
CHAPTER 

ELEVEN 
MULTIPLE-SCALE ANALYSIS 

And here-ah, now, this really is something a little recherche. 

-Sherlock Holmes, The Musgrave Ritual 
Sir Arthur Conan Doyle 

(E) 11.1 RESONANCE AND SECULAR BEHAVIOR 

Multiple-scale analysis is a very general collection of perturbation techniques that 
embodies the ideas of both boundary-layer theory and WKB theory. Multiple-
scale analysis is particularly useful for constructing uniformly valid approxima-
tions to solutions of perturbation problems. 

In this section we show how non uniformity can appear in a regular perturba-
tion expansion as a result of resonant interactions between consecutive orders of 
perturbation theory. To illustrate, we examine a simple perturbation problem, 
show how resonances occur and lead to a non uniformly valid perturbation expan-
sion, and finally show how to interpret and eliminate these non uniformities. The 
formal development of multiple-scale analysis is postponed to Sec. 11.2. 

Resonance 

The phenomenon of resonance is nicely illustrated by the differential equation 
d2 
dt2 Y(t) + y(t) = cos (wt). (11.1.1) 

This equation represents a harmonic oscillator of natural frequency 1 which is 
driven by a periodic external force of frequency w. The general solution to this 
equation for I w I =1= 1 has the form 

. cos (wt) 
y(t) = A cos t + B sm t + 1 _.2' Iwl =1= 1. (11.1.2) 

Observe that for all Iw I =1= 1 the solution remains bounded for all t. If I w I is close 
to 1, the amplitude of oscillation becomes large because the system absorbs large 
amounts of energy from the external force. Nevertheless, the amplitude of the 
system is still bounded when I w I =1= 1 because the system is oscillating out of 
phase with the driving force. 
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The solution in (11.1.2) is incorrect when I (t) I = 1. The correct solution has 
an amplitude which grows with t: 

y( t) = A cos t + B sin t + !t sin t, I (t) I = 1. (11.1.3) 
The amplitude of oscillation of this solution is unbounded as t ~ 00 because the 
oscillator continually absorbs energy from the periodic external force. This system 
is in resonance with the external force. 

The term !t sin t, whose amplitude grows with t, is said to be a secular term. 
The secular term !t sin t has appeared because the inhomogeneity cos t in (11.1.1 ) 
with I (t) I = 1 is itself a solution of the homogeneous equation associated with 
(11.1.1): d2 y/dt2 + y = 0. In general, secular terms always appear whenever the 
inhomogeneous term is itself a solution of the associated homogeneous constant-
coefficient differential equation. A secular term always grows more rapidly than 
the corresponding solution of the homogeneous equation by at least a factor of t. 

Example 1 Appearance of secular terms. 

(a) The solution to the differential equation d2 y/dt 2 - y = e-' has a secular term because e-' 
satisfies the associated homogeneous equation. The general solution is y(t) = Ae-' 
+ Be' - !te-'. The particular solution -!te-' is secular relative to the homogeneous solution 
Ae-'; we must regard the term -!te-' as secular even though it is negligible compared with 
the homogeneous solution Be' as t ---+ 00. 

(b) The solution to the differential equation d2y/dt 2 - 2dy/dt + .I' = e' has a secular term because 
e' satisfies the associated homogeneous equation. The general solution is y{t) = Ae' 
+ Bte' + !t 2 et In this case. the particular solution !t2e' is secular with respect to an solutions 
of the associated homogeneous equation. 

Nonuniformity of Regular Perturbation Expansions 
The appearance of secular terms signals the nonuniform validity of perturbation 
expansions for large t. The nonlinear oscillator equation (Duffing's equation) 

d2 y 
dt2 + y + 8y3 = 0, y(O) = 1, y'(O) = 0, (11.1.4) 

provides a good illustration of what we mean by non uniformity. A perturbative 
solution of this equation is obtained by expanding y(t) as a power series in 8: 

00 

y(t)= L 8nYn(t), (11.1.5) 
n=O 

where yo(O) = 1, Yo(O) = 0, Yn(O) = y~(O) = ° (n ~ 1). Substituting (11.1.5) into the 
differential equation (11.1.4) and equating coefficients of like powers of 8 gives a 
sequence of linear differential equations of which all but the first are 
inhomogeneous: 

Yo + Yo = 0, 

y'{ + Yl = -Y6, 
and so on. 

The solution to (11.1.6a) which satisfies Yo(O) = 1, Yo(O) = 0 is 
Yo(t) = cos t. 

(11.1.6a) 

(11.1.6b) 
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To solve (11.1.6b) we invoke the trigonometric identity cos3 t = i cos 3t + i cos t 
to rewrite the inhomogeneous· term. The formulas in (11.1.2 H 11.1.3) then provide 
the general solution to (11.1.6b): 

Y 1 (t) = A cos t + B sin t + l2 cos 3 t - it sin t; 
J 

the particular solution satisfying Yl(O) = y~(O) = 0 is 
() 1 3 1 3· Yl t = 32 cos t - TI cos t - st sm t. 

We observe that Yl (t) contains a secular term. This secularity necessarily occurs 
because cos3 t contains a component, i cos t, whose frequency equals the natural 
frequency of the unperturbed oscillator. 

In summary, the first-order perturbative solution to (11.1.4) is 

y(t) = cos t + s[l2 cos 3t -l2 cos t - it sin t] + 0(c2 ), c --+ 0+. (11.1.7) 

We emphasize that the term 0(c2 ) in the above expression means that for fixed t 
the error between y(t) and Yo(t) + CY1(t) is at most of order c..! as c--+ 0+. The 
non uniformity of this result surfaces if we consider large values of t-specifically, 
values of t of order l/c or larger as c --+ 0+. For such large values of t, the secular 
term in Yl(t) suggests that the amplitude of oscillation grows with t. However, as 
we will now show, the exact solution y(t) remains bounded for all t. 

Boundedness of the Solution to (11.1.4) 
To show that the solution to (11.1.4) is bounded for all t, we construct an integral 
of the differential equation. Multiplying (11.1.4) by the integrating factor dy/dt 
converts each term in the differential equation to an exact derivative: 

!!.-[!(dy )2 12 1 J dt 2 dt + :2 y + 4 cy4 = O. 

Thus, 1 (dy )2 1 1 :2 dt + :2 y2 + 4 cy4 = c, (11.1.8) 

where C is a constant. Since y(O) = 1 and y'(O) = 0, C = t + k When c > 0, the 
integral in 11.1.8) shows that ti :::; C for all t. Therefore, I y(t) I is bounded for all 
t by 1 + c/2. 

The argument just given is frequently used in applied mathematics to prove 
boundedness of solutions to both ordinary and partial differential equations. The 
integral in (11.1.8) is called an energy integral. Equation (11.1.8) may be in-
terpreted graphically as a closed bounded orbit in the phase plane whose axes are 
labeled by y and dy/dt (see Fig. 11.1). 

Perturbative Construction of a Bounded Solution to (11.1.4) 
We have arrived at an apparent paradox; we have shown that the exact solution 
y(t) to (11.1.4) is bounded for all t but that the first-order perturbative solution in 
(11.1.7) is secular (grows with t for large t). The resolution of this paradox lies in 
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e=O 

Figure 11.1 A phase-plane plot (y versus dy/dt) of solutions to Duffing's equation d2y/dt2 + y 
+ oyJ = 0 [y(O) = 1, /(0) = 0] for E = 0, I, and 2. The orbits shown are constant-energy curves [see 
(11.1.8)] which satisfy (dy/dt)2 + y2 + f.y4/2 = 1 + e/2. 

the summation of the perturbation series (11.1.5). We know that the problem 
(11.1.4) is a regular perturbation problem as e ~ 0+ for fixed t (see Sec. 7.2). 
Therefore, the series (11.1.5) converges to the solution y(t) for each t. We conclude 
that although order by order each term in the perturbation expansion may be 
secular, the secularity must disappear when the series is summed. 

To illustrate how summing a perturbation series can eliminate secularity, 
consider the perturbation series 

1 - c;t + !lh2 - ilh3 + ... + l:ntn[(-lnn!] + "', c;~0+. 

Each term in this series is secular when t is of order 1/1: or larger. Nevertheless, the 
sum of the series e - a is bounded for all positive t! 

We will now examine the more complicated perturbation series (11.1.5) and 
show that the sum of the most secular terms in each order in perturbation theory 
is actually not secular. We will show, using an inductive argument, that the most 
secular term in Yn(t) has the form 

An tneit + A~tne - it, (11.1.9) 
where * denotes complex conjugation. There are less secular terms in Yn(t) which 
grow like tk (k < n), but we ignore such terms for now. 

The final result of our calculations will be 

1 1 (3i)n An=-- - . (11.1.10) 
2 n! 8 
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Using this formula for An we see that the sum of the most secular terms in the 
perturbation series (11.1.5) is a cosine function: 

00 1 [1 (3i)n. 1 ( 3i)n . ] [( 3)] n~o2ent" n! 8 ell + n! -8 e- II =cos t l+"8 e . (11.1.11) 

Observe that this expression is not secular; it remains bounded for all t. 
The expression (11.1.11) is a much better approximation to the exact solution 

y(t) than yo(t) = cos t because it is a good approximation to y(t) for 0::; t = 
O(l/e). The difference between y(t) and cos t is small so long as 0::; t« l/e 
(e ~ 0+), while cos [t(l + ie)] is an accurate approximation to y(t) over a much 
larger range of t. These assertions are explained as follows. In order that yo(t) be a 
good approximation to y(t), it is necessary that e"Yn(t)« yo(t) (e ~ 0+) for all 
n 2 1; this is true if 0 ::; t « l/e. On the other hand, the terms that we ignored in 
deriving (11.1.11) all have the form 

e[Aek(et)'eimt + A*ek(et)'e-imt], 

where k, 1, m are nonnegative integers. Therefore, when t = O(l/e), each of these 
ignored terms is in fact negligible compared to at least one of the secular terms 
included in (11.1.11). We accept without proof the nontrivial result that the sum of 
all these small terms is still small. The higher-order terms are analyzed in Probs. 
11.5 to 11.7. 

We interpret the formula in (11.1.11) to mean that the cubic anharmonic term 
in (11.1.4) causes a shift in the frequency of the harmonic oscillator y" + y = 0 
from 1 to 1 + ie. This small frequency shift causes a phase shift which becomes 
noticeable when t is of order l/s (see Figs. 11.2 to 11.4 in Sec. 11.2). 

Inductive Derivation of (11.1.10) 
Comparing the first-order perturbation theory result in (11.1.7) with (11.1.9) 
verifies that the coefficient of the I]lost secular terms in zeroth and first order are 
given correctly by (11.1.10). To establish (11.1.10) for all n, we proceed inductively. 
The (n + 2)th equation in the sequence of equations (11.1.6) determines Yn+1(t): 

y~+l + Yn+1 = -1n + 1o (11.1.12) 

where the inhomogeneity 1n+ 1 is the coefficient of en in the expansion of 
[If=o eiYi(t)P. Thus, 

1n+1 = I YiYkY,' 
i+k+l=n 

(11.1.13) 

The most secular term in Yn+ l{t) is generated by the most secular terms in Yit) for 
O::;j::; n (see Prob. 11.2). If we assume that (11.1.10) is valid for A o, A10 A 2 , ••• , 

An, then The coefficient of t" eit in 1 n + 1 is given by 

!(~)n ji+k-I+ii+l-k+ik+l-i=!(3i)n (-l)'+(-l)k+(-lY 
8 8 I ., k' l' 8 8 I ., k' l' i+k+I=n J.. . i+k+I=n J.. . 
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The sum in the above expression is just three times the coefficient of xn in the 
Taylor expansion of ~~e-x (see Prob. 11.3); therefore, it has the value 3/n L Thus, 
the terms in In + I which generate the most secular terms in Yn + I (t) are 

i(it)n[ineit + (-i)"e-it]/nL 

Substituting these terms into the right side of (11.1.12) and solving for Yn+l(t) 
gIves 

Yn+ I (t) = (it)" + I [in + leit + ( - i)" + Ie - it]/(n + I)! + less secular terms. 

By induction, we conclude that since (11.1.10) is true for n == 0, it remains true for 
all n. 

(E) 11.2 MULTIPLE-SCALE ANALYSIS 

In Sec. 11.1 we showed how to eliminate the most secular contributions to pertur-
bation theory by simply summing them to all orders in powers of e. The method 
we used works well but requires a lengthy calculation which can be avoided by 
using the methods of multiple-scale analysis that are introduced in this section. 

Once again, we consider the nonlinear oscillator problem in (11.1.4): 

d2
; + Y + el = 0, Y(O) = 1, y'(O) =,0. (11.2.1) 

dt 

The principal result of the last section is that when t is of order l/e, perturbation 
theory in powers of e is invalid. Secular terms appear in all orders (except zeroth 
prder) and violate the boundedness of the solution y(t). 

A shortcut for eliminating the most secular terms to all orders begins by 
introducing a new variable T = et. T defines a long time scale because r is not 
negligible when t is of order l/e or larger. Even though the exact solution y(t) is a 
function of t alone, multiple-scale analysis seeks solutions which are functions of 
both variables t and r treated as independent variables. We emphasize that expres-
sing Y as a function of two variables is an artifice to remove secular effects; the 
actual solution has t and r related by r = et so that t and r are ultimately not 
independent. 

The formal procedure consists of assuming a perturbation expansion of the 
form 

y(t) = Yo(t, T) + eY1(t, T} + .... (11.2.2) 

We-use the chain rule for partial differentiation to compute derivatives of y(t): 

dy = (ayo + ayo dr) + e (aYI + aYI dr') + .... 
dt at aT dt at ar dt 

However, since T = et, dr/dt = e. Thus, 

dy _ 8Yo (OYo 8Y1) O( 2) 
dt - at + e ar + at + e. (11.2.3 ) 
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Also, differentiating with respect to t again gives 

d2 y a2 y; (a2 y; a2 Y ) 
dt2 = a/ + S 2 ar ;t + a/ + 0(S2}. 

Substituting (11.2.4) into (11.2.1) and collecting powers of s gives 

82yo 
at2 + Yo = 0, 

a2Yl 3 a2yo 
at2 + Yl = - Yo - 2 ar at . 

The most general real solution to (11.2.5) is 

Yo(t, r} = A(r}eit + A*(r}e- it, 

where A(r} is an arbitrary complex function of r. 

(11.2.4 ) 

(11.2.5) 

(11.2.6) 

(11.2.7) 

A(r} will be determined by the condition that secular terms do not appear in 
the solution to {11.2.6}. From {11.2.7}, the right side of {11.2.6} is 

eit [-3A 2A* - 2i~~ J + e- it [-3A{A*}2 + 2id;* J - e3itA3 - e- 3it{A*}3. 

Note that eit and e - it are solutions of the homogeneous equation a2 Yt/at2 
+ Yl = o. Therefore, if the coefficients of eit and e- it on the right side of {11.2.6} are 
non~ero, then the solution Y1 (t, r) will be secular in t. To preclude the appearance 
of secularity, we require that the as yet arbitrary function A{r) satisfy 

-3A2A* - 2i~~ = 0, {11.2.8} 

dA* 
-3A{A*)2 + 2iTr = o. (11.2.9) 

These two complex equations do not overdetermine A{r) because they are redun-
dant; one is the complex conjugate of the other. If {11.2.8} and (11.2.9) are 
satisfied, no secularity appears in (11.2.2), at least through terms of order s. 

To solve (11.2.8) for A{r}, we represent A(r) in polar coordinate form: 

A(r} = R(r)ei6(t), (11.2.1O) 

where Rand e are real. Substituting into (11.2.8) and equating real and imaginary 
parts gives 

Therefore, 

dR =0, 
dr 

de _ ~R2. 
dr - 2 

A(r) = R(0}ei6(O) + 3iR2(O)t/2 

(11.2.11a) 

(11.2.11b) 

(11.2.12) 
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Figure 1l.2 The exact solution y(t) to Duffing's equation d2y/dt 2 + y + By3 = 0 [y(O) = 1, y'(0) = OJ 
for B = 0.1 (middle graph) compared with perturbative approximations to y(t) (upper and lower graphs). 
The lower graph is a plot of cos t, the first term in the regular perturbation series for y(t), and the 
upper graph is a plot of cos [(1 + 3B/8)tJ, the leading-order approximation to y(t) obtained from 
multiple-scale methods. Both approximations, cos t and cos [(1 + 3B/8)tJ, are correct up to additive 
terms of order B, but cos t is not valid for large values of t; when t = 160, cos t is a full cycle out 
of phase with y(t). The multiple-scale approximation closely approximates y(t), even for large values 
of t. 

and the zeroth-order solution (11.2.7) is 

Yo(t, r) = 2R(0) cos [8(0) + tR 2(0)r + t]. (11.2.13) 

The initial conditions y(O) = 1, y'(O) = ° determine R(O) and 8(0). The condi-
tion y(O) = 1 becomes Yo(O, 0) = 1, Y1(0, 0) = 0, .... From (11.2.3), y'(O) = ° be-
comes (aYo/at)(O, 0) = 0, (aY1 /at)(O, 0) = - (aYo/ar)(O, 0), .... In order to satisfy 
these conditions, we must choose R(O) = t and 8(0) = 0.- Therefore, the zeroth-
order solution is Yo(t, r) = cos [t + ir]. Finally, since r = ct, 

y(t) = cos [t(1 + ic)] + O(c), c ---+ 0+, ct:= 0(1), (11.2.14) 

and we have reproduced (11.1.11). In Figs. 11.2 to 11.4 we compare the exact 
solution to (11.2.1) with the approximation in (11.2.14). 

A higher-order treatment of (11.2.1) is not completely straightforward. When 
more than two time scales are employed, there is so much freedom in the pertur-
bation series representation that ambiguities can result (see Probs. 11.5 to 11.7). 

(I) 11.3 EXAMPLES OF MULTIPLE-SCALE ANALYSIS 

In this section we illustrate the formal multiple-scale technique that was 
developed in Sec. 11.2 by showing how to solve four elementary examples. The 
third and fourth of these examples are especially interesting because they show 
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Figure 11.3 Same as in Fig. 11.2 but with 6 = 0.2. Note that cos t is two cycles out of phase with y(t) 
when t = 160. 

r,:o --'" "'100 
+ -----~ 
Vl o u 

...... u'-' co ..... 
><'=' w""" 

Vl o u 

5 10 15 20 25 

+~ [fi fi n fi fi fi fi n n n n n fi nAn n A Ann Ann A A A A 160 

-1 
5 10 15 20 25 

+~ ~ n y nilJlf\ n y vw n ¥ ¥ n ijJI n ¥l160 
-1 VV vrv V VVV V V vrVlJ V urv:v VlJlJ V 

5 10 15 20 25 

+~ ~ n n n n n n n n n n n n n n n n n n n n n n fiA 160 
-1 V V \TV V V V V \TV Vlllj V V V V Vl[\[V t V V V 

Figure 11.4 Same as in Fig. 11.2 but with 6 = 0.3. Note that cos t is three cycles out of phase with 
y(t) when t = 160. 

how multiple-scale analysis can reproduce the results of boundary-layer and 
WKB analysis. 

Example 1 Multiple-scale analysis of a damped oscillator. Let us consider an harmonic oscillator 
with a cubic damping term: 

y" + y + 6(y')3 = 0, y(O) = 1, y'(O) = o. (11.3.1) 

If e > 0, the solution y(t) must decay to 0 as t -> 00. To prove this assertion, we multiply (11.3.1) 
by y' and construct an energy integral similar to that in (11.1.8): 

fr [~(y')2 + ~ y2 ] = -e(lt :0; O. (11.3.2) 
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This result shows that the energy ~(y')2 + !y2 is a decreasing function of t unless y'(t) = 0 for all t. 
In Prob. 11.8 it is shown that the energy must decay to 0 as t ..... 00 and therefore that y(t) ..... 0 as 
t ..... 00. [By contrast, when f. < 0, the energy argument just given shows that (11.3.1) represents a 
negatively damped system (like a self-propelled lawn mower that uses grass for fuef or a rocket 
with vacuum-cleaner drive that uses space dust for fuel) whose solutions grow explosively with t.] 

Multiple-scale analysis may be used to study the behavior of y(t) for large t. We begin by 
assuming a perturbation expansion for y(t) in (11.3.1) of the form 

y(t) ~ Yo(t, T) + [,YI(t, T) +''', [, ..... 0+, 

where T = f.t. Using (11.2.3) and (11.2.4) and equating coefficients of 1;0 and 1;1 gives two equations 
which correspond with (11.2.5) and (11.2.6): 

a2yo 
&2+ Yo=O, (11.3.3 ) 

a2YI + Y = -2 a2yo _ (aYo)3. 
at2 I at aT at (11.3.4 ) 

The most general real solution to (11.3.3) is 

Yo(t, T) = A(T)eit + A*(T)e- it. (11.3.5) 

Substituting this solution into the right side of (11.3.4) gives 

_I + YI = _eit 2i- + 3iA2A* - e- it -2i- - 3i(A*)2A a2 Y [ dA 1 [dA * 1 
~ ~ ~ 

+ ie3itA3 _ ie- 3it(A*)3. (11.3.6) 

Since the solutions to the homogeneous equation (11.3.3) are e±it, the solution to (11.3.6) is 
secular unless the expressions in the square brackets vanish; in order that YI not be secular, we 
require that A(T) satisfy the equations 

dA 
2i- + 3iA2A* = 0, 

dT 

dA* 
-2i- - 3i(A*)2A = O. 

dT 

(11.3.7a) 

(11.3.7b) 

To solve (11.3.7) we set A(T) = R(r)ei8('), where R(r) and 8(r) are real. Substituting this 
expression into (11.3.7) gives equations for R(T) and 8(T): 

Therefore, 

dR = _~R3, 
dr 

d8 = O. 
dT 

R(O) 
R(r) = J3rR2(0) + 1 

8(r) = 8(0). 

(11.3.8a) 

(11.3.8b) 

R(O) and 8(0) are determined by the initial conditions y(O) = 1, y'(0) = O. These conditions 
imply that Yo(O, 0) = 1, (aYo/at)(O, 0) = 0, whence R(O) = ~,8(0) = O. Thus, to leading order in E, 

cos t 

y(t) ~ Jl + 3a/4' E ..... 0+, Et = 0(1). (11.3.9) 

This result implies that when E > 0 the solution decays like t- I /2 for large t, and that when E < 0 
the solution becomes infinite at a finite value of t approximately equal to -4/3E. Moreover, this 
solution does not exhibit any phase shift (or frequency shift) to leading order in E. These qualita-
tive conclusions are verified numerically in Figs. 11.5 to 11. 7. 
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Figure 11.5 A plot of the exact solution to y" + y + e(y')3 = 0 [y(O) = 1, y'(O) = 0] for e = 0.3 [see 
(11.3.1)] together with a plot of the envelope (l + 3et/4t 1/2 of the leading-order multiple-scale 
approximation to y(t) in (11.3.9). We have not plotted the full multiple-scale approximation to y(t) 
because it is indistinguishable from the exact solution to within the thickness of the curve. 

5.0 

)' 4.0 

75.0 

Figure 11.6 Same as in Fig. 11.5 except that e = -0.02. Observe that the exact solution y(t) and the 
multiple-scale approximation to it differ noticeably only when t is near the explosive singularity at 
t = -4/3e = 66!. 

Example 2 ,Approach to a limit cycle. ~ he equation 

y" + y = e[y' - !(y'n y(O) = 0, y'(O) = 2a, (11.3.10) 

known as the Rayleigh oscillator, is interesting because the solution approaches a limit cycle in 
the phase plane (see Sec. 4.4 and Example 3 of Sec. 9.7). Multiple-scale analysis determines the 
shape of this limit cycle and the rate of approach of y(t) to the limit cycle. 

As in Example 1, we assume a perturbation expansion for y(t) in (11.3.10) of the form 
y(t) - Yo(t, r) + eYI(t, r) + ... (e -+ 0+), where r = et. Next we substitute (11.2.3) and (11.2.4) 
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Figure 11.7 A comparison of the multiple-scale approximation and the exact solution to y" + y 
+ £(y')3 = 0 [y(0) = 1, y'(O) = 0] for £ = -0.1. The approximation to y(t) is extremely accurate except 
near the singularity at t = - 4/3£ = 13l 

into (11.3.10) and equate coefficients of £0 and £1: 

il2yo 
-2 + Yo=O, 
ilt 

il2Y1 + Y = -2 il2yo + ilYo _ ~ (ilYo)3. 
ilt2 1 ilt ilt ilt 3 ilt 

The solution to (11.3.11) is again 

Yo(t, t) = A(t)eit + A*(t)e- it. 

(11.3.11) 

(11.3.12) 

We substitute this expression into (11.3.12) and observe that secular terms in Y1(t, t) will arise 
unless the coefficients of e±it on the right side of (11.3.12) vanish. Thus, the conditions for the 
absence of secular behavior are 

dA 
-2i- + iA - iA2A* = 0 

dt ' 

dA* 
2i- - iA* + i(A*)2A = O. 

dt 

(11.3.13a) 

(11.3.13b) 

To solve (11.3.13) we again set A(t) = R(t)ei9('), where R and e are real. The equations for R 
and e are 

The solutions are 

2 dR = R _ R3 
dt ' 

de =0. 
dt 

R{t) = R{O)[e-' + R2{O){1 - e-')t1/2, 

e(,) = 8(0). 

(11.3.14a) 

(IHI4b) 

(11.3.15a) 

(11.3.15b) 
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The initial conditions y(O) = 0, itO) = 2a require that R(O) = a, 0(0) = -11t. Thus, to leading 
order in e, the solution to (11.3.10) is 

2a sin t 
y(t) - J e-' + a2 (1 - e-')' f. -> 0 +, T = f.t = 0(1). (11.3.16) 

Observe that for all values of a, this approximate solution smoothly approaches the limit cycle 
y(t) = 2 sin t as t -> 00. This limit cycle is represented as a circle of radius 2 in the phase plane of y 
and y'. If a < 1, the solution spirals outward to the limit cycle, and if a > 1, the solution spirals 
inward. A comparison of these asymptotic results and the numerical solution to (11.3.10) is given 
in Figs. 11.8 to 11.1 O. 

Example 3 Recovery of the WKB physical-optics approximation. Let us consider the oscillator 

y"(t) + w2 (et)y(t) = O. (11.3.17) 

Note that the frequency w(et) is a slowly varying function of time t. 
It is easy to solve (11.3.17) using the WKB approximation. We simply introduce the new 

variable T = et to convert (11.3.17) to standard WKB form: 

d2y 
e2- 2 + W2(T)Y = O. dT 

The physical-optics approximation to (11.3.18) [see (10.1.13)] is then 

y(t) = [W(T)]-1/2 exp [±ie- I ( w(s) dS]. 

(11.3.18) 

(11.3.19) 

Now, let us rederive (11.3.19) using multiple-scale theory. The procedure requires a bit of 
subtlety. Suppose we naively assume that there is a linear relation T = et between the appropriate 
long and short time scales. Then, letting y(t) = Yo(t, T) + eYl(t, T) + ... , we obtain 

a2yo + W 2(T)YO = 0, at2 

a2yo a2
Y1 + W2(T)YI = -2 at aT' at2 

(11.3.20) 

(11.3.21) 

3.0i~--------------------------------------------------' 
y 

2.0 

1.0 

Multiple-scale analysis 
prediction of envelope 
of r(x) 

or :7" '-zy \ I ~ I \ I \ I r \( f \ I \ I· 
-1.0 

-2.0 

I ! I I 
-3.0 571" 1011' 1511' 

Figure 11.8 Approach to the limit cycle of the Rayleigh oscillator y" + y = e[y' - t(y')3] [y(0) = 0, 
itO) = 2a] [see (11.3.10)], where we have taken e = 0.2 and a = 0.05. The oscillatory curve is the 
numerical solution to the differential equation; the envelope is the prediction of multiple-scale 
analysis [see (11.3.16)). The two curves agree to better than their thicknesses. 
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Figure 11.9 Approach to the limit cycle of the Rayleigh oscillator (11.3.10) (see Fig. 11.8). Here, 
e = 0.2 and a = 2.0. Except for a small discrepancy at t = nl2 the exact and approximate solutions 
have nearly perfect agreement. 

2.5 

Figure 11.10 A phase-plane plot (y versus dYldt) of three solutions to the Rayleigh oscillator (11.3.10) 
with e = 0.2. Shown are the limit cycle solution which is approximately a circle of radius 2, the 
solution on Fig. 11.8 (spiraling outward toward the limit cycle), and the solution on Fig. 11.9 (spiraling 
inward toward the limit cycle). 
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The solution to (11.3.20) is Yo = A(T)eiW(,j, + A*(T)e-iO'('j,. Substituting this expression in the right 
side of (11.3.21) gives 

a2y . [d dwl -} + W2(T)Y, = -2ie",*j' - (Aw) + itAw-
at dT dT 

. [d dwl + 2ie- JU'('j' - (A*w) - itA*w- . 
dT dT 

(11.3.22) 

The presence of the variable t in the square brackets implies that we cannot eliminate secularity 
without setting A(T) == 0 (see Prob. 11.9). 

This failure illustrates a crucial feature of multiple-scale perturbation methods. If the long-
scale variable T is linearly proportional to the short scale t (T = El), then multiple-scale methods 
will fail unless the frequency of the unperturbed oscillator is a constant; it must not vary even on 
the T scale. Therefore, before we can apply multiple-scale methods to the oscillator (11.3.17), we 
must find a transformation which converts (11.3.17) to a fixed-frequency oscillator with a small 
perturbation term: 

y" + y + s(some function of y) = O. (11.3.23 ) 

With this in mind, we introduce a new time variable T: 

T = f(t). (11.3.24 ) 

We will try to choosef(t) to convert (11.3.17) to the form in (11.3.23). From (11.3.24) we have 
d/dt = f'(t) d/dT, d2/dt2 =f"(t) d/dT + [f'(t}Y d2/dT2. Thus, (11.3.17) becomes 

d2 f"(t) d w2 (El) 
dT2 Y + [f'(t}Y dT Y + [f'(t}Y Y = O. 

We achieve the form in (11.3.23) if we choosef'(t) = w(El). Thus, 

, 1 ' 
T = f(t) = f W(eX) dx = - r w(s) ds. 

s· 
(11.3.25) 

In terms of T the differential equation now reads 

d2 y W'(T) d 
dT2 + y + e W2(T) dT Y = O. (11.3.26) 

This equation may be solved using multiple-scale methods. We expand 

Y = Yo(T, T) + sY,(T, T) + .... (11.3.27) 

Using the relation dT/dT = s dt/dT = e/f'(t) = S/W(T), we substitute (11.3.27) into (11.3.26) and 
obtain, as usual, a sequence of partial differential equations: 

a2yo 
aT2 + Yo = 0, 

a2y, W'(T) ayo 2 a2yo - + Y, = --- -- - - --
aT2 W2(T) aT w aT ar' 

Substituting the solution 

Yo = A(T)eiT + A*(r)e- iT 

of (11.3.28) into the right side of (11.3.29) gives 

a2y, . iT [2 dA w'(r) ] . -iT [2 dA* W'(T) *] - + Y, = -Ie - - + -- A + Ie - - + -- A . 
aT2 w dr W2(T) w dT W2(T) 

(11.3.28) 

(11.3.29) 

(11.3.30) 
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To eliminate secularity we must require that the expressions in the square brackets vanish 
for all r: 

dA w'(r) 
2-= --A 

dr w(r) , 

dA* w'(r) 
2~= ---A*. 

dr w(r) 

The solution for A(r), apart from a multiplicative constant, is 1/jW(Tj. Inserting this solution 
into (11.3.30) gives 

1 +iT - e-Yo = JWW 
and using the expression for T in (11.3.25) gives 

Yo = r:7:\exp ±~ J w(s) ds . 1 [" 1 
V w(r) £ 

We have reproduced the WKB result in (11.3.19). 

Example 4 Solution of a boundary-layer problem by multiple-scale perturbation theory. Consider 
the elementary boundary-layer problem 

£y" + ay' + by = 0, y(O) = A, y(l) = B, a > 0, (11.3.31 ) 

where a and b are constants. We know (see Fig. 9.4) that the solution to this problem has a 
boundary layer of thickness £ at x = 0 and is slowly varying in the range £ « x :s; 1 (£ -> 0 + ). 
Thus, there are two natural scales for this problem, a short scale t which describes'the inner 
solution in the boundary layer and a long scale x = £t which describes the outer solution. Note 
that (11.3.31) is written in terms of the long scale. If we wish to use multiple-scale theory we must 
rewrite (11.3.31) in terms of the short scale t in order to eliminate secularity on the long scale: 

d2y dy - + a - + £by = O. 
dt 2 dt 

(11.3.32) 

Assuming that y(t) in (11.3.32) has a perturbation expansion of the form y(t) = Yo(t, x) + 
£ Y, (t, x) + "', we ?btain the following sequence of equations: 

02 Yo oYo 
£0: _ + a- = o· (11.3.33) 

ot2 ot 

,02y, oY, 02 Yo oYo 
t:: --+a-= -2-- -a- -bYo. 

ot2 ot ot ox ox 
(11.3.34) 

The solution to (11.3.33) has the form 

Yo(t, x) = A,(x) + Ak)e-a,. (11.3.35) 

Substituting (11.3.35) into (11.3.34) gives 

02y, oY, 
-2- + a--- = -[aA',(x) + bA,(x)] + [aA~(x) - bA 2 (x)]e- a,. ot ot 

The right side of this equation is a solution to the homogeneous equation in (11.3.33) and 
therefore gives rise to secular terms. To eliminate the secular term that grows like t (we know 
from our study of boundary-lay~r theory that no such term is present in leading order), we set 

aA',(x) + bA,(x) = O. 


