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(TD) 3.8 ASYMPTOTIC SERIES 

In previous sections we have developed a formal procedure for finding asymptotic 
series representations of solutions to differential equations and have verified the 
validity of our results numerically. However, the approach has been intuitive. In 
this section, we outline the mathematical analysis necessary to justify the asymp­
totic methods we have used. 

We begin by emphasizing the difference between convergent and asymptotic 
series. Then, we follow with several examples which illustrate what is involved in 
proving that a power series is asymptotic to a function and for these examples we 
show why the asymptotic series give good numerical approximations. Next, we 
review some of the mathematical properties of asymptotic series. We also show 
how to prove a formal power series is asymptotic to a solution of a differential 
equation. Finally, we consider asymptotic series in the complex plane and the 
Stokes phenomenon. 

Convergent and Divergent Power Series 

In Sec. 3.5 we definedJ(x) '" L,.oo=o an{x - xor (x -+ xo) to mean that for every N 
the remainder EN(X) after (N + 1) terms of the series is much smaller than the last 
retained term as x -+ Xo: EN(X) =J{x) - L;=o an{x - xor « (x - xot (x -+ xo)· 

Example I Taylor series as asymptotic series. If the power series L.-""=o a.(x - xor converges for 
Ix - Xo I < R to the functionf(x), then the series is also asymptotic to f(x) as x ..... xo:f(x)­
L.,""=o a.(x - xoY' (x ..... xo). Since a. = p·'(xo)/n!. repeated application of I'Hopital's rule gives 

N 

f(x) - r a.(x - xo)· 

X-+Xo 

lim .=0 
(x - xof+1 = aN+I· 

Thus, £N(X) = f(x) - rz=o a.(x - xor« (x - xof (x ..... xo). We conclude that asymptotic series 
are generalizations of Taylor series because they include Taylor series as special cases. 

A series need not be convergent to be asymptotic. Indeed, most asymptotic 
series are not convergent. Let us contrast convergent and asymptotic series. If 
J(X) = L,.oo=o an(x - xor is a convergent series for I x - Xo I < R, then the remain­
der EN(X) goes to zero as N -+ 00 for any fixed x, Ix - Xo I < R: 

00 

Convergent: EN(X) = L an(x - xor -+ 0, N -+ 00; x fixed. 
n=N+l 

On the other hand, if the series is asymptotic to J(x), J(x) '" L,.oo=o a,,(x - xor 
(x -+ xo), then the remainder 6N(X) goes to zero faster than (x - xot as x -+ xo, but 
need not go to zero as N -+ 00 for fixed x: 



APPROXIMATE SOLUTION OF LINEAR DIFFERENTIAL EQUATIONS 119 

Asymptotic: CN(X)« (x - xot, x -4 XO; N fixed. I 
Convergence is an absolute concept; it is an intrinsic property of the expan­

sion coefficients an- One can prove that a series converges without knowing the 
function to which it converges. However, asymptoticity is a relative property of 
the expansion coefficients and the function f (x) to which the series is asymptotic. 
To prove that a power series is asymptotic to f (x), one must consider both f (x) 
and the expansion coefficients. 

Let us clarify this distinction. Suppose you are given a power series and are 
asked to determine whether it is an asymptotic series as x -4 Xo' The correct 
response is that you have been asked a stupid question! Why? Because every 
power series is asymptotic to some continuous functionf(x) as x -4 xo! 

We present the construction of such a function as an example (see also Probs. 
3.79 and 3.80). 

Example 2 Construction of a continuous function asymptotic to a given power series. Given a 
formal power series L;,"~o a.(x - xo)", we define the continuous function ¢(x; IX), plotted in Fig. 
3.20, as follows: 

! 1, 

¢(x; IX) = '2( 1_1:1), 
j 0, 

Ixl ~1IX, 

1IX < Ixl <IX, 

IX ~ IxI-
We also define a sequence of numbers IX. = min (l/la.l, r·), where a. are the arbitrary 
coefficients of the series L:~o a.(x - xo)·. The functionf(x) defined by 

00 

f(x) = L a.¢(x - Xo; IX.)(X - xo)" 
1'1=0 

is finite, continuous, and satisfies 

f(x) - L a.(x - xo)·, x--->xo· 
1'1=0 

It is finite and continuous for any x#- Xo because the series defining f(x) truncates after at 
most N terms, where N is the smallest integer satisfying r N ~ I x - Xo I. Also, if I x - Xo I ~ 
1 min (rN, l/lao I, ... , I/laN i) = RN, then ¢(x - xo; IX.) = I for n = 0, ... , N. Thus, if Ix - Xo I ~ 
RN , 

00 

f(x) = ao + a\(x - xo) + ... + aN(x - xot + L a.¢(x - xo; IX.)(X - xo)". 
n=N+ 1 

1\ 

/1 _I~a) 
-a -a12 0] al2 a x 

Figure 3.20 A plot of ¢(x; IX) in Example 2. 
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Also, the definitions of IXn and cfJ(x; IX) imply that 

lancfJ(x - Xo; IXn)(x - xo)l:s 1 and I cfJ(x - Xo; IXn) I :s 1 

for all x and all n. Therefore, if Ix - xol:s RN , then 

I ON(X) I = If(X) - nt an(x - xorl 

=laN+lcfJ(X-XO;IXN+l)(X-xot+l+ I ancfJ(X-XO;iln)(x-xorl 
n=N+2 

00 

:s laN+11lx - XOIN+1 + L Ix - xoln - 1 

n=N+2 

= IX-XoIN+1[laN+11 +(1-lx-xo/t1]«(x-xot, 

Thus, Lnoo=o an(x - xor is asymptotic to f(x) as x ..... Xo. 

x -+ Xo. 

Since every power series is an asymptotic power series, it is vacuous to ask 
whether a given series is asymptotic. However, it is meaningful to ask whether a 
power series is asymptotic to a given function f (x) as x ~ Xo. This is the reason 
why the definition given at the beginning of this section includes both a series and 
a function. 

Examples of Asymptotic Series 

Example 3 Stieltjes series. The prototype of an asymptotic series is the so-called Stieltjes series 

00 

I.(-lrn! xn. (3.8.1) 
n=O 

We saw earlier that this series is a formal power series solution to the differential equation 
(3.4.2). We will now prove that this series is really asymptotic to a solution of (3.4.2) by 
"summing" the series and thereby reconstructing the exact solution to (3.4.2). 

Of course, one cannot actually add up all the terms of a divergent series because the sum 
does not exist. By "summing" we mean finding a function to which the series is asymptotic. 
"Summation" is the inverse of expanding a function into an asymptotic series. 

To sum the series (3.8.1) we invoke the integral identity n! = SO' e-'tn dt: 

~ (-x)nn! ..... ~ (-x)" r e-'tn dt. 
n=O n=O 0 

Next, we execute several sleazy maneuvers. We interchange the order of summation and 
integration, 

~ (-x)" r e-'tndt ..... r dte-' ~ (-xt)", 
n=O 0 0 11=0 

and we sum the geometric series L:'=o (-xt)n ..... 1/(1 + xt), even though the sum diverges for 
those values of t such that I xt I ~ 1. 

Despite these dubious manipulations, the resUlting integral 

-, 
f 00 e_ dt, 

y(x) = 1 + xt 
o 

(3.8.2) 
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which is called a Stieltjes integral, exists and defines an analytic function of x for all x > O. 
Moreover, y(x) exactly satisfies the differential equation (3.4.2): 

X y + (1 + 3x)y + y = r ~-- - --- + ~ .. -- e dt 2 " , 00 [2x2t2 (1 + 3x)t 1 1 -r 

'0 (1+xt)3 (l+xt)2 l+xt 

ood[ t 1 = f - -( --)2 e - r dt = 0, x > O. 
o dt 1 + xt 

Finally, we show that y(x) in (3.8.2) has an asymptotic power series expansion valid as 
x --+ 0 + which is precisely the Stieltjes series in (3.8.1). 

Integrating by parts, we obtain the identity 

frO (1 + xttne- r dt = 1 - nx f'" (1 + xttn-1e-r dt. 
o 0 

Repeated application of this formula gives 

where 

y(x) = r'" (1 + xtt le- r dt 
'0 

= 1 - x r (1 + xtt2e-r dt 
o 

= 1- x + 2X2 f'" (1 + xtt 3e- t dt 
o 

= 1 - x + 2! x2 - 3! x 3 + ... + (-ltN! xN + SN(X), 

SN(X) = (_It+l(N + I)! XN+1 f '" (1 + xttN- 2e- t dt. 
o 

Finally, we use the inequality 

f'" (1 + xtt N- 2e- t dt::o:; f '" e- t dt = 1, 
o 0 

x--+O+, 

which holds because 1 + xt > 1 if x > 0 and t > 0, to show that 

ISN(X)I::o:; (N + I)! ?+l «xN , x--+O+. 

This completes the demonstration that the Stieltjes series (3.8.1) is asymptotic to the Stieltjes 
integral solution to the differential equation (3.4.2). 

For the behavior of y(x) as x --+ + 00, see Prob. 3.39(i). 

Example 4 General Stieltjes series and integrals. A generalization ofthe Stieltjes integral (3.8.2) is 
given by 

f(x)=f'" ~dt, 
o 1 + xt 

(3.8.3 ) 

where the weight function p(t) is nonnegative for t > 0 and approaches zero so rapidly as t --+ 00 

that the moment integrals 

an = f'" t"p(t) dt 
o 

(3.8.4) 

exist for all positive integers n. 
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Every Stieltjes integral has an asymptotic power series expansion whose coefficients are 
( -I)"a.: 

00 

f(x)- I (-I)"a.x·, x---+O+. (3.8.5) 
"=0 

To prove this assertion, we note that 

N 

GN(X) =f(x) - I (-I)·a.x· 
"=0 

= r p(t) -- - I (-xt)· dt 00 [1 N ] 

• 0 1 + xt .=0 
(3.8.6) 

- roo -~(0-(-xtr+l dt 
-'0 1 + xt 

for all N. Thus, 

IGN(X)I ::S;XN+1 (" p(t)~+ldt=aN+lxN+l«xN, x---+O+, (3.8.7) 
o 

where we use 1 + xt > 0 and p(t) > 0 for x> 0 and t > O. This completes the verification of 
(3.8.5). 

Example 5 Stieltjes series with weightfunction Ko(t). If p(t) = Ko(t), the modified Bessel function 
of order 0, then (3.8.6) becomes 

r ~O~-dt_- I (-2x)" r -n+-00 K (t) 1 00 [(1 1)]2 
• 0 1 + xt 2 .=0 2 2 

(see Prob. 3.76). 

Numerical Approximations Using Asymptotic Series: The Optimal 
Truncation Rule 

(3.8.8) 

It is possible to improve our error estimates for Stieltjes series. Equation (3.8.7) 
shows that the error between the Stieltjes integral (3.8.2) and the first N terms of 
the Stieltjes series in (3.8.1) is smaller than the absolute value of the next term in 
the series N! x N • Also, the sign of the error is the same as the sign of the next term. 
The same is true for the general Stieltjes series (3.8.5); the error between the 
Stieltjes integral (3.8.3) and N terms of the Stieltjes series (3.8.5) has the same sign 
and is less than the (N + 1 )th term of the series. 

These error bounds imply that for any fixed x, truncating the Stieltjes series 
(3.8.5) just before the smallest term will give a good numerical estimate of the 
Stieltjes integral (3.8.4). It is more difficult to justify this optimal truncation rule 
for asymptotic series that are not Stieltjes series. However, we have had remark­
able success with this rule for truncating asymptotic series (see Sec. 3.5). In fact, 
even though the asymptotic series (3.5.8b) and (3.5.9b) for Kv(x) and (3.7.14) and 
(3.7.15) for J v(x) are not Stieltjes series, it is still true that the error after N terms is 
less than the (N + 1 )th term provided that N is larger than some number depend­
ing on v but not on x (see Prob. 3.77). 
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Of course, not every asymptotic series has the property that the error after N 
terms is less than the (N + 1)th term. For example, the error after N terms in the 
asymptotic series (3.5.8a) and (3.5.9a) for Iv(x) is not similar in sign and smaller 
than the (N + 1 )th term. Nevertheless, our truncation procedure gave very good 
results (see Figs. 3.5 and 3.6 and Table 3.1). 

How well do these optimal asymptotic approximations really work? For 
Stieltjes series, we can provide an accurate asymptotic estimate of the difference 
between the exact value of the Stieltjes integral and the optimal truncation of the 
Stieltjes series as x ~ 0 +. 

Example 6 Error estimate for an optimally truncated Stieltjes series. According to (3.8.6), the 
error after N terms of the Stieltjes series (3.8.1) for which the weight function p(t} = e- t is 

(-xf (' tN ~:- dt 
• 0 1 + xt 

for any N. The optimal truncation of (3.8.1) is obtained by choosing N equal to the largest integer 
less than or equal to l/x; this is true because the ratio of the (n + l}th term to the nth term of 
(3.8.1) is - nx. If we approximate this integral representation for the error (see Probs. 5.25 and 
6.37), we find that the optimal error 0optimal(X} satisfies 

I ( 11)1/2 
eoptima,(X) 1 "" - e - l/x 

2x ' 
x-o+. (3.8.9) 

We have checked the validity of (3.8.9) numerically. In Fig. 3.21 we plot the ratio of IOoptimal(X} I 

determined numerically by optimally truncating the series (3.8.1) to its leading behavior given in 
(3.8.9). Observe that this ratio approaches 1 as x - 0 +. 

Properties of Asymptotic Series 

(a) Nonuniqueness We have given a successful prescription for obtaining good 
numerical results from divergent asymptotic series. Strangely enough, one must 
use this technique with caution because it produces a unique numerical answer! 
Actually, the "sum" of a divergent power series is not uniquely determined. For 
example, if f(x) ~ Loo=o an(x - xoY' (x ~ xo), then it is also true that f(x) + 
e-(x-xo)-Z ~ I::"=o an(x - xo)" (x ~ xo) because e-(X-xo)-2 «(x - xo)" as x ~ Xo 
for all n. In fact, the series Loo=o an(x - xoY' is asymptotic as x ~ Xo to any 
function which differs from f (x) by a function g(x) so long as g(x) ~ 0 as x ~ Xo 
more rapidly than all powers of x - Xo. Such a function g(x) is said to be sub­
dominant to the asymptotic power series; the asymptotic expansion of g(x) is 

OCJ 

g(x) ~ L O(x - xoY', x~xo' 
n=O 

In short, an asymptotic series is asymptotic to a whole class of functions that 
differ from each other by subdominant functions. We do not change the asymptot­
ic series by adding a subdominant function, even if the subdominant function is 
multiplied by a huge numerical coefficient. 

For example, e- x4 is subdominant with respect to the asymptotic expansion 
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1.5 

N= 4 N= 3 N= 2 N= I N= 0 

1.0~"""""""'1 

0.5~1 __________ ~ ____________ ~ ____ ~~ __ ~ __ ~ __ ~~~ __ ~ 

0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.91.0 
x 

Figure 3.21 A computer plot of the ratio of /SoP'imal(X)//[(n/2x)1/2 exp (-l/x)] for 0.05 :5: x :5: 1. Here 
Sop'imal(X) is the error in the optimal asymptotic approximation to the Stieltjes integral 
$0' e-'(1 + xtt 1 dt in (3.8.2); that is, it is the difference between the Stieltjes integral and the 
optimally truncated asymptotic series LZ=o (-l)"n! x'. Theoretically, the leading behavior of 
ISoPlimal(X)1 is (1t/2X)I/2 exp( -l/x) as x ---> 0+ [see (3.8.9)]. The graph clearly verifies this prediction. 

(3.5.13) and (3.5.14) of D3 .S (x) as x -+ + 00. Therefore,f(x) = D3 •S(x) + 1010e- x4 

has the same asymptotic expansion as D3 .S(x) as x -+ + 00. What happens now if 
we compute the optimal asymptotic approximation to f(x)? We already know 
from Fig. 3.7 and Table 3.2 that the optimal asymptotic approximation is very 
close to D3 •S (x) for x > 1. Therefore, since 101°e- x4 > I D3 .S (x) I for 0 S x::; 2.1, 
the optimal asymptotic approximation to f (x) is not accurate for 1 ::; x ::; 2.1. 
Nevertheless, when x ;::: 2.3 the optimal asymptotic approximation is very close to 
f(x). 

The above discussion shows that the value of x for which the optimal asymp­
totic approximation becomes useful cannot be predicted from the asymptotic 
series itself. Rather, it depends on the admixture of subdominant functions: Thus, 
for any given problem we can never really know a priori whether or not asymp­
totic analysis will give good numerical results at a fixed value of x. However, 
experience has shown that asymptotic methods nearly always give spectacularly 
good results. 

(b) Uniqueness Although there are many different functions asymptotic to a given 
power series, there is only one asymptotic power series for each function. 
Specifically, if a function f(x) can be expanded as f(x) "" Loo=o an(x - xor 
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(x --. xo), then the expansion coefficients are unique. The proof of uniqueness is 
given in Sec. 3.5. 

(c) Equating coefficients in asymptotic series It is not strictly correct to write 
L,oo=o an(x - xof ~ L,oo=o bn(x - xof (x --. xo) because power series can only be 
asymptotic to functions, and not to other power series. However, we will occa­
sionally use this notation; we define it to mean that the class of functions to which 
L,oo=o ~(x - xof and L,oo=o bn(x - xof are asymptotic as x -+ Xo are the same. It 
follows from the uniqueness of asymptotic expansions that two power series are 
asymptotic if and only if an = bn for all n. Thus, we may equate coefficients of like 
powers of x - Xo in power series that are "asymptotic to each other." 

(d) Arithmetical operations on asymptotic series Arithmetical operations may be 
performed term by term on asymptotic series. Specifically, suppose 

Then 

00 

f(x) ~ L an(x - xof, 
n=O 

00 

g(x) '" L bn(x - xof, 
n=O 

00 

etf(x) + pg(x) '" L (etan + Pbn)(x - xof, 
n=O 

00 

f(x)g(x) '" L cn(x - xof, 
n=O 

f(x) 00 n -( ) ~ L dn(x - xo), 
g x n=O 

x -+ Xo, 

x -+ Xo' 

x -+ Xo, 

x -+ Xo, 

x -+ xo, 

where Cn = L::,=o ambn - m , and if bo =1= 0, do = ao/bo and 

a - "n-1 d b d = n L,m=o m n-m 
n b ' o 

n ~ 1. 

The proofs of these results are elementary. For example, let us prove that 
asymptotic series can be multiplied term by term. Using the above expression for 
Cn, we obtain 

N 

f(x)g(x) - L cn(x - xof 
n=O 

N N 

= f(x)g(x) - L am(x - xor L bn-m(x - xof-m 
m=O n=m 

= g(x) [f(X) - mto am(x - xor J 

+ mto am(x - xor [g(X) - :t: bp(x - xoY'] 
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for all N. Since limx _ xo g(x) = bo, I g(x) I ::;; 21 bo I for x sufficiently close to Xo, 
say Ix - Xo I::;; R. Hence, by the definition of asymptotic series, 

N 

IJ(x)g(x) - L cn(x - xo)nl« (2lbol + laol 
n=O 

+ lad + ... + laNJ)lx - Xo IN, 

for all N. Thus, asymptotic series can be multiplied term by term. 

x --+ Xo, 

(e) Integration of asymptotic series Any asymptotic series J(x) '" L~=o an(x - xo)n 
(x --+ xo) can be integrated term by term ifJ(x) is integrable near Xo: 

Ix 00 a 
J(t) dt '" L -n-1 (x - xot+ 1, 

xo n=O n + 
x--+xo· 

To prove this result we begin with the definition of an asymptotic power 
series: I J(x) - '2::=0 an(x - xor I « (x - xot (x --+ xo)· From this it follows that 
for any s > 0 there exists an interval about Xo, say I x - Xo I ::;; R (where R of 
course depends on s), in which 

N 

IJ(x) - L an(x - xotl::;; six - XOIN, Ix - xol::;; R. 
n=O 

Therefore, 

Ie [J(t) - nto an(t - XOr ] dt I::;; C I J(t) - nto an(t - XOr I dt 

::;; s f x I t - Xo IN dt 
• xo 

s 
= N + 1 I x - Xo IN + 1, Ix - Xo I::;; R. 

Hence, 
x N I J(t) dt - L [an/(n + 1)](x - xot+ 1 

xo n=O 
(x - xof+ l 

But s > 0 is arbitrary, so 

S <_ .. 
- N+ l' 

Ix N a 
J(t) dt - L _n_ (x - xot+ I « (x - xof+ t, 

xo n=O n + 1 

Ix - xol ::;; R. 

x --+ XO' 

for all N. Thus, asymptotic series can be integrated term by term. 
If we wish to integrate an asymptotic series at infinity, there is a slight compli­

cation. The above argument can be extended to show that if J(x) '" L~=o anx- n 
(x --+ 00), then 

00 00 a I [J(t) - ao - alt-l] dt'" L ~ 1 x l - n, 

x n=2 n 
x --+ 00. 
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(f) Differentiation of asymptotic series Asymptotic series cannot in general be 
differentiated term by term. For example, even if f(x) '" I,.CXl=O an(x - xo)" 
(x -+ xo), it does not necessarily follow thatf'(x) '" I:: 1 nan(x - XO)n-l (x -+ xo). 
The problem with differentiation is connected with subdominance: the functions 
f(x) and 

g(x) = f(x) + e- 1/(x-xo)2 sin (e 1/(X-Xo)2) 

differ by a subdominant function and thus have the same asymptotic series 
expansion as x -+ Xo. However, it is not necessarily true thatf'(x) and 

g'(x) = f'(x) - 2(x - xot 3 cos (e 1/(x-xo)2) + 2(x - xot 3e-l/(x-xO)2 sin (e 1/(X-Xo)2) 

have the same asymptotic power series expansion as x -+ Xo. Therefore, term-by­
term differentiation of an asymptotic series may not be valid for both f(x) and 
g(x); asymptotic series cannot be differentiated termwise without additional 
restrictions. 

Termwise integration of an asymptotic series, which we justified above, is an 
example of an Abelian theorem. In an Abelian theorem, asymptotic information 
about an average of a function (its integral) is deduced from asymptotic informa­
tion about the function itself. Differentiation of asymptotic series relates to the 
converse process; namely, deducing asymptotic information about a derivative 
from asymptotic information about a function. Converses to Abelian theorems are 
called Tauberian theorems. Tauberian theorems require conditions supplemen­
tary to those of corresponding Abelian theorems to be valid. In the case of term­
wise differentiation of asymptotic series, there are several situations in which 
Tauberian-like theorems provide justification for termwise differentiation. 

One such result is as follows. Suppose f'(x) exists, is integrable, and 
f(x) '" I:,=o an(x - xo)n (x -+ xo). Then it follows that 

co 

f'(x) '" L n~(x - xo)n-l, x -+ Xo. 
n=1 

This result is an immediate consequence of the Abelian theorem for termwise 
integration of an asymptotic series proved above. To see this, suppose that 
f'(x) '" L""=o bn(x - xo)n (x -+ xo). Then, integrating term by term gives 

f(x) = f(xo) + r f'(t) dt 
xo 

'" f(xo) + f ~1 (x - xo)"+ 1, 
n=O n + 

x -+ Xo. 

But since f(x) '" I.,CXl=O ~(x - xo)" (x -+ xo) and since asymptotic series are 
unique, we find that ao = f(xo), ~+l = bn/(n + 1) (n = 0, 1, ... ). This proves the 
theorem. 

There are other more technical Tauberian-like results for differentiation of 
asymptotic relations. A result of this kind is as follows. Suppose f(x) '" xP 

(x -+ + <Xl), where p ~ 1 andf"(x) is positive. Then (see Prob. 3.84)f'(x) '" pXP-1 
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(x -t + (0). This result concerns only the leading behavior of f (x) and does not 
justify termwise differentiation of an asymptotic series (see Prob. 3.85). 

Termwise differentiation of asymptotic series is much clearer in the complex 
domain. For example, suppose that f(z) is analytic in the sector 
(,I1~arg(z-zO)~(,I2' 0< Iz-zol <R and f(z)-L"oo=oan(z-zof [z-tzo; 
(,11 ~ arg (z - zo) ~ (,12]. Then (see Prob. 3.72) 

00 

I'(z) - L nan(z - zo)n-1, Z -t Zo; (,11 < arg (z - zo) < (,12. 
n=1 

It should be clear enough from these three special cases that the variety and 
complexity of Tauberian theorems for differentiation of asymptotic series is bewil­
dering. Fortunately, the whole situation is greatly simplified if a function is known 
to satisfy a linear differential equation whose coefficients can be expanded in 
asymptotic series. 

Asymptotic Expansions of Solutions to Differential Equations 

The formal procedures given in Sees. 3.4 to 3.7 for calculating asymptotic expan­
sions of solutions to differential equations require justification. There are several 
possible difficulties. First, we have always assumed that after the leading-order 
behavior is factored off, an asymptotic series expansion of the solution remains. 
However, not all functions can be expanded in asymptotic series. For example, 
consider the function y(t) = t2 + e- t2(1-sint) which has leading behavior t2 as 
t -t 00. As t -t 00, there are narrow regions that occur periodically in which sin tis 
near 1 and the term e - t 2( 1 - sin t) is not negligible with respect to 1. The existence of 
these regions implies that there does not exist any asymptotic power series rep­
resentation for y(t) as t -t + 00. We shall see that this difficulty does not afflict 
solutions of differential equations whose coefficients themselves have asymptotic 
power series expansions. 

Second, asymptotic series cannot, in general, be differentiated termwise. Thus, 
the formal differentiation of asymptotic series, which allowed us to determine the 
coefficients in the expansions of solutions to differential equations, needs to be 
justified. 

The proof that our formal methods are correct has two parts. First, we argue 
that if y(x) is the solution of y" + py' + qy = 0 where p(x), p'(x), q(x) are expand­
able in asymptotic power series as x -t Xo and if we assume that y(x) is also 
expandable in an asymptotic power series as x -t Xo, then the derivatives of y(x) 
are also expandable and their asymptotic power series are obtained by termwise 
differentiation of the asymptotic power series representing y(x). The proof is 
elementary. Consider the special case of the differential equation y"(x) + 
q(x )y(x) = O. If q(x) and y(x) possess asymptotic power series representations as 
x -t Xo, then the differential equation itself ensures that y"(x) does also (because 
multiplication of asymptotic power series is permissible). Integrating the asymptot­
ic power series representing y"(x) shows that y'(x) also has an asymptotic series, 
so term wise differentiation is justified. The argument for a general nth-order differ­
ential equation is left for an exercise (Prob. 3.81). 


