interesting ideas have been advanced such
as spatial and spatio-temporal Fourier spectra; symbolic encoding of a
spatial pattern by introducing a partition in physical space expressing the
values of the state variables relative to pre-assigned thresholds; or
statistical quantities like entropies, the histogram of ‘iaminar’ regions as a
function of their size, life-time distributions, and so forth. Details of these

attempts, still in a largely exploratory stage, can be found in the above

Aip 3 uiid 221 HL L2

mentioned references.

B The attractor of systems giving rise to spatlo temporal

It has been stressed repeatedly in this book that spatially distributed

svstems nossess an infinite number of deorees of freedom. We have seen

B AATEEE N vuuvu &ii 1 SevpA e 11w NalSan Yo Sl

that when these systems operate in the close vicinity of the transition to a
regular spatial pattern, say the Rayleigh-Bénard instability, a drastic
reduction can take place. The relevant variables then obey a normal form
equation and lie on a low-dimensional attractor. The question we raise
here is: what 1s the nature of the attractor when the system operates in the
regime of spatio-temporal chaos?

In Chanter 3 we have introduced the conce
A A

11 dlapisd Yo 1A

the largest bounded invariant set of phase space toward which all
trajectories of the dynamical system converge as time tends to infinity. We
know already that the structure of such an attractor may be quite
complicated even in systems with a small number of variables, since the
attractor may be a fractal set. A remarkable recent result already briefly
mentioned in Section 6.5, is that in many spatlally dlstr1buted systems,
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universal attractor has finite fractal dimension (Constantin and F01as
1985; Constantin, Foias and Temam, 1985). Still it may be quite
complicated and attract the trajectories very slowly. For this reason it is
desirable to embed the attractor in an inertial manifold (Constantin et al.,

1989): a finite-dimensional invariant manifold £ toward which the

solutions tend with at least a uniform exponential rate, in the sense that
the distance

SAAN RLLOTAIIK
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dist ((Xo) £) < ce™™ (7.94)

PR,

for ¢ > [0 > U C Delﬂg a pOSl[lVC constant.

The flow restricted to the inertial manifold is equivalent to that of a
system with a finite number of degrees of freedom. We refer to the
evolution laws in such a phase space as an inertial form. An inertial form
constitutes thus an optimal finite-dimensional representation of the
original system as far as long-term dynamics — and hence bifurcation
analysis—is concerned.

The results surveyed above are, essen i
leave open two questions of crucial practical importance: (a) can the
dimensionality D of the universal attractor be estimated; and (b) can the
inertial form be inferred from the original evolution laws?

An appropriate way to formulate (a) is to ask how D scales with the size
parameter L, it being understood that in the limit L— oo, D will also tend
to infinity. Typical estimates give the power law behavior

D<L” (7.95)

with a greater than unity — for instance, @ = 13/8 for the Kuramoto-
Shivashinsky equation (Nicolaenko, Scheurer and Temam, 1985). For
large size systems of interest this leads to large numbers of little practical
relevance. There is evidence (Manneville, 1985; Pomeau, Pumir and
Pelcé, 1984) that in some cases D may actually scale linearly with L.

We come brieflv now to guestion (h\ Consider the standard form of th

COLALIT Uil y 1aUVY L yulsiaaa 1gaer the standar ANSAxix

evolution laws of a spatially distributed system, eqgs. (6.52). We assume
that the linear operator % has a spectrum consisting of negative
eigenvalues 4, > 4, > ... and a complete orthonormal set of eigenfunc-
tions. In terms of these eigenfunctions one can then construct an operator
P, projecting X from the original phase space I into the subspace
P I' spanned by the first m eigenfunctions, and its orthogonal

Aamnlamant M — 1 _ D Nnaratinog wit D An hat cida r\{" \
VLIV L NSy, 8 Ly A/pllatiiig will 1, Ul UULIL J1uvs Vi L) ne
gets
101, 2 o I | . Y {7 QLN
dp/dt = &-p + P,,-hi(p + q) (7.96)

where peP,I', qeQ,I". This equation is not closed, as it must be
supplemented with an equation for q. In most approaches the inertial

manifold is represented as a mapping q = ¢(p) from the space P, I into
the space Q,I". The inertial form then reads

Spave AL iAvi A 11 il

dp/dt = £ p + P, -h[p + ¢(p)] (7.97)

Usually the mapping ¢{(p) can only be determined in an approximate
manner For a recent survey we refer the reader to Brown, Jolly,
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C Sensitivity to initial conditions in spatio-temporal chaos
ioned in the end of Section 7.7, a multivariate dy
possesses a number of Lyapunov exponents equal to its phase space
dimensionality. In a spatiaily distributed system this will result in an
infinite number of exponents. If the conditions of existence of a
finite-dimensional universal attractor and inertial manifold discussed
previously are met, the number of positive Lyapunov exponents will

remain finite, although possibly very large, for any given value of the size

paramecter L. But in the limitin which L— oo one expects that, similarly

the attractor dimension D (eq. (7.95)), this number will tend to infinity.
Since the largest exponent is likely to remain bounded, this will result in a
continuous spectrum of positive Lyapunov exponents. The question
therefore naturally arises, of whether in the presence of chaos this new
feature will leave a typical signature in the way sensitivity to initial
conditions will be manifested.

T C 1 =
In Scction 7.7 we saw

mappings, sensitivity to initial conditions may be quite intricate. In the
limit of uniform attractors characterized by the same local rate of
divergence in each point of phase space it reduces, however, to an
exponential law whose exponent is given by the (unique) positive
Lyapunov exponent. In order to disentangle the role of the continuous
spectrum from that of the nonuniformity of the attractor we therefore

of divergence.

Since there is no known example of a continuous time system in which
such a property holds true, we turn to a useful alternative model of
spatio-temporal complexity provided by coupled map lattices (Kaneko,
1989). Specifically, we consider a one-dimensional lattice of diffusively
coupled cells,

D
X1 () = FIx,00] + 7 Bl + 1)+ x,( = 1) = 2%,(/)]

J=1...,N (7.98)
where n is a discrete time, j the lattice point, x a continuous variable and
f(x) a function describing the local dynamics, typical examples of which
have been given in Section 7.3.

~ 7T N0

Let x,(j) be a reference state solution of (7.98) corresponding to
spatio-temporal chaos. The tangent space of the attractor of the system in
this regime is defined by (see Section 7.7)

D
Eoat (D) =" GG + LG + 1) + &, — 1) = 26,()1(7.99)
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Fig. 7.23 Three-
dimensional plot
showing the space

denendence of the

M pviiaLiIvG 19 $3V)

variable x for three
consecutive times after
a transient period of
1000 time units in a

100-cell coupled
Bernoulli lattice:

D =1, boundary
conditions are periodic
and initial conditions
are sampled randomlv

Alfl i IISQINNY

from a uniform
distribution.

We notice that if f'(x,(j)) were a constant 4,, eq. (7.99) could be solved
exactly. On the other hand, this is precisely the case of constant local rate

“of divergence for which we have been looking. The advantage of coupled

map lattices is to allow one to realize this possibility. An example is
provided by the choice

o
IA
IA

1

o= & * =2 (7.100)
12x -1 x<1

This dynamical system, referred to as the Bernoulli map, is quite similar to

the tent map (eq. (7.16b)). When used in eq. (7.98) it generates, for
appropriate choices of D, spatio-temporal chaos asillustrated in Fig. 7.23.
To see what happens in the tangent space we expand &,(j) in a Fourier
series,

[
IA
IA

N—-1
ELi) =Y, &, (k)i (7.101)
k=0

where we have assumed periodic boundary conditions. Substituting into
(7.99) we find the following equations for the mode amplitudes &, (k)

&yra(k) = {/10 + D[cos(%k\ ~ 1—” Z, (k)

Y/ 1

(7.102)

(notice that A, = 2 for the Bernoulli map). The solution of this equation is
strictly exponential,
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Fig. 7.24 Time
evolution of an initial

error

1ol =25 x 1077 at
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100-cell coupled

Bernoulli lattice with
D =1 averaged over
1000 samples (filled

sauarece) a¢ camnarad
Suaitsy as COMparda

to the theoretically
deduced law, eq.
(7.106) (crosses) and
to a purely

exponential law

(empty squares).

(7.103a)
with

N — 1
A i

(7.103b)

where 0, = Ind, is the maximum Lyapunov exponent. The set of {o,}
provides the full spectrum of the Lyapunov exponents. We notice that in
the limit N— oo the spectrum becomes continuous. The contributions of
the modes k such that k « N can then be approximated by expanding

|9 e PR . VAY S | 2am ox

cos [(2rn/Njk], yiclding

2
207 (7.104)
LN

o, = 65 + In {1 —
In the context of sensitivity to initial conditions we must see how &, (j)
behaves in time. To this end one substitutes (7.103a) into (7.101) after
determining a, from the initial conditions. Choosing for simplicity initial
perturbations around the reference state x,(j) localized on the box j,,

o)) = €0, (7.105)
and using (7.104)-one finds after some algebra
€.(jo) = e €0 — Z C()s|~ (j —jo)kJe — 2D/ Ao k*N?)
~ g "o ” dx e —n@D/ignix* o ¢ eho 1 (7.106)
. D/A)" " n

where the validity of the asymptotic evaluation of the sum requires
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n> (2nD/iy) " .

Eq. (7.106) shows that the accumulation of Lyapunov exponents
around the maximum value o, arising in the limit of a size parameter
N — 0, introduces a modulation of the purely exponential growth e of
an initial error ¢ in the form of an inverse power law (Nicolis, Nicolis and
Wang, 1992). Fig. 7.24 summarizes the result of a numerical simulation

carriad nut an the full nanlinear cvetem alano with a camnarican with the
WL L L WA L ULl LIy lu]l AAULLAILL (5% J t\v’lll’ i b ‘ vaiLii L \l\}llll}ullu\lll FY LU LW

analytic result of eq. (7.106). The system, composed of N = 100 cells, is
first run with random initial conditions for a sufficient amount of time fo
reach its attractor. After this transient period a small localized perturba-
tion is imposed on the central cell and the trajectories of the perturbed as
well as the unperturbed systems in each box are subsequentiy monitored.
The filled squares of the figure depict the evolution of the absolute value of

tantaneous error 1n the central bax as deduced from the above two
Ldanindiaisn s D wiAxsa ax YW LYY LU

<
12y i i [# 3 -. 1w Vwiiwiias U ad vlalauiis 11 ulv auy

trajectories. Crosses indicate the analytic result of eq. (7.106), and empty
squares a purely exponential amplification with a rate equal to the
maximum Lyapunov exponent . We see that the numerical and analytic
results are practically indistinguishable for short times for which the
linearized regime is expected to be valid, whereas, on the contrary,
appreciable deviations from a purely exponential law show up at a rather

early ctaoe
\Jull-’ OLu&\J-

As it turns out this conclusion applies to a whole class of spatially
distributed systems generating spatio-temporal chaos. This suggests that
an inverse power law modulation of exponential error growth can be
regarded as a characteristic signature, at the level of sensitivity to initial
conditions, of spatially distributed systems of large extension.

Problems

7.1 Using the x-axis as the Poincaré ‘surface’ of section construct the explicit
form of the Poincaré map induced by the normal form equations for the
Hopf bifurcation, egs. (5.55). Check that the fixed point of the
recurrence corresponds to the limit cycle solution of the flow and that
the stability condition (7.10b) is verified for a supercritical Hopf

bifurcation.

7.2 The Schwarzian derivative of a function / at x is defined as

§f(x} =

[ 3 (f”(x))z
£ 2\,

Show that for the logistic map Sfix) <0 for all x. (The relevance of this

________ ctame fraom the thanraa- 10001

propet L; stems irom (n¢ tncorem \UCVdIldy, 1787) llldl for UIllrIl()Udl
maps, Sf(x) < 0 implies that there exists at most one stable periodic
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orbit for each parameter value.)

7.3 Show that the logistic map at u = 0.959 75 possesses a stable

~
IS

period-three orbit (x, = 0.149 888, x, = 0.489 172, x; = 0.959 299). By
the theorem mentioned in Problem 7.2 this is the only stable solution
availabie for this value of u. On the other hand, a remarkable theorem
by Sarkovskii (Devanay, 1989) establishes a hierarchical relation
between orbits of different periods by showing that if a map possesses a
periodic orbit of period k it automatically possesses an orbit of period /

provided k o1, with:

357,23 25>, ..223 =225 ... 2"3 =2%5 ..,
=2, 22 =21 1.

It follows, therefore, that for u = 0.959 75 the logistic map possesses
unstable periodic orbits of all the periods of the above list. Notice that if
a unimodal map has only finitely many pericdic orbits, then their
periods are necessarily powers of two.

Consider the Bernoulli map
sz 0<x<j
Bx)=<_ =
{(2x—1 d<x<i
and its analog with negative slope
_ 1-2x O<xx<!?
B(x) = .
2-2x l<x<i

Sketch the graphs of these maps and determine the number and stability
of their periodic orbits of period n.

7.5 A qualitative description of instabilities leading to chaotic dynamics in a

variety of chemical systems and in mathematical models of chaos such
as Rossler’s model (eqs. (4.41)) can be obtained from a one-dimensional
map possessing a maximum followed by a minimum. The simplest

realization of this structure is the cubic map (Fraser and Kapral, 1982;
Kapral and Fraser, 1984)
fix.a. b) w3 (1 A\ 4 Lo w2 o~ N
JiX,d4,0)=4aX” + (1 —d)x + o1 — X7), a>u

Determine the fixed points and the period two solutions of this
dynamical system and study their stability in the two parameter space
(a,b).

7.6 Usmc eq. {7 .30 for the invariant density o prove that 4 (CY = u (1)
’ J s RIGL pa ) il ~7
What kind of regularlty properties should one impose on | for this

relation to make sense?

7.7 Using the definitions of Section 7.7 construct the analytic form of the

probability distribution of the local Lyapunov exponent a(x) = In |f*(x)|

for the tent map and for the logistic map at u = 1. Calculate the

£
1y
two moments of this distribution and compare with (7.58) and (7.62

2).
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7.8 Consider a piecewise linear map consisting of three segments

a,x + by 0<x<x,
Jx)={ax +b, X <X =X,
PO . L ~ P |
\ GzX 1 U3 Xy <X =1
with a; > 0, a, <a, < a, (such maps qualitatively describe the dynamics
Af hamaclinie cvatamie rafarrad ta i Qastian A 8 coa Armadndn o ~f
W 1V LLLL Y Dybly\.tlllb ICICLIILU LU 11D ODuuLIuUrLla —l'._J, O ML LIVVUIY ©L U,
(1993)
{4t Matarmina tha ~aanditiang an tha naramatare anirch that ansh ~AF tha
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union of intervals.
(b) Under these conditions compute the invariant density and the
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(a) Prove that for r = (\/S + 1)/2 the Frobenius—-Perron equation
induces a master equation on the partition.

SRS Nt

Compute the invariant density and show that the system is mixing.
(b) Prove that for r = /2 a coarse-grained description in terms of two
celis (which ones?) is stiil possible, but that the system now loses its
mixing property while still possessing a nonsingular invariant density
(Nicolis, Piasecki and McKernan, 1992).

7.10 Consider three diffusively coupled logistic maps (eq. (7.98)). Perform
linear stability analysis of the homogeneous fixed point and of the
homogeneous period-two orbit in the domain of parameters in which
each of them is stable toward homogeneous perturbations. Can a

diffusion-induced instability occur in th vetem ?
y o rint S

iffusion-induced nstability occur in this system?



APPENDIX Al

principle of
linearized stability
for one-variable

systems

dXx/dt = F(X) (Al.1)

where F is a scalar function of the single (scalar) variable X. Introducing the
decomposition of eq. (3.20) into a reference steady-state solution X, and a

perturbation x,
X=X +x (Al.2)
we obtain (cf. (3.25) and (3.26))
dx/dt = Fix + dF/x? + LF/x> 4+ -+
=Ax + a,x? + azx + - .- (A1.3)

Here F¥ denotes the kth derivative of F with respect to X evaluated at X,. For
convenience we choose F! to be the control parameter figuring in the original egs.
(3.6).

The ‘auxiliary’ linearized system associated to (A1.3) is

dY/df:}Y (Al4a)

AfLL AR

and admits the solution

x = x,e* (A1.4b)

which is obviously asymptotically stable for 4 < 0, unstable for 4 > 0 and
Lyapunov stable for A = 0.

To see how the full nonlinear equation behaves under these conditions we
multiply both sides by x, transforming (A1.3) into

230
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Idride = Ax? +ayx® + -+
= g(x) {A1.5)

where r = x? is a nonnegative variable. By construction, the function g(x) on the
right hand side of this equation is such that
9(0)=0,g'(0)=0, g"(0) = 24 (AL6)

therefore write

2

g(x) — g(0) = %g”(ﬂx), 0<0<1 (A1.7)

and consequently
dr/dt = rg"(0x) (A1.8)

We now consider, successively, the cases A <0, A > 0and A =0.

(i) 4 < 0. From (A1.6) this is tantamount to g”(0) < 0. By continuity this
entails ¢”"(6x) < 0 in a sufficiently small neighborhood of the origin. It follows
from (A1.8) that

dr/dt <0 (A1.9)

or equivalently that | x| decreases to zero and X, is thus asymptotically stable, just
as predicted by the linearized eq. (A1.4a). The situation can be further illustrated
by plotting the original function F versus X (Fig. Al.1(a)). Again, since 1 <0
F, < 0. By continuity F’(X ) remains negative in a vicinity of X,. A small positive
perturbation leading the system to X | will ‘see’ a negative value of F. By (Al.1) X
will then decrease toward X . A similar argument can be made concerning the
evolution of a negative initial perturbation leading the system to X ,. This proves,
once again, the asymptotic stability of X in the nonlinear regime.

(ii) A > 0. From (A1.6) g"(0) > 0 and, by continuity, g“(#x) > 0 as well. From
(A1.8) r and thus | x| increase then in time, thereby establishing the instability of
X,. Thesituation can again be illustrated on the graph of F (Fig. A1.1(b}). In short
we find, again, agreement with the behavior predicted by the linearized eq. (A1.4a).

(iii) A = 0.Tn this intermediate case g”(0) = 0. Nothing can be said now about
g"(0x), since the property of a function to vanish on a particular point is
‘nongeneric’ in the sense that, typically, it does not extend to a neighborhood of
that point. No general statement on stability can thus be made, in other words, the
conclusions of the linear analysis based on (A1.4) are not necessarily vaiid. A more
detailed study is needed: this was precisely the assertion made in Section 3.6.

An example of what may happen in the nonlinear range when the linearized
problem predicts Lyapunov stability but not asymptotic stability is given in Fig.
A1l.1(c). We see that an initial positive perturbation will evolve farther and farther
from X, whereas a negative one will evolve toward X . Clearly, the fixed point is
no longer Lyapunov stable.

T illugtrate further the connec
10 LIUSUIaly Juiudivi s LUl {o )
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Fig. Al.1 Hlustration
of the mechanism
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linearized stability.
(@) A<, (b) A>0,
)y A=0

original nonlinear system and its linearized version we consider the logistic
equation (2.51),

dXx/dt = kX(1 — X/N) (Al.10)

We are interested in the stability properties of the reference state of population
extinction, X, = 0. The linearized equation around this state reads

dx/dt = kx (A1.11)

It is asymptotically stable for £ < 0, unstable for & > 0 and Lyapunov stable for
k=0.

On the other hand the full differential equation (A1.10) is separable and can
thus be solved exactly. One obtains straightforwardly

X(t)= X0 (A1.12)
oo ¢ +1
X{B)
F
™™
x2 xs XI
— X (a)
F
]
. |
T l/l, s X (b
F

\

[

1
=
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where X (0) is the initial condition. We observe that:

For k <0, lim,, . X(t) = 0: X, = 0 is asymptotically stable.

" For k>0, lim,_,X(t) =N : X, =0 is unstable, and the system reaches the
second fixed point solution X, = N available.

Exceptionally, in this particular problem the agreement with the predic-
tions of the linearized equation extends to the case of Lyapunov stability
(k = 0) as well.



APPENDIX A2

We use B as the bifurcation parameter. The explicit form of eqs. (5.1) is (cf. egs.

(2.44))
B, 2
d/x\ [B-1 12 . /Zx +2Axy+xy\

\ /X
)" S0 Do)

ZL(B) h(x, B) (A2.1)

As we saw in Section 4.4, eqs. (4.36)-(4.38), the fixed point (4,B/A) undergoes an
instability at -

B, =A% +1 (A2.2a)

at which the real part of the eigenvalue of the linearized operator & vanishes while
the imaginary part is

Imo, =9, = A (A2.2b)

To evaluate the solutions in the vicinity of B, we insert (5.7), (5.8), (5.46) and (5.47)
into eqs. (A2.1). We outline hereafter the calculations to the first few significant
orders.

A M
A CAZ)

Eq. (5.48) takes the explicit form
Ai xl _ BC - 1 A2 X1
eT\y,) \ -B. —4*J\y,
A? A* \(x,
= ( a7 —Az)(yl) (A2.3)

The critical eigenvector u associated to (A2.3) is given by

234
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S )
(—(A2+1) —A2\uy) T\,

* or, taking the first line of this vector equation,
(A2 —id)u, + A%uy; =0 (A2.4)

Since normalization of u is arbitrary we choose to write it as
/ \ 4 Y
! ! A2.5)
u = =1 . .
U, 1— A (

The solution of eq. (A2.3) is thus

\ = ¢t )/ : \e" + ¢ (A2.6)
\n/ — A
A
The adjoint & ¥ (B,) of £(B,) and its critical eigenvector u* (associated to the
eigenvalue —iA) are given by

or, using {A2.4),

2 (42
$+(BC)=(A (4 +1)> (A2.7a)

A2 —A?

( ;\ (A2 :—IA\ (A2.7b)
) L) |

L Y PP P T + _iT - PR . : e £t P ¥+ 1 1 & &1 hY
Noiice that u”e'’ is the nuil clgenvecior o1 tn€ operator J deluned i (2.510).

and

B O(:?)
From eqgs. (5.11), (5.50) and (A2.1) we get

oT\0 1 —(A4r+ 1) — A2 y
(RN /N

X = d\r2/



A2 + 1

X{ + 2A4x,y, \

A + 1
A+ xf—ZAx‘ylj

2 (= A28
—ﬁrl Y1 (A28)

Using (A2.6) and (A2.7b) we write the solvability condition for this in-
homogeneous equation as

{zndTe—inl,fz—z——i—Ai\inc[ Er & / ! \e”‘
A a\i}

-~
TN
| -
—
O
N
TN
= =
SN’
,_‘,
_—
|

A

A2 + 1

. P-4, —i -
(e 4 [e ) + 24¢F— = e+ U e | P~ \ l
+ Cc

+ ]
' A* +1 2 20T 2 2i'A 2iT 2"‘i_’A .
k— y (c?e?t + |c]¥) — 24c y et —24]cl 1

(A2.9)

-

The integration over 7 cancels the contributions of all paris in the curly bracket

except those containing e'’. This yields

dc/oty, = Ly c (A2.10a)}
from which it follows that
y, =0,0c¢/6t, =0 (A2.10b)
The cornnd nrdar san (A ) naw cirnlifias +4
4 fiu UL UiV \.4\.1 \r\L.U’ LIV ¥Y Duuyuuua (A9
a2 (PO A N
| 0T\D i/ \ —(4*+1) —AZ/J‘\y2/
A2 + 1
A+ x? 4+ 24x,p, \
= A2.11
A2+ 1, ( )
- x] — 24x,y,

The solvability condition (A2.10a) being identically satisfied we proceed to solve

this equation by noticing that, on the grounds of (A2.6), the right hand side
features contributions either T-independent or depending on 7 through the
factors e?'" or e~ 2T, We thus seek a solution of (A2.11) in the form

x Po ) ;
( :) - (qg) + (a )ez "+cee (A2.12)

NS/ NI/ \ 2/
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Substituting in (A2.11) one finds, after a straightforward algebra,

Po=0
3
90 — Dle)?
Y (A2.13)
p, = n(1—A2+21A)c
3A-
| J
g, = —=[1 — 547 + 2i4(2 — 4%)]c?
34°

C O)

From eqgs. (5.12), (5.50) and (A2.1) we get, keeping in mind that y, = 0,
oc/ot, = O:

[2(4%2 + 1 T/ 1
+ l%xlxz + 2A(x,y, + x,p,) + x%le( B 1) (A2.14)

The solvability condition for this inhomogeneous equation can be written
out explicitly using (A2.6), (A2.7b), (A2.12) and (A2.13). As in the O(&?)
case, only the paris of the right hand side depending on T through the
oscillating factor €¢'T will contribute. This yields

| A2 i) LY o/ 1 ,
a2 1 )\ Z1) Tan|ioa f el

4
41 -2 4421 2
P (i —A2+2i/i)+————( ) b 211 = 547 4 2402 — A2)]
1"7A 347 A2 342
gt A A AL ags)
. B )

Performing the scalar product an

1a d reest b]m]"nnn ihP nrlninq] uqr ]'\l
........ uct and rc 314 R rao

a nar-
ta s, pat
ameters and time scale we finally arrive at
equation (cf. eq. (5.53))

the explicit form of the normal form

dz B-— B, A2+ 2 i44* —T74% + 4
= z—( | 2|2z (A2.16

a2 247 T2 A
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hat the factor § in the linear term o S §
of the eigenvalue w of the linearized operator with respect to B evaluated at the

criticality (cf. eq. (4.36)).
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