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Lasung eines Differentialsystems" Berichten der Mathematisch
Physischen Klasse der Sachsischen Akademie der Wissenschaften
zu Leipzig. XCIV. Band Sitzung vom 19. Januar 1942.

Bifurcation of a Periodic Solution from a Stationary

Solution of a System of Differential Equations

by

Eberhard Hopf

Dedicated to Paul Koebe on his 60th birthday

1. Introduction

Let

x. = F.(Xl, ••• ,x ,ll)
~ ~ n

or, in vector notation,

(i 1, ... ,n)

(1.1)



164 THE HOPF BIFURCATION AND ITS APPLICATIONS

be a real system of differential equations with real parameter

Il, where F is analytic in x and Il for x in a domain

G and IIl I < c. For IIl I < c let (1.1 ) possess an analytic

family of stationary solutions x i. (Il ) lying in G:

E:.(~(Il) ,Il) = O.

As is well known, the characteristic exponents of the sta-

tionary solution are the eigenvalues of the eigenvalue problem

where L stands for the linear operator, depending only on
-Il

Il, which arises after neglect of the nonlinear terms in the

series expansion of F about x = x. The exponents are

either real or pairwise complex conjugate and depend on Il.

Suppose one assumes simply that there is a stationary

solution x
-0

in G for the special value Il = 0 and that

none of the characteristic exponents is 0; then, as is well

known, it automatically follows that there is a unique sta-

tionary solution ~(Il) in a suitable neighborhood of x = x- -0

for every sufficiently small 11l1, and ~(Il) is analytic at

Il = O.

On passing through Il = 0 let us now assume that none

of the characteristic exponents vanishes, but a conjugate pair

crosses the imaginary axis. This situation commonly occurs

in nonconservative mechanical systems, for example, in hydro-

dynamics. The following theorem asserts, that with this

hypothesis, there is always a periodic solution of equation

(1.1) in the neighborhood of the values x = x- -0 and Jl = O.
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Theorem. For ~ = 0, let exactly two characteristic

exponents be pure imaginary. Their continuous extensions

a(~), a(~) shall satisfy the conditions

a (0) - a(O) -I- 0, Re(a' (0» -I- O. (1.2)

Then, there exists a family of real periodic solutions

~ = ~(t,E), ~ = ~(E) which has the properties ~(O) = 0 and

~(t,O) ~(O), but ~(t,E) -I- ~(~(E», for all sufficiently

small E -I- O. E(~) and ~(t,E) are analytic at the point

E = 0 and correspondingly at each point (t,O). The same

holds for the period T(E) and

T(O) 2 1T/la(0)1.

For arbitrarily large L there are two positive numbers a

and b such that for I~I < b, there exist no periodic solu-

tions besides the stationary solution and the solutions of

the semi-family E > 0 whose period is smaller than Land

*which lie entirely in I~-~(~) I < a.

For sufficiently small ~, the periodic solutions generally

exist only for ~ > 0 or only for ~ < 0; it is also possible

that they exist only for ~ = o.

As is well known, the characteristic exponents of the

periodic solution ~(t,E) are the eigenvalues of the eigen-

value problem

v + ltv L (v)
--t E -,

(1.3)

where ~(t) has the same period T T(E) as the solution.

*The other half-family must represent the same solution curves.
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L is the linear operator obtained by linearizing around the

periodic solution. It depends periodically on t with the

period T and at E = 0 is analytic in t and E. The

characteristic exponents are only determined mod (2rri/T) and

depend continuously on E. One of them, of course, is zero;

for F does not depend explicitly on t, so

0, v

is a solution of the eigenvalue problem. For E ~ 0 the ex-

ponents, mod(2rri/T O)' go continuously into those of the sta

tionary solution ~(O) of (1.1) with ~ = O. By assumption

then exactly two exponents approach the imaginary axis. One

of them is identically zero. The other B = B(E) must be

real and analytic at E = 0, B(O) = O. It follows directly

from the above theorem that the coefficients ~l and Bl

in the power series expansion

satisfy ~l = Bl = O. In addition to that it will be shown

below that the simple relationship

(1. 4)

holds; I have not run across it before.

In the general case ~ I 0, this relationship gives
2

information about the stability conditions. If, for example,

for ~ < 0 all the characteristic exponents of the stationary

solution x !(~) have a negative real part (stability,
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a small neighborhood of x collapses onto x as t + 00),

167

then there are the following alternatives. Either the periodic

solutions branch off after the destabilization of the station-

ary solution (~> 0); in this case all characteristic expon-

ents of the periodic solution have negative real part (sta-

bility; a thin tube around the periodic solutions collapses

onto these as t + 00). Alternatively, the family exists be

fore, that is for ~ < 0; then the periodic solutions are

*unstable.

Since in nature only stable solutions can be observed

for a sufficiently long time of observation, the bifurcation

of a periodic solution from a stationary solution is observ-

able only through the latter becoming unstable. Such observa-

tions are well known in hydromechanics. For example, in the

flow around a solid body; the motion is stationary if the

velocity of the oncoming stream is low enough; yet if the

latter is sufficiently large it can become periodic (periodic

vortex shedding). Here we are talking about examples of non

conservative systems (viscosity of the fluid).+ In conserva

tive systems, of course, the hypothesis (1.2) is never ful-

filled; if

well.

is a characteristic exponent, -A always is as

In the literature, I have not come across the bifur-

cation problem considered on the basis of the hypothesis

*In n = 2 dimensions, this is immediately clear.

+1 do not know of a hydrodynamical example of the second case.
One could conclude the existence of the unstable solutions
if, with the most careful experimenting, (very slow varia
tion of the parameters) one always observes a sudden breaking
off of the stationary motion at exactly the same point.
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(1.2). However, I scarcely think that there is anything es-

sentially new in the above theorem. The methods have been

*developed by Poincar~ perhaps 50 years ago, and belong today

to the classical conceptual structure of the theory of

periodic solutions in the small. Since, however, the theorem

is of interest in non-conservative mechanics it seems to me

that a thorough presentation is not without value. In order

to facilitate the extension to systems with infinitely many

degrees of freedom, for example the fundamental equations of

motion of a viscous fluid, I have given preference to the

more general methods of linear algebra rather than special

techniques (e.g. choice of a special coordinate system).

Of course, it can equally well happen that at ~ 0

a real characteristic exponent a(~) of the stationary solu-

tion ~(~) crosses the imaginary axis, i.e.,

a(O) 0, a' (0) I- 0

*Les methodes nouvelles de la mecanique celeste. The above
periodic solutions represent the simplest limiting case of
Poincare's periodic solutions of the second type ("genre").
Compare Vol. III, chapter 28, 30-31. Poincare, having appli
cations to celestial mechanics in mind, has only thoroughly
investigated these solutions (with the help of integral in
variants) in the case of canonical systems of differential
equations, where the situation is more difficult than above.
Poincare uses the auxiliary parameter £ in Chap. 30 in the
calculation of coefficients (the calculation in our §4 is
essentially the same), but not in the proof of existence which
thereby becomes simpler.

In a short note in Vol. I, p. 156, Painleve is touched upon:
Les petits mouvements periodiques des systemes, Comptes
Rendus Paris XXIV (1897), p. 1222. The general theorem
stated there refers to the case ~ = 0 in our system ( • ),
but it cannot be generally correct. For the validity of this
statement F must satisfy special conditions.
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while the others remain away from it. In this case it is not

*periodic but other stationary solutions which branch off.

We content ourselves with the statement of the theorems in

this simpler case. There is an analytic family, ~ = ~*(E),

~ = ~*(E) of stationary solutions, different from ;, with

~(O) = 0, x*(O) = x(O). If ~l I 0 (the general case) then

the solutions exist for ~ > 0 and for ~ < O. For the char-

acteristic exponent SeE) which goes through zero, the ana-

log of (1.4) holds:

If x is stable for ~ < 0 and unstable for ~ > 0 then

just the opposite holds for x*. (If one observes x for

~ < 0, than one will observe x* for ~ > 0.) In the ex-

ceptional case ~l = 0, the situation is different. If

~2 I 0, then the new solutions exist only for ~ > 0 or only

for ~ < O. There are then two solutions for fixed ~ , (one

with E positive, one with E negative) . Here we have

-2~ a.' (0) •
2

From this one can obtain statements about stability analogous

to those above. In this case either both solutions x* are

stable or both are unstable.

2. The Existence of the Periodic Solutions.

Without restriction of generality one can assume that

the stationary solution lies at the origin, i.e.,

*An example from hydrodynamics is the fluid motion between
two concentric cylinders (G. I. Taylor).
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~(O,].I) O.

Let the development of F in powers of the x.
J.

be

L (x) + Q (x,x) + K (x,x,x) + ••. ,
fl- -].1-- -].1---

where the vector functions

K (x,y,z), .••
-].I - - -

are linear functions of each argument and also symmetric in

these vectors.

The substitution

carries (1.1) into

x (2.2)

The right hand side is analytic in 8,].1, ~ at the

point 8 = ].I = 0, y = yO (yO arbitrary). We consider the

case 8 = a in (2.3), that is, the homogeneous linear dif-

ferential equation

z = L (z).- -].1- (2.4)

For the question of existence, this has the deciding signifi-

cance.

The complex conjugate characteristic exponents a (].I) ,

a(].I) , which were referred to in the hypothesis, are simple for

all small 1].11. In the associated solutions

at at_
e ~' e a (2.5)

of (2.4), the complex vector ~ is consequently determined

up to a complex scalar factor; a is the conjugate vector.
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Furthermore, there are no solutions of the form

171

(2.6)

a(~) is analytic at ~ O. One can choose a fixed real vec-

tor ~ ~ 0 so that for all small I~I, ~ . ~ ~ 0 for ~ ~ O.

~ ~(~) is then uniquely determined by the condition

By hypothesis,

1
(~ ~ f 0). (2.7)

a(O) = -a(O) ~ O.

~(~) is analytic at ~ O.

(2.8)

The real solutions of (2.4), which are linear combina-

tions of (2.5), have the form

ceata at+ ce a (2.9)

with complex scalar c. They form a family depending on two

real parameters; one of these parameters is a proportionality

factor, while the other represents an additive const~nt in t

(the solutions form only a one parameter family of curves).

Because e ~, we have

z·e

z. e

-c a.e + c a.e

c a a.e + c a a·e
} at t O.

For c 1, (2.9) is

(2.10)

because of (2.7), this z satisfies the conditions:

t 0: z·e 0, ~(z.e)
dt - -

1. (2.11)
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This is the unique solution of the form (2.9) satisfying these

conditions; for from

t 0: z·e z·e o

and from (2.9), (2.7) and (2.8) it follows that c = 0; thus

~ o.
By hypothesis, for ~ = 0, a, a are the only ones

among the characteristic exponents which are pure imaginary.

Hence, for ~ = 0, (2.9) gives all the real and periodic solu-

tions of (2.4). Their period is

T =o
21f

Ia (0) I
(2.12)

In particular, for ~ = 0, (2.10) is the only real and periodic

solution with the properties (2.11).

For later use we also notice that, for ~

can have no solutions of the form

t E(t) + 9.(t)

0, (2.4)

where £ and 9. have a common period and 12. is not identi

cally zero. Otherwise (2.4) would break up into the two equa-

tions

and 12. would be a nontrivial linear combination of the solu-

tions (2.5). The Fourier expansion of g(t) would then lead

to a solutinn of the form (2.6).

By differentiation of (2.4) with respect to ~ at

~ 0 one obtains the non-homogeneous differential equation

0, (2.13)
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for the ~-derivative of (2.10):

z' at - at- (at It(a'e ~ + a'e ~) + e a at- )+ e a ' (~ 0) •

The factor of t is a solution of (2.4). If one expresses

it linearly in terms of the solution (2.10) and ~, it follows

from (2.8) that

with

z'
1m (a I) •

t(Re(a')~ + a ~) + ~(t) ( 2.14)

Now let

~(t) • (2.15)

be the solution of (2.3), which satisfies the initial condi-

tion °y = y for t = o~ According to well known theorems

it depends analytically on all its arguments at each point

°(t,O,O,y). It is periodic with the period T if and only if

the equation

° °y(T,~',E,y ) - y ° (2.16)

is satisfied. °If one denotes by z the fixed initial value

of the fixed solution (2.10) of (2.4), ~ = 0, then (2.16) is

satisfied by the values

°E = 0, Y °z (2.17)

The problem is: for given E, solve equation (2.16) for T,

°~ and y. These are n equations with n + 2 unknowns.

In order to make the solution unique, we add the two equations

oy 0, yO. ~ 1 (2.18)

where ~ is the real vector introduced above and where
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yO = y for t = O. The introduction of these conditions im

plies no restriction on the totality of solutions in the

small, as will be demonstrated in the next section. For the

initial values ~ = E = 0, yO = ~o, it follows from (2.11)

that these equations are satisfied by the solution (2.10).

Now for all sufficiently small IE/, (2.16) and (2.18)

have exactly one solution

T = T(E), ~ = ~ (E) ,
o

y
o

Y (E)

in a suitable neighborhood of the system of values

~ 0,
o

y
o

z (2· 20)

if the following is the case: the system of linear equations

formed by taking the differential (at the place (2.17» with
o

respect to the variables T,~, E, Y is uniquely solvable

for given dE. Equivalently, there are such functions (2.19)

if these linear equations for dE = 0 have only the zero

solution dT = d~ = dyO = O. This is the case, as will now

be shown.

We have

y = ~~ (y), y

In particular

o
y(t,~,O,y ). (2. 21)

o
y(t,~,O,~ ) = ~(t,~) (2. 22)

is the solution to (2.10). The differential o
dy(t,~,O,y ) is

the sum of the differentials with respect to the separate ar-

guments when the others are all fixed. If we introduce for

the differentials

dt,

as independent constants or vectors the notations:
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p, a,

then, the differential referred to becomes

pz + a:t' + u.

Here y and y' = dl!d~ are taken at T

and ~ is the solution of

o
0, Y..

o
z

with the initial value o
u for t = o. According to (2.22),

y = ~(t,O). If one sets :t'

of

~, then ~(t) is the solution

o. (2.23 )

The linear vector equation arising from (2.16) is then

0, (2.24)

where ~(t) denotes the solution (2.10) of

(2.25)

~(t) is any solution of this homogeneous linear differential

equation with constant ~O' and ~(t) is the solution of

(2.23). We show now that (2.24) is possible only if

p = a o and ~(t)

Now for all t

o.

o. (2. 26)

This is true because ~(t) has period TO' so it

follows from (2.23) that the square bracket is a solution of

(2.25). z is also a solution of (2.25)+, so the whole left

+
In the original, this number is (2.23).
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side of (2.26) is a solution of (2.25). By (2.24) and the

fact that ~(O) = 0, the initial value of this solution is

zero, and thus it is identically zero. Now from (2.13) and

(2.23) it follows that

~(t) ~'(t) + 9:. (t), 9:. = ~O (~O •

Thus, by (2.14) and (2.15), the square bracket in (2.26) has

the value

TO[Re(al)~(!) + Im~al) itt)] + [9:.(t+T
O

) - 9:.(t)].

If one sets ~ + a9:. = wand

aT Re(a')z(t) + [p+aT
O

Im(a')]z(t)o - a -

it follmvs that

!. (t) ,

~(t) + ~(t+TO) - ~(t) = 0,

where ~(t) is a solution and ~(t) a periodic solution of

(2.25). This means that

~(t)
t

~(t) + q(t)
TO

with periodic q. However, as we stated before, such solu-

tions cannot exist unless z = O.

Since ~,! are linearly independent, it follows from

(2.27) and from the hypothesis (1.2) that a = 0 and p = O.

Thus, by (2.24), ~(t)

Finally, since

has period TO.
a a . a

dy = ~ , and d~ ~, at t 0,

it follows from the equations (2.18) that

0, at t O.

A periodic solution of u = ~O(~) with these properties must
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vanish, as we have stated above. With this the proof of

the existence of a periodic family is concluded. t

The solutions (2.19) are analytic at E = 0

177

T

II

TO(l + TIE +
2

lllE + ll2 E +
(2.28)

The periodic solutions y(t,E) of (2.3), and the periodic

family of solutions

~(t,E) (2.29)

of (1.1)+, are analytic at every point (t,O).

One ,obtains exactly the same periodic solutions if one

begins with a multiple mT O of the period instead of TO'

that is if one operates in a neighborhood of the system of

values

o
T = mT O' II = 0, Y

o
z (2.30)

instead of (2.20). Nothing essential is altered in the proof.

3. Completion of the Proof of the Theorem.

For arbitrarily large L > TO there are two positive

numbers a and b with the following property. Every

periodic solution ~(t) f 0 of (1.1)+, whose period is smaller

than L, which belongs to a II with Illi < b and which lies

in I~I < a, belongs to the family (2.29), (2.28), E > 0 if

a suitable choice is made for the origin of t.

If this were not the case, there would be a sequence

t
See editorial comments in §SA below.

+
In the original paper, this number is (1).



178 THE HOPF BIFURCATION AND ITS APPLICATIONS

of periodic solutions ~k(t) ~ O++having bounded periods

Tk < L, and of corresponding ~-values, with

Kk = Maxlx (t) I + 0, ~k + 0
t -k

(3.1)

and such that no pair ~k(t), ~k belongs to the above family.

We let

is a solution of (2.3), with

satisfies

Maxl:L (t) I = l.
t k

instead of e:, and

One considers first a sUbsequence for which the initial

have Xk (t) .... ~(t), where

o
values converge, ~

o.... z . Then, uniformly for It I < L, we
o

z = ~O(z) and ~(O) = z. Since

the maximum of I~I = 1, ~ is not identically zero. ~ is
+

of the form (2.9) , c ~ 0, and it has the fundamental period

TO. If one shifts the origin of t in ~(t) to the place

where ~. e = 0, one finds that z ~ ~ 0 there. This

quantity can be taken to be positive; otherwise, since

one could achieve this by shifting from t

Consequently,

o

0,
.0
z ~ > O.

From this it follows that in the neighborhood of zO and for

++
In the original paper, the sequences xk ' Tk , etc. are not
indexed.

+In the original, this number is (2.8).
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small K and I~I, all solutions of the differential equation

(2.3) (K instead of s) cut the hyperplane ~. ~ = 0 once.

In this intersection let t = O. Then, for the sequence

~k(t), Kk , ~k under consideration, with this choice of ori

gin, we always have Zk O
+ ~O. Also

·0e + z

and K
k

+ 0, ~k + O. If one now sets

p > 0

is a solution of (2.3)+, for the parameter valuesthen y
-k

sk > 0 and For it, we have

v • e
....k - 0, ~. ~ = 1, at t O. (2.18)

The periods in the sequence of solutions must converge to a

multiple of TO' mT
O

• Furthermore sk + O. However, this

implies that from some point on in the sequence one enters

the neighborhood mentioned above of (2.20) or (2.30) in which,

for all sufficiently small s, there is only one solution of

the system of equations under consideration. The solutions

of our sequence must then belong to the above family and in

fact with s > 0, which conflicts with the assumption. Thus

h .. d ttt e assert~on ~s prove .

From the fact we have just proved it now follows that

if

from

+

~(s) 1 0, then the first coefficient which is different
2o in ~ = ~ls + V2s + ••. is of even order; the same

In the original, this number is (3).
tt

See editorial comments in §SA below.
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holds for the expansion T = TO
2

(1 + T e: + T e: + ••• ) .
1 2

For the solutions of the family corresponding to e: < 0, and

the associated ~ and T-values, must already be present

among those for e: > 0:+ In particular we have

o.

The periodic solutions exist, for sufficiently small I~I

and I~I, only for ~ > 0, or only for ~ < 0, or only for

~ = O.

4. Determination of the Coefficients.

We shall need the following result, which gives a

criterion for the solvability of the inhomogeneous system of

differential equations

(~ (4.1)

where ~(t) has a period TO' Let

(4.2)

be the differential equation which is adjoint to the homogen-

eous one; L* is the adjoint operator to L (transposed

matrix), defined by

v u
+

~* (~).

Then (4.1) has a periodic solution w with the period TO'

if and only if

++
And indeed with a shift of the t-origin of approximately TO/2.

+In the following, the inner product of two complex vectors
a, b is defined by Iaib i .
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f
TO

Sl:~*dt = 0
o

181

(4.3 )

for all solutions of (4.2) which have the period TO.

This result follows from the known criterion for the

solvability of an ordinary system of linear equations. The

necessity follows directly from (4.1) and (4.2). That the

condition is sufficient can be shown in the following way:

The adjoint equation has the same characteristic exponents

and therefore it also has two solutions of the form

at *e a, a (0) -a(O) , (4.4 )

from which all periodic solutions can be formed by linear com-

binations. Furthermore, the development of ~(t) in Fourier

series shows that it suffices to consider the case

-at
~ = e b

and the analogous case with a instead of -a. In (4.1) let

us insert

-at
w e c.

(4.1) then becomes

(aI + ~)£ b.

(4.4) and (4.2) imply

(aI + 1) *~* = 0

while (4.3) says b·a* = O. From this everything follows

with the help of the theorem referred to.

Secondly, we shall need the following fact. For any

solution ~ ~ 0 of z = ~(~) having period TO' there is

always a solution z* of the adjoint equation, with the same
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period, such that

J
TO

~: ~*dt 'I- O.
o

*

.
Otherwise, the equation w = ~(~) + ~ would have a solution

+
~, and w - tz would be a solution of the homogeneous dif-

ferential equation, which contradicts the simplicity of the

characteristic exponent a.

Let z*
-1

and z*
-2

be two linearly independent solu-

(i

tions of (4.2) with the period TO' Let

[~]i = JTO~.z~ dto -~

1,2) •

Then the criterion for solvability of (4.1) under the given

conditions ·is

O. (4.5 )

We also note that zi, z* can be chosen in such a way that
2

1, [z] = [21]
- 2 - 1

o (4.6 )

where ~ is the solution (2.10) of (2.4) with ~ 0

(biorthogonalization).

The problem of the determination of the coefficients

for the power series representation of the periodic family can

now be solved in a general way. If one define~ the new in-

dependent variable s by

t (4.7)

then according to (2.28) the period in the family of solutions

*Also, the integrand is always constant.

+In the original, the statement reads "w+tz", which is incor
rect.
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y = y(S,E) is constantly equal to TO' y, as a function of

s (or t) and E, is analytic at every point (s,O). One

has

(4. 8)

where all the Yi have the period TO' The derivative with

respect to s will again be denoted by a dot. We write for

simplicity

Then, using (3.2), and inserting (4.7) and (4.8) in (2.3),

one obtains the recursive equations

YO ~(yO) (yo = ~) (4.9)

Yl = ~(Yl) + 9. (yo ,yo) (4.10)

-T 2Y
o

+ •
~(Y2) + )l2~' (yO) + 29. (yo 'Yl)Y2 (4.11)

+ !S.(Y.o'YO'Yo)

.............

from which the ::Li ' )l . , T. are to be determined. In addi-
1. 1.

tion to these, we have the conditions following from (2.18)

.
0, 0 (4.12)J!.k

. e = Yk
.
~ = at s =

for k = 1,2, ••• In the equations, we again write t in-

stead of s. By (4.10) and (4.12), Yl is uniquely determined

as a periodic function with period TO' From (4.11) L'

must first be eliminated with the help of (2.13). Since the

parenthesis in the first summand of (2.14) is a solution of

~ ~(~), (2.13) can be written
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I1n(o:') z' •
Re (0: I ) ~ + 0: + h

Let

v - )12h = v,
"-2 --

(4.13)

(4.14)

which, according to (2.15), has the period TO'

z = YO' it follows that

Thus, by (4.6)

Since

(4.15)

(4.16)

-[2Q(YO'Yl) + K(YO'YO'YO)]2'

T 2 are determined from this.By hypothesis (1.2),)12 and

One then solves (4.15) for v and obtains from (4.14)

and (4.12), k = 2, in a unique way.

In an analogous fashion all the higher coefficients

are obtained from the subsequent recursion formulas. In

general )12 f o. If is positive then the periodic solu-

tions exist only for )1 > 0; the corresponding statement

holds for )1 < 0 ttt2 .

5. The Characteristic Exponents of the Periodic Solution.

In the following we shall sometimes make use of deter-

minants; this, however, can be avoided. In the linearization

about the periodic solutions of (2.3),

L (u)
-t,E: -

ttt see editorial comments in §5A below.

(5.1)
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we have, by (2. 3),
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(5.2 )

A fundamental system u. (t,S)
-1

formed with fixed initial con-

ditions depends analytically on (t,s). ~he coefficients in

u. (T,e;) = 'a. (e;)u (0) are analytic at s = O. The deter-
-1 L 1 \! -v

minantal equation

I Ia ik (s) - I;: 0ik I I = 0, I;:
AT(e;)

e (5.3 )

determines the characteristic exponents A
k

and the solutions

~, of (1. 3), where

At
~ e v

Since (5.1) is solved by u y, I;: = 1 is a root of

( 5. 3). 'The exponent 13, which was spoken of in the intro-

duction, corresponds to a simple root of the equation obtained

by dividing out I;: - l. 13 (s) is thus real and analytic at

0, 13 S2 s 2
(131 is also equal to for thes = = + ... zero

same reasons as )11 and T1)' Now if 13 is not - 0, then

there is some minor of order n - 1 in the determinant (5.3)

(with the corresponding 1;:) which is not O. From this it

follows that (1.3), A = 13, has a solution v $ 0 which is

analytic at s = O. Even if 13 = 0, there is a minor of

order n - 2 which is not zero. As we know, in this case,

there is a solution of (5.1), analytic at s = 0, of the form

~ tv + ~ with periodic ~,~, where either ~ $ 0, or

v 0 and w is linearly independent of the solution

u y. * That tv + w is a solution implies that

*Cf. e.g. F. R. Moulton, Periodic Orbits, Washington, 1920,
p. 26.
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v = L (v),
- -t,e:-

v + w = L (w).
- -t,e:- (5· 4)

After these preliminary observations we shall calcu-

late 62 , We assume here that ~2 f O. 6 = 0 is then im

possible as will subsequently be proved. If we use (4.7) to

introduce s as a new t into (1.3) we get

L (v).
-t,e: -

Also, we have (with the new t)

where all the ~i have the same period TO' If we introduce

the power series for ~, 6, ~, y, it follows (dropping the

subscript zero on the operators as before) that

~o

.
~l

(5.5)

(5.6)

These equations have the trivial solution

(5.7)

6.
l

Thus, one has

(i 0,1, .•• ) • (5.8)

~ (i
l

) + 2Q (y , X. ).
- 0 0

(5.9)

( 5.10)
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Since we may assume that ~O f 0

~o (5.11)

where at least one of the coefficients is not O. If we set

.
it follows from (4.10), (5.6) and (5.9) that w

If one forms the combination

(5.7) - P(4.11) - 0(5.10),

in which L' cancels out, and sets

then, using (5.11) and (5.12), one obtains:

(5.12)

.!:(~), thus

(5.13)

S2~ + u ~(~) + 2P(2~(XO'Yl) + ~(Yo'Yo,yO))+~

with

(5.14)

If we now apply the bracket criterion of the previous section

to (4.10) and (5.9), it follows from (5.13) that

If we apply it to (5.14), in which ~ has the period TO' it

follows from (4.6) (with z = yO) that

*The
and

P and 0 in (5.11) are unrelated to the symbols
o as used in Section 2.

P
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Hence, by (4.16),

Likewise, it follows that

Im(a') )
a62

= -2p(T 2 +]12 a •

From this, either 6
2

is given by (1.4) (and then 6
2

is

not zero since ]12 f 0) or else 6
2

= O. In either case

p:a is completely determined (in the second case p = 0).

To check that the first case really occurs we must

undertake a somewhat longer consideration. One may think of

the process as schematized in the following manner. The

equation for 6 and v (namely the equation which follows

equation (5.4» should be divided by the factor in parenthe-

sis. It is then once again of the form

with

v + 6v

L
-t,E:

~t,E:(~'>

2
~O + E:~l + E: ~2 + ••• ,

The coefficients of

is a constant operator, whilewhere

on t

L
-0

with the period

i > 0, depend

1, E: are

not altered by the division. Introduction of the power

series leads to

~O

v
-1

~O(~),

~O(~l) + ~l (~O),
* ( 5.15)

*One does not really have to assume
criterion this is a consequence of

61 = O.
(5.17) •

From the bracket
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and so forth. The situation is the following. For E = 0

there are two solutions
.

~, z with period Furthermore

and

v
-0 p~ + az (5.16)

for both bracket subscripts. It follows that

~l = p~ + ah + p'~ + a'z

(5.17)

(5.18 )

with fixed periodic ~ and h. For the third equation of

(5.15), the bracket criterion gives

13
2

P AlP + Bla

S2 a A2 P + B a
2

with

A. [~l (~) + L (z) 1 . ,
1 -2 - 1

Bi [~l (~) + ~2 (~)] i'

(5 ·19)

(5 .20 )

while (5.17) implies that P', a' drop out. The situation

now is that the equations (5.19) with the unknowns 13
2

, P, a

*have two distinct real solutions 13 2 • To them belong two

linearly independent pairs (p,a). Each of the two solution

systems leads now to a unique determination of the Si and

v. through the recursion formulas, if one suitably normalizes
-1

*In the gen~ral case, that is if the special condition (5.17)
is not fulfilled, the splitting into two cases occurs al
ready at the second equation (5.15). The solution of the
problem in this case is found in F. R. Houlton, Periodic Or
bits. Compare Chapter 1, particularly pages 34 and 40.
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v. To this end choose a constant vector ~ ~ 0 in such a

way that ~o . a = 1 (t = 0) for both pairs (p,a) in

(5.16). One concludes then that

v .
~ 1, t 0,

that is, v. ~ 0 at (t 0) for i > o. Let
-1.

~ ~ C, Z ~ D (t 0) •

Then, for either of the two values of 13 2 , the system of

equations

o (5.21)

Cp + DO = 1

uniquely determines the unknowns p and a. Up to now 13
2

,

p, a, ~o are determined. Using the definition of ~, ~

and (5.18), one obtains from the third equation of (5.15)

~2 = p'~ + a'~ + p"~ + a"i + ••• , (5.22)

where the terms omitted are already known. From the fourth

equation of (5.15) one obtains the equations

by using (5.18), (5. 20), (5. 22) and the bracket criterion.

Since ~1 . a = 0

equation

(t = 0), we add to these equations the

CP' + DO'
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Through the three equations, the three quantities 6
2

, p', cr'

are now uniquely determined. With the help of (5.21), the

determinant is found to be

It is not equal to zero, since by hypothesis, (5.19) has two

distinct solutions

determined.

From this 6 ' ,3' P , cr and ~l are

It is now easy to see that at the next step 6
4

, p",

cr" are determined by equations with exactly the same left

hand side, and that by the further analogous steps everything

is determined.

We return now to the special problem which interests

us, and assume that by suitable normalization two different

formal power series pairs (6,~) exist which solve the equa-

tion

2(1 - T 2 8 + ••• )v + 6v = L (v).
- - -t,8-

On the other hand it was previously demonstrated that under

the assumption 6 $ 0, two actual solutions exist, of which

one is known, namely (5.8). Under this assumption the second

(normalized) solution can thus be represented by the power

series and the formula (1.4) for 6
2

does in fact hold. To

dispose of this completely we must still show that 6 = 0

cannot occur if ~2 ~ O. We show this also in terms of the

schematic problem. Since (5.19) has the solution 6
2

= p = 0

and the second 6
2
~ 0,

0, (5.23)
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If S were = 0, then (5.4) would have a solution with the

properties given there.

Setting in the power series for X, w gives

~o + w ~O (~O)-0

v + w ~O (~l) + ~l (~o)-1 -1

v + ~2 L (w ) + ~l (~l) + ~2 (~o)·-2 -0 -2
We have

w p~ + crz.
-0

(5.24)

(5.25)

Since is also of this form, according to the bracket

criterion ~o must be equal to zero. By (5.17), it follows

analogously that ~l = O. Similarly, as in (5.18), we find

~l = p~ + cr~ + p'~ + cr'z.

It has been demonstrated above that v L (v) has a solu
-t,E: -

tion (y) of period TO' unique up to a factor. Thus we

certainly have

v =-2

As above, using (5.20), application of the bracket rule to

(5.24) gives the equations

(in which p', cr' once again fallout). According to (5.23)

0, and from this v = O. Ac
-2

If one subtracts from the second

and dividesofcry

p = Ait thus follows that

cording to (5.25) w = crz.
-0

equation of (5.4) the solution

by E:, then the whole process can be repeated, and we find
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successively that the ~i = 0, and thus v = O. With this

it is demonstrated that B cannot be equal to zero.

The verification of the formula (1.4) is thus complete

under the assumption ~2 f O. This assumption could be re

placed by ~ $ O. The considerations would be changed only

in that in the calculation of the coefficients the case of

splitting will occur later.

The difficulties of these considerations could be

avoided in the following manner. One first calculates purely

formally as above the coefficient of the power series for B

and v and then shows the convergence directly by a suit-

able application of the method of majorants. This would cor-

respond to our intention of facilitating the application to

partial differential systems. But one can also carry out

the discussion of the case of splitting and the proof of

(1 4) 1 · 1 . h d . tttt• exc USlve y Wlt etermlnants.

tttt
See editorial comments in Section SA.
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SECTION SA

EDITORIAL COMMENTS

BY L. N. HOWARD AND N. KOPELL

(t) 1. Hopf's argument can be considerably simpli-

fied. After "blowing up" the equation (1.1) to (2.3), one

wishes to show that for each sufficiently small E there is

a ]..I (E) , a period T(E) and initial conditions °y (E)

°0, y

(suitably normalized), so that (2.16) holds; the family of

solutions to (1.1) asserted in the theorem is then ~(t,E)

°Ey(t,]..I(s),E,y). Now (2.16) is satisfied if ]..I = E = 0,

yO = ~o. Hence, the existence of the functions ]..I (E) , T(E),

°~ (E) follows from an implicit function theorem argument,

provided that the n x n matrix

(*. ~, :~1It = TO' " = 0, ,

has maximal rank. (Here lY.- is an n x (n-2) matrix re
dyO

presenting the derivative of X with respect to (n-2)

initial directions; there are two restrictions on the initial
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conditions from the normalization.) We show helow how the

rank of this matrix may be computed more easily.

Let ~ and ~ be the right and left eigenvectors cor

responding to a pure imaginary eigenvalue of LO; by rescal-

ing time, we may assume that this eigenvalue is i. (£: and

T are eigenvectors for -i.) We may also assume that

~ = 1. Let L'

We note that hypothesis (1.2) may be rephrased:

(To see this, let ~(~) be the eigenvector

of L~ which corresponds to the eigenvalue a(~) near a

pure imaginary eigenvalue, normalized by ~ e = 1, so

~(O) = r. Differentiating a(~)~ with respect to

at ~ = 0, we get

de
LO + L'r

d~

de
a' (O)~ + a (O)d~ (SA.l)

de
Now ~ . Qjl= 0 and .8:.LO a (0).8:.. Hence, if (SA.l) is multi-

plied by ~ on the left, we get ~·L'r a' (0).)

Let '1. be defined by x: YEo t is replaced by

s = t/(l+T), where T is to be adjusted (for each E) so

that the period in s is 2w. Then (1.1) becomes

For each E,T and ~ we construct the solution with initial

condition '1.(0), normalized by requiring y(O)

where ~. z = r . z = O. (Hence, the initial conditions are

parameterized by points in the n-2 dimensional space
_ ..L

W = (.8:. ~.8:.) Note that by the simplicity of the imaginary

eigenvalues, W is transverse to ~ t!l £:.) This solution we
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denote by ~(S,T,~,~,E).

Let Y(T,]l,~,E) = y(21T,T,~,~,E) - X.(O,T,~,~,E). At

~ T = E = 0, ~ = Q, we have y(s) =yO(s) = Re(£e is ) and

v O. To show that there is a family of 21T-periodic func-

tions with T = T(E), ~ = ~(E), ~ ~(E), it suffices to

show that 3~3 (T,~,~) has rank n at ~ = T = E = 0,

~ = O.

Let
3y

v (s) = ~(s,O,O,O,O).
---r 3T -

Then satisfies the

i 21T-(r-r)
2 --

variational equation

with initial condition YT(O) = Q. The solution to this
dyO 3V

equation is Y..e = s ds which implies that 3T

-21TIm r.

We next calculate Y (s)
]1

isfies the variational equation

3y
__ (s,O,O,O,O), which sat-
3~ -

with initial condition ~ (0) = Q. Since L'yo Re L ' is£e ,

y~ is the real part of ~, where ~ satisfies

(SA.2)

with initial condition ~(O) O.

A particular solution to (SA.2) is ~ = S(~·L,£)~~is +

Qe
is

, where b is any complex vector which satisfies:

(SA.3)

Now (i-LO) is singular, but (SA.3) may be solved for b

since 2 O. The solutions b all have
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the form £0 + kr for any k. There is a unique such value

of b for which 9,'Re b = I" Re b = O. (Take

k = -9,' (b + ~).) We use this value of b. The solution to
- -0

(SA.2) satisfying 21(0 ) = 0 then has real part

where S!..Ys = Landas 01. 1. (0) -Re b. Hence

We note that

1. (0) = 1.1
satisfies !'Yl = 9,'Y = O. (This- 1

since ~(!'1.) 9,'L Y = i!·1.' Since !.1. (0)- 0-

= 0, !·1.(s) - O. Similarly, !.1. (s) - o. )

follows

-9,'Re b

av
ajl = 27f Re(E:.·L'!:.)!:. + .r(27f) - .r(0).

1.(27f) -

av
Finally, we compute 8Z Let iY be the variation

in ~ due to the variation OZ in initial conditions. Then

iY(s) satisfies
d = LO(OY), ix.(0) = OZ,ds(~) and

aV - 27fLO9,'oz 'I'oz O. This implies that E(~) = (e - I)~.

Now OZ is in the subspace W orthogonal to 9, and T.

Since there are no other pure imaginary eigenvalues for LO

(in particular, no integer multiples of ±i) , the matrix

27fL
O

av
(e - I) is invertible on W. Hence az has rank n-2.

Now Rn ,is the direct sum of W and the span of

Re rand Im r. (This follows from the simplicity of the
27fLO

pure imaginary eigenvalues.) The range of (e - I) is

W, so ava (T til ,~) has rank n if and only if Im rand

Re(!·L'!:.)E are independent. This is true if Re(!·L'!:.) ~ O.

2. The argument in this section does not require

analyticity; it merely sets up the hypotheses of an implicit

function theorem. Hence this argument provides a proof for
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a Cr version of this theorem. More specifically, suppose

that !(~,~) is r times differentiable in x and ~.

Then the right hand side of (2.3) is r times differentiable

in but only
r-l

in The functionx and ~, C E.

Y(T , ~ '!.' E) defined above is cr - l
in E and at least Cr

in the other variables. Hence, the implicit function theorem

says that the functions T (E), ~ (E), !.(E)
r-l

are all C

and

The periodic solu-

tions to (1.1), namely X(t,E) = Y(l+~(E) ,E), are
r

C .

(tt) The uniqueness proved in this argument is

weaker than that of Theorem 3.15 of these notes. That is, it

is not proved in Hopf's paper that the periodic solutions which

are found are the only ones in some neighborhood of the criti-

cal point. For example, Hopf's argument does not rule out a

sequence of periodic functions xk(t) such that maxlxk(t) I +0,

the associated ~k + 0, and the periods Tk + 00. Such behavior

is ruled out by the center manifold theorem, which says that

any point not on the center manifold must eventually leave a

sufficiently small neighborhood (at least for a while) or tend

to the center manifold as t + 00. Thus the center manifold

contains all sufficiently small closed orbits; since the center

manifold is three dimensional (including the parameter dimen-

sion), the uniqueness of the periodic solutions is a conse-

quence of the uniqueness for the two-dimensional theorem.

(ttt) Formulas equivalent to Hopf's but somewhat easier

to apply can be obtained in a simpler manner. The main

point is to use the "eis " form of the solutions more ex-

plicitly and thereby avoid introducing the bracket criterion.
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We again assume that time has been scaled so that

the pure imaginary eigenvalues of LO are ±i, and we use

the notation introduced in (t). Following Hopf we further

rescale time by t = (l+T(E»S, T(O) = 0, and let ~ = EX.

Then (1.1) becomes

+
Y.o

O. )

:L(S,E)2n-periodic solution of (SA.4) be

II O.

the

and K are respectively the quadratic and cubic

is
+... , where, as before, ~O = Re(e £), and the

~i are 2n-periodic with ~'~i (0) = !'~i (0) = 0 for i > 1.

(Since the ~i are real, we may simply require ~'~i(O)

where Q

terms when

Let

2
E~l + E ~2

:L(s,d

lected.

To get recursive equations for the ~i' the series for

is inserted in (SA.4) and like powers of E are col-

the fact that 0,
2

We use T
l III so T E T

2
+...

2
and II = E ll2 +

:Ll = A~l + Q(:LO'~O)'

1 2is'2 Re[e Q(£,£)]. A

~ + Re(~e2is) where

fying

We find that ~l should satisfy

1 -
and Q(~O'~O) = '2 Q(£,£) +

periodic solution to this equation is

~ and ~ are constant vectors satis-

-L a = ! Q(r,r"l
0- 2 - - -

12" 9.(£,£).

(SA.S)

(Since -LO and

do determine ~

2i - Lo
and ~.)

are non-singular, these formulas

Thus

Re(C reisj, where the complex number Cl is to be chosen
1-

so that ~. ~l (0) = 0; using equations (SA.S), one readily

finds that
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Now ~Z is a periodic solution of

Hence

.
~Z LO~Z + ~ZL'~O + ZQ(~'Yl) + ~(~o'Yo,yO) + 'ZLOYO

These equations have a periodic solution if and only if there

is no resonance, which requires that the coefficient of
is

e

in this last formula should be orthogonal to ~ (the bracket

criteria in disguise). Thus

Hence we get the formulas for ~Z and

(SA.6)

where ~ and £ are the solutions of (SA.S). [These formulas

are unchanged if the eigenvalue is iw instead of i, ex-

cept that, instead of the second equation (SA.S), £ is the

solution of (Ziw - LO)£ = ~ Q(£,£). Also the value of Cl

given above should be divided by w.]

The formulas (SA.6) are equivalent to Hopf's (4.16).

The determination of the left eigenvector ~ and the solution
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of the linear equations (SA.S) for ~ and £ takes the place

of finding the adjoint eigenfunctions and evaluating the

integrals implied by the bracket symbols.

(tttt) 1. The translators must admit that .they have

found this section somewhat less transparent than the rest

of the paper. In their article, Joseph and Sattinger [1]

point out an apparent circularity in a part of Hopf's argu-

ment; they also show there that it can be rectified rather

easily.

2. The relationship of S, the Floquet exponent near

zero (of the periodic solution), to the coefficient ~2 can

be found with relatively little calculation, as follows.

The argumented system

x F (x)
~ -

o
(SA.7)

has the origin as a critical point. There are three eigen-

values of this critical point with zero real part; a zero

eigenvalue with the ~-axis as eigenvector, and the conju-

gate pair of imaginary eigenvalues ±i (after suitably re

scaling the time variable) with eigenvectors £ and r.

All other eigenvalues are off the imaginary axis, so this

critical point has a 3 dimensional center manifold. This

center manifold must contain the ~-axis, the periodic solu-

tions given by Hopf's Theorem, and any trajectories of (SA.7)

which for all time remain close to the origin; it is tangent

to the linear space generated by the ~-axis and the real

and imaginary parts of r. Let us set x
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O. E~ 0 is regarded as a replacement

for ~, given by the function ~(E) of HOpf's Theorem:

~ = ~(E) = ~2E2 + ••• , where we are now assuming that

~2f O. Thus we may think of the real and imaginary parts of

~, and E, as parameters on the center manifold. For any

(~,~) on this manifold
2

~2 = 0 (E ) since it is at least

quadratic in ~'x = E~ and r· x = E~. Thus we may write the

equations of the center manifold as ~

E2~(~,~,E), where ~.~ = !.~ = 0 and

~(E), X =
-2

~ is at least quad-

ratic in ~ and ~. For any trajectory on the center mani-

fold we then have, with the notations of (t) and (ttt),

rt + r ~ + E(~~~ + ~~~) = i~r - i~ £

+ E LO~ + ~2E2L' (~£ + ~ £) + EQ(~£+~ £)

223
+ 2E Q(~£ + ~ ~,~) + E C(~£ + ~ r) + O(E ).

By mUltiplying on the left with i, we obtain

i~ + ~ E2~'L' (~r + ~ r)
2 - -

2 -2 --
+ E~' [~ Qt.!>£) + 2S~Q(£,£) + ~ Q(£,£)]

2 - 3
+ E y(~,~) + O(E )

where y is cubic in ~ and r.
We now introduce the function

(SA.8)

(SA.9)

As we will see below, I(~,~) is approximately invariant

along trajectories lying on the center manifold. For any



THE HOPF BIFURCATION AND ITS APPLICATIONS 203

trajectory on the center manifold we have, using (SA.9) and

its complex conjugate,

where ° is quartic in ~ and ~. The terms of order £

in the above are £Re{~3~.Q(£,£) _ ~3T'Q(~,~) + ~~2~.Q(~,~) -
_ 2 ) _2 (_) _ 2_ - }
~~ l'Q(~,~ + 2~~ l·Q ~,~ - 2~~ l'Q(~,~) = O. Thus

is ofThusand

]l2£2Re[~1·LI (~r + ~ :£)1 + £201 (~,~) + 0(£3) (SA.10)

dI
dt° is also quartic in

1
2

£ •

dI
dt

order

where

(1 0 = ~1~12 is also an approximate invariant, but
dIO dI 2

is 0(£) whereas is only 0(£). If we consider
dt dt
a trajectory on the center manifold starting at t = 0 with

~ = c, we see from (SA.9) that it is given to 0(£) by

it
ce ; thus, after a time of approximately 2TI, it must

once again return to 1m ~ = O. This arc is a circle to

0(£), but is more accurately described (to 0(£2» as a

curve of cOnstant I.)

We see from (SA.10) that the change in I in going once
2

around this way is given, to 0(£), by
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where

c = 1

1 f2~ it -it
02 2~ 0 01 (e ,e )dt. However, we know that if

we get the periodic solution, for which ~I = 0; con-

sequently 02 = -~2Re(~·L'£) = -~2Re(a' (0» as noted in (t).

Thus, in general,

2 2 4 3
~I = 2~£ ~2Re(a'(0)(c -c) + 0(£). (511..12)

Since c = 1 gives the periodic solution, the 0(£3) part

is also divisible by (c-U. Thus, for c near 1, (5A.12)

may be written

2
6I = 2TI£ (c-l) [-2~2Re a' (0) + 0 (c-l)]. (5A.l3)

For small £, any trajectory on the center manifold with

~ = 0(1) must keep going around an approximate circle.

However, it cannot be periodic unless it passes through

~ = 1. Hence, it is apparent from (5A.12) that, when

~2Re a' (0) > 0, all trajectories on the center manifold (at

a given £, i.e., ~) which are inside the periodic solution

must spiral out towards it as t ->- +00 (or as t ->- if

~2Re a' (0) < 0) • Since I is approximately ~I ~ 12
,

-
~I = (~(2~)-c)c. Thus (5A.13) implies that these trajectories

asymptotically. approach the periodic solution with exponen

tial rate S = -2£2~2Re a' (0) + 0(£3), and this must thus be

the numerically smallest non-zero Floquet exponent.

3. Equation (5A.12) actually tells us more; it implies

that we may approximately describe" the trajectories on the

center manifold as slowly expanding (or contracting if

~2Re a' (0) < 0) circles whose radius c varies according to

the formula



is the time at whichwhere t l
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c
2

ttl + tanh(E2P2Re a' (0) (t-tl »)

2c = 1/2.

20S

4. The function I is also of some use in relating

the above to the "vague attractor" hypothesis. If we set

P = 0, the n-dimensional system x = FO(x) has a two

dimensional center manifold for its critical point at 0,

tangent to the linear space spanned by the real and imaginary

parts of r. As in a previous paragraph, we set

-
x = E(~_r + ~ _r) + x_

2
' where ~,x = y·x = O. On this center- -2 - -2

manifold x = 0(E 2 ) and is at least quadratic in ~ and
-2

"f; E is now an arbitrary scaling parameter. For any tra-

jectory on this center manifold one obtains the same formula

(SA.9) except for the omission of the P L' term - the other
2

terms written down all come from the p-dependent pairs of

F p ' If we then consider the function I for a trajectory

on this center manifold, we obtain (SA.IO) again, with the P2

term omitted, but the. same 01; integrating this around, we

get (SA.ll) without the P2 term but the same 02' Since

02 = -P 2Re a' (0)

manifold at P

or

we have for trajectories in the center
2

0, to order E,

3
L'>(EC) = -21fP2Re a' (0) (EC) •

Since L'>(EC) is V(x
l

) (the Poincare map minus identity),

where EC = xl is the coordinate Re(~'~)' we see that

V"'(O) = -21fp Re(a'(0»'6 = -21fRe(a'(0»·3p"(0). This relates
2

the calculations here to the stability calculations done in §4.


