


This textbook presents a modern account of turbulence, one of the 
greatest challenges in physics. The state-of-the-art is put into historical 
perspective five centuries after the first studies of Leonardo and half 
a century after the first attempt by A. N. Kolmogorov to predict the 
properties of flow at very high Reynolds numbers. Such "fully developed 
turbulence" is ubiquitous in both cosmical and natural environments, in 
engineering applications and in everyday life. 

First, a qualitative introduction is given to bring out the need for a 
probabilistic description of what is in essence a deterministic system. 
Kolmogorov's 1941 theory is presented in a novel fashion with emphasis 
on symmetries (including scaling transformations) which are broken 
by the mechanisms producing the turbulence and restored by the chaotic 
character of the cascade to small scales. Considerable material is de­
voted to intermittency, the dumpiness of small-scale activity, which has 
led to the development of fractal and multifractal models. Such models, 
pioneered by B. Mandelbrot, have applications in numerous fields 
besides turbulence (diffusion limited aggregation, solid-earth geophysics, 
attractors of dynamical systems, etc). The final chapter contains an intro­
duction to analytic theories of the sort pioneered by R. Kraichnan, to 
the modern theory of eddy transport and renormalization and to recent 
developments in the statistical theory of two-dimensional turbulence. The 
book concludes with a guide to further reading. 

The intended readership for the book ranges from first-year graduate 
students in mathematics, physics, astrophysics, geosciences and engineer­
ing, to professional scientists and engineers. Elementary presentations of 
dynamical systems ideas, of probabilistic methods (including the theory 
of large deviations) and of fractal geometry make this a self-contained 
textbook. 
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Preface 

Andrei Nikolaevich Kolmogorov's work in 1941 remains a major source 
of inspiration for turbulence research. Great classics, when revisited in 
the light of new developments, may reveal hidden pearls, as is the case 
with Kolmogorov's very brief third 1941 paper 'Dissipation of energy in 
locally isotropic turbulence' (Kolmogorov 1941c). It contains one of the 
very few exact and nontrivial results in the field, as well as very modern 
ideas on scaling, ideas which cannot be refuted by the argument Lev 
Landau used to criticize the universality assumptions of the first 1941 
paper. 

Revisiting Kolmogorov's fifty-year-old work on turbulence was one 
goal of the lectures on which this book is based. The lectures were 
intended for first-year graduate students in 'Turbulence and Dynamical 
Systems' at the University of Nice-Sophia- Antipolis. My presentation 
deliberately emphasizes concepts which are central in dynamical systems 
studies, such as symmetry-breaking and deterministic chaos. The students 
had some knowledge of fluid dynamics, but little or no training in modern 
probability theory. I have therefore included a significant amount of 
background material. The presentation uses a physicist's viewpoint with 
more emphasis on systematic arguments than on mathematical rigor. 
Also, I have a marked preference for working in coordinate space rather 
than in Fourier space, whenever possible. 

Modern work on turbulence focuses to a large extent on trying to un­
derstand the reasons for the partial failure of the 1941 theory. This 'inter­
mittency' problem has received here considerable coverage. Kolmogorov 
himself became a pioneer in this line of investigation in 1961, following 
the work of his collaborator A.M. Obukhov (Kolmogorov 1961). Al­
though some of their suggestions can be criticized as mathematically or 
physically inconsistent, their 1961 work has been and remains a major 

XI 
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source of inspiration. For pedagogical reasons, I have chosen to discuss 
historical aspects only after presentation of more recent work on 'fractal' 
and 'multifractal' models of turbulence. 

Some of the material on Kolmogorov presented here has appeared 
in a special issue of the Proceedings of the Royal Society 'Kolmogorov's 
ideas 50 years on', which also contains a whole range of alternative 
views on Kolmogorov and on what matters for turbulence research 
(Frisch 1991 ). Other useful references on Kolmogorov are the selected 
works (Tikhomirov 1991 ), the obituary (Kendall 1990), the review of the 
turbulence work of one of his close collaborators (Yaglom 1994) and the 
personal recollections concerned more with the mathematician and the 
man (Arnold 1994). 

In an introductory course on turbul~nce, of about thirty hours of 
lecturing, many aspects had to be left out. I have included at the end 
of this book a guided tour to further reading as a partial remedy. It is 
also intended to convey briefly my - possibly very biased - views of 
what matters. No attempt has been made to present a balanced historical 
perspective of a subject now at least five centuries old (see p. 112); the 
reader will nevertheless find a number of historical sections and remarks 
and may discover for example that the concept of eddy viscosity was 
introduced in the middle of the nineteenth century (see p. 223). 

More information on the organization of this book may be found in 
Section 1.2 (see p. 11 ). 

The intended readership for the book ranges from first-year graduate 
students in mathematics, physics, astrophysics, geophysics and engineer­
ing, to professional scientists and engineers. Primarily, it is intended for 
those interested in learning about the basics of turbulence or wanting to 
take a fresh look at the subject. Much of the material on probabilistic 
background, on fractals and multifractals also has applications beyond 
fluid mechanics, for instance, to solid-earth geophysics. 

I am deeply grateful to J.P. Rivet who in many respects has given 
life to this book and I am particularly indebted to A.M. Yaglom 
for numerous discussions and comments. Very useful remarks and 
suggestions were received from V.I. Arnold, G. Barenblatt, 
G.K. Batchelor, L. Biferale, M. Blank, M.E. Brachet, G. Eyink, H. Frisch, 
H.L. Grant, M. Henon, J. Jimenez, R. Kraichnan, B. Legras, A. Migdal, 
G.M. Molchan, A. Noullez, K. Ohkitani, S.A. Orszag, A. Praskovsky, 
A. Pumir, Z.S. She, Ya. Sinai, J. Sommeria, P.L. Sulem, M. Vergassola, 
E. Villermaux and B. Villane. M.C. Vergne has realized some of the 
figures. I also wish to thank the students of the 'DEA Turbulence et 
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Systemes Dynamiques' of the University of Nice-Sophia-Antipolis who 
have helped me with their questions, since I started teaching this material 
as a graduate course in 1990. 

Part of the work for this book was done while I was visiting Princeton 
University (Center for Fluid Dynamics Research). Significant support 
was received from the 'Direction des Recherches et Moyens Techniques', 
from various programs of the European Union and from the 'Fondation 
des Treilles'. 

I would like to dedicate this second printing (August 1996) to Giovanni 
Paladin who died in a mountaineering accident on June 29, 1996. 

Finally, it was a pleasure and a privilege to work in close collaboration 
with Alison, Maureen, Simon and Stephanie at Cambridge University 
Press. 

Nice, France 
July 1995 

U. Frisch 



1 
Introduction 

1.1 Turbulence and symmetries 

In Chapter 41 of his L ectures on Physics, devoted to hydrodynamics and 
turbulence, Richard Feynman (1964) observes this: 

Often, people in some unjustified f ear of physics say you can't write an equation 
for life. Well, perhaps we can. As a matter of fact, we very possibly already have 
the equation to a sufficient approximation when we write the equation of quantum 
mechanics : 

(1.1) 

Of course, if we only had this equation, without detailed observation of 
biological phenomena, we would be unable to reconstruct them. Feynman 
believes, and this author shares his viewpoint, that an analogous situation 
prevails in turbulent flow of an incompressible fluid. The equation, 
generally referred to as the Navier-Stokes equation, has been known 
since Navier (1823) : 

Div+ v · Vv = -Vp + vV2v, 

V · v = 0. 

(1.2) 

(1.3) 

It must be supplemented by initial and boundary conditions (such as the 
vanishing of v at rigid walls). We shall come back later to the choice of 
notation. 

The Navier- Stokes equation probably contains all of turbulence. Yet 
it would be foolish to try to guess what its consequences are without 
looking at experimental facts. The phenomena are almost as varied as in 
the realm of life. 



2 Introduction 

A good way to make contact with the rich world of turbulence phe­
nomena is through the book of Van Dyke (1982) An Album of Fluid 

Motion. To communicate a first impression of the experimental facet of 
turbulence, we shall mainly use pictures from this book. 

In this Introduction, we have chosen to stress the ideas of broken sym­

metries and of restored symmetries. Symmetry consideration are indeed 
central to the study of both transition phenomena and fully developed tur­

bulence. For the time being we shall leave aside the quantitative aspects 
of experimental data with the exception of the control parameter, the 
Reynolds number, which is defined as 

R= LV 
' v 

(1.4) 

L and V being respectively a characteristic scale and velocity of the 
flow, and v its (kinematic) viscosity.1 Remember a consequence of the 
similarity principle for incompressible flow: for a given geometrical shape 
of the boundaries, the Reynolds number is the only control parameter 
of the fl.ow. 

With this in mind, let us observe what happens when increasing the 
Reynolds number in flow past a cylinder. We have chosen a cylinder 
in order to ensure some degree of symmetry, while selecting an external 
fl.ow. External flow is more difficult to control and to study but has 
more life than internal flow which is confined by its boundaries, such as 
Rayleigh-Benard convection or Taylor-Couette flow. 

As shown in Fig. 1.1, we consider a flow of uniform velocity V = 

(V ,0,0) (at infinity), parallel to the x-axis, incident from the left on an 
infinite cylinder, of circular cross-section with diameter L, the axis being 
along the z-direction. 

Fig. 1.2 is a visualization of the flow at R = 0.16. At first, the flow 
appears to possess the following symmetries: 

• Left-right (x-reversal), 

• Up-down (y-reversal), 

• Time-translation ( t-invariance ), 

• Space-translation parallel to the axis of the cylinder (z-invariance). 

All these symmetries, except the first, are consistent with the N avier­
Stokes equation and the boundary conditions. Let us be a little bit more 

1 In c.g.s. units the kinematic viscosity is about one-seventh for air and one-hundredth 
for water. 



1.1 T11rhule11ce muf .;ynm1t·rrie\ J 

v L 

> v 
> 

Fig. I.I. Uniform flo'.\ nilh \elncll) V, i111;ide11t on a c)limkr llf diameter L. 

1-ig. 1.2. Uniform tlO\\ p;N a cylinder al R = 0.161\'an D)kc 1%~1 Photograph 
S. r aneda 

specific. We denote b) 111.r,wl the components of the velocit> . The 
left 1ight S) mmetr} I'> 

(x.y.:J - • 1- x.y. : ). (11,r.w) ~ (u, - c - wl. l l.5) 

(X,J'. :I__. IX. -y, :I. 111. r . w1 - •111. - ! '. I\ J. 11.6) 
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Fig. IJ. Circular cylinder at I< z: 1.54 ~\an D} ke I 9!CJ. l'hmograrih S. I aneda. 

It i<> easily checked that the left right S)mmctry i~ not consi\lCnt \\ ith 
the Nader Stokes equation. <1lthough it is consistent with the Stokes 
equation. ob tamed by dropping the nonlinear term. Actual!). closer 
inspection of Fig. 1.2 shows that the lefc- right symmetry 1s not exact: 
it is -.lightly broJ..en. This is an effect of the residual nonlint:arity. \\ hich 
\\Ould get e\en weaker if \\e were to let the Re)nolds number become 
much snmller. 

Fig. I.'.\ shows the Otm at R - 1.54. There 1' now a marked left 
right asymmetry. Around R - 5 the flow begins to separate behind 
the cylinder. Although no symmetry-brenkmg occurs. there 1s a change 
in the topolog) of the flow <l'\SOCiated with the formation of recircu­
lating standing cdd1c\, shown in Fig. 1.4 for rnrious values of R from 
9.6 Lo 26. 

Around R - 40 the first true loss of symmetry occurs by an Andronov 
Hopf bifurcation which makes the flow time-periodic: in other words. the 
continuous r-invariance is broken in favor of a discrete 1-invar1ance. The 
How in the immediate neighborhood of the bifurcation point b shown 
in Fig. 1.5. At higher \alues of R. such as shown in fig!>. 1.6. 1.7 and 



1. 1 J'urhule11u! and -'_\'mmetries 5 

Fig. I 4 Circular cylinder at R "" 9.6 (al, R ""' 13.1 ihl and R :!6 1c1 (Van D)l.:e 
198:!). Photograph S. ran.:da. 
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Hg. 1.5. Circular cylinder at R • 28.-1 ta, and R • 41.0 tht (\'an Dyke 19~2) . 
Pht1ltlgra ph S Tancd,1. 

1.8 ta t\Hl·<limens1onal simulation b) a lattice gas method). the shedding 
of !he recirculation ed<lies becomes \ery conspicuous anti leads to the 
fonnation 11f the cdeb1ated Ktimuin .\trcet of alternating vortices. It mtbt 
be obsencd that the up Jov.n symmetry is not reall) broken msofar a,, 
after half a pcnod. the upper i:dtlies will be exact mirror images of the 
lower ones. 

It 1' not known at "hal Reynol<ls number thc =-inninancc 1s broken. 
b;pcrimcntall). this cannot be casil} found. since the C)hnder cannot be 
ma<le in linitc anti mus1 bc hel<l by some device which will un:n oidabl} 
introduce a =-tlcpendence. The1e is numerical entlence 1ha1 ,.,,hen the 
Re) nolds number exceeds a critical 'alue which 1s somewhere between 
40 and 7 5 the =·tm aria nee is .\pv11w11ev11.,/y hrc>J..en l Rivet 19911. A 
symmctry i' said to be ... pontaneou.,I} broken if ii I!> consi ... tent \\ilh 1he 
equation' nf motion ;md the boundary conditwns bul ts not present in 
the soluc1on. 
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ftg. 1.6. K:irm:in \Ortcx Mrtct behmd a cir1.-ula1 cylinder 111 R = 140 (Van D)kc 
19821. Photograph S Tancda. 

Fig. I 7. J\.:1m1:i11 wrtc~ ~treet behind a circular cyhndcr al R -= 1115 1\'an D~L:e 
19S2J. Phtitograph S laned.i 
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hg. l.S. Lattice ,:?a~ 11nulat111n l>fa t\\o-dimcn~ional Kium:m \Orin street heh111d 
.1 llat pl.1me (J'Humicrcs. P1mteau .md Lallemand 19 5). 

I 1g. 1.9 \\ale heh1nd l\\1> identical c)·linder at R • 240 Ct'urte'y R. Dumas 

There j.., abo a thrc,hold (not accurately known) in Re) nold.., numhl.!r 
heyond \\ hkh the flo"' become ... <lwotic in th time-dependence. /\ p;ir­
ticularly manifc'>t ti.mn of chaos is l.agrang1,rn tu1 bulcm:c (also kn0\\.11 

as 'chaotic athcction'), the erratic movement or marked lluid particle' 
which can be obscncd in 1'1g. 1.9 lor R = 240. There arc nnw two C)lin­
der:-. in ... tcad of iu t one. but thi-. doc' not change the ba-.ic symmetric,. 
Fig. 1.10 :.ho"~ the o;ame setup '' ith R = I SOO The Karmim 't rcets 
behind the l\\o C) lindcr ... di pla) onl) about two di,ttnc1 eddic-. before 
merging into a 4ua i-u111t'orm turbuknt \\akc. 

Instead of t\\O obstacle,, om.: can use a large regular array or ob..,taclcs 
forming some kind of .1 grid. Fig:.. I.I I and 1.12 'how turbulent llo\\' 
generated b} giids. hr enough behind the grid hay. 10 20 mc ... hc,) 



I . I T11rh11/e11ce u11d ·'>mmetne 

1g I 10 \\,1l.;e belunJ l\Hl 1dcnucal C)iindcrs .11 R • H«lll CourteS} R. Dumas. 

Fig. I.I I. Homogencou turbulenl.!e hehind a end. Photograph T. Corke and 
H Nacib 

the 111.m 1.fo.pla)'> a form of spatwl disorder kmmn since Lord Kelvin 

11887 t m. lwmogt•tu'mt,, ;,,otrc>pil rurb11/e11n• be~au-.e its overall aspe~t 

"L'ellls not to change under trnm.lation ... unJ rotations. Thi..,, of couN:. 
:.in onl) be a statistical tutement which "ill be m:1de more preci~e later. 
Fig. 1.13 illustrate .. another a'pect of the homogcncit) .tnd isotropy of 
grid turhulcncc. 

Finall). Fig. 1.14 shOY.'> a turbulent jet .11 R = ~300. It i.., u~c:d to 
1llu .. trate the prc,cncc of eddy-motion at all .calcs, suggc ... 11ng that ... ume 
form of htati .. tical) M.~.11e-invarian<."C m<t) be pn:~nt. 

Let u" surnmari.1e what we ha\e obsened. As the Reynolds number 
is increased, the various symmetries permitted b) the equations (and the 
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f<ig. 1.12. Ciro" th of material hnc~ m isotropic turbulence. R = 1360. based on 
grid rou diameter (\'an Dyke 1982). Photograph 5. C orr"m and M. Kamen. 

Fig. 1.13. \\'nnl..lm)! of a fluid -.urface in i'mrop1c turbulerlt:e t Van Dyke 198:! I. 
Photograph M. l'.arncit. 



1.2 Out line t~l t 111! nook 11 

Fig. 1.14 Turbulent \I al er jet I Van 0) kc: 1982). Photograph I'. 01m1)tak1.,, R. L) c 
and D. Pa~mtllninu. 

!1oundary comltt1onsl arc !\Ucccssi\ el) broken. Ilo\\C\ er. at very high 
Reynolds number, there appear' a 11.:ndcm.:y to n•store the ") mmctr ies in 
a "itatistical sense far from the boundarie.,.2 

Turbulence at \Ct) high Reynold!> numbers. when all or i.;omc of the 
possible s) mmctnc-. an..: restore<l 111 a stati.,tical sense, j, known a-; ti1lly 
derclopt•d turh11h•11n•. For !his 1t is ncccssa1 y tha1 the fiov. should not 
be subject to an) constraint. "uch ds a strong largc·sc<1k shear. which 
v.ould prcH.:nt it from 'accepting' all po!-.sible symmetries. Fully developed 
turbulence \Viii be the central topic of this book. 

1.2 Outline of the oook 

\\e now explain the organization of the bool.. rh1s includes comment-. on 
nonstandard' choice5. we haw made in the presenta11on · "uch comments 
are intended for n.:adcrs prcviou-.1) exposed to other lectures or textbooks. 
NOle that most or the chapters have their own introducuom .. 

J'he qualitati\e material ju5t pre-.ented naturally leads to a prc,cnt;1tion 
of the basic S) mmetries or the incompre-.~ible~ '\a vier Stoke:; equution 
(Chapter '.:!I. There i!> no 5ystematic presentation of the fundamentals 
of fluid mechanic..,, \\ hich can he found in man) textboob, for example 

Z Aclu:ill) . i1 1s kn<111 n 1h.1t chao111: <l~ n.1m1cal can p11~..e'' 'I mnwtry·1m n·u.'1111: b1furcat1on' 
1C.htM;:it an<l G,1Jubit~l~ 198!jl. 

3 Cvmprc~'Jbk wrbulcnc~ 1q)J no1 !)c dhcu.,scd here. 
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in Landau and Lifshitz (1987), Batchelor (1970) or Tritton (1988). In 
Chapter 2, we shall also discuss the basic conservation laws (energy, 
helicity, etc.). This includes a 'scale-by-scale energy budget equation' 
(Section 2.4) which allows us to make sense of the idea of transfer of 
energy among different scales of motion without requiring at this stage 
a probabilistic formalism. 

In Chapter 3 we address the question of why a probabilistic description 
of turbulence is appropriate. The presentation is made in the spirit of 
modern (but elementary) dynamical systems theory. In Chapter 4 we 
present some of the basic tools of probability theory, which are frequently 
used in turbulence. We mostly follow Kolmogorov's (1933) somewhat 
abstract viewpoint, but avoid delicate measure-theoretic issues which are 
discussed in many textbooks for the more mathematically minded reader. 

Then, we turn to two of the most basic experimental laws of fully 
developed turbulence (Chapter 5) which provide direct motivation for 
Kolmogorov's 1941 theory. This theory (here often abbreviated to 'K41') 
is presented in Chapter 6 in an unusual way: instead of beginning with 
the first 1941 turbulence paper with its (now) somewhat questionable 
hypotheses, we start with a different set of hypotheses linked to the 
basic symmetries of the Navier- Stokes equation and to the experimental 
laws reported in the previous chapter. This includes the assumption 
that the solutions are (statistically) scale-invariant, but no assumption 
about the value of the scaling exponent. The value of the latter (1 / 3) 
is obtained without further assumptions, from Kolmogorov's third 1941 
turbulence paper. This is the 'hidden pearl' we were referring to in the 
Preface. It therefore deserves a detailed presentation (Section 6.2). We 
then discuss Landau's objection to one aspect of the 1941 theory. A 
surprising conclusion is that a possible answer to Landau's objection is 
contained in the third 1941 turbulence paper and that our 'revised set of 
hypotheses' are actually faithful to Kolmogorov. 

Phenomenology of turbulence is presented in Chapter 7. To avoid 
a 'black magic' impression, we present phenomenology only after more 
systematic theory for which it is essentially a shorthand system. Both 
the power of standard phenomenology and some of its shortcomings are 
illustrated. 

Intermittency, a particular case of the break-down of the 1941 theory, 
is discussed at length in Chapter 8 (see the introduction to that chapter). 
Kolmogorov's (1961, 1962) work is presented only after the discussion of 
various more recent intermittency models and in the light of exact results 
about admissible deviations to his 1941 theory. 
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There are two sections with historical material: Section 6.5 is devoted 
to the early Kolmogorov 1941 theory and Section 8.8 to intermittency. 

Chapter 9, as stated in the Preface, is a guided tour of further reading 
on turbulence; it also contains additional historical material. 



2 
Symmetries and conservation laws 

Let us return to the Navier-Stokes equation (1.2). We rewrite (1.2)-(1.3) 
as 

01Vi + VjOjVi = -O;p + VOjjVi, 

oivi = 0. 

(2.1) 

(2.2) 

p and v are here called the pressure and the viscosity, respectively. Actu­
ally, they are obtained by dividing the true pressure and the dynamical 
viscosity by the mean density p0 . In addition to the standard rule of 
summation over repeated indices, we use the notation: 

a o·=-1 - ::i ' 
UXj 

a2 o,j- - -­
axi OXj 

2.1 Periodic boundary conditions 

(2.3) 

In order to achieve maximum symmetry, it is advantageous not to have 
any boundaries. We could thus assume that the fluid fills all of the 
space IR.3. The unboundedness of the space does, however, lead to 
some mathematical difficulties. We shall therefore often assume periodic 
boundary conditions in the space variable r = (x, y, z) : 

v(x + nL, y + mL, z + qL) = v(x, y, z), (2.4) 

for all x , y, z and all signed integers n, m, q. The positive real number L is 
called the period. It is then obviously enough to consider the restriction 
of the flow to a periodicity box such as BL: 0 < x < L, 0 .:::;; y < L, 0 .:::;; 
z < L (Fig. 2.1 ). Later, we shall recover the case of a fluid in the 
unbounded space IR.3 by letting L --+ oo. 

14 
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L 
L)---------

/ 
/ 

/ L 

Fig. 2.1. The periodicity box. 
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The space of L-periodic functions v(r) satisfying V · v = 0 will be 
denoted by :Yf. 

In principle, the definition of :Yf should be supplemented by prescribing 
a suitable norm. We shall refrain from this because our purpose is not to 
derive fully rigorous results : the present state of the mathematics for the 
three-dimensional Navier-Stokes equation, which will not be reviewed 
here (see, e.g., Rose and Sulem 1978; Constantin 1991, 1994; Gallavotti 
1993; and Section 9.3) makes it unreasonable to set higher standards. 

With periodic boundary conditions, it is easy to eliminate the pressure 
from the Navier-Stokes equation, as we now show. This is a rather 
elementary exercise which gives us an opportunity to introduce useful 
notation. Taking the divergence of (2.1) and using (2.2), we obtain 

oi (vjojv;) = o;j (v;vj) = - oiip = -V2p. (2.5) 

Eq. (2.5) is an instance of the Poisson equation: 

V2p = (J. (2.6) 

The Poisson equation can be solved within the class of L-periodic func­
tions provided that <J(r) has a vanishing average:1 

(<J) = ~ f <J(r)dr = 0. 
L }BL 

(2.7) 

Obviously, the function <J = - oij(v;vj), being made of space-derivatives 
of periodic functions, possesses the solvability property (2. 7). 

1 Angular brackets will denote space averages until further notice. 
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The solution of the \oisson equation is readily obtained by going from 
the physical space (r-space) to the Fourier space (k-space), using Fourier 
series. We write 

a(r) = L eik·rftk, 
k 

k E 2n z3 
L ' 

p(r) = L eik·rPk· 
k 

The Fourier coefficients are given by 

0-k = (e-ik·r a(r)), 

Pk= (e-ik·rp(r)) . 

Notice that by (2.7), ft0 vanishes. It follows from (2.6) that 

k =I= 0, 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

where k is the modulus of the wavevector k. The coefficient p0 is arbitrary. 
Indeed, the solution of the Poisson equation is defined up to an additive 
constant. But, adding a constant to the pressure does not change the 
Navier-Stokes equation. This (not quite unique) solution will be denoted 
in the physical space as v-2a. Note that, in the physical space, its is a 
non-local operator (its explicit expression involves a convolution). After 
the pressure has been eliminated by solving the Poisson equation, the 
Navier-Stokes equation may be rewritten as 

(2.13) 

It is now sufficient to impose the divergence condition ajvj = 0 at t = 0, 
since (2.13) will propagate this condition to all times. 

An alternative way to eliminate the pressure is to work with the 
vorticity 

(J) = v /\ v. (2.14) 

Taking the curl of the Na vier- Stokes equation (1.2), and using the identity 
Vv2 = 2v · Vv + 2v /\ (V /\ v ), we obtain the vorticity equation: 

(2.15) 

If we try to rewrite (2.15) in terms, solely, of the vorticity field, we first 
must solve (2.14) for the velocity. This is done by taking the curl of (2.14) 
and solving the resulting Poisson equation. Hence, the same non-local 
operator v- 2 appears as in the velocity formalism of (2.13). 



2.2 Symmetries 

2.2 Symmetries 
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Theoretical physicists are used to designating as 'symmetries' any discrete 
or continuous invariance groups of a dynamical theory. We shall also 
make use of this extended meaning and often use the term symmetry for 
invariance group. Let G denote a group of transformations acting on 
space-time functions v(t,r), which are spatially periodic and divergence­
less. G is said to be a symmetry group of the Navier-Stokes equation 
if, for all vs which are solutions of the Navier- Stokes equation, and all 
g E G, the function gv is also a solution. 

Hereafter we give a list of known symmetries of the Navier-Stokes 
equation. 

• Space-translations gspace · t r v i--+ t r + p v p E IR3. 
p . ' ' ' ' ' 

• Time-translations g~ime: t, r, vi--+ t + T, r, v, T E IR. 
• Galilean transformations ggai: t, r, vi--+ t, r + Ut, v + U, U E IR3

. 

• Parity P: t, r, vi--+ t, -r, -v. 
• Rotations2 gA01

: t,r,v i--+ t,Ar,Av, A E SO(IR3
). 

• Scaling 3 glcal: t,r,v i--+ A.1-ht,A.r,Jlhv, A E IR+, h E IR. 

Concerning the notation used in the list, let us observe that it is simpler 
to write, for example, t, r, v i--+ t, Ar, Av than the equivalent statement 
v(t,r) i--+ Av(t,A-1r). We did not write the transformations for the 
pressure p because the latter can be eliminated from the Navier-Stokes 
equation. In view of (2.5) the pressure transforms as v2. 

Proofs and comments. The space- and time-translation symmetries are 
obvious. As for Galilean transformations,4 we observe that when we 
substitute v(t,r - Ut) + U for v(t,r), there is a cancellation of terms 
between OtV and v · Vv. 

Under parity, all the terms in the Navier- Stokes equation change sign 
(in particular V i--+ -V). Observe also that the symmetry v i--+ -v is 
not consistent with the equations, except when the nonlinear term is 
negligible. Arbitrary (continuous) rotational invariance is not consistent 
with periodic boundary conditions, since the latter single out certain 
directions, so that only a discrete subset of rotations is permitted. As for 
the scaling transformations, when t is changed into A. 1-ht, r into /tr, and 
v into Jlhv, all the terms in the Navier-Stokes equation are multiplied 

2 Only in the limit L ---+ oo. 
3 Only for v = 0. 
4 There is a variant of Galilean invariance in which the velocity U is random and 

isotropically distributed (Kraichnan 1964, 1965, 1968a). This random Galilean invariance 
will be discussed in Sections 6.2.5, 7.3 and 9.5. 
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by 22h-l, except the viscous term which is multiplied by J.h-2. Thus, for 
finite viscosity, G>nly h = -1 is permitted. The corresponding symmetry is 
then equivalent to the well-known similarity principle of fluid dynamics, 
because the scaling transformations are then seen to keep the Reynolds 
number unchanged. If we ignore the viscous term or merely let it tend 
to zero, as may be justified at very high Reynolds numbers (we shall 
come back to this later), then we find that there are infinitely many 
scaling groups, labeled by their scaling exponent h, which can be any real 
number. 

We finally observe that all the listed symmetries, except for the scaling 
symmetries, are just macroscopic consequences of the basic symmetries 
of Newton's equations governing microscopic molecular motion (in the 
classical approximation). 

2.3 Conservation laws 

It is customary in mechanics to discuss conservation laws together with 
symmetries. For conservative systems describable by a Lagrangian func­
tion there is a theorem by Noether ( 1918) which gives a rationale for this 
association (see also Goldstein 1980). This theorem states that for each 
symmetry there is a corresponding conservation law. For instance, mo­
mentum conservation corresponds to the invariance of the Lagrangian 
under space-translations. Such results are not directly relevant for tur­
bulence since the Navier-Stokes equation is dissipative. 5 Still, we find it 
useful to discuss conservation laws at this point. We shall only discuss 
global conservation laws involving an integration over the whole volume 
occupied by the fluid. Other more local conservation laws, such as the 
conservation of circulation (see, e.g., Lamb 1932) may be even more 
important but have found surprisingly few applications to turbulence (so 
far). 

Periodic boundary conditions are assumed as in the previous sections. 
Angular brackets are used to denote averages over the fundamental 
periodicity box: 

(!) - ~3 r f(r)dr, 
}BL 

(2.16) 

where f(r) is an arbitrary periodic function. We list hereafter some useful 
identities which are readily proved by performing integrations by parts. 

5 The Euler equation, obtained by setting v = 0, is conservative and possesses various 
Lagrangian formulations. 



2.3 Conservation laws 

All functions are periodic. 

(od) = o. 

((od)g) = -(! o;g). 

((V2f)g) = -((od)(o;g)). 

(u · (V /\ v)) = ((V /\ u) · v). 

(u · V2v) = -((V /\ u) · (V /\ v)), if v. v = 0. 
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(2.17) 

(2.18) 

(2.19) 

(2.20) 

(2.21) 

We now list the main known conservation laws. We include relations, 
such as the energy balance equation, which become conservation laws 
only when the viscosity is set equal to zero. 

• Conservation of momentum 

• Conservation of energy 

where w = V /\ v. 

• Conservation of helicity 

!!__; ~v · w) = -v(w · V /\w). 
dt \2 

(2.22) 

(2.24) 

Proofs. Momentum conservation is proved by observing that the advec­
tion term VjOjV; in (2.1) can be rewritten, using (2.2), as oj(vjv;). Thus 
in the Navier-Stokes equation, all the terms other than OtV; are spatial 
derivatives of periodic functions. Hence, (2.22) follows from (2.17). For 
the energy balance relation (2.23), we multiply (2.1) by v; and use (2.2) 
to obtain 

(2.25) 

from which (2.23) follows by use of (2.2), (2.17), (2.18) and (2.21). For 
the helicity balance relation (2.24), we start from the vorticity equation 
(2.15) and take the scalar product with v, average and observe that, by 
(2.20), 

' (2.26) 
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Thus we obtain 

:t (v ~m) = (v · V /\ (v /\m)) + v(v · V2m), (2.27) 

from which the helicity relation (2.24) follows by use of (2.20) and (2.21). 
QED. 

We introduce now some important notation: 

E - (~1v1 2 ), 
H = ( ~v · m ), 

The energy and helicity balance equations may thus be written: 

d 
-E = -2vQ 
dt ' 

(2.28) 

(2.29) 

It is standard usage to call E the mean energy,6 H the mean helicity 
and Q the mean enstrophy.7 (The word 'mean' is often omitted.) As for 
the quantity Hw, it might be called the mean vortical helicity. The mean 
energy dissipation (per unit mass) 

dE 
e=--- dt ' (2.30) 

is one of the most frequently used quantities in turbulence. 

Remarks 

• In deriving the conservation laws, we assumed that the velocity and 
the pressure fields were sufficiently smooth to permit all necessary 
manipulations, such as integrations by parts, derivatives of products, 
etc. This sort of smoothness is generally conjectured to hold for any 
finite positive viscosity. For the solutions of the Euler equation ( v = 0) 
it may not hold and energy conservation may break down, as first 
observed by Onsager ( 1949). Increasingly weak smoothness conditions 
ensuring energy conservation for the Euler equation have been obtained 
by Sulem and Frisch (1975), Eyink (1994a) and Constantin, E and Titi 
(1994). 

6 It is actually the mean energy per unit mass, but in an incompressible fluid with a 
constant density this distinction is not important. 

7 The term enstrophy was coined by C. Leith by analogy with en-ergy. Obser e that in 
modem Greek arpw</J'l designates the curl operation. 
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• Note that v lroi2 and the local dissipation, 

21 

(2.31) 

have the same space average. They actually differ by a term propor­
tional to the Laplacian of pressure. Indeed, from (2.5), we obtain 

(2.32) 

Only the quantity t:1oc, which involves the rate-of-strain tensor (the 
symmetric part of the velocity gradient), deserves to be called a local 
dissipation. Indeed, in a region of quasi-uniform vorticity there is an 
almost solid rotation of the fluid and hence no dissipation. 

• The energy balance equation plays a crucial role in proving the exis­
tence 'in the large' (for all times) for the three-dimensional Navier­
Stokes equation. Unfortunately, uniqueness in the large is proven only 
in two dimensions. In two dimensions, there is indeed an additional 
balance equation for the enstrophy: 

d 
- Q = -2vP dt , (2.33) 

The quantity P is called the mean palinstrophy. Eq. (2.33) also has im­
portant consequences for two-dimensional turbulence, a subject which 
is mostly outside the scope of the present book (see Section 9.7). 

• The conservation of helicity (for v = O) was discovered by Moreau 
(1961); its potential for fluid dynamics was recognized by Moffatt 
(1969). More recently it was found by Kuz'min (1983) and Oseledets 
(1989) that there is an associated material invariant, i.e. a quantity 
which is conserved along any fluid particle trajectory (see also Gama 
and Frisch 1993). The influence of helicity on magnetic field gener­
ation was recognized by Steenbeck, Krause and Radler (1966). The 
possibility of helicity cascades analogous to energy cascades was dis­
cussed by Brissaud, Frisch, Leorat, Lesieur and Mazure (1973). Further 
references on helicity may be found in Moffatt and Tsinober (1992). 

2.4 Energy budget scale-by-scale 

The energy balance equation (2.23) <;Joes not contain any contribution 
from the nonlinear term in the Navier-Stokes equation. Actually, the 
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same relation would hold if we had started from the (vector) heat equa­
tion. What is then the role of nonlinearities in relation to the energy? 
We shall now show that the nonlinear term redistributes energy among the 

various scales of motion without affecting the global energy budget. 
We need a definition for the concept of 'scale'. For this, let us consider 

again Fig. 1.14. If this is shown using an overhead projector somewhat 
out of focus, the finest details will be blurred. Defocusing amounts 
approximately to a linear filtering which removes or attenuates high 
harmonics in the spatial Fourier decomposition of the image above a 
cutoff K which depends on the defocusing. There is an associated scale 
f!,...., K-1 over which there is smoothing. Let us now formalize this idea, 
restricting ourselves to L-periodic functions. Given a function f and its 
Fourier series 

f(r) = L f keikr, 

k 

k 2nz3 
E L ' (2.34) 

we define two families of functions depending on r and on the additional 
parameter K > 0. The low-pass filtered function is 

fi(r) - L f keik-r, (2.35) 
k:s;K 

and the high-pass filtered function is 

f~(r) = L f keik-r_ (2.36) 
k>K 

The length f! = K-1 will be called the scale of the filtering. Obviously, 

f(r) = fi(r) +ff (r). (2.37) 

Note that f< and j> are pronounced f 'lesser' and f 'greater', respectively. 
The decomposition (2.37) was used for the first time by Obukhov (194lb). 

To illustrate the idea of low /high-pass filtering, let us consider the 
example of the one-dimensional function shown in Fig. 2.2(a). We have 
here deliberately chosen a function which possesses structures on two 
very different scales: a small scale (of the order of a few millimeters) and 
a large scale (of the order of a few centimeters). Let us choose f! = K-1 to 
be intermediate, say, about 1 cm. The corresponding low- and high-pass 
filtered functions are shown in Figs. 2.2(b) and ( c). 

A word of warning may be needed here. The functions fi(r) and ff(r) 
are not Fourier transforms of f (r): they still depend on the same space 
variable r as f(r), but they also depend on an additional scale variable. 
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(a) 

x 

(b) 

x 

(c) 

x 

Fig. 2.2. Signal (a) subject to low-pass filtering (b) and high-pass filtering (c). 

The passage from f to f > may be generalized to filters of arbitrary 
shape. It is then known as a wavelet transform.8 For the purpose of the 
present book, we shall not need more than the sharp (low /high-pass) 
filters. 

When this concept of filtering is applied to a three-dimensional turbu­
lent velocity field, we obtain two functions v~(r) and v~ (r). The former 
is conveniently identified as eddies of scale larger than f and the latter as 
eddies of scale less than f.9 

Before turning to the scale-by-scale energy budget, we need a few 
technical results. 

We define the low-pass filtering operator 

PK : f(r) 1-+ f~(r). (2.38) 

This operator sets to zero all Fourier components with wavenumber 
greater than K. Clearly, PK is a projector: Pi_ = PK. We list some useful 

8 For the use of wavelets in turbulence, see Farge (1992) and references therein. 
9 Standard usage is to speak of small and large 'eddies.' as a loose phenomenological 

concept. Here, we find it convenient actually to provide a definition. 
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properties of this operator. 

(i) PK commutes with V and V2. 

(ii) PK is self-adjoint for the L 2 inner product : for all real periodic 
functions f and g, 

(f PKg) = ((PKf)g) = Lfkg-k. (2.39) 
k$ K 

(iii) High and low-pass filtered functions with the same cutoff wave­
number K are orthogonal: 

(2.40) 

Item (i) follows immediately from the Fourier decompositions off, Vf 
and V2f: 

f = L f keik-r, 
k 

Vf = L(ik)fkeik-r, 
k 

V2f = L/-k2)fkeik-r. 
k 

Items (ii) and (iii) are consequences of Parseval's identity: 

(Jg)= L,hg-k. 
k 

(2.41) 

(2.42) 

We return now to the Na vier-Stokes equation and write it in a slightly 
more general form, including a forcing term :10 

oiv + v · Vv = -Vp + vV2v + / , 
V· v = 0. 

(2.43) 

(2.44) 

The force f is assumed to be periodic in the space variable, it may depend 
also on the time and the velocity.11 

We apply PK to (2.43), use (2.37) and item (i), to obtain 

Oiv~+PK (v~+vk)·V(v~+vk)} 

= -Vp1 + vV2v~ + /~, 
V · v1=0. 

(2.45) 

Now we take the scalar product of (2.45) with v1, average and use 

10 The rationale for introducing a driving force into the Navier- Stokes equation will be 
discussed in Section 6.2.1. 

11 The simplest two-dimensional example was introduced by Kolmogorov in the late 1950s; 
the force is f = (0, sin x1) and the flow is known as the 'Kolmogorov flow'. It was studied 
first by Meshalkin and Sinai (1961) ; see also Section 9.6.3.2. 
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items (i), (ii) and (iii) to obtain an energy budget of the low-pass filtered 
velocity: 

at\ lv~l 2 )+ (vi· [(vi+ vk) · V (vi+ vi()]) 

=- (vi· Vpi ) + v(v< · V2v~ ) + (v/t · f~ ) . 
(2.46) 

Eq. (2.46) can be simplified using some of the same transformations as 
for the energy balance equation (Section 2.3). For example, we have 
(v< · Vpi) = 0 and v(v/Z · V2v~) = -v(lwil2). The main difference is 
that now the contribution from the nonlinear term in the Navier-Stokes 
equation (the second term on the l.h.s.) does not vanish. When this 
term is expanded, it produces four terms, of which two are identically 
vanishing: 

(v/Z · ( v/Z · Vv/t)) = (v/Z · (vi( · Vv/t)) = 0. (2.47) 

Eq. (2.47) is proved using incompressibility, (2.17) and (2.18). The van­
ishing of the leftmost side means that interactions among 'lesser' scales 
cannot change the energy content of the lessers. Similarly, the vanishing 
of the middle term means that advection of lessers by greaters does not 
change the energy content of the lessers. Collecting the remaining terms 
from (2.46), we obtain the scale-by-scale energy budget equation: 

(2.48) 

Here, we have introduced the cumulative energy between wavenumber 0 
and K: 

the cumulative enstrophy: 

Q 1 ( < 2) 1 "" 2 A 2 K - 2 lwK I = 2 ~ k I vk I , 
ks,K 

the cumulative energy injection (by the force): 

< < " A A §' K - (/ K ' VK) = ~ fk . V_k, 

ks,K 

and the energy flux 12 through wavenumber K: 

12 An alternative expression for the energy flux will be given in Section °6.2.2. 

(2.49) 

(2.50) 

(2.51) 
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Eq. (2.48) can be interpreted as follows: the rate of change of the 
energy at scales down to C = K-1 is equal to the energy injected at 
such scales by the force (ffe K) minus the energy dissipated at such scales 
(2vQK) minus the flux of energy (IIK) to smaller scales due to nonlinear 
interactions. As we shall see later, at high Reynolds numbers it is typical 
to have the energy injection confined to large scales (O(Co)) and the 
energy dissipation confined to small scales (O(Ca)) with Ca «Co. 

We finally observe that it is traditional in turbulence theory to de­
rive an energy budget equation in Fourier space under the (restrictive) 
assumptions of statistical homogeneity and isotropy (see Chapter 3 for 
these notions). In contrast, the scale-by-scale energy budget equation de­
rived above makes no use of probabilistic tools. It is therefore applicable 
to a much wider range of situations. 



3 
Why a probabilistic description of 

turbulence? 

3.1 There is something predictable in a turbulent signal 

In Chapter 1 we presented some pictures chosen to prompt the study of 
the symmetries of the Navier-Stokes equation. However important flow 
visualizations may be, experimental data on turbulence also include a 
considerable body of quantitative results. Velocimetry, the measurement 
of the flow velocity (or one component thereof) at a given point as a 
function of time, is by far the most common way of getting quantitative 
information. There are many different techniques of velocimetry which 
we shall not review here. 

Let us turn directly to an example. Fig. 3.l(a) shows a one-second signal 
obtained from a hot-wire probe placed in the very large wind tunnel Sl 
of ONERA.1 The signal is the 'streamwise' velocity (component parallel 
to the mean flow). It is sampled five thousand times per second (5 kHz). 
The mean flow has been subtracted so that the signal appears to fluctuate 
around zero. 

What strikes us when looking at this signal? 

(i) The signal appears highly disorganized and presents structures on 
all scales. 

(ii) The signal appears unpredictable in its detailed behavior. 
(iii) Some properties of the signal are quite reproducible. 

Regarding item (i), we observe that in contrast to the signal shown 
in Fig. 2.2 which had only two scales present, the signal shown here 
displays structures on all scales: the eye directly perceives structures with 
time-scales of the order of one second, of one-tenth of a second, of 
one-hundredth of a second, and possibly smaller. 

1 We shall come back later to some of the characteristics of this wind tunnel. 

27 
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Fig. 3.1. One second of a signal recorded by a hot-wire (sampled at 5 kHz) in 
the S 1 wind tunnel of ONE RA (a); same signal, about four seconds later (b ). 
Courtesy Y. Gagne and E. Hopfinger. 
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Fig. 3.2. Construction of the histogram of a signal by binning. 

Regarding item (ii), let us look at a sample of the same duration taken 
about four seconds later (Fig. 3.l(b)). The general aspect is the same 
but all the details are different and could not have been predicted from 
looking at the previous figure. 

Regarding item (iii), one instance of a reproducible property is the 
histogram of the signal. As shown in Fig. 3.2, let us take a finite record of 
the (discretely sampled) signal and divide the v-axis into a large number 
N of equal small bins centered around values vi (i = 1, · · ·, N). The 
histogram is defined as the function Ni giving the number of times the 
ith bin is visited. Let us apply this procedure to the signal from the Sl 
wind tunnel. Fig. 3.3(a) shows the histogram obtained from a record of 
duration 150s sampled 5000 times with 100 bins.2 Fig. 3.3(b) shows the 
same sort of histogram taken from a record of the same duration but 
several minutes later. (Several hours would work equally well.) We see 
that the two histograms are essentially identical. 

We can summarize our findings by saying that although the detailed 
properties of the signal appear not to be predictable, its statistical prop­

erties are reproducible. Such observations, which have been known for a 
long time, have induced theoreticians to look for a probabilistic descrip­

tion of turbulence (Taylor 1935, 1938). However, we know that the basic 
equation (Navier- Stokes) is deterministic: Although there is no rigorous 
proof of this, it is widely conjectured that for a given initial condition 
there is a unique solution for all times. How can chance or chaos arise in 

2 Why the record has to be much longer than before will become clear in Section 4.4 once 
we have introduced the concept of integral time scale. 
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a purely deterministic context?3 To give some insight into this question 
in a context which keeps a flavor of the Navier- Stokes equation, we shall 
now discuss a toy model. 

3.2 A model for deterministic chaos 

In this section we shall study the following discrete map: 

- 1-2 2 
Vr+l - V1 , Vo = W, t = 0, 1, 2, . . . . (3.1) 

Here, v1 is a real number between -1 and + 1 and the time t is discrete. 
The tth iterate starting from the initial value w is denoted by v( t, w ). 
The set of iterates of a given initial value is known as its orbit. The map 
(3.1) is an instance of the logistic map vi---. v - av2. Here, we could as 
well call it the poor man's Navier-Stokes equation. Let us indeed rewrite 
the map in a way paralleling the Navier- Stokes equation written directly 
underneath : 

V1+I - Vt = -2vf 
01v = -(v · Vv + Vp) + 

+ 1 } 
+ f. 

(3.2) 

Written in this way, our logistic map has the equivalent of the nonlinear 
term, the viscous term and the force term. Of course, the simple map has 
no spatial structure whatsoever. 

We now define: 

(3.3) 

and 

(3.4) 

Thus, 

(3.5) 

With the poor man's Navier-Stokes equation we can repeat the same 
sort of experiment as performed with the wind-tunnel data. We choose 
an arbitrary initial condition w (between -1 and + 1) and iterate many 
times, say 5000. From these iterates we can then construct the histogram 
which is shown in Fig. 3.4. If we repeat the process with 5 000 consecutive 
iterates taken much later (say iterate numbers 20000-25 000), we obtain 
again essentially the same histogram. 

The reason we chose the particular map defined by (3.1) is that it 

3 'Chance' (Le hasard) is the word used by Henri Poincare in the introduction to his 
'Calcul des probabilites' ; nowadays, in deterministic situations, we say 'chaos'. 



32 Why a probabilistic description of turbulence? 

i.o---~~~~~~~~~~~~~~~~~~~~~----. 

0.9 
0.8 
0.7 
0.6 
0.5 
0.4 
0.3 
0.2 
0.1 
o.o-+-~--~..ll....,.-U...L...L...,....L...J.Ll...LIUUl.W.U.......i.....L....L.1..jl-l.U-1...J,.L.1...U..1..4Ju.;....~-----1 

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 

Fig. 3.4. Normalized histogram of the values of v obtained by iterating (3.1) 
(Ruelle 1989). 

- -

-1 

I 
I 
I 
I 
I 
I 
I 
I 
I V1 

Fig. 3.5. The graph of the 'poor man's Navier-Stokes' map (3.1). 

is now possible to understand the reason for this reproducibility and 
thereby get an insight into the behavior of a large class of nonlinear 
deterministic systems. 

First, we shall relate the map (3.1) to a simpler map. In Fig. 3.5 we 
have drawn the graph of the map. Observe that it falls within a square 
of side two, centered at the origin. Let us make the following change of 
variable: 

vi = sin ( nx1 - ~) , 0 <Xi< 1, (3.6) 
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Fig. 3.6. The tent map (3.8). 

and similarly: 

Vc+ l =sin ( 7txi+l - i). (3 .7) 

An elementary calculation then gives 

{ 
2xt for 0 s Xt s ~ 

Xi+ l = l 
2 - 2xt for 2 s Xi s 1. 

(3.8) 

We shall denote by B the map x1 ~ Xi+l · This is known as the tent map, 
because of the shape of its graph (shown in Fig. 3.6). Thus the map (3.1) 
and the tent map are conjugate: if we know how to iterate one of them, 
the iterates of the other are readily obtained from (3.6). 

Actually, it is quite easy to iterate the tent map. For this we use 
the binary decomposition of real numbers between 0 and 1. Let a i, 

a2, ... denote binary digits taking the values 0 or 1 and let N denote the 
negation which interchanges 0 and 1. It is then a simple exercise to check 
that if x has the binary decomposition 

then its image Bx by the tent map has the decomposition 

This relation is easily iterated to give 

B1x = O.(Pa1+1)(Pai+2 )(Pai+3 ) .. . , } 

p = N !J.1 +a2+··+ a,. 

(3.10) 

(3.11 ) 
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An immediate consequence of (3.11) is the sensitivity to the initial 

conditions. Two initial conditions which differ in a minute way (say, 
beyond the nth significant bit) will, after iterations, separate very quickly. 
Indeed, at each iteration, the discrepancy is shifted left and thus grows 
by a factor 2. An example will make this clear. Consider the following 
two initial conditions: 

xo = 0.10011101001011010 . . . , 

x~ = 0.10011101001111001. .. , 

(3.12) 

(3.13) 

which differ only beyond the tenth significant bit, i.e. by about 2- 10 ~ 
10-3. After ten iterations, they become 

X!O = 0.0100101 .. . , 

x;0 = 0.0000110 ... . 

(3.14) 

(3.15) 

The orbits have now completely separated. It is this sensitivity to initial 
conditions which is often loosely referred to as chaos. 

Another important property of the tent map is the existence of an 
invariant measure. Suppose that we select x0 at random in the interval 
[O, 1] with a uniform distribution; then all the iterates will also have a 
uniform distribution. 

It is obviously enough to prove this assertion for the first iterate 
x = Bx0. The statement that x0 is uniformly distributed is tantamount 
to 

Prob{xo E [a , b]} = b - a, V 0 ~a~ b ~ 1, (3.16) 

where Prob{-} denotes the probability of an event. In other words the 
probability measure is just the Lebesgue measure dx0. To find how this 
probability measure transforms under the tent map B we must use the 
relation 

Prob{Bx0 E [a, b]} = Prob{x0 E B- 1 [a, b]}, (3.17) 

which expresses the conservation of probability. In (3.17) B-1 [a, b] de­
notes the preimage under the tent map of the interval [a, b], i.e. the set 
of points which are mapped into [a, b]. To understand this preimage it 
is useful to draw a picture (Fig. 3. 7). It is seen that the preimage of 
[a, b] is made of two disjoint intervals, each half the length of the original 
interval. This immediately implies the invariance of the uniform measure. 
In other words, the Lebesgue measure is an invariant measure for the 
tent map. 
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Fig. 3.7. Construction of the preimages of an interval [a, b] for the tent map. 

At this point, the reader may have the feeling that probabilities were 
introduced through the back door. Given a purely deterministic system 
such as the tent map, why should we decide to resort to a probabilistic 
description with the initial value x 0 selected at random? The answer is 
that it (almost surely) does not matter if the initial value is deterministic 
or random. Indeed there is an important result called Birkhotf's ergodic 
theorem which states the following (roughly).4 

Ergodic theorem for the tent map. Let f(x) be an integrable function 
defined in the interval [O, 1]. For almost all x0 

l t=T 

1
1 

Jim T Lf (B 1xo) = f(x)dx. 
T~oc o 

t=O 

(3.18) 

The ergodic theorem states that the 'time average' of f(-) along the 
orbit of almost all initial xo is equal to its ensemble average calculated 
with the invariant measure (the uniform measure). Thus the deterministic 
tent map behaves in an essentially probabilistic way. 

For the proof of the ergodic theorem we refer the reader to textbooks 
on ergodic theory such as Halmos (1956). A feeling for why the theorem 
holds can be gotten as follows. Since (3.18) is linear in f('), we can 
without loss of generality suppose that f is equal to 1 in a small interval 
I = [a, b] and zero outside. The l.h.s. of (3.18) is then just the average 
fraction of the time the orbit of x0 visits the interval I. The points x0 such 

4 Since a reader interested in turbulence may not necessarily be familiar with measure­
theoretic jargon, we shall generally water down our statements using, e.g., 'integrable' 
instead of'measurable'. We apologize for this to the more mathematically minded reader. 
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that their tth iterates fall into I are obtained by iterating the preimage 
construction of Fig. 3.7. By trying a few more iterates, the reader will 
see that the resulting 21 tiny disjoint intervals appear to be spread in an 
increasingly uniform way over the interval [O, 1]. Thus the average time 
the orbit spends in I is just its length. 

The restriction 'almost all x0 ' is to be taken seriously. Actually, suppose 
we take x0 = 0, which is a fixed point of the tent map, then the l.h.s. of 
(3.18) tends to f(O) as T ---+ oo, a value which is usually not equal to the 
r.h.s .. 

As an illustration of the ergodic theorem, we take f(x) = xn. We then 
have (for almost all x0): 

T l 

lim Tl 2:)xit = { xndx = -
1

-
1

. 
T-.oo o Jo n+ 

(3.19) 

We are now in a position to return to the original poor man's Navier­
Stokes equation, the map (3.1). Since it is conjugated to the tent map by 
the transformation 

x~sin(rrx-~), (3.20) 

it will also possess an invariant measure, which is the image of the 
uniform measure by (3.20). An elementary calculation leads to the 
invariant measure P(v)dv with the probability density function (p.d.f.) 
P(v) given by 

1 
P(v) = (3.21) 

rr.Jl - v2 

Except for a normalization factor (the integral of a p.d.f. is 1), this is the 
same as the histogram shown in Fig. 3.4. 

3.3 Dynamical systems 

Birkhoff's theorem, which allows us to replace time averages over one 
orbit by ensemble averages, is valid in a much broader context than the 
two maps considered in Section 3.2. The appropriate framework is that 
of dynamical systems. We here introduce the following definition: 

Definition. A dynamical system is a quadruplet (Q, d, P, Gr). The set Q 

is called the probability space.5 d is a family of subsets6 of n. P, the 

5 In this and the next chapter n has its standard probabilistic meaning; elsewhere Q will 
denote the enstrophy. 

6 Actually, a <J-algebra but, as we stated before, we do not intend to go into measure­
theoretic fine points. 
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probability measure, maps d to the real numbers between 0 and 1 and 

satisfies 

P(A) 2 0 VA Ed, P(Q) = 1, (3.22) 

where A; is any enumerable set of disjoint sets E d. The time-shifts, G1, 

are a family of operators depending on a variable t 2 0 which can be either 
continuous or discrete. The G1s satisfy the semi-group property 

Go =I, (3.23) 

and conserve the probability: 

\ft 2 0, VA Ed. (3.24) 

The special case of the tent map corresponds to the following choices: 
n = [O, 1], P is the Lebesgue measure dx and G1 is the tth iterate of the 
tent map. 

In the general framework of dynamical systems, B irkho.ff's ergodic 

theorem states (roughly) the following. The basic hypothesis is that the 
only sets in d which are globally invariant under the time shifts G1 are 
those of measure zero and one (e.g., the empty set or the entire set Q).7 

It then follows that for any integrable function f defined on n and for 
almost all ro' E Q , 

lim Tl (T f (Giro') dt = ( f(w)dP = (f). 
T --.oo Jo Jn (3.25) 

Eq. (3.25) is seen to be a generalization of (3.18). 

3.4 The Navier-Stokes equation as a dynamical system 

We can now return to the flow of an incompressible fluid governed by 
the Navier-Stokes equation and formulate it as a dynamical system. The 
equation is written as 

01V + v · Vv = -Vp + vV
2
v + f, I 

V· v =0, 

Vo - v(t = 0) = w (plus boundary conditions). 

(3.26) 

The initial condition, denoted w, is chosen in a suitable space :Yf of 
functions satisfying the boundary conditions and the incompressibility 

7 This assumption is known as 'metric transitivity' and may be very hard to prove for a 
given dynamical system. 
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constraint.8 The force f is assumed independent of the time.9 The space 
n is now simply the space Yf of all possible initial conditions m. The 
time-shift G1 is the map 

Gr : m ......._. v(t). (3.27) 

(Since f does not depend on the time, Gr also maps v(s) into v(s + t).) As 
for P, it is a probability measure on n, invariant under the time shift. 

The existence of the time-shift G1 and an invariant measure P are, in 
general, only conjectures. In three dimensions, we do not even have a 
theorem guaranteeing the existence and the uniqueness of the solution 
to the Navier- Stokes equation. The existence of invariant measures is 
an even harder problem (see Ruelle 1989; Vishik and Fursikov 1988). 
For chaotic systems, rigorous proofs are available only for very simple 
finite-dimensional models. This is perhaps the place to warn the reader 
that the poor man's Navier-Stokes equation (3.1) is indeed a poor model. 
It is pathological in at least two ways. 

First its invariant measure fills all of the available space [O, 1]. In 
contrast, it is typical for dissipative systems in finite dimensions to have 
their invariant measure concentrated on an attractor with zero Lebesgue 
measure and with a fractal structure (see. e.g., Ruelle 1989, 1991). A 
well-known instance is the Henon (1976) map (x, y) ......._. (y + 1 - ax2, bx). 

Second, it is typical for dissipative dynamical systems to have more 
than one attractor and therefore more than one invariant measure.10 Each 
attractor has an associated basin. The statistical properties of the solution 
will then depend on to which basin the initial condition belongs. Thus, not 
only may the detailed behavior of orbits be unpredictable (because of the 
sensitivity to the initial conditions), but even their statistical properties 
may be unpredictable, insofar as it may be impossible to determine to 
which basin the initial condition belongs. Translated into meteorological 
vocabulary, this is equivalent to stating that not only the weather but 
also the climate may be unpredictable. 

To conclude this chapter, we observe that at the present stage of 
development of the theory of dynamical systems there has been little 
quantitative impact on the understanding of high Reynolds number flow. 
We shall come back to such matters in Section 9.4. For the moment, 

8 At this point there is no need to restrict ourselves to periodic boundary conditions. 
9 The formalism can be readily extended to periodic time-dependence. 

to Similarly, observe that it is typical for a solid resting on a table to have more than one 
stable equilibrium position. 
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the (partial) understanding of chaos in deterministic systems gives us 
confidence that a probabilistic description of turbulence is justified.11 In 
the next chapter we shall review some of the basic tools of probability 
theory. 

11 This statement does not in any way imply that it would be justified to describe turbulence 
with a finite number of averaged quantities . . 



Probabilistic tools: a survey 

We shall now introduce various probabilistic concepts frequently used 
in turbulence. For a more complete treatment the reader is referred to 
Feller (1968a,b), Wax (1954), Kac (1959) and Papoulis (1991). 

We start from the abstract dynamical system structure as defined in 
the previous chapter, namely a quadruplet (Q, d , P , Ge). The time shift 
Ge, being relevant only for random functions, we may ignore it, at first, 
while defining random variables. We shall also 'forget' about d in order 
not to discuss measure-theoretic issues. (This is not really legitimate, just 
a lesser evil.) 

4.1 Random variables 

Definition. A random variable is a map 

v : Q-. JR, w ~ v(w). (4.1) 

An example is the x-component of the velocity of a turbulent fluid at 
a given point and a given time. (The velocity is then still a function of 
the initial condition w.) 

Definition. The probability measure of the random variable v is the image 
of the measure P by the map v. 

It is customary to define the cumulative probability as 

F(x) - Prob{ v(w) < x} 

_ P(v- 1(]- oo, x[)) , (4.2) 

where v-1 (/) denotes the set of w s which are mapped into the interval 
I by v. Obviously F(x ) is a nondecreasing function. Its derivative 
p(x ) = dF(x )/ dx (which may be a function or a distribution) is therefore 

40 
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nonnegative and is called the probability density function of the random 
variable. Loosely expressed, p(x)dx is the probability of finding v(ro) 
between x and x + dx. The p.d.f. is normalized: 

L p(x)dx = 1. (4.3) 

Definition. The mean value (or expectation value) of the random variable 
v is given by 

(v) =In v(ro)dP = L xp(x)dx, (4.4) 

which may be infinite. 
Note that the operation of taking the mean value is linear. Mean 

values such as (v) are also referred to as ensemble averages to distinguish 
them from time averages. 

Definition. The random variable v is said to be centered 1 if (v) = 0. 

Definition. The moment of the mth order of the random variable v is given 
by 

(vm) - L xmp(x)dx, m EN. (4.5) 

If vis centered, (v2) is called the variance, S = (v3)/((v2))312 is called the 
skewness and F = (v4) /( (v2) )2 is called the flatness.2 

Definition. The characteristic function of the random variable v is the 
function of the real variable z, given by 

K(z) = (eizv) = L eizxp(x)dx. (4.6) 

K ( z) is thus the Fourier transform of the p.d.f. p( x ). Fourier transforms 
of positive functions are said to be of positive type. 

The main reason for using characteristic functions is that the charac­
teristic function of the sum of two independent random variables is the 
product of their individual characteristic functions (whereas, for p.d.f.s a 
convolution is needed). 

Definition. The centered random variable v is said to be Gaussian3 if 

(4.7) 

1 In the following we shall mostly work with centered variables. 
2 Sometimes called 'kurtosis', although the correct definition for the latter is F - 3. 
3 We shall sometimes call such random variables 'scalar Gaussian' to distinguish them 

from vector Gaussian variables to be defined later. 
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A simple calculation shows then that 

1 x2 

p(x) = e--i;r. 
(2n<J2) 1/2 

(4.8) 

In manipulating Gaussian variables, it is often simpler to work with (4.7) 
rather than with (4.8). 

We now turn to the multidimensional generalization of random vari­
ables. Substituting .IR" for .IR in the definition of a random variable, we 
obtain a vector-valued random variable, v( VJ) = (vi( VJ), i = 1, ... , n ). We 
shall just informally upgrade some of our previous definitions. When the 
upgrade is obvious (such as for the p.d.f.), we shall omit it. The moments 
are now tensors of the form 

(v· v· · · · v· ) It 12 Im • (4.9) 

When v is centered (zero mean value), its covariance tensor is defined by 

(4.10) 

The characteristic function of v is defined by 

(4.11) 

Thus, the characteristic function is then-dimensional Fourier transform 
of the p.d.f. Characteristic functions always exist, whereas moments can 
be infinite. When finite, they are given in terms of the derivative at 0 of 
the characteristic function by the relation 

(4.12) 

Eq. (4.12) is obtained by differentiation of (4.11) with respect to the zi 

variables and then setting z = 0. 

Definition. The vector-valued centered random variable v E .IR n is said to 
be Gaussian if for all c E .IR", the scalar quantity c · v is a scalar Gaussian 
random variable. 

This definition immediately implies that the Gaussian property is in­
variant under linear transformations. 

Using (4.7) and (4.10) we can calculate the characteristic function of a 
vector-valued Gaussian random variable v: 

K (z) = (eiz·v) = e-! ((z·v)2/ 

(4.13) 
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Thus, the characteristic function of Gaussian random variables is com­
pletely determined by the covariance tensor. By (4.12) all the moments 
of a vector-valued Gaussian random variable are also completely deter­
mined by the covariance tensor, i.e. by the set of second order moments. 
The relation between second order and higher order moments can actu­
ally be written in explicit form. 

Before doing this, we state the following important result for Gaussian 
variables. 

Gaussian integration by parts (Furutsu 1963; Donsker 1964; Novikov 
1964). Let v = (vi, i = 1, . . . n) be a vector-valued centered Gaussian 
variable and let f be a differentiable function of n variables, then, assuming 
all averages exist, 

(4.14) 

where r = (vivj). 
To prove (4.14), we first observe that when the covariance tensor r is 

diagonal (independent variables), (4.14) reduces to the following relation 
for scalar Gaussian random variables (no summation over i): 

(4.15) 

which follows immediately from (4.8) after one integration by parts 
(hence, the name). We then use the invariance of Gaussian variables 
under linear transformations (our very definition of vector-valued Gaus­
sian variables) and perform a linear transformation on the vis which 
diagonalizes the covariance tensor. This transforms (4.14) into (4.15), 
completing the proof. 

Let us also note that (4.14) may be rewritten in vector notation as 

(vf(v)) = (v' :€ (f(v+Ev')) 'E=O)' (4.16) 

where v and v' are assumed to be independent and identically distributed 
vector-valued Gaussian variables. In the form (4.16), Gaussian inte­
gration by parts also applies to Gaussian operators acting in finite- or 
infinite-dimensional spaces. 

Gaussian integration by parts has many applications in the statistical 
theory of turbulence. Here, we shall use it to derive the following relation. 
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Moment relation for Gaussian random variables (Isserlis 1918). Let v be 
a centered vector-valued Gaussian random variable, then 

and 

where 

(vi1 Vi2 ... Vi2m) = L (vir1 Viti) (vi13 Vie4) ... (vir2m-1 Vit2m ), } 

v m, i1, i2, ... ' i2m, 

(4.17) 

(4.18) 

(4.19) 

is an arbitrary partition of { 1, 2, ... , 2m} into pairs and the summation is 
over all possible partitions.4 

Proof. Eq. (4.17) is a consequence of the observation that changing v 
into -v does not change the covariance and thus leaves all the moments 
invariant; hence, odd order moments must vanish. The proof of (4.18) 
is recursive. It obviously holds for m = 1 because there is then a single 
term in the partition. Assuming it holds for the value m - 1, we apply 
Gaussian integration by parts to the l.h.s. of (4.18). For the function f, 
we take the product vi2 ••• vi2m. Using Leibnitz's formula, we then see that 
Gaussian integration by parts gives a sum of 2m - 1 terms of the form 

(4.20) 

where v1 means that the factor v1 is omitted. Partitions into pairs of 2m 
indices are obviously obtained by pairing the first index with any of the 
2m - 1 remaining ones and then writing all possible partitions of the 
2m - 2 indices left over. By the recursive hypothesis, the sum of all terms 
of the form (4.20) will then give exactly the right hand side of (4.18). 
QED.5 

In practice the moment formula is often used as follows. Suppose we 
wish to evaluate (vivJvkve/. We put four consecutive points on a line, 
labeled i, j, k, f as shown in Fig. 4.1. We then write all possible partitions 
into pairs by drawing diagrams in which the paired points are connected 
by bridges.6 There are three different ways to do this (shown in Fig. 4.1). 

4 Observe that the number of different partitions is 1 x 3 x 5 x · · · x (2m - 1), as is easily 
shown by recursion. 

5 The decomposition (4.18) for the moments of Gaussian random variables can be gen­
eralized to the non-Gaussian case by using cumulants; see, e.g., Frisch (1968) and 
Section 9.5.1. 

6 Such diagrams are known as Feynman diagrams in quantum field theory and the moment 
formula is the equivalent of Wick's theorem. 
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• • • • 
l J k f, 

~ 

A A + ~ + ~ 
l J k f, i J k R i J k f, 

Fig. 4.1. An illustration of the pairing construction for moments of a Gaussian 
random function. 

To each diagram we then associate the product of the covariances for 
the paired indices. We thus obtain 

(4.21) 

4.2 Random functions 

Definition. A random function 7 is a family of (scalar or vector-valued) 

random variables depending on one or several space or time variables.8 

An example is the velocity field v(t, r, w) of the solution of the Navier­
Stokes equation with the initial condition w . 

We shall again just upgrade our previous definitions where necessary. 
The moments of order n of a random function are, in general, tensors 

depending on n space-time variables. The moments of the random 
velocity field v are for example given by 

(4.22) 

When the random function is centered ( ( v) = 0), as we shall generally 
assume, 

Cj(t,r;t' ,r') = (vi(t, r)v1(t', r')) (4.23) 

is called the correlation function. 

7 Also often called a stochastic process. 
8 For random functions, the probabilistic labeling variable ro is often omitted. We shall 

drop it occasionally in this chapter and systematically in subsequent chapters. 
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Until further notice, we shall restrict ourselves to random functions 
which depend only upon the time and have scalar-value; generalizations 
are usually obvious. 

Definition. Let v(t, w) be a random function. Its characteristic functional 
( Kolmogorov 1935) is defined as the map 

z(t) ~ K [z(')] - (ei JR diz(t)v(i,w)), (4.24) 

where z(t) is a nonrandom 'test function ' (e.g., a smooth function with 
compact support). 

If the time variable and the integral J z(t)v(t) are discretized, (4.24) 
reduces to the definition ( 4.11) of the characteristic function for vector­
valued random variables. (The components of the vector being the values 
of v(t) at discrete times.) The relation (4.12) between moments and the 
characteristic function can be extended to random functions with the use 
of functional derivatives; this is left to the reader. 

Definition. The random function v(t) is said to be Gaussian if for all test 
functions z(t) 

L z(t)v(t, w) dt (4.25) 

is a Gaussian random variable. 
It follows, in almost the same way as for a vector-valued Gaussian 

random variable, that the characteristic functional of a centered Gaussian 
random function is given by 

K [z(. )] = e -! f JE.2 dcdi' z(t)z(t') (v(i)v(l' l) . (4.26) 

4.3 Statistical symmetries 

In Section 2.2 we gave a list of possible symmetries of the Navier-Stokes 
equation. For each of these deterministic symmetries a corresponding 
statistical symmetry may be defined. We begin with time-translations. So 
far we have not made use of the semi-group of time-shifts Gr which is 
part of the definition of a dynamical system, given in Section 3.3. We 
recall that the G1s act on the probability space in such a way as to 
conserve the probability. The time-shifts are needed to define the concept 
of stationarity. 

Definition. A random function v(t, w) is said to be Gr-stationary if for all 
t and w 

v(t+h,w) = v(t,Ghw), Vh ~ 0. (4.27) 
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The full solution v(t, r, ro) of the Na vier- Stokes problem, as formulated 
in (3.26), is an example of a stationary random function. Stationarity is 

then obtained by construction, since Gt is defined as the time-shift for the 
solution and P is an invariant measure. 

Some consequences of the definition of stationarity are listed below. 

Propositions: 

(i) If v(t, ro) is a G1-stationary random function and f(') is a deter­

ministic function of one variable, the random function f(v(t, ro)) 
is also Gi-stationary. 

(ii) The sum of two G1-stationary random functions is Gt-stationary. 

(iii) The moments of a G1-stationary random function, if they exist, are 

invariant under simultaneous translations of all their arguments : 

(v(t1 + h)v(t2 + h) · · · v(tm + h)) 
(4.28) 

= (v(t1 )v(t2) · · · v(tm) ), Vt1 , t2, . .. , tm , h. 

Proof. Items (i) and (ii) are immediate consequences of the definition. As 

for item (iii), let us first assume that h ~ 0. We can then write the l.h.s. 

of (4.28) as 

1 v(t1 + h, ro)v(t2 + h, ro) · · · v(tm + h, ro) dP 

= 1 v(t1,Ghro)v(t2, Ghro)· · ·v(tm , Ghro)dP. (4.29) 

We make the change of variable: ro' = Ghro and use the conservation 

of probability. The r.h.s. of (4.29) becomes precisely the r.h.s. of (4.28). 
Finally, we prove the relation for negative time-shifts, by making in (4.28) 
the changes of variables: 

t1 = t'i - h, t2 = t; - h, ... ,lm = t~ - h. (4.30) 

QED. 
It follows from (4.28) that the correlation function depends only on 

the difference of its two time arguments 

(v (t)v(t' )) = r(t - t' ), (4.31) 

and that the variance (v2(t)) = r(O) does not depend on the time t. 
Equality in law. Another somewhat looser definition of stationarity of 

a random function v(t) is to say that for any h, the random functions 

v(t+h) and v(t) have the 'same statistical properties', i.e. all corresponding 
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multiple time moments and/ or p.d.f.s are equal. This is called equality in 
law and denoted here 

h 
law 

v(t + ) = v(t). (4.32) 

Such notation has the advantage that there is no need to write the 
variable 111 and the operators Gt. In the following this will allow us to 
speak of stationarity without specifying the time-shifts G1 at the cost, 
however, of some ambiguity. Indeed, let v(t) be G1-stationary. It is then 
immediately seen that v(2t) is G2t-stationary.9 Both of these functions 

being stationary, it might be inferred that v(t) + v(2t) is also stationary. 
Actually, 

((v(t) + v(2t))2) = (v2(t)) + (v2(2t)) + 2(v(t)v(2t)) 

= 2r(O) + 2r(2r - r), 
(4.33) 

which obviously is not time-independent, as it should be if v(t) + v(2t) 
were truly stationary. 

A concept which is somewhat narrower than stationarity, but which is 
very useful in turbulence, is contained in the following 

Definition. A random function v( t, 111) is said to have Gr-stationary incre­
ments if for all t, t' and 111 

v(t' + h, 111) - v(t + h, 111) = v (t', Gh111) - v (t, Gh111), 'V h ~ 0. (4.34) 

Stationarity implies stationary increments but not the converse. A 
well-known example of a random function with stationary increments 
is the Brownian motion function W ( t, 111) (Levy 1965).10 This is a Gaus­
sian random function, defined for t ~ 0 and satisfying the following 
conditions: 

W(O) = 0, (W(t)) = 0, ( W(t) W ( t')) = inf (t, t'). (4.35) 

It follows that 

((W(t') - W(t))2
) =It' - ti. (4.36) 

Observe that W(t, 111) is not stationary. Indeed, from (4.35), we have 
(W 2(t)) = t which is not independent of the time. 

9 Observe that the semi-group G2r is distinct from Gr. 
to The letter 'W's stands for Norbert Wiener. He and Paul Levy, pioneered the study of 

the mathematical properties of Brownian motion. A modern account may be found in 
Kahane (1985). 
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We now turn to other statistical symmetries. For space-translations, 
we have the following notion, formalized by Kampe de Feriet ( 1953; 
Section III) : 

Definition. The random function v( t, r, ID) is said to be homogeneous if 
there is a group G~pace of 'space-shift' transformations of .Q, conserving the 
probability and commuting with the time-shifts Gt. such that 

v(t, r + p, ID) = v (t, r, G~paceID). (4.37) 

A consequence of homogeneity is that all moments are invariant un­
der simultaneous space-translations of their arguments. The correlation 
tensor of a stationary and homogeneous random velocity field has the 
following form: 

(vi(t,r)vj(t',r')) = rij(t - t',r -r'). (4.38) 

Just as for stationarity (Section 4.3), homogeneity can be weakened into 
the property of having homogeneous increments. 

It is now clear that similar definitions can be given for other symme­
tries, such as rotations, scaling transformations, parity, etc. Statistical 
invariance under rotation is ref erred to as isotropy. A velocity field v 
which is statistically invariant under parity is called nonhelical or nonchi­
ral. If it is invariant under one of the scaling groups of Section 2.2, it is 
said to be scale-invariant. 

4.4 Ergodic results 

We have seen in Section 3.3 that Birkhoff's ergodic theorem ensures 
that, under suitable conditions, time averages are equivalent to ensemble 
averages. For a stationary11 random function v(t, ID) the statement of the 
ergodic theorem is that for almost all ID 

11T lim T v(t,ID)dt=(v). 
T->ro 0 

(4.39) 

This may be viewed as an extension of the well-known strong law 
of large numbers, which in its simplest form states that (with suitable 
restrictions) the average of N identically and independently distributed 
random variables tends, for N ~ oo, almost surely to their common 
mean value. 

11 From now on 'stationary' will be used to mean G1-stationary. 
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Eq. (4.39) is used extensively in experiments to measure statistical 
quantities such as moments, moments of increments, p.d.f.s, etc. In 
practice, the time averages are calculated from a sample of finite length. 
In order to get a feeling for how long the sample should be, we shall 
now give a watered-down proof of the ergodic formula. Namely, we shall 
prove convergence in mean square rather than almost sure convergence. 
This has the advantage that it provides an estimate of the error. Without 
loss of generality, we may assume that (v) = 0. (Otherwise change v(t) 
into v(t) - (v).) The main result is now stated. 

Mean square ergodic theorem. Let v(t, w) be a centered and stationary 
random function. Let r(t - t') = (v(t)v(t') ) be its correlation function. It 
is assumed that this function decreases sufficiently fast at irifinity to ensure 
that 

(4.40) 

It then fallows that 

(4.41) 

Proof. The l.h.s. of (4.41) involves the average of the square of an 
integral. Averaging and integration commute (because averaging is a 
linear operation). The presence of the square inhibits the use of this 
property. We can, however, transform the square of the integral into a 
double integral (using Fubini's theorem). Thus, using (4.31), we obtain 

( G f v(t,m)dt)') = ;2 ff dt,dt2r(t, -t2) 

= -.; {T dt1 (
1 

dt2r(t2) (4.42) 
T lo lo 2100 

< - dt2lr(t2)I. 
T o 

Clearly, this tends to zero as T ~ oo. QED.12 

A more quantitative estimate can be given by introducing the integral 
time scale 

f0
00 

dtl (v(t)v(O)) I J0
00 dtjr(t)I 

Tint = (v2) = r(O) (4.43) 

12 Condition (4.40) is sufficient but not necessary for obtaining (4.41). A necessary and 
sufficient condition has been found by Slutsky (1938 ; see also Monin and Yaglom 1971, 
Section 4.7). 



4.4 Ergodic results 51 

We can now compare the estimate for the mean square value of the time 
average, given by (4.42), with the mean square value of the velocity itself. 
It follows from (4.42) that the former will be negligible compared to the 
latter when 

(4.44) 

The ergodic theorem (in its almost sure or mean square versions) can 
also be applied to the evaluation of moments of v(t, ID), since vn(t, ID) is 
also a stationary function. It is important, however, to stress that the 
integral time scale for vn usually grows very rapidly with n. Thus the 
measurement of high order moments by time averaging requires very 
long samples. 

It is possible to get much more information than just bounds on how 
time averages differ from ensemble averages. We now mention briefly 
two types of increasingly refined results. 

The central limit theorem states that under suitable conditions (not 
given here), the difference between the l.h.s. and the r.h.s. of (4.39), 
when multiplied by T 112, tends for T ._ oo to a Gaussian random vari­
able. Loosely expressed, the fluctuations around the mean are typically 
0(1 / T 112). This is consistent with the 1/ T bound obtained in (4.42) for 
the mean square of this difference. Proving the central limit theorem 
for the addition of independent random variables, using the method of 
characteristic functions, is very elementary (see any textbook on prob­
ability theory). The proof is not elementary for random functions. At 
this point we must warn the reader that the importance of the cen­
tral limit for turbulence should not be overstated. Turbulence has some 
near-Gaussian features, such as the distribution of the velocities at a 
given point. It cannot, however, be truly Gaussian. Indeed, a (centered) 
Gaussian velocity field has vanishing moments of all odd orders. Hence, 
the energy flux given by (2.52) would identically vanish (assuming that 
angular brackets are reinterpreted as ensemble averages). Actually, as we 
shall see in Chapter 8, turbulence is highly non-Gaussian, particularly at 
small scales. 

An even more refined description of the strong discrepancies between 
ensemble averages and time averages over a long but finite time span is 
given by the theory of large deviations. Although the typical discrepancies 
are small, namely 0(1 / T 112), order unity discrepancies can happen, but 
with a very small probability which decreases exponentially with T. Such 
discrepancies are strongly relevant when investigating the behavior of 
(expf0T v(t,ID)dt ) for large Ts. It is a frequent misconception that the 
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leading order contribution can be obtained by treating J0
7 v( t, ro) dt as if 

it were Gaussian (see, e.g., Lumley 1972). As we shall see in Section 8.8, 
Kolmogorov himself was tempted by such lax use of the central limit 
theorem. We shall come back to large deviations in Section 8.6.4 in 
connection with multifractals. 

Finally, we mention that the concept of ergodicity is readily extended 
from the time domain into the space domain provided the spatial domain 
is of infinite extension in at least one direction, so that averages over 
increasingly large distances can be taken. For example, if v(x, y, z, ro) is 
a random homogeneous and ergodic velocity field defined in all of R 3, 

we have, almost surely 

1 1L1L1L lim - 3 dxdydzv(x, y , z, ro) = (v). L->YJ L 0 0 0 
(4.45) 

Actually, it is enough to take the average over one coordinate. If, 
however, the function is periodic in the space variables, averages over the 
periodicity box will give a poor approximation to the ensemble average 
unless the period is very large compared to the integral scale (the spatial 
analog of ( 4.43) ). Similarly, there cannot be an exact ergodic result 
involving the rotation group because one can only rotate by a finite 
amount. 13 

4.5 The spectrum of stationary random functions 

One of the most common practical methods for analyzing a stationary 
random function is to determine what electrical engineers call its power 
spectrum. We shall here give a somewhat nonstandard definition of the 
power spectrum, using the concept of low-pass filtering introduced in 
Section 2.4. 

Let v(t, ro) be a centered and stationary random function. We introduce 
the low-pass filtered functions in the same way as in Section 2.4, except 
that Fourier integrals rather than series are used. In this section, the 
Fourier variable is denoted by f rather than the traditional w which 
could be confused with ro. We thus define 

v(t,w) = L eif
1 v(f,w)df, } 

v;(t, ro) = { eifr v(f, ro) df, F ~ 0. 
jlf ls.F 

13 More precisely, the rotation group is compact. 

(4.46) 
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Clearly, vj(t, w) is itself stationary. Observe that the Fourier transforms 
of homogeneous random functions are random distributions, so that 
V(f, w) is not an ordinary function off, although vf-(t, w) is an ordinary 
function of t. Before distributions became widely used this difficulty was 
circumvented by the use of Stieltjes integrals (see, e.g., Batchelor 1953; 

Monin and Yaglom 1975). Our use of low- and high-pass filtering has 
the advantage that only ordinary functions appear and that essentially 
the same formalism can be used in the deterministic case (Section 2.4) 

and in the random case. 
We now define the cumulative energy spectrum 

(4.47) 

which, by the assumed stationarity, does not depend on the time variable. 
The factor 1/2 has been introduced into the definition to agree with the 

standard definition of the kinetic energy. C(F) may be interpreted as the 
mean kinetic energy in (temporal) scales greater than ,.,., p-1• It is easily 
shown, using Parseval's theorem, that the cumulative energy spectrum is 
a nondecreasing function of the cutoff frequency F. 

Next we define the energy spectrum of the stationary random function 
v(t, w) by 

(4.48) 

The pos1tiv1ty follows from the nondecreasing property. The energy 
spectrum is often referred to as just the 'spectrum'. 

E(f)df can thus be interpreted as the contribution to the mean kinetic 
energy of those Fourier harmonics which have the absolute value of their 
frequency between f and f + df. 

Since the filtered velocity field reduces to the unfiltered one when 
F ~ oo, it follows from (4.47) and (4.48) that 

1 roo 
2 (v2) =Jo E(f)df. (4.49) 

As expected, the mean kinetic energy (one-half of the variance of the 
random function) is the integral of the energy spectrum over all frequen­
cies. Similarly, observing that the Fourier transform of dv / dt is if v1, we 
obtain 

(4.50) 
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By use of the identity 

(4.51) 

it may also be shown that 

1 1+cc E(f) = 
2 

eifsr(s)ds, 
n - oc 

( 4.52) 

which states that the correlation function r(s) and the energy spectrum 
are Fourier transforms of each other. Eq. (4.52) is known as the Wiener­
Khinchin formula. 14 It implies, for example, that the Fourier transform 
of the correlation function of a stationary random function must be 
non-negative. 

An.other immediate consequence of (4.52) is an expression for the 
second order structure function, defined as the mean square of the velocity 
increment from time t to time t' . We have 

1
+co 

((v(t')-v(t)) 2
/ = 2 - JJ ( 1 - eif(t'- t)) E(f)df. ( 4.53) 

Here, E(f) is extended to negative frequencies by E(-f) = E(f). 
When a random function has stationary increments without being 

stationary, (4.52) is inapplicable, but (4.53) remains valid. A particularly 
relevant case for turbulence is when the energy spectrum E(f) is a 
power-law (Kolmogorov 1940): 

c >0. (4.54) 

When substituted into (4.49) this give a divergent integral. The divergence 
is either at high frequencies (ultraviolet divergence) when n < 1 or at low 
frequencies (infrared divergence) when n > 1 or at both when n = 1. This 
shows that there cannot exist a stationary random function with finite 
variance and a power-law spectrum. If, however, we substitute (4.54) into 
(4.53), we find that no divergence occurs as long as 1 < n < 3. A simple 
calculation shows then that 

(4.55) 

14 Yaglom (1987) has found that Einstein (1914) had already used this relation. 
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Thus, v(t) has stationary increments, at least in a mean square sense. For 
example, with n = 2, we recover Brownian motion. 

Random functions with stationary increments often appear as limits 
of stationary random functions with an infrared cutoff, when the cutoff 
frequency tends to zero. Consider, for example, the stationary Gaussian 
random function, called the 'Ornstein-Uhlenbeck process', which has the 
correlation function r(t) = f 0

1e-foltl and the spectrum E(f) = (1/rc)(f6 + 
/ 2)-1. As fo - 0, the Ornstein-Uhlenbeck process tends to Brownian 
motion. 

Again, everything we have presented in this section can be extended 
from the time domain into the spatial domain when the latter is un­
bounded. For example, the cumulative (spatial) energy spectrum is 
defined by 

(4.56) 

where vk is the low-pass filtered (vector) velocity field containing all 
harmonics with wavenumber less or equal to K. Again, the (spatial) 

energy spectrum is defined by 

E(k) = d~kk). (4.57) 

Note that, although the space is three-dimensional, the variables K and k 
are wavenumbers, i.e. positive scalars. Thus, the mean energy is obtained 
from E(k) by the same one-dimensional integral as (4.49) (with the 
variable k instead off). One can also define a three-dimensional energy 
spectrum E3o(k) which is the three-dimensional Fourier transform of the 
spatial correlation function (v(r) · v(r')). In the incompressible isotropic 
case, the Wiener- Khinchin formula reads 

E(k) = 4nk2Em(k) = - kpr(p) sinkpdp, 11oc; 
TC 0 

(4.58) 

where 

r(p) = (v(r) · v(r')), p = lr-r'I. (4.59) 

When using L-periodic boundary conditions, the cumulative energy 
spectrum defined by (4.56) will change discontinuously with K because 
the only admissible wavevectors are in (2rc/ L)Z3, where Z is the set 
of signed integers. Hence, the energy spectrum E(k) will be a sum of 
b-functions. Clearly, the continuous case can be recovered by letting 
L-oo. 
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Finally, as in the temporal domain, we find that when the energy 
spectrum is a power-law 

1 < n < 3, (4.60) 

then the velocity field has homogeneous increments (in the mean square 
sense) and the second order spatial structure function is also a power-law: 

(lv(r') - v(r)l 2
) oc Ir' - rln-1

• (4.61) 



5 
Two experimental laws of fully developed 

turbulence 

Experimental data will now be presented to illustrate two basic empirical 
laws of fully developed turbulence. 

(i) Two-thirds law. Jn a turbulent flow at very high Reynolds number, 
the mean square velocity increment ((bv(C))2) between two points 
separated by a distance C behaves approximately as the two-thirds 
power of the distance. 1 

(ii) Law of finite energy dissipation. If, in an experiment on turbulent 
flow , all the control parameters are kept the same, except for the 
viscosity, which is lowered as much as possible, the energy dissipation 
per unit mass dE / dt behaves in a way consistent with a finite positive 
limit. 

These laws seem to hold, at least approximately, for almost any tur­
bulent flow. Let us now examine examples of such data. 

5.1 The two-thirds law 

Fig. 5.1 shows a log- log plot of the second order longitudinal structure 
function 

( 5.1) 

The measurement was done in the Sl wind tunnel of ONERA.2 

It is seen that there is a substantial £213 range. Let us be somewhat 
more specific now. The longitudinal velocity increment is defined as 

l 
bv

11
(r, l) = [v(r + l)- v(r)] · f, 

1 With restrictions on the range of variation of C which will be given later. 

(5.2) 

2 All the data from Sl reported in this book have been obtained by Y. Gagne, E. Hopfinger 
and M. Marchand. 
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Fig. 5.1. log- log plot of the second order structure function in the time domain for 
data from the Sl wind tunnel of ONERA. Courtesy Y. Gagne and E. Hopfinger. 

where £ = Iii. Thus Jv
11
(r,£) is the velocity increment between two 

points separated by .e, projected onto the line of separation. When the 
turbulence is homogeneous and isotropic, we can unambiguously drop 
the dependence on r in the second order moment ( ( bv11 (r, £)) 

2
) and use 

£ instead of .e as is done in (5.1). The wind tunnel Sl is shown on 
Fig. 5.2. It is over 150m long. The widest part, known as the return duct, 
has a circular cross section with a diameter of 24 m. A hot wire probe 
was suspended near the point marked 'M'. It recorded the streamwise 

(parallel to the mean flow) component of the velocity. The averaging for 
the data shown in Fig. 5.1 is a time average, using ergodicity (Section 4.4 ). 
The mean flow velocity was 20 m/ s. The Reynolds number based on this 
mean flow and the diameter of the duct was about 3 x 107• The Reynolds 
number based on the r.m.s. velocity and the integral scale (around 15 m) 
was about 1.5 x 106. The r.m.s. velocity fluctuations represent about 7% 
of the mean flow. 

This relatively small ratio, the turbulence intensity, typical of wind 
tunnels, justifies the use of the Taylor hypothesis,3 as now explained. Let 

3 From G.I. Taylor, the Cambridge fluid dynamicist. 
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Fig. 5.2. The Sl wind tunnel of ONERA. 

us denote by v'(t, x) the velocity which would be measured in the frame 
of reference of the mean flow. The x-coordinate is along the mean flow. 
In the frame of reference of the laboratory the measured velocity will be 

v(t,x) = v'(t,x- Ut) + U, (5.3) 

where U is the mean flow. If we now assume that the 'turbulence intensity' 
I is given by 

I = y'(V'2} ~ 1 u ' (5.4) 

it is easily checked that most of the time-dependence in v(t, x) comes 
from the spatial argument x - Ut of v'. Taylor's hypothesis reinterprets 
the temporal variation of v at a fixed spatial location as being a spatial 
variation of v'. The correspondence between spatial increments f for v' 
and temporal increments r for v is then simply4 

f =Ur. (5.5) 

Most experimental data on fully developed turbulence are obtained in 
the time domain and then recast into the space domain via the Taylor 
hypothesis. The time (or frequency) axis is then often relabeled as a 
position (or wavenumber) axis. To avoid possible confusion, we always 
indicate in figure captions whether the data were obtained in the time 
domain or in the space domain. 

The question of how the Taylor hypothesis should be corrected when 

4 Attention has to be paid to the fact that increasing ts correspond to decreasing xs. 
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Fig. 5.3. log-log plot of the second order transverse structure function measured 
in the space domain by the RELIEF flow tagging technique in a turbulent jet at 
various R;.s, as labeled (Noullez, Wallace, Lempert, Miles and Frisch 1996). 

the turbulence intensity ceases to be small has been addressed by Lumley 
(1965) and Pinton and Labbe (1994). 

It is possible to make measurements directly in the space domain by 
using nonintrusive optical techniques in which a pattern, say, a straight 
line, is 'written' into the flow and then 'interrogated' after a very short 
time. From its deformation, the velocity component perpendicular to the 
line can be reconstructed. One promising technique is the Raman Excited 
Laser Induced Electronic Fluorescence (RELIEF) of Miles, Lempert, 
Zhang and Zhang (1991). Fig. 5.3 shows the second order transverse 
structure functions, obtained by the RELIEF technique in a turbulent 
jet at various Reynolds numbers. The second order transverse structure 
function is defined as 

(5.6) 
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where VJ_ is a particular component perpendicular to i of the velocity 
increment v(r + i) - v(r). (If the turbulence is isotropic, which particular 
component is chosen does not matter and the resulting structure function 
depends only on the modulus R. of £.) It is seen that this transverse 
structure function, like the longitudinal one, displays a substantial R.213 

range. 
It is traditional for experimental and numerical data on fully developed 

turbulence to use not the Reynolds number based on the integral scale 
and the r.m.s. velocity fluctuations, but instead the so-called Taylor-scale 
Reynolds number, which is easier to measure. The latter is defined 
as 

R. = VrmsA 
A - • 

v 
(5.7) 

Here, Vrms is the r.m.s. fluctuation of, say, the v1 component of the 
velocity and the 'Taylor-scale' Ji. is defined as 

(5.8) 

For Sl the Taylor-scale Reynolds number is R;_ :::::::: 2700. 
Under the assumption of isotropy, it is easily shown (Batchelor 1953) 

that 

Vrms = (2E /3)112 (5.9) 

E being the mean energy and Q the mean enstrophy, 5 defined in Sec­
tion 2.3 (eq. (2.28)). Hence, for isotropic turbulence,6 

1 Q 
(5.10) 

),2 5E' 

and 

- 1/2~ R;_ - (10/3) Q1 / 2v. ( 5.11) 

To illustrate further the two-thirds law we give several examples of 
energy spectra. In view of (4.60) and (4.61), the two-thirds law is 
equivalent to the statement that the energy spectrum E(k) follows a k-513 

5 From here on Q recovers its hydrodynamical meaning; the notation Q was used for the 
probability space in Chapters 3 and 4. 

6 Sometimes the factor 5 in the denominator is omitted; such a choice is not consistent 
with the standard definition used by experimentalists who often have access only to one 
component of the velocity. 
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Fig. 5.4. Energy spectrum in the time domain for data from Sl. Reynolds number 
R;. = 2720. Courtesy Y. Gagne and M. Marchand. 

law over a suitable range. The larger the Reynolds number, the wider 
this range. 

Fig. 5.4 shows the energy spectrum for the best data obtained so far 
from the Sl wind tunnel. This is again a log-log plot. The horizontal axis 
is a frequency which can be reinterpreted as a wavenumber by use of the 
Taylor hypothesis. A power-law scaling k-n with an exponent n close to 
5/3 is observed over a very substantial range of about three decades of 
wavenumber. This range is called the inertial range, a name which will 
be justified in Section 6.2.5. 

The features shown in Fig. 5.4 need some comment. First, there is a 
narrow spike in the spectrum at high wavenumbers. This is probably 
due to a mechanical vibration which is hard to avoid when a scientific 
experiment is set up temporarily in a major industrial facility such as 
Sl. Second, it is not known if the discrepancy from a pure 5/3-law 
is significant (a straight line of slope -5/3 is shown for comparison).7 

Third, it should be noticed that the range of wavenumbers over which 
scaling holds for E(k) is much larger than the range of distances over 
which scaling holds for S2(.C). As observed by M. Nelkin (private commu­
nication, 1988), the fact that the two functions are, by (4.53), essentially 
Fourier transforms of each other does not imply identical spans of 

7 When a power-law is fitted to the data, the value of the exponent changes somewhat 
with the choice of the fitting region. 
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Fig. 5.5. log- log plot of the energy spectrum in the time domain and enlargement 
of the beginning of the dissipation range for tidal channel data (Grant, Stewart 
and Moilliet 1962). 
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Fig. 5.6. Various data of Grant, Stewart and Moilliet (1962) in the time domain 
replotted as 'compensated spectra'. Courtesy V. Yakhot. 

power-law ranges. This can be checked by using a simple interpola­
tion formula for the S2(f) combining and £213 behavior at inertial-range 
scales with an £2 behavior at dissipation-range scales (Batchelor 1951, 
eq. (7.10)).8 

Fig. 5.5 shows the energy spectrum obtained by Grant, Stewart and 
Moilliet (1962) in a tidal channel near Vancouver, using a hot film 
probe suitable for salty waters. This shows about three decades of 
power-law behavior. Again, the exponent appears to be very slightly 
larger than 5/3 as seen on Fig. 5.6 where various data sets obtained 
by Grant, Stewart and Moilliet are replotted as compensated spectra 

in which E(k) is multiplied by k513. The Grant, Stewart and Moilliet 
experiment is quite famous, since it was the first time that very strong 
evidence supporting Kolmogorov's 1941 theory was obtained over a 
sufficient range of wavenumbers to permit simultaneous measurement of 
the dissipation rate (see later in this section).9 Many other geometries give 

8 See also Nelkin (1994, Section 3.3 and references therein). 
9 Before 1961, a number of measurements at the Institute of Atmospheric Physics 

(Moscow), by A.S. Gurvich, L.R. Tsvang and S.L. Zubkovsky had already confirmed the 
existence of the k- 513 law (see Monin and Yaglom 1975). 
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Fig. 5.7. log- log plot of the energy spectra of the streamwise component (white 
circles) and lateral component (black circles) of the velocity fluctuations in the 
time domain in a jet with R;. = 626 (Champagne 1978). 

similar energy spectra, provided the Reynolds number is high enough. 
Fig. 5.7 shows spectra of streamwise and lateral components of the 
velocity fluctuations in an axisymmetric jet with R;. = 626. About two 
decades of an approximately k-513 range are observed. Fig. 5.8 also 
displays about two decades of k-513 range. It was obtained in a low 
temperature helium gas flow between two counter-rotating disks10 at 
R;. = 1200. Such helium facilities look very promising since they can 
achieve R;. s comparable to those of large industrial facilities and still 
fit on a table, thanks to the very low kinematic viscosity of helium, 
about 10-3 in c.g.s. units. A major challenge is to develop probes (or 
nonintrusive optical techniques) suitable for the very small scales (of 
the order of a micrometer) encountered in such experiments (Castaing, 

to This flow geometry is sometimes called 'von Karman swirling flow' although von Karman 
(1921) considered a single infinite rotating disk. 
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Fig. 5.8. log- log plot of the energy spectrum in the time domain in a low­
temperature helium gas flow between counter-rotating cylinders with R2 = 1200 
(Maurer, Tabeling and Zocchi 1994). 

Chabaud and Hebral 1992). Another difficulty, also found in jets, is that 
the turbulence intensity I (given by (5.4)) is about 0.25-0.3; this is too 
large to make the use of the Taylor hypothesis safe, but the difficulty 
may be obviated by a resampling technique (Pinton and Labbe 1994). 

Fig. 5.9 shows various energy spectra obtained by Sanada and Ishii 
(private communication; see also Sanada 1991) from direct numerical 
simulations of the Navier- Stokes equation on a supercomputer. The 
simulations used 2563 grid points and had Reynolds numbers of several 
thousands.11 The spectra are genuine spatial spectra. They display an 
inertial range oc km with an exponent m ~ -5/3 over about one decade 
of wavenumbers.12 

11 Somewhat higher Reynolds numbers can be achieved for flows with special symmetries. 
12 Simulations of Borue and Orszag (1995) display a wider and steeper inertial range with 

an exponent m ~ 1.85 ± 0.05. The discrepancy could be caused by a modification of 
the dissipation term: instead of an ordinary Laplacian it involves the eighth power 
thereof. According to Leveque and She ( 1995) this can significantly affect the value of 
inertial-range exponents. 
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Fig. 5.9. Energy spectra in the space domain for three values of R;. as indi­
cated, obtained from a 2563 computer simulation. Three different values for the 
Kolmogorov constant Ck are tried. Courtesy T. Sanada and K. Ishii. 

5.2 The energy dissipation law 

We now turn to the second law concerning the energy dissipation. Any­
body with an interest in automobiles will have noticed that car manufac­
turers wishing to advertize the aerodynamic qualities of their products 
often quote the drag coefficients. The fact that such a number exists irre­
spective of the speed of the car is actually a confirmation of the energy 
dissipation law. Let us explain this. Fig. 5.10 shows an (old-fashioned) 
automobile moving with speed U. 

The car is subject to a drag force of strength given by 

1 2 
F = 2cvpSU , (5.12) 

where S is the area of the cross-section, Cv is the (dimensionless) drag 
coefficient and p is the density of the air. A simple interpretation of this 
formula follows. The quantity 

(5.13) 

is the momentum of a cylinder of air with cross-section S, moving 
with speed U and of length U -r. If we assume that this momentum is 
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Fig. 5.10. An (old-fashioned) automobile subject to a drag force F. 
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Fig. 5.11. Variation of drag coefficient with Reynolds number for circular cylin­
ders. 

completely transferred from the air to the car in a time r, we obtain 
a force f = dp/dr = pSU2. The presence in (5.12) of the extra factor 
Cv/2 < 1 suggests that, actually, only a fraction of this momentum is 
transferred. Proceeding now in a more systematic way, we can use the 
similarity principle for incompressible flow to show that a formula of the 
type of (5.12) holds, but with 

Cv = Cv(R), R= LU 
' v 

(5.14) 

i.e. a drag coefficient which is a function of the Reynolds number (the 
reference length L can be taken to be S112). The similarity principle 
implies that Cv(R) is the same for two bodies of the same shape but 
of different sizes. Careful measurements of Cv(R) have been made for 
a number of shapes. Fig. 5.11 shows Cv(R) for circular cylinders and 
is based on experimental data quoted in Tritten (1988). We observe 
that for very small Reynolds numbers the drag coefficient goes as R-1. 

(Try finding out why.) At high Reynolds numbers the drag coefficient 
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stays approximately constant, except for an accident which occurs around 
Reynolds numbers of a few hundred thousands.13 Thus, taking Cv(R) to 
be constant (at least piecewise) is a reasonable approximation. Taking 
this as the experimental input, let us now calculate the amount of 
kinetic energy dissipated (per unit time). This is equal to the work 
performed in moving the object (say, the car) with a speed U against the 
force F: 

(5.15) 

Thus the (kinetic) energy dissipated per unit mass is14 

(5.16) 

Insofar as the drag coefficient does not depend on the Reynolds number, 
the expression for B has the remarkable property that it does not involve 
the viscosity and thus will indeed have a finite limit for v --+ 0, as stated by 
the energy dissipation law. This law has, of course, the same limitations 
as the statement that the drag coefficient is independent of the Reynolds 
number. 

Direct experimental evidence for the existence of a finite limit to the 
energy dissipation has been obtained by Sreenivasan (1984). Using ho­
mogeneous turbulence generated by a square-mesh grid, he measured 
Bfo/v~, where B is the energy dissipation, vo the r.m.s. turbulent velocity 
fluctuation and Ro the integral scale. He found that this nondimension­
alized dissipation is independent of the Reynolds number (with about a 
20% scatter) for 50 < R;., < 500. For other geometries of the grid (e.g., 
parallel rods) there is a larger scatter of values. 

Reasonable support for the constancy of the energy dissipation also 
comes from computer simulations. Fig. 5.12 gives the temporal evolution 
of the mean energy dissipation 2vQ for different Reynolds numbers. 
The unit of time corresponds to a circulation time. The Navier-Stokes 
equation with periodic boundary conditions was integrated using the 

13 This drag crisis is related to a transition in the shear layers coming from laminar 
separation (Schewe 1983). 

14 The notation i; for the mean energy dissipation has been traditional since the work of 
Kolmogorov and has become a 'sacred cow'. The notation E will be reserved for small 
parameters. 
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Fig. 5.12. Evolution of the energy dissipation for the Taylor-Green vortex at 
various Reynolds numbers (Brachet et al. 1983) 

Taylor-Green initial condition: 

V1 = smx1 COSX2 COSX3, 

l V2 = -cosx1 smx2 cosx3, 

V3 = 0. 

(5.17) 

Orszag (1974) showed that one can take advantage of the symmetries 
of the flow to do spectral 15 simulations at a spatial resolution in each 

15 The spectral method (see, e.g., Gottlieb and Orszag 1977) calculates multiplications in 
the physical space and derivatives and their inverses in the Fourier space, shuttling back 
and forth by (discrete) fast Fourier transforms. Because the Fourier transform of an 
analytic function decreases exponentially at high wavenumbers, the spectral method can 
achieve an accuracy which varies exponentially with the resolution and has become the 
most reliable tool for 'numerical experiments' on turbulent flows at Reynolds numbers 
up to a few thousand. 
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direction roughly four times larger than would otherwise be feasible. The 
present state-of-the-art is 8643 (Brachet 1990, 1991) and even 10243 for 
flows having even more symmetries than the Taylor- Green flow (Yamada, 
Kida and Ohkitani 1993; Boratav and Pelz 1994). Fig. 5.12 shows the 
energy dissipation for a range of Reynolds numbers from R = 100 to 
R = 3000. A similar figure (Brachet 1990, Fig. 1, not shown here) gives 
the energy dissipation for R = 5000 and is almost indistinguishable from 
the R = 3000 curve. It is seen that the energy dissipation rises to a peak 
value which is quite insensitive to the Reynolds number (defined here as 
the inverse viscosity). For example, when the Reynolds number changes 
by more than a factor 10 (from 400 to 5000), the peak dissipation changes 
by less than 40%. 

In spite of such evidence, one should feel free to question the law of the 
energy dissipation. At the level of principles no contradiction is known 
to occur if one assumes that it is slightly violated, i.e. by having the 
energy dissipation displaying a logarithmic dependence on the viscosity 
or varying as a power-law with a small exponent (Saffman 1968). 

Whether exact or approximate, the energy dissipation law has an 
important consequence. Referring to (5.16).we observe that 

1 u3 

2 L 
! U2 kinetic energy per mass 

- -
L / U circulation time 

(5.18) 

where the circulation time L / U is the time it takes for the fluid to move 
by a distance equal to the reference length L. Thus, it appears that in 
about one circulation time, a finite fraction of the kinetic energy carried 
by the moving fluid is transferred by nonlinear interactions to scales 
sufficiently small for viscosity to be able to remove it into heat. 

Recalling that the mean energy dissipation may also be written as 2v.Q, 
where Q is the mean enstrophy (2.29), we infer that at high Reynolds 
numbers (small v ), the enstrophy must become very large, i.e. considerable 
and rapid vortex stretching must be taking place. 



6 
The Kolmogorov 1941 theory 

There is presently no fully deductive theory which starts from the Navier­
Stokes equation and leads to the two basic experimental laws reported 
in Chapter 5. Still, it is possible to formulate hypotheses, compatible 
with these laws and leading to additional predictions. This was the 
purpose of the celebrated Kolmogorov 1941 theory (in short K41). It 
will here be reformulated rather freely. In Section 6.1 we shall present a 
modern viewpoint with emphasis on postulated symmetries rather than 
on postulated universality, i.e. independence on the particular mechanism 
by the turbulence is generated. We thereby obtain a scaling theory with an 
undetermined scaling exponent. The latter is determined in Section 6.2 
from the 'four-fifths' law, an exact relation derived by Kolmogorov, 
also in 1941. The main results of the K41 theory are presented in 
Section 6.3. 

6.1 Kolmogorov 1941 and symmetries 

In Section 2.2 we made a list of known symmetries for the Na vier-Stokes 
equation (time- and space-translations, rotations, Galilean transforma­
tions, scaling transformations, etc). What are their implications for 
turbulence? 

Let us begin with time-translations. At low Reynolds numbers, if the 
boundary conditions and any external driving force are time-indepen­
dent, the flow is steady and thus does not break the time-invariance 
symmetry. When the Reynolds number is increased, an Andronov- Hopf 
bifurcation may occur. This makes the flow time-periodic and turns 
the continuous time-invariance symmetry into a discrete one. When the 
Reynolds number is increased further the flow will usually, at some 
point, become chaotic. As we learned in Chapter 3, the continuous time-

72 
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FiJ.!. 6.1. The lllrbulcnt lhu.:tuatiofu cannot be the same at i\, near the '>urfacc ol 
the C}linder and al B. in the wal.e Courie'} J .P. R1~~1. 

invariance symmetry i' then restored. not for individual 'olutions. but 
at the level of the invariant mca.-.ure of the d}namic:1l sy-.tcm. Jn other 
\ .. ords. the stati•aical rroperties of the solution become anvnriant under 
time-translation-. ( ... tationar} ). 

It is natural to try to Clttcnd this result to other symmctncs of the 
Na' icr- Stokes equation. let U'> consider, for example. the invariance 
under space-translations. Here. we meet a dilliculty : kt us suppose, as 
is indeed often the case. that the turbulence is generated b) flow around 
a rigid body. say a cylinder as shown in Fig. 6.1. The presence of this 
body will trivially bre:1k the translut1on symmetry. For example the r.m.s. 
velocity fluctuations at point A very close w the cylinder cannot be 
the same a-; at point B somewhere in the wake. sim:e the \elocity and 
ii... fluctuations must rnnish at rigid boundaries. Such a turbulent flo\\ 
can therefore nc\'cr be ... trictl) homogeneous (i.e. "tatist1catl) invariant 
under space-tran~lationsJ . Howc,·cr. discrete iranslation-anvariancc j., 

conceivable if the bodies generating the turbulence are arranged in a 
sp<ttiall~ periodic fa~hion, such as for the llow past the grid shown in 
rig. 6.2. ·1 ranslations parallel to the grid by a multiple of the mesh 
preserve the geometry of the How and thus leave the now in\'ariant as 
long as the Reynolds number is sufficiently low. At higher Reynolds 
numbers, \\hen the flow becomes turbulent. th statistical properties will 
be im·ariant under such translations. 

Similar remark' can be made about all the other s) mmetnes of the 
r-.;aner Stoles equation : the mefhani.\/llS n~-.pomihlt• }or the generatio11 

of tlu turbulenr firm .m 11sually 1101 i·omi:;tent "itli most oj till· po.,_,;h/e 
\ymmetrie., (li.,ted m Section 2.2). 

However, we remember from Chapter 1 that the qualitative aspect of 
man)' turbulent Hows suggests some form of homogeneity. isotropy and. 
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Fig. 6.2. A periodic array of cylinders forming a grid. 

possibly, scale-invariance. Furthermore, the power-law behavior of the 
second order structure function (Section 5.1) is clearly indicative of some 
form of scale-invariance. 

Such conflicting aspects can be reconciled through the following hypo­
thesis.1 

Hl In the limit of infinite Reynolds numbers, all the possible symmetries of 
the Navier- Stokes equation. usually broken by the mechanisms producing 
the turbulent flow, are restored in a statistical sense at small scales and 

away from boundaries. 

By 'small scales' we understand scales f ~ f 0 where £0, the integral 

scale, is characteristic of the production of turbulence, for example, the 
diameter of the cylinder in the example of Fig. 6.1. Small-scale homo­
geneity is defined as the property of having homogeneous increments 
(Section 4.3), i.e. in terms of velocity increments:2 

bv(r, f) = v(r + f) - v(r). (6.1) 

1 Because our hypotheses are fo rmulated in a way rather different from Kolmogorov's, 
the numbering is not the same as in his first 1941 paper. 

2 High-pass filtered velocities defined in Section 2.4 with K fo ~ 1 could be used as well 
as increments. 
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Specifically, it is assumed that 

Jaw 
bv(r + p, £) = bv(r, £), 

75 

(6.2) 

for all increments £ and all displacements p which are small compared 
to the integral scale. (Equality in law is defined in Section 4.3.) 

Similarly, isotropy means, in the present context, that the statistical 
properties of velocity increments are invariant under simultaneous rota­
tions of£ and bv. For parity, £ and bv are to be reversed simultaneously. 

As for the scale-invariance, since there are infinitely many scaling 
groups, which depend on the choice of the scaling exponent h, we need 
an additional hypothesis. 

H2 Under the same assumptions as in H 1, the turbulent flow is self-similar 
at small scales, i.e. it possesses a unique scaling exponent h. 

Thus, there exists a scaling exponent h E JR such that 

law h bv(r, J..£) = A. bv(r, £), (6.3) 

for all r and all increments £ and A.£ small compared to the integral scale. 
As we shall see in Section 6.2, the unique scaling exponent h is equal 

to 1/3 and is determined by postulating the energy dissipation law 
introduced in Section 5.2. This law constitutes the third hypothesis. 

H3 Under the same assumptions as in H 1, the turbulent flow has a finite 
nonvanishing mean rate of dissipation E per unit mass. 

For H3, we must keep the integral scale £0 and the r.m.s. velocity fluc­
tuations Vo fixed, and let v ---t 0. Otherwise, E must be nondimensionalized 
through division by v~/ £0. 

At this point, we should mention that in his first 1941 paper, Kol­
mogorov was actually postulating something quite different from the 
hypotheses listed so far: 

Kolmogorov's second universality assumption3 (not used here). In the limit 
of infinite Reynolds number, all the small-scale statistical properties are 
uniquely and universally determined by the scale f and the mean energy 
dissipation rate £. 

The first universality assumption of Kolmogorov will be given in 
Section 6.3.2. 

As an illustration of the universality assumption, consider the second 
order structure function ((bv(f))2). Straightforward dimensional analysis 
shows that this quantity has dimensions [L]2[T]-2, where [L] and [T] are 

3 Called by Kolmogorov the 'second hypothesis of similarity' and recast here in slightly 
different language. 
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units of length and time, respectively. Since the mean energy dissipation 
rate per unit mass, e, obviously has the dimensions [L]2 [T]-3, it follows 
from the universality assumption that 

(6.4) 

with a universal dimensionless constant C. On the other hand, by the 
hypothesis H2, the second order structure function should be propor­
tional to £2h. (We shall go through this kind of argument in more detail 
in Section 6.3.1.) Thus h = 1/ 3 is the only consistent value. 

The trouble is that Landau gave an argument indicating that constants 
such as C should not be universal (Section 6.4). We shall therefore refrain 
from using the universality assumption and derive the value h = 1/3 by 
other means. 

6.2 Kolmogorov's four-fifths law 

In his third 1941 turbulence paper Kolmogorov (1941c) found that an 
exact relation can be derived for the third order longitudinal structure 
function, the average of the cube of the longitudinal velocity increment. 
He assumed homogeneity, isotropy and hypothesis H3 about the finite­
ness of the energy dissipation. Without any further assumptions he 
derived the following result from the Navier- Stokes equation: 

Four-fifths law. In the limit of infinite Reynolds number, the third or­
der (longitudinal) structure function of homogeneous isotropic turbulence, 
evaluated for increments £ small compared to the integral scale, is given in 
terms of the mean energy dissipation per unit mass e (assumed to remain 
finite and nonvanishing) by 

(6.5) 

This is one of the most important results in fully developed turbulence 
because it is both exact and nontrivial. It thus constitutes a kind of 
'boundary condition' on theories of turbulence: such theories, to be 
acceptable, must either satisfy the four-fifths law, or explicitly violate the 
assumptions made in deriving it. We have thus been led to give a rather 
detailed derivation of this law. Actually, Kolmogorov did not include 
much detail in his 1941 derivation of the four-fifths law. He was using 
a previously derived relation of Karman and Howarth and some very 
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simple arguments (less than 20 lines) which appear plausible4 but which 
can be made more systematic. 5 

6.2.1 The Karman-Howarth-Manin relation for anisotropic turbulence 

In his 1941 paper on the four-fifths law, Kolmogorov assumed a freely 
decaying turbulent flow. 'Realistic turbulence' is usually maintained by 
such mechanisms as the interaction of an incoming flow with boundaries, 
thermal convective instability, etc. The inhomogeneities induced by the 
maintaining mechanism may be weak enough to be partially ignored at 
small scales and far from boundaries. However, something is needed 
to replenish the energy dissipated by viscosity. A simple device which 
achieves this function, already used in Section 2.4, is to add a forcing 
term J(t,r) in the Navier-Stokes equation: 

oiv + v · Vv = -Vp + vV2v + f, } 
(6.6) 

V·v =0. 

We assume that this 'stirring force' is active only at large scales, so 
as to model the mechanism of production of turbulence which often 
involves some large-scale instability (Edwards 1964, 1965). In deriving 
the four-fifths law, there is considerable freedom in the choice of the 
stirring force because only the mean energy input/dissipation will turn 
out to be relevant. We assume that the random force J(t, r) is stationary, 
homogeneous, i.e. its statistical properties are invariant under translations 
in time and space.6 So far, we do not assume isotropy. We also assume 
that the solution of the Navier-Stokes equation is homogeneous, but 
not necessarily stationary, so as to be able to cover instances where the 
external force vanishes. We finally assume that all moments required in 
subsequent manipulations are finite (as long as v > 0). 

We define 
1 

c:(l) - -oi2(v(r) · v(r +£))1 , 
NL 

(6.7) 

4 Just before writing the equivalent of (6.5), Kolmogorov (1941c) uses the following words: 
i.e. we may thus assume that .... This can be misread as an additional hypothesis, when 
actually it is just cautious language meant to bring out that his derivation is not fully 
rigorous. 

5 As observed by G. Eyink (private communication), our derivation resembles the 'point­
splitting regularization' method used by Schwinger (1951a) in the first derivation of the 
'axial anomaly' in quantum electrodynamics. 

6 Edwards (1965) furthermore assumed the force to be delta-correlated in time; this has 
some technical advantages but, foremost, it ensures that the problem is invariant under 
random Galilean transformations (see Section 6.2.5). 
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where the notation 01 (')INL stands for 'contribution to the time-rate-of­
change stemming from the nonlinear terms ( advection and pressure) in 
the Navier-Stokes equation'. £(£) has the dimension of a time-rate-of­
change of an energy per unit mass and will be called the physical-space 
energy flux. In Section 6.2.2 it will be shown that the more usual Fourier­
space energy flux is expressible in terms of the Fourier transform of£(£). 

Karman-Howarth-Monin relation. Homogeneous (but not necessarily 
isotropic) solutions of the Navier-Stokes equation ( 6.6) satisfy 

1 
£(£) = - 4Ve · (lbv(£)1 2bv(£)) 

= -o1 ~(v(r) · v(r + £)) + ( v(r) · f(r + £); f(r -£)) 

+ vV~(v(r) · v(r + £)), (6.8) 

where Ve denotes partial derivatives with respect to the (vector) increment 
.e and 

(lbv(£)12bv(£)) = (lbv(r,£)12bv(r,£)), (6.9) 

the velocity increment bv(r,£) being defined in (6.1). (Observe that, after 
averaging, no dependence on r is left because of homogeneity.) 

Proof. Hereafter, V;, f;, r', v;, ai, a;, and Ve; denote v;(r), fi(r), r + .e, 
Vj(r'), o/ox;, a;ax; and ojOf;, respectively. After averaging, we have, by 
homogeneity, 

Starting from the Navier-Stokes equation (6.6), we obtain 

01~(v;v;) = - ~o1 (v;v1v;) - ~oj(v;vjv;) 
1 ( / ) 1 ( / /) - 2 v;fJ;p - 2 V;O;P 

+ ~ (v;J;) + ~ (vd;) 

+ ~v (ojj + oj1) (v;v;). 

(6.10) 

(6.11) 

The terms in the second line vanish by incompressibility. The first term 
in the third line can be rewritten as (v(r) · f (r - £)), using the identity 

(v(r + £) · J(r)) = (v(r) · f(r - £)), (6.12) 

which follows from homogeneity. Again, by homogeneity, the terms in 
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the fourth line of (6.11) can be transformed into vV~(v(r) · v(r +£)).Next, 
we observe that 

(lbvl2bvj) = + ((v; - vi)(v; - v;)(vj - vj)) 

= - (v;v;vj) + (v;vivj) 

- 2(v;v;vj) + 2(viv;vj). (6.13) 

(The additional terms (v;v;vj)-(v;v;vj) cancel by homogeneity.) If we now 
apply the operator Vej to the r.h.s. of (6.13), by incompressibility, only 
the last two terms contribute and we obtain, within a factor 4, the same 
as the first line on the r.h.s. of ( 6.11 ). The Karman-Howarth-Monin 
relation (6.8) follows. QED. 

What we call here the Karman-Howarth-Monin relation is an aniso­
tropic generalization of a relation first established by von Karman and 
Howarth(1938). The anisotropic version is found in Monin and Yaglom 
(1975, p. 403) where it is attributed 'largely' to Monin (1959); hence the 
name chosen here. Our derivation of the relation is more straightforward 
than that given in Monin and Yaglom (1975). In the isotropic case it is 
usually called the Karman-Howarth relation. 

We observe that if, in the Karman-Howarth-Monin relation, we hold 
the viscosity v > 0 fixed and let the separation l --+ 0, in (6.8) the 
term Ve · (lbv(l)l 2bv(l)) tends to zero. Indeed, velocity increments vary 
linearly for very small increments (assuming smoothness for v > 0). We 
are thus left with 

(6.14) 

an equation which just expresses that the only changes in the mean 
energy come from the input through the force and the viscous energy 
dissipation. Actually, as we shall now see, (6.8) for f-=/= 0 is essentially an 
energy-flux relation. 

6.2.2 The energy flux for homogeneous turbulence 

Our starting point will be the scale-by-scale energy budget equation (2.48) 
which relates the (mean) cumulative energy <ff K, the (mean) cumulative 
enstrophy QK, the (mean) cumulative energy injection §i' K and the (mean) 
energy flux lh. Since we are now working with random homogeneous 
functions rather than with periodic functions, the Fourier series used in 
Section 2.4 to define filtering ((2.34)-(2.36)) must be replaced by Fourier 
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integrals. For example, the low-pass filtered velocity vi is now related to 
the velocity field v and to its Fourier transform v by 

v(r) = f d3k eik·r vk, 
}R3 

A 1 r d3 -ik-r ( ) 
Vk = (2n )3 }R

3 
r e v r , 

v~(r) = f d3k eik·r vk . 

j lk l:5:.K 

(6.15) 

Similarly, angular brackets are now to be interpreted as ensemble av­

erages rather than spatial averages over the periodicity box. With this 
reinterpretation, all the results obtained in Section 2.4 remain literally 
true. 

For convenience we rewrite the scale-by-scale energy budget relation 
(2.48) as 

(6.16) 

In Section 2.4 we gave an expression (2.52) for the energy flux nK, 
involving the low- and high-pass filtered velocities. We shall now use the 
Karman-Howarth-Monin relation {6.8) to reexpress the energy flux in 
terms of third order moments of velocity increments. 

Expression of the energy flux for homogeneous turbulence. The energy 
flux through wavenumber K is expressed in terms of third order velocity 
moments by 

1 f 3 sin(K f ) [ f 2 l 
llK = - 8n2 }R

3 
d f f Ve · £2 Ve · (lbv(f) I bv(f.)) . 

Proof of (6.17). We observe that (6.16) may be rewritten as 

nK = -oi<ff KI , 
NL 

where <ff K is the cumulative energy spectrum 

1 ( < 2) CK= 2 lvKI · 

From (6.7), (6.15), (6.18), (6.19), the identity 

r d3k eik-r = (2n)3b(r) 
}R3 

and the assumption of homogeneity, we readily obtain 

flK = (
2

1 
)3 r d3k r d3 f e ik-l t:(f) . 

n jlkl-s,K JR3 

(6.17) 

(6.18) 

(6.19) 

(6.20) 

( 6.21) 
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Interchanging the integrations in (6.21), we see that the integration over 
k can be performed. It is simplest to use spherical coordinates with the 
polar axis along £. After a few lines of algebra, this leads to 

n = _1_ l d3f sin(Kf) - Kf cos(Kf) (/)) 
K 2 2 c3 e ~ . n JR3 {, 

(6.22) 

A consequence of Kolmogorov's formula (6.5) is the existence of a range 
offs over which e(£) is independent off. When this assumption is made 
in ( 6.22), the integral is found to diverge at large f s as f 00 cos(K f)df. 
Actually, there is no divergence, because correlations tend to zero for 
separation f much larger than the integral scale. However, it is preferable 
to perform an integration by parts and recast (6.22) as: 

1 { 3 sin(K f) [ £ ] 
nK = 2n2 JR3 d f f Vt. e(l) f2 . (6.23) 

Substituting the value of e(£) given by (6.8), we obtain (6.17). QED. 

6.2.3 The energy flux for homogeneous isotropic turbulence 

The energy flux relation (6.17) is enough to derive the value of the scaling 
exponent h = 1/3 within the K41 framework. Additional information is, 
however, obtained if we make use of the assumption of isotropy. It is then 
possible to express the energy flux in terms of third order moments of 
longitudinal velocity increments. These are also much simpler to measure 
experimentally (via the Taylor hypothesis discussed in Section 5.1 ). 

Expression of the energy flux for homogeneous isotropic turbulence. The 
energy flux through wavenumber K is expressed in terms of the third 
order longitudinal structure function S3(f) = ((bv 11 (r,£))

3
) by 

llK = - 6~ 1
00 

df sin~Kf) (1 + foe)(3 + fo1)(5 +foe) s3y>, (6.24) 

where Oe - 0 I of. 

Proof• of (6.24). We begin with some preliminary material, following 
closely the presentation of Landau and Lifshitz (1987, Section 34). Us­
ing the same notation as in the proof of the Karman- Howarth-Monin 
relation (Section 6.2.1), we define 

bij,m = (viVjv;n), 

Bijm = ((v; - vi)(vj - Vj)(v~ - Vm)). 

(6.25) 

(6.26) 
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Isotropy implies that the tensor bij,m is expressible in terms of Kronecker 
deltas and the components of the unit vector 

(6.27) 

The most general form of such a third order tensor, symmetrical in i and 
j, is 

Incompressibility implies 

Vi,j. (6.29) 

Using this and (6.28), by a simple calculation we obtain 

[£2(3C + 2D + F)J' = 0, (6.30) 

where the primes denote derivatives with respect to t The only solution 
of the first equation which is consistent with the finiteness (actually, the 
vanishing) of biJ,m at £ = 0 is 

3C + 2D +F = 0. (6.31) 

Using (6.28), (6.30) and (6.31), we reexpress everything in terms of the 
coefficient C(£), so that (6.28) becomes 

Similarly, BiJm' given by (6.26), becomes 

Having established these preliminary results, we now observe that 
(from (6.33)) 

and (from (6.33) and isotropy) 

{lbv(£)12bv(£)) = Biim~~ = (-4C' -16~) £. (6.35) 
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Hence, by (6.8) and (6.34), 
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1 2 1 S3(f) 
e(l) - - 4v£ · (lbv(l)I bv(£)) = -

12 
(3 +foe) (5 + f oe) -f-. (6.36) 

Substituting this expression into ( 6.17), using ( 6.8) and performing the 
integration over angular variables, we obtain (6.24). QED. 

As a corollary of (6.24), we establish the following relation. 

Energy transfer relation for homogeneous isotropic turbulence. Homoge­
neous isotropic turbulence satisfies the following energy transfer relation: 

oiE(k) = T(k) + F(k) - 2vk2 E(k), (6.37) 
a 

T(k) = -
0

k ilk (6.38) 

= fo00 

cos(kf ) (1 + foe)(3 +fol) (5 + foe ) s~~i df, (6.39) 

where 

( a 1 ( < 2) E k) = 0k 2 lvk I , F(k) = :k (f k' · vk), (6.40) 

are the energy spectrum and the energy injection spectrum, respectively. 

Proof. Eqs. (6.37)-(6.39) follow from the scale-by-scale energy budget 
equation (2.48) upon substitution of k for K , differentiation with respect 
to k, and use of (2.49)-(2.51) and expression (6.24) for the energy flux 
(after differentiation with respect to k under the integral). QED. 

The function T(k) which appears in (6.37)- (6.39) is called the energy 

transfer. Being the derivative with respect to the wavenumber k of minus 
the energy flux, it is also the time-rate-of-change per unit wavenumber 
of the energy spectrum, due to nonlinear interactions. Hence, by (4.58) 
and (6.7), the transfer is expressible in terms of the physical-space flux as 

21ro T(k) = -- kf sin(kf) e(f)df . 
n o 

(6.41) 

Relation (6.39) is perhaps more practical, because the third order struc­
ture function is directly accessible to experiments. In this book there is 
more emphasis on the energy flux than on the energy transfer for two 
reasons: (i) the constancy of the energy flux in the inertial range makes 
it a physically more relevant quantity, (ii) the energy flux can still be de­
fined when the wavevectors are discrete (e.g., for 2n-periodic non-random 
flows), while the energy transfer, being a k-derivative, cannot. 
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6.2.4 From the energy flux relation to the four-fifths law 

Up to this point, we have assumed only homogeneity and isotropy. We 
shall now introduce additional assumptions specific to fully developed 

turbulence. 

(i) The driving force f(t,r) is acting only at large scales. Specifically, 
we assume that the force has essentially no contributions coming 
from wavenumbers ~Kc ""£01, where £0 is the integral scale. In 
other words, 

J~(t,r) ~ J(t,r), (6.42) 

where the low-pass filtered force JK(t, r) is defined in Section 2.4. 

(ii) For large times, the solution of the Navier-Stokes equation tends 
to a statistically stationary state with a finite mean energy per unit 
mass.7 

(iii) In the infinite Reynolds number limit (v --+ 0), the mean energy 
dissipation per unit mass8 c( v) tends to a finite positive limit 
(hypothesis H3 of Section 6.1): 

limc(v) = E > 0. 
v->O 

(6.43) 

(iv) Scale-invariance (hypotheses Hl and H2) is not assumed. 

We now turn to the consequences of these assumptions. Stationarity 
(item (ii)) implies that the time-derivative terms may be omitted in the 
global energy budget equation (6.14) and in the scale-by-scale energy 
budget equation (6.16), which become respectively 

(/ · v) = -v(v · V2v) = c(v) (6.44) 

and 

(6.45) 

Consider the energy injection term ff K for K ~ Kc. Using item (i) and 
(2.51), we obtain 

ff K = (fK · v) ~ (J · v) = c(v). (6.46) 

7 This assumption is not valid for two-dimensional turbulence and other problems with 
an 'inverse' cascade of energy, i.e. from small to large scales. The energy of the flow may 
then grow without bound as t _. oo (see also Section 9.7). 

8 This is the only place where it is preferable to bring out explicitly the dependence of i: 
on the viscosity. 
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Consider the energy dissipation term 2vQK. We claim that, for fixed K, 

Indeed, we have 

lim 2vQK = 0. 
V--->0 

2vQK = v(lro~ 12) ~ vK2 ( 1v~ 12) 

~ vK 2 (1vl2 ) = 2vK2 E, 

(6.47) 

(6.48) 

where E is the mean energy (assumed bounded by item (ii)). The first 
equality follows from (2.50) and the first inequality follows from the fact 
that the curl operator, acting on low-pass filtered vector fields with a 
cutoff at wavenumber K , has a norm bounded by K. 

In (6.45), we take K ~ K c and let v -+ 0. Using (6.43) (item (iii)), 
(6.46) and (6.47), we obtain 

limIJK = E, 
v-+0 

( 6.49) 

What we have established is physically quite obvious: in the statisti­
cally stationary state, the energy flux is independent of the scale under 
consideration and equal to the energy input/ dissipation, provided that 
there is no direct energy injection (K ~ Kc) and no direct dissipation 
(v -+ 0). Combining (6.49) with the relation (6.24) for the energy flux 
and changing the integration variable from I! to x =Kl!, we obtain (the 
limit v -+ 0 is understood) : 

rJJ sinx ( x) 
[]K = - lo dx ---;-F K = E, (6.50) 

Here, 

(6.51) 

We now observe that the large-K behavior of the integral in (6.50) 
involves only the small-I! behavior of F(I!) and that we have the identity 
f0

00 dx (sin x/x) = n/2. We thus obtain that, for small I!, 

2 
F(I!)::::: --e. 

n 
(6.52) 

After substitution into (6.51), we obtain a linear third order differential 
equation for S3(/!). It is straightforward to solve this (using ln l! as the 
independent variable and S3( I!)/ I! as the dependent variable). The only 
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solution which goes to zero with f is9 

4 
S3(f) = - 5et 

This completes the derivation of the four-fifths law. 

6.2.5 Remarks on Kolmogorov's four-fifths law 

(6.53) 

First, we discuss Kolmogorov's own derivation of the four-fifths law. 
As already stated, his derivation is very short. He essentially used the 
Karman-Howarth equation, an isotropic version of (6.8). We recall that 
he was working with freely decaying turbulence (no driving force). He 
also assumed (in our notation) the existence of an inertial range of 
values for £: (i) sufficiently small to approximate the time-rate-of-change 
of the velocity correlation function for separation f by its value for zero 
separation, namely -2e, and (ii) sufficiently large so that the dissipation 
term vV1\v(r) · v(r + £)) may be neglected. Actually, assumption (i) was 
made only implicitly by Kolmogorov. Our approach was much longer, 
as we included the proofs of preliminary material already known to 
Kolmogorov and also proved the consistency of the assumptions which 
in our approach play the roles of (i) and (ii). For this we had to 
assume that the turbulence is maintained by a driving force. With our 
assumptions, it follows from (6.45) that consistency is established if we 
simultaneously have 

and 12v!hl « e. (6.54) 

The range of wavenumbers over which both conditions (6.54) hold is 
by definition the inertial range. It is traditionally so called because, at 
such wavenumbers, the dynamics is dominated by the inertia terms in 
the Navier-Stokes equation, i.e. all but the viscous and forcing terms. In 
view of (6.48), the second condition in (6.54) will be satisfied if 

( 
e ) 1/ 2 - ( Q) 1;2 - JS K « - - - - -

2vE E A. ' 
(6.55) 

where E and Q, the mean energy and mean enstrophy, are defined in 
Section 2.3. The r.h.s. is the inverse of the Taylor scale A., already defined 
in (5.10). For small v, the Taylor scale A. ex:_ v 112 (since e and E are 
assumed to stay finite). Thus, when the viscosity is small, we have shown 

9 The vanishing of S3(f) as f - 0 for v > 0 is a consequence of the postulated regularity 
of the flow. Here, the limit v - 0 is taken before the limit f - 0 and the vanishing is 
not guaranteed, but there is experimental evidence tha t it still holds. 
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that the inertial range extends from scales ,...., £0 down to at least scales 
,...., A, oc v112. Actually, we shall see that the inertial range probably extends 
much further, down to scales oc v314. This result cannot, however, be 
established as cleanly. 

Second, we observe that (6.53) is invariant under random Galilean 
transformations. From Section 2.2, we know that, in the absence of forcing 
and boundaries, the Navier-Stokes equation is invariant under Galilean 
transformations. That is, for any vector U, if v(t, r) is a solution, so is 

v'(t, r) = v(t, r - Ut) + U. (6.56) 

If v( t, r) is homogeneous and stationary, so is v' ( t, r ). Yet, isotropy is 
not preserved, since U introduces a preferred direction. Hence, Galilean 
invariance cannot be easily used to test predictions of a theory of homo­
geneous and isotropic turbulence. To obviate this difficulty Kraichnan 
(1964, 1965, 1968a) proposed taking U to be random and isotropically 
distributed. (The distribution can, for example, be taken to be Gaus­
sian, but this does not matter much.) Under such a random Galilean 
transformation, all the structure functions, and in particular S3(.t'), remain 
invariant. Indeed, the velocity-shift U cancels in the velocity increment 
and the shift Vt in the spatial argument cancels by homogeneity.10 Sim­
ilarly, the mean dissipation e is also invariant. Thus, as stated, the whole 
four-fifths relation (6.53) is invariant. Note also that the presence of a 
driving force breaks Galilean and random Galilean invariances of the 
Navier-Stokes equation,11 but this does not affect the derivation of the 
four-fifths law since the (single-time) correlations of the velocity and 
force appearing in (6.8) are invariant under Galilean transformations.12 

Third, we observe that in deriving the four-fifths law, we took several 
limits: (i) the limit t -+ oo gives a statistical steady state ; (ii) the limit 
v -+ 0 eliminates any residual dissipation at finite scales; (iii) the limit 
f -+ 0 eliminates the direct influence of large-scale forcing. The correct 
formulation of (6.53) is thus 

1
. 

1
. 

1
. S3(f) 4 

Im Im Im -- = - - E. (6.57) 
C-+0 v-+0 t-+co f, 5 

Any attempt to take the limits in a different order could lead to difficulties. 

10 This would not be the case if the two velocities had been evaluated at different time­
arguments. 

11 Except if the random force is delta-correlated in time. 
12 A misconception of this author, corrected by Kraichnan (1995), is that the invariance 

of the four-fifths law to random Galilean transformation is related to the so-called 
localness of interactions (see Section 7.3). 
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For example, if f -+ 0 before v -+ 0, the third order structure function is 
expected to behave as £3 ; indeed, in the presence of viscosity, for small 
separations, velocity increments will be linear in f. because the flow is 
expected to be smooth. Whether or not the v -+ 0 and the t -+ oo 
limits can be interchanged depends on the smoothness of the solution to 
the three-dimensional Euler equation (the Navier-Stokes equation with 
v = 0). If no singularities appear in finite time, then it is easy to show that, 
at any finite time, the energy dissipation tends to zero with the viscosity, 
and not to a finite positive limit as required for the derivation of the 
four-fifths law. At the moment the question of the regularity /singularity 
for three-dimensional Euler flow is open (see Sections 7.8 and 9.3). 

Finally, we note that without the assumption of isotropy, a relation 
analogous to the four-fifths law can still be derived. With all the other 
assumptions unchanged, it may be shown from (6.8) that, in the limit 
v -+ 0 and for small f 

(6.58) 

This relation is essentially the same as (22.15) in Monin and Yaglom 
(1975). 

An interesting question addressed by these authors is what happens if 
the flow is homogeneous at all scales while being isotropic only at small 
scales. Since only velocity increments appear in ( 6.58), when f is small, 
this should become equivalent to the four-fifths law (6.53). However, 
(6.53) involves exclusively longitudinal velocity increments, while (6.58) 
involves both longitudinal and transverse velocity increments. Everything 
can be reexpressed in terms of third order moments of longitudinal 
velocity increments by use of (6.33). However, this relation has so far 
been proven only in the globally isotropic case. 

A related question concerns the case in which the flow is isotropic but 
has only homogeneous increments, as assumed in the K41 theory (in both 
Kolmogorov's original formulation and our formulation in Section 6.1 ). 
In Section 4.5 we pointed out that random functions with homogeneous 
increments can sometimes be considered as limits of strictly homogeneous 
random functions. If a small-scale flow with homogeneous isotropic 
increments can be embedded in a large-scale homogeneous isotropic 
flow, then the four-fifths law remains valid. Observe that the embedding 
flow need not be a solution of the Navier-Stokes equation, as long as 
it is incompressible. Indeed, the derivation of the relations (6.32)-(6.34) 
involves only kinematic arguments. 
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At the moment we can only say that the best available experimental 
evidence (e.g., Figure 8.6, discussed in Section 8.3) supports the validity 
of the four-fifths law. 

6.3 Main results of the Kolmogorov 1941 theory 

6.3.J The Kolmogorov-Obukhov law and the structure functions 

We now return to the K41 theory, using the three basic hypotheses Hl, 
H2 and H3 introduced in Section 6.1. First, we shall show that the 
four-fifths law implies 

h=~ 
3· 

Let us rewrite the four-fifths law (6.5) as 

3 4 
( ( t5v11 (f )) ) = - 5ef, 

(6.59) 

(6.60) 

where bv
11 
(£), the longitudinal velocity increment, is defined in (5.2). With 

the hypothesis H2, under rescaling of the increment f by a factor 2, the 
l.h.s. of (6.60) changes by a factor Jc3h, while the r.h.s. changes by a factor 
A. This immediately implies (6.59). Actually, to show just that h = 1/ 3, 
the assumption of isotropy is not needed. Indeed, from ( 6.17), which 
is valid irrespective of isotropy, and from the assumption of a scale­
invariant velocity with exponent h, it is easily shown that nK oc K 1- 3h. 

This is independent of K only for h = 1/ 3. Here, we must stress that it 
would not be correct to infer h = 1 / 3 from the expression (2.52) for the 
energy flux. Indeed, this expression involves both the v~ s and the vk s. 

Using hypothesis H2 of Section 6.1, it is easily shown that v~/J. law Jchvk. 
(Observe that vk involves only small scales.) There is, however, no simple 
transformation property for v~, so that it is not possible to conclude the 
argument. This observation shows how important it was to reexpress the 
energy flux solely in terms of velocity increments. 

Let us now examine the consequences for the moments of the (longi­
tudinal) velocity increments at inertial-range separations, assuming ho­
mogeneity and isotropy. We shall also assume that moments of arbitrary 
positive order p > 0 are finite (see Section 8.3). We define the (longitudi­
nal) structure function of order p by 

(6.61) 

Note that the argument of the structure functions is here taken to be 
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positive, since £ is the absolute value of the increment l. An alternative 
definition, allowing for both positive and negative arguments x, is (£0 is 
an arbitrary unit vector) 

(6.62) 

which reduces to Sp(f) for positive x. A consequence of isotropy is that 
the functions thus defined are even (odd) for even (odd) ps. 13 

From the self-similarity hypothesis H2 and (6.59) we infer that 

Sp(£) oc f,P/3. 

Since (ef)Pl 3 has exactly the same dimensions as Sp, we have 

Sp(f) = CpePl3gPl3, 

(6.63) 

(6.64) 

where the Cps are dimensionless. The Cps cannot depend on the Reynolds 
number, since the limit of infinite Reynolds number is already taken. For 
p = 3, it follows from (6.53) that C3 = -4/5, which is clearly universal, i.e. 
independent of the particular flow under consideration. In the derivation 
given here nothing requires the Cps for p -=!= 3 to be universal. This 
universality was postulated in Kolmogorov's first 1941 paper, but was 
then questioned by Landau. We shall return to this matter at length 
in Section 6.4. Sreenivasan (1995) gives a compilation of values of the 
constant C2 from a variety of experiments with RJcs ranging from about 
50 to more than 104 and finds C2 = 2.0+0.4. The constant C2, denoted C 
by Kolmogorov, should in principle be called the Kolmogorov constant. 
Unfortunately, usage has reserved this name for the constant in front of 
the longitudinal energy spectrum, which is actually 4.02 times smaller. 

We note that expression (6.64) for the structure functions involves only 
the energy dissipation rate e, the scale £ and not the integral scale £0. It 
thus follows from the K41 theory that, if we take the limits v - 0 and 
fo - oo (order indifferent), while holding e > 0 fixed, all the structure 
functions have finite limits. (Insofar as the constants Cp are finite.) There 
is an important converse to this statement: if the structure functions 
have finite nonvanishing limits when v - 0 and fo - oo while holding 
e > 0 fixed, then these limits display K41 scaling. Indeed, for finite 
£0, dimensional analysis implies that the structure function of order p 

is given by the r.h.s. of (6.64) times a dimensionless function Sp(f/£0 ); 

13 Structure functions are sometimes defined with an absolute value of the velocity incre­
ment. This is justified for noninteger values of p, but should be avoided for odd ps. 
For example, Kolmogorov's four-fifths law concerns the third order structure function 
without an absolute value. 
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this function has a finite nonvanishing limit as f o --+ oo or, equivalently, 
as f --+ 0, thereby ensuring K41 scaling. Hence, deviations from K41, 
which will be discussed in Chapter 8, require that structure functions of 
order other than 3 have an explicit dependence on the integral scale at 
inertial-range separations. 

We now return to consequences of K41. The fact that the second order 
structure function follows an f.213 law implies a k- 513 law for the energy 
spectrum. Indeed, from (4.60), (4.61) and (6.64), we obtain 

(6.65) 

The experimental results presented in Section 5.1 support the K41 
theory as far as the second order structure function (and thus the spec­
trum) is concerned. As we shall see later, the consistency between the 
K41 theory and experimental data on structure functions is questionable 
when p > 3. 

6.3.2 Effect of a finite viscosity: the dissipation range 

In Section 6.2.5, we showed that when the viscosity v is small, there is an 
'inertial range' in which direct energy injection and energy dissipation are 
both negligible. This inertial range was shown to extend at least down 
to scales comparable to the Taylor scale Jc = (5E/Q)112. We now use 
the improved results obtained in Section 6.3.1 (which involve additional 
unproved assumptions) to show that, in the K41 framework, the inertial 
range actually extends down to the 'Kolmogorov dissipation scale' 

F c:r (6.66) 

We start from the energy-flux relation (6.45), and assume that K ~ Kc 
so that ffe K ~ e. The dissipation term involves the cumulative enstrophy 

1 ( < 2) {K 2 
QK = 2 l<»K I =Jo k E(k)dk. (6.67) 

By substituting the inertial-range value (6.65) of the energy spectrum 
E(k) into (6.67), we can find the wavenumber up to which the dissipation 
term 2vQK in (6.45) is negligible compared to the energy flux E>. This 
gives the following 'dissipation wavenumber' (order unity constants have 
been omitted) 

(
v3) - 1/4 

Kd = - , 
[; 

(6.68) 
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which is precisely the inverse of the 'Kolmogorov dissipation scale' 17 

defined above. The range of scales comparable to or less than 17 is called 
the 'dissipation range'. In this range the energy input from nonlinear 
interactions and the energy drain from viscous dissipation are in exact 
balance. It is a misconception that nonlinear interactions may be ignored 
in the dissipation range. 

Kolmogorov's (1941a) original derivation of the dissipation scale 17 was 
rather different : 

Kolmogorov's first universality assumption.14 At very high, but not infinite 
Reynolds numbers, all the small-scale statistical properties are uniquely and 
universally determined by the scale R., the mean energy dissipation rate e and 
the viscosity v (or, equivalently, by f, e and 17). 

'Small-scale' is here understood as scales small compared to the integral 
scale, i.e. inertial-range and dissipation-range scales. By a simple dimen­
sional argument, the first universality assumption implies the following 
universal form for the energy spectrum at large wavenumbers 

E(k) = e2f 3k-5/3 F(17k), (6.69) 

where F(-) is a universal dimensionless function of a dimensionless argu­
ment. By the second universality assumption of Kolmogorov (Section 6.1), 
F(") tends to a finite positive limit (the Kolmogorov constant) for van­
ishing argument. The universality of the whole function F(-) has been 
questioned by Frisch and Morf (1981), using the same sort of argument 
that Landau developed for the Kolmogorov constant (see Section 6.4). 

There were several early attempts to determine the functional form 
of F(·) at high wavenumbers. They will not be reviewed here (see, e.g., 
Monin and Yaglom 1975). The most interesting remark was made by 
von Neumann (1949). He observed that an analytic function has a 
Fourier transform which falls off exponentially at high wavenumbers. 
The logarithmic decrement is equal to the modulus b of the imaginary 
part of the position of the singularity in complex space nearest to the 
real domain. Therefore, in von Neumann's view, exponential fall-off at 
high k was more likely than the rapid algebraic fall-off proposed by 
Heisenberg ( 1948). Actually, for a random homogeneous function, the 
situation is a bit more complicated: there is a probability distribution 
P(b) and thus the form for the energy spectrum at high k is the Laplace 
transform of P('5) near its minimum value b* (Frisch and Morf 1981). 

14 Called by Kolmogorov the 'first hypothesis of similarity' and recast here in slightly 
different language. 
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An exponential fall-off (with possible algebraic prefactors) is obtained 
only if {J* > 0, i.e. if there is a tubular region around the real domain 
in which (almost) all realizations are analytic. This will be referred to 
as uniform analyticity. The experimental results of Gagne (1987) suggest 
that this condition may be satisfied. We shall come back to the issue of 
complex singularities in connection with intermittency in the dissipation 
range (Section 8.2). 

6.4 Kolmogorov and Landau: the lack of universality 

An important issue in fully developed turbulence is Landau's objection 
to universality. In Sections 6.4.1- 6.4.3 we shall examine the original 
formulation of Landau's slightly cryptic objection (Section 6.4.1 ), its 
modern reinterpretation (Section 6.4.2, which some readers may wish to 
examine first), and the evidence that Kolmogorov actually had a version 
of his theory which withstood Landau's objection (Section 6.4.3). 

6.4.1 The original formulation of Landau's objection 

In the first (Russian) edition of the book on fluid mechanics that Lan­
dau published with Lifshitz and which appeared in 1944, there was a 
footnote15 which in later editions found its way to the main text. Here­
after is the full text of the remark. The English is taken from the 
most recent version of the book (Landau and Lifshitz 1987). The only 
change is the substitution of the notation of the present book for velocity 
increments, structure functions and the integral scale. 

It might be thought that the possibility exists in principle of obtaining a universal 
formula, applicable to any turbulent flow, which should give S2(.e) for all distances 
.e that are small compared with .e0. In fact, however, there can be no such formula, 

as we see from the following argument. The instantaneous value of ( bv
11
(.e)) 2 

might 
in principle be expressed as a universal function of the dissipation e at the instant 
considered. When we average these expressions, however, an important part will be 
played by the manner of variation of e over times of the order of the periods of the 
large eddies (with size ,..., .e0 ), and this variation is different for different ffows. The 
result of the averaging therefore cannot be universal. 

It is possible that Landau made a similarly worded remark to Kol­
mogorov, shortly after the publication of the 1941 theory when they 
where both in the city of Kazan (on the Volga), a place to which many 
Moscow activities had been decentralized in the face of the approaching 
Nazi threat. This is, however, not clear, because the only remark on 

15 It will henceforth be referred to as the 'footnote remark'. 
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record which we found was made by Landau at the end of a seminar 
delivered in Kazan in January 1942. A resume of this seminar and of 
Landau's remark were published (Kolmogorov 1942). According to the 
resume, Kolmogorov first summarized his 1941 work and then proposed 
an application to turbulence modeling which is outside of the scope of 
the present book. At the end of the seminar Landau made the following 
remark.16 The English is taken mostly from the translation by Spalding 
(1991). 

L. Landau remarked that A.N. Kolmogorov was the first to provide correct under­
standing of the local structure of a turbulent flow. As to the equations of turbulent 
motion, it should be constantly born in mind, in Landau's opinion, that in a tur­
bulent field the presence of curl of the velocity was confined to a limited region; 
qualitatively correct equations should lead to just such a distribution of eddies. 

Both the 'footnote remark' and the 'Kazan remark' reqmre some 
explanation, which will be given in the next section. 

6.4.2 A modern reformulation of Landau's objection 

We shall here give an interpretation of Landau's 'footnote remark' which 
is largely based on the one proposed by Kraichnan (1974). Landau 
tried to show that the Cps in (6.64), for p -=!= 3, cannot be universal, i.e. 
they must depend on the detailed geometry of the production of the 
turbulence. 

The E in (6.64) is a mean dissipation rate, the mean being taken over 
the attractor of the flow, i.e. the mean is a time-average. Let us now 
construct a superensemble, made of N > 1 experiments with different 
positive values of the mean dissipation rate, denoted E; (i = 1, · · · , N). 
The differences could be caused, for instance, by the flows having different 
integral scales. Let us tentatively assume that the Cps are universal. We 
denote by S~(f) the structure functions for the ith flow. We have, by 
(6.64): 

(6.70) 

Now, let us assume that it is legitimate to apply (6.64) to the superensem­
ble (we shall come back to this). We define 

s;uper(.e) = ~ L S~(f) and esuper = ~LE;, 
. i 

(6.71) 

the superaveraged structure functions and dissipation rate, respectively. 

16 It will henceforth be referred to as the 'Kazan remark'. 
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From (6.64) and (6.70), we obtain: 

(6.72) 

This relation is contradictory, except when p = 3. 
The preceding argument depends crucially on the ability to consider 

the different flows as being part of a single superflow. This can be justified 
by considering a single flow in which the characteristic parameters change 
slowly in space on a scale much larger than the integral scale. Let us, for 
example, consider a wind tunnel in which a uniform flow of velocity V is 
incident on a grid made of parallel rods with a uniform mesh m. There 
are two types of rod, as sketched in Fig. 6.3; type A has diameter d 1 and 
type B has diameter d2 > d1• In assembling the grid, type A and type B 
are selected at random in such a way that the type is changed on average 
every M rods, where M is a large number (say, 1000). The turbulence 
downstream (say, 100 meshes) behind type-B rods has a larger integral 
scale than that behind type-A rods. Hence, the dissipation rate per unit 
mass s2 behind type-B rods is smaller than the dissipation rate s1 behind 
type-A rods. (For dimensional reasons, s scales as V3 /d.) In this example, 
it is clear that the properties of the turbulent eddies at a given location 
can be significantly affected only by those rods behind which they are 
produced. However, all the parts of the flow are coupled (for example, 
by pressure effects), so that it is legitimate to treat the superensemble as 
a single flow. 

We observe that Landau's 'footnote remark' was formulated in the 
temporal rather than in the spatial domain. This is precisely the picture 
we get if, in the above example, we endow the grid with a slow uniform 
motion parallel to itself; a fixed probe will then successively encounter 
the eddies associated to type-A and type-B rods. 

There is another interesting implementation of Landau's 'footnote 
remark', which uses the 'Kazan remark'. The latter probably referred 
to the experimental fact that in the turbulent flow produced by a jet, 
vorticity seems to be confined to a roughly conical region with a very 
sharp outer boundary, beyond which the flow is found to be laminar, 
as suggested by Fig.1.14. This boundary has an instantaneous shape 
which is quite complex (possibly a fractal) 17 and, of course, it changes 
in time. A probe placed at some distance from the axis of the jet will 

17 The boundary is so complex that occasionally pockets of laminar fluid are found right 
on the axis of the jet. 
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Fig. 6.3. An illustration of Landau's objection to the universality of the constants 
Cp in the structure functions, using a grid made of two sorts of rod. 

thus find that the turbulence is 'on' only some fraction of the time, which 
decreases as the probe is moved away from the axis.18 As a consequence, 
the (apparent) Kolmogorov constant will change with the distance to the 
axis (Kuznetsov, Praskovsky and Sabelnikov 1992). 

Note that in all the above arguments, we (but not Landau) had to 

18 This phenomenon is known as 'external intermittency' ; its relation to the intermittency 
discussed in Chapter 8 is not clear. 
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assume a separation of scales between the integral scale and the super­
large scale on which the energy input is modulated. In other words, we 
had to assume that the production mechanism involves (at least) two 
scales. Otherwise, it is not clear that universality can be proven wrong. 

Here, we wish to add a few words for the benefit of those readers 
familiar with renormalization group techniques, a subject discussed briefly 
in Section 9.6.4. Forster, Nelson and Stephen (1977) have investigated 
the problem of randomly forced turbulence when the forcing spectrum 
follows a power-law F(k) = 2Dk3

-E, with € positive and small. The 
coefficient D then appears to the power 2/ 3 in the expression of the energy 
spectrum, so that Landau's nonuniversality argument can be carried over 
almost identically. Fournier and Frisch (1983a) have shown that, as long 
as very-long-range correlations are ruled out, the dimensionless constant 
in the energy spectrum (the analog of the Kolmogorov constant) can be 
calculated explicitly in terms of€ (for small €) and is thus universal. 

6.4.3 Kolmogorov and Landau reconciled? 

Our presentation of the K41 theory in Chapter 6 uses scale-invariance 
rather than universality in deriving, for example, the two-thirds law. 
It is thus not inconsistent with Landau's 'footnote remark'. Actually, 
Kolmogorov himself was to some extent aware of the existence of an 
alternative formulation of his 1941 theory. 

Let us indeed consider the third 1941 paper (Kolmogorov 1941c). After 
deriving the four-fifths law, Kolmogorov makes the following statement 
(adapted to our notation): 

It is natural to assume that for large f the ratio S3(f )/(S2(f ))312
• i.e. the skewness 

of the distribution of probabilities for the difference c5v
11
(f), remains constant. 

(In the context of the paper 'large' means at inertial-range scales.) In other 
words, a particular form of scale-invariance is postulated by Kolmogorov. 
Also, notice that he assumes that the skewness is 'constant' (independent 
of scale) rather than 'universal' (independent of the flow). From this 
assumption and (6.5) he then recovers the two-thirds law for S2(f) (his 
relation (9)) and observes that 

.. . in Kolmogorov ( 1941a) the relation (9) was deduced from somewhat different 
considerations. 

It seems therefore legitimate to refer to the scale-invariant version of 
the theory also as 'K41'. However, Kolmogorov, in his third 1941 did 
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not try to give up universality, since the paper includes an attempt to 
estimate the value of the Kolmogorov constant from experimental data.19 

Kolmogorov did not try to modify the 1941 theory until the early 1960s, 
as discussed in Chapter 8. 

6.5 Historical remarks on the Kolmogorov 1941 theory 

The k-513 law for the energy spectrum, which is an immediate conse­
quence of the two-thirds law, is actually not explicitly written in Kol­
mogorov's first turbulence paper. It is found for the first time in Obukhov 
(1941a, b), who derived it from a closure argument: he guessed a simple 
dimensionally consistent expression of the energy flux II(k) in terms of 
the sole energy spectrum. According to Kolmogorov (194lc), Obukhov's 
derivation was 'independent' of his. Obukhov's argument cannot be used 
to predict expressions for structure functions of order higher than 2. 

Kolmogorov's work remained unknown in the West until after the war 
when it received considerable exposure thanks to Batchelor (1946, 1947, 
1953). Since the remarks made by Landau came to be known only later, 
the emphasis was on the universality aspects of Kolmogorov's theory. 

The Kolmogorov theory was actually independently discovered several 
times by famous scientists. A case study of this has been made by 
Battimelli and Vulpiani (1982) from whose work most of the following 
lines are taken. 

While detained at Farm Hall near Cambridge at the end of 1945, 
Heisenberg and von Weizsacker developed a closure theory of fully de­
veloped turbulence quite similar to that of Obukhov, which also leads to 
the k-513 law for the energy spectrum. These related theories were even­
tually published as companion papers (von Weizsacker 1948; Heisenberg 
1948). 

Onsager arrived at the k-513 law (actually a k- 11
/

3 law because he 
worked with the three-dimensional spectrum) by considering the en­
ergy cascade and requesting, like Kolmogorov, dependence only on the 
wavenumber and on the energy dissipation rate. He also stressed the 
universality of the factor in front of e213k-1113. He communicated his 
results in June 1945 in a letter to C.C. Lin (Onsager 1945a). He also 
communicated his results to T. von Karman whose reaction was not 
enthusiastic (according to a letter the latter sent to C.C. Lin). A short 

19 Kolmogorov had a very strong interest in experimental aspects of turbulence and ascribed 
this in part to the influence of Ludvig Prandtl whom he may have met during his visit 
to Gottingen around 1930 (V.I. Arnold, private communciation). 
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abstract was published that same year (Onsager 1945b). A longer paper 
was published a few years later, after Onsager had become aware of the 
work of Kolmogorov and of the German physicists (Onsager 1949). Here, 
Onsager pointed out that an £113 law for velocity increments means that, 
in some sense, the velocity is not smooth but only HOlder continuous 
of exponent one-third and brought up (probably for the first time in the 
subject) the issue of singularities to which we shall return in Sections 7.8 
and 9.3. 



7 
Phenomenology of turbulence in the sense 

of Kolmogorov 1941 

7.1 Introduction 

In previous chapters we showed how it is possible to establish certain 
scaling laws for fully developed turbulence by starting from unproven 
but plausible hypotheses and then proceeding in a systematic fashion. By 
'phenomenology' of fully developed turbulence one understands a kind of 
shorthand system whereby the same results can be recovered in a much 
simpler way, although, of course, at the price of less systematic arguments. 
Phenomenology of fully developed turbulence has some associated 'men­
tal images', such as the 'Richardson cascade' (Section 7.3), which have 
played a very important role in the history of the subject. After recasting 
the K41 theory in phenomenological language and images, it also be­
comes possible to grasp intuitively some of the shortcomings which may 
be present. A considerable part of the existing work on turbulence rests 
on K41 phenomenology, particularly in applied areas such as the model­
ing of turbulent flow. Kolmogorov himself, with Ludwig Prandtl, was one 
of the pioneers of this important area of research, which is beyond the 
scope of this book (Kolmogorov 1942; see also Batchelor 1990, Spalding 
1991 and Yaglom 1994). We shall give only some examples of what can 
be derived by phenomenology: counting degrees of freedom (Section 7.4), 
comparing macroscopic and microscopic length scales (Section 7.5), find­
ing the probability distribution function of velocity gradients (Section 7.6) 
and finding the law of decay of the energy (Section 7. 7). 

Other examples of what phenomenology and simple scaling arguments 
can achieve may be found in Tennekes and Lumley ( 1972), Tennekes 
(1989) and Monin and Yaglom (1971, 1975). We finally give an example 
where the usual phenomenology can be very misleading: finite-time 
blow-up for ideal flow (Section 7.8). 
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Hereafter, the symbol'""' will mean 'equal within an order unity constant'. 
In estimates of orders of magnitude, no distinction will be made between 
a vector and its modulus; hence, vector notation will be mostly dropped. 
Order unity factors (e.g., 1/2) will be dropped unless they appear repeated 
many times (e.g., in 2-n). 

The main ingredients of phenomenology are listed below. 

• R: the scale under consideration (typically taken between the integral 
scale Ro and the dissipation scale 1J ). 

• ve: the typical value of the velocity associated to scales "" R. The 
correct definition is the r.m.s. value of the velocity subject to band­
pass filtering, say of an octave around the wavenumber .e-1. A working 
definition, for most instances, is to take 

(7.1) 

when R ~ Ro and 

ve"" J (v(r + l) · v(r)), (7.2) 

when R > Ro. 
• vo: the r.m.s. velocity fluctuation "'ve0 • 

• tf the 'eddy turnover time'1 associated with the scale R: 

R 
te "' -. 

Ve 
(7.3) 

tf is the typical time for a structure of size "" R to undergo a significant 
distortion due to the relative motion2 of its components, as indicated 
in Fig. 7.1. 

In view of the conservation of volume (incompressibility), if pairs of 
points such as 1 and 2 in Fig. 7.1 diverge, other pairs of points such as 
3 and 4 must come together. Thus, te is also the typical time for the 
transfer of excitation (e.g., energy) from scales"' R to smaller ones. From 
this, we may estimate the energy flux from scales "' f to smaller scales, 
here denoted JI~ :3 

(7.4) 

1 Also called 'circulation time'. 
2 The absolute motion produces no distortion. Kolmogorov (194la) pointed out in a 

footnote that relative velocities must be used. 
3 II£ may be defined as the energy flux IIK for K "'e~1 . 
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1 1 

I V1 - v2 I 
3 ~-------,> 3 4 

2 2 

Fig. 7.1. Cross-section of a (roughly) spherical volume being squeezed into ellip­
tical shape by fluid motion: points 1 and 2 separate, whilst points 3 and 4 get 
closer. 

Indeed, the numerator is, within a factor 1/2, the amount of kinetic 
energy per unit mass associated with eddy motion on scales ,..., f and the 
denominator is the typical time for the transfer of such energy to smaller 
scales. 

In the inertial range, where there is neither direct energy input nor 
direct energy dissipation, the energy flux should be independent off and 
equal to the (finite) mean energy dissipation rate c:: 

3 
I Ve 

II e "' f "' c:. (7.5) 

Thus, 

Ve ,..., c;l/3 gl/3, (7.6) 

which expresses in our phenomenological language that the velocity field 
is scale-invariant of exponent h = 1/3. By (7.3) and (7.6), the eddy 
turnover time is 

(7.7) 

One consequence is that when pairs of particles are released in a turbulent 
flow a distance f apart, the rate of increase of the square of their distance, 
f!.2 / te, varies as £413• The experimental discovery of this law by Richardson 
(1926) antedates the Kolmogorov 1941 theory. 

Near the top of the inertial range, when f"' f!.0, (7.6) becomes 

1/3 nl/3 
vo ,..., c: -to ' (7.8) 
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which may also be written as 

v6 
e,..., fo. {7.9) 

This relation also follows from the four-fifths law (6.5) and has a wider 
applicability than the K41 theory: it only uses hypothesis H3 about 
the finiteness of the energy dissipation. Eq. (7.9) is actually used very 
frequently in the empirical modeling of turbulence. 

The bottom of the inertial range, where viscosity becomes relevant, can 
be obtained phenomenologically as follows. The typical time for viscous 
diffusion to attenuate excitation on a scale "" f is4 

diff £2 

te "" -
v 

(7.10) 

Observe that t~itr goes to zero with f faster than te, given by (7.7). It 
follows that, however small the viscosity, diffusion will become relevant 
below a scale obtained by equating the two times, viz 

( 
v3) 1/ 4 

11 "" - ' 
8 

{7.11) 

which is the Kolmogorov dissipation scale already introduced in Sec­
tion 6.3.2. 

This is the place to mention that in experiments, it is usually found 
that viscosity becomes relevant at scales (in the physical space) about 30 
times5 larger than 17. This may be interpreted trivially by noting that 
phenomenology does not predict numerical constants. Less trivially, it 
suggests that nonlinear interactions are actually weaker than predicted 
by a turnover argument. 

7.3 The Richardson cascade and the localness of interactions 

It is useful to recast the phenomenology of the previous section m 
graphical form as shown on Fig. 7.2. The eddies of various sizes are 
represented as blobs stacked in decreasing sizes. The uppermost eddies 
have a scale "" f o. The successive generations of eddies have scales 
f n =for", (n = 0, 1,2,. .. ) where 0 < r < 1. The valuer= 1/ 2 is the most 
common choice, but the exact value has no meaning. The smallest eddies 

4 This may be seen by noting that Fourier components with wavenumber k "" f - I are 
attenuated proportionally to e-vk

2
t . 

5 In Fourier space, the energy spectrum departs significantly from the k- 513 law beyond 
wavenumber Kd / 10 = 1/ (1017); see Monin and Yaglom (1975). 
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Fig. 7.2. The cascade according to the Kolmogorov 1941 theory. Notice that at 
each step the eddies are space-filling. 

have scales"' 17 , the Kolmogorov dissipation scale. The number of eddies 
per unit volume is assumed to grow with n as ,-3n to ensure that small 
eddies are as space-filling as large ones. Energy, introduced at the top at 
a rate e (per unit mass), is 'cascading' down this hierarchy of eddies at 
the same rate e and is eventually removed by dissipation at the bottom, 
still at the rate e. The picture is, of course, not intended to be taken too 
literally: eddies could be much flatter than shown and the smaller ones 
are actually imbedded in the larger ones.6 The main advantage of the 
cascade picture is that it brings out two basic assumptions of the K41 
phenomenology. 

The first assumption is scale-invariance within the inertial range. This 
would be violated if, for example, small eddies were less and less space­
filling. Such an assumption leads to corrections to the K41 theory. This 
matter will be discussed in detail in Section 8.5. l. The second assumption 
is localness 7 of interactions. This means that, in the inertial range, the 
energy flux at scales "' f involves predominantly scales of comparable 
size, say from rl!. to ,-1g. 

6 In the figure, where eddies are stacked on top of each other, their number grows only 
as r-n. 

7 In turbulence, 'local' and 'localness' usually refer to scales, not to positions as in other 
areas of physics. 
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The traditional argument in favor oflocalness goes as follows. Consider 
an inertial-range eddy of scale f. It will be swept along by the energy­
containing eddies with scales "' fo ~ f. This will not change the energy 
content of the eddy being swept. Note that a uniform sweep induces no 
distortion of fine-scale structures, because of the Galilean invariance of 
the Navier-Stokes equation. In homogeneous isotropic turbulence, the 
sweeping of inertial-range eddies by energy-containing eddies might be 
thought of as akin to a random Galilean transformation (Section 6.2.5). 
Actually, as observed by Kraichnan (1958, p. 42), velocity jumps of an 
appreciable fraction of the r.m.s. velocity can take place across very thin 
shear layers. It may therefore not always be legitimate to associate large 
velocities exclusively with large scales. Furthermore, Kraichnan (1959, 
p. 536) pointed out that there are slender vortex filaments extending 
'throughout a substantial part of the turbulent domain' and that this 
leads to questioning some aspects of K41.8 

Leaving the issue of sweeping, let us now consider distortion, which is 
controlled by shear, i.e. velocity gradients. The typical shear se associated 
with scales "' ,£ is 

Ve 1/ 3 o-2/ 3 se "' - ""' e {, ,£ ' 
(7.12) 

where Vt is obtained from (7.6). The smallest shear is near the top of the 
inertial range ,£ "' f o and the largest near its bottom ,£ "' 17. The shearing 
of an eddy of scale,£ by an eddy of scale ,£' ~ ,£ is ineffective in producing 
distortions, because there is very little shear at such scales. The shearing 
of an eddy of scale ,£ by eddies of scale ,£' ~ ,£ is ineffective in producing 
distortions, because the shearing eddies are not acting coherently9 over 
the scale f. Hence, the predominant distortions come from scales ,£' "' ,£. 

Such phenomenological considerations about localness can be supple­
mented by a harder argument if we consider the exact expression (6.24) 
for the energy flux for homogeneous isotropic turbulence. When we 
substitute the four-fifths law (6.53) for the third order structure function, 
we find that the integral in (6.24) converges both at small f s (ultraviolet 
region) and at large f s (infrared region). It follows that the dominant 
contribution to the flux llK comes from ,£ "' 1/ K. This result would 

8 At that time, Kraichnan had an alternative theory, the direct interaction approximation 
(DIA; see Section 9.5.3) which provided an incentive to look for shortcomings of K41 ; 
whatever the later fate of the DIA, his criticisms remain of considerable interest in view 
of the current work on vortex filaments (see Section 8.9). 

9 The effect on eddies of scale "' ,£ may be represented by an 'eddy viscosity' (see 
Section 9.6); a phenomenological presentation of this may be found in Frisch and 
Orszag ( 1990). 
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remain true if, at inertial-range scales, the third order structure function 
S3(f) scaled as f C3 with 0 < (3 < 2. Of course, (3 can differ from 1 only 
if hypothesis H3 of Section 6.1 is violated. 

To following historical and poetical note serves as concluding note 
about cascades. The modern concept of a cascade probably owes its 
origins to Lewis Fry Richardson (1922). He took inspiration from 
observations of clouds and from Jonathan Swift's verse: 

So, nat'ralists observe, a flea 
Hath smaller fleas that on him prey; 
And these have smaller yet to bite 'em, 
And so proceed ad infinitum. 
Thus every poet, in his kind, 
Is bit by him that comes behind. 

The last two lines, which are not usually quoted, may also be relevant, if 
'fluid dynamicist' is substituted for 'poet'. 

In Kolmogorov's 1941 papers no explicit reference to Richardson is 
made, but in his 1962 paper Kolmogorov writes that the K41 hypotheses 
'were based physically on Richardson's idea of the existence in the turbu­
lent flow of vortices of all possible scales .. .'. Furthermore, Richardson's 
work is quoted in Obukhov's (1941a, b) papers, written under the direc­
tion of Kolmogorov. The graphical representation of the cascade shown 
in Fig. 7.2 is taken from Frisch, Sulem and Nelkin (1978), where it was 
used mostly to underline a possible shortcoming of the K41 theory to 
which we shall return in Section 8.5.1. 

7.4 Reynolds numbers and degrees of freedom 

The results of Section 7.2 may be recast in dimensionless form by using 
as reference length the integral scale .€0, as reference velocity the r.m.s. 
velocity fluctuation v0 and as reference time their ratio 

fo 
to,.....,-, 

Vo 
(7.13) 

the 'large eddy turnover time'. Using (7.6) and (7.9), we obtain the 
following expressions at inertial-range scales: 

Ve ,....., (i ) 1/ 3 ' !!._ ,..., (i) 2/ 3 (7.14) 
vo fo to fo 

We now define the integral-scale Reynolds number 

R "" f ovo . 
v 

(7.15) 
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This is the most frequently used Reynolds number in phenomenological 
work. Henceforth, 'Reynolds number' without further specification will 
always mean integral-scale Reynolds number. Observe that, when the 
Reynolds number is high, the Taylor-scale Reynolds number 

R).""' A.vo' (7.16) 
v 

defined in (5.7), is related to the integral-scale Reynolds number by 

(7.17) 

To show this, it suffices to use (6.55), (7.9) and E "'v&. Observe that only 
hypothesis H3 (finiteness of the energy dissipation rate for R - oo) is 
used in deriving the relation above. 

We now give a very important relation concerning the viscous cutoff, 
the Kolmogorov dissipation scale 11· From (7.11) and (7.9), we obtain 

fo ""' (~)-
114 

""'R3/4. 
1J £6vJ (7.18) 

Hence, in the K41 theory, the inertial range spans a range of scales 
growing as the (3/4)th power of the Reynolds number. It follows that if 
we want to describe such a flow accurately in a numerical simulation on 
a uniform grid, the minimum number of grid points per (integral scale )3 

IS 

(7.19) 

One consequence of this is that the storage requirement of a (fully re­
solved) numerical simulation grows as R914. Since the time step has 
usually to be taken proportional to the spatial mesh,10 the total compu­
tational work needed to integrate the equations for a fixed number of 
large eddy turnover times, grows as R3

• This scaling shows that progress 
in achieving high Reynolds numbers in 'honest' (fully resolved) simula­
tions, may be very slow. 11 Of course, this result is based on the assumed 
K41 scaling, but so far it has provided rather good empirical guidance 
for how much the Reynolds number can be scaled up when increasing 
the numerical resolution. 

The figure R914 is sometimes taken to measure the number of degrees 

of freedom of a turbulent flow. For this to be correct, we must assume: 
(i) that the K41 theory is right; (ii) that the motion at inertial-range 

lO In order to be able to follow the sweeping of the finest structure across one mesh. 
11 The state-of-the-art is now somewhere between R ""' 103 and R ""' 104. 
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hg 7.3. Lar11c-scalc 'tructurc in a turbulent mtlling la}cr ltt). Coherent structure 
.11 higher Rc:.nold~ number (bl (Van 0)1.;c 191121 Photograph~ J, Konrad (a) and 
M. Rebollo (bJ. 

scales is almtht totally dhorganized. There is, htme,cr, considerable 
evidence that h1gh-Re~nolds-number turbulent Oow is far from being 
totally disorganized. Experiments in v.. ht ch the turbulence is produced 
by interfacing two streams Y.llh d1trcrcnt velocities (mixing layers> reveal 
'coherent structures' on .. cale ... comparable to (o (see. e.g .. Fig. 7.3). There 
is abo C\idcnce that 'lome order 1s pre:oent on smaller scales. Indeed. high­
Rc} nolds-number simulations re\ ea) the presence of vortex filaments in 
three-dimensional turbulent flov.. of the 'ort .... -en in Fig. 7.4, a matter we 
shall return to Ill Section 8.9. Here. \\e just point out that the number 
of degrees of freedom could be significantly 'mailer than R9 

.: • thereby 
brightening the pro ... pects for numerical simulations (but not on uniform 
grids). 

From the vie\\ point of dynamical systems. the number of degree~ of 
freedom of a turbulent flow may be defined as the dimension of ih 
attractor (see. e.g .. Ruelle 1989), This defimuon 1s userul in studying the 
transition to Lurbulence \\-hen the dimensions are \'ef) lo\\ and can be 
accurate!) mea ured using. for example. the Gr,1 ...... berger and Procaccia 
I 1983) scheme. No reliable method has been found to measure dimensions 
abme. Sa) IO or 20. For fully de\elopcd turbulence. e)(isting c;chemes 
are thus completel) usele..,s. Attempt., ha\c been made to obtain upper 

lwund~ for ~uch dimcm.ions.' 2 Thi" cannot be done rigorously. since 

\cc, e g , C:nn~tantm, h11." and Temam 1988. 
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Fig. 7.4. Intermittent vortex filaments in a three-dimensional turbulent fluid 
simulated on a computer (She, Jackson and Orszag 1991). 

not enough is known about the uniqueness and regularity properties of 
the three-dimensional Na vier-Stokes equation.13 Even with unproven 
assumptions made about the viscous cutoff, such bounds do not improve 
on the K41 estimate N ""' R914 . 

7.5 Microscopic and macroscopic degrees of freedom 

A question frequently asked about fully developed turbulence goes as 
follows: since the dissipation scale decreases with the viscosity, could 
it not become so small that the hydrodynamic approximation breaks 

13 For two-dimensional flow there are known rigorous bounds, which are far above the 
number of grid points needed in a simulation. 
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down ?14 In this hypothetical situation, microscopic phenomena would 
become important in selecting the solution. This is certainly the case 
if the Navier-Stokes equation with finite but small viscosity generates 
genuine singularities, as has been speculated by Leray (1934) and never 
been disproved rigorously (see Sections 7.8 and 9.3.) It is also the case if 
no singularities are present but the dissipation scale is comparable to the 
molecular mean-free-path. 

Actually, such possibilities are ruled out in the K41 framework. We 
shall now show that the ratio of the Kolmogorov dissipation scale 17 to 
the molecular mean-free-path Amfp is a growing rather than a decreasing 
function of the Reynolds number. In order to stay within the K41 frame­
work of incompressible turbulence, we must assume that the turbulent 
flow has a small Mach number: 

(7.20) 

where Cs denotes the speed of sound. For most fluids, such as air or 
water, the speed of sound is comparable in order of magnitude to the 
thermal speed, the r.m.s. value of molecular velocities : 

(7.21) 

Furthermore, the (kinematic) viscosity, like any transport coefficient, is 
given approximately by 

V ""' Amfp Cth· 

It follows from (7.18), (7.20), (7.21) and (7.22) that (Corrsin 1959) 

_11_ ""' !1_ Povo cth ""' M-1 Rt/ 4 

Amfp Co AmfpCth Vo · 

(7.22) 

(7.23) 

This ratio is very large because of the factor M-1, and it grows indefinitely 
with R. One consequence of this is that, the higher the Reynolds number, 
the better the hydrodynamic approximation and the smaller the ratio of 
macroscopic to microscopic degrees of freedom. We stress once more 
that such conclusions hold only within the K41 framework. 

14 It is well known that such a breakdown happens for shock waves in a compressible 
fluid: their width can be comparable to the mean-free-path. 
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We show here that K41 phenomenology together with a simple argument 
a la Landau of the sort used in Section 6.4 can be used to relate the p.d.f. 
of the velocity and that of its gradient. 

Let us assume that the turbulence is homogeneous and isotropic and 
describable by K41 phenomenology. The notation v0 will now denote a 
fluctuating velocity characteristic of large eddies, rather than the r.m.s. 
velocity. Its p.d.f. is denoted Pv(v0 ). For simplicity, it is assumed that the 
integral scale Ro has no fluctuations. In view of (7.6), (7.9) and (7.11), the 
velocity increment over a distance £ and the dissipation scale are given 
by 

and 
3 ! _J_ 

n "' V 4 £4 V 4 ., 0 0 ' 

(7.24) 

(7.25) 

respectively. Hence, the velocity gradient (denoted s, for 'strain') is given 
by 

(7.26) 

Eq. (7.26) defines a nonlinear change of variables from vo to s. It follows 
that the p.d.f. Ps of velocity gradients is given by (order unity constants 
are dropped) 

(7.27) 

Even within K41 phenomenology, this relation is of dubious validity for 
the core of the p.d.f.s, i.e. values of v or s comparable to their r.m.s. values. 
Indeed, arguments which are valid only within order unity constants are 
not suited for predicting precise functional forms. Thus, (7.27) may be 
applied only to the tails of the p.d.f.s and cannot be used to predict 
low order moments such as the skewness and the flatness of velocity 
derivatives. We shall come back to such coefficients in Section 8.5.6. 

It is generally believed that the p.d.f. of the velocity is nonuniversal, 
since it depends on the detailed mechanism of production of the turbulent 
flow. Nonuniversality of the p.d.f. of the velocity translates, by (7.27), into 
nonuniversality of the tail of the p.d.f. of the velocity gradient. Actually, 
there are many instances where the p.d.f. of the velocity is found to 
be approximately Gaussian, for example in grid-generated turbulence 
in wind tunnels (Batchelor 1953) or for turbulence in the planetary 
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Fig. 7 S. The top three line~. inspected with a mirror. reveal Leonardo's knowledge 
about the decay of turbulence. 

boundary layer (Van Att<i and Park 1972). We then obtain for the p.d.f. 
of vcloc1t) gradients a modified exponential law involving a 4/ 3 power 
of the argument and a s I prefactor. 

The derivation in this section is taken from r risch and She ( 1991). 
This paper also bnefly discusses the modifica1ions which arc appropnatc 
beyond the K41 theory . .. urthcr results are contained in Benzi, Biferale, 
Paladin. Vulpiani and Vergassola ( 19911. When the velocity has a Gaus­
sian distribution. arguments of the kmd presented here give for the p.d.f. 
of vcloc1ty gradicn1s modified exponential distributions or more complex 
functional forms which are always decreasing much more slowly than 
uaussians. Such behavior is consistent with data from experiments and 
numerical simulations (see, e.g .. Vincent and Vtcncguzzi 1991). 

7.7 The law of dcca) of the eoerg} 

It 1s an experimental fact that turbulence. once generated. decays quite 
slowly. This may actuall) ha\'e been the ver) first sc1ent1fic observation 
ever made about turbulent ftow. Indeed. f'ig. 7.5. inspected with a mirror. 
will reveal the following notes made by Leonardo ( Pmmati 1894, fo. 74.v) 
around the year 1500. given with an English translation: 

douc laturbolcnza dcllacqua si11cncra 
doue la turbolcnza dcllacq ' simantiene plUgho 
douc laturbolcnza dcllacqua siposa 

where the turbulence of water i~ generated 
where the turbulence of water maintams for long 
where the turbulence or ...,atcr come~ to re\t 

In his second 1941 paper on turbulcn(X; Kolmogorov (194Jb) made 
an attempt to predict the quantitative law of decay of turbulence. His 



7. 7 The law of decay of the energy 113 

argument has been found to be somewhat flawed. It is still of considerable 
interest because it can be extended in such a way that (obvious) flaws are 
eliminated. We shall once more use a nontraditional presentation, which, 
hopefully, is faithful to the spirit of Kolmogorov's work. 

We shall say that the velocity has infrared asymptotic self-similarity 
with scaling exponent h < 0, if 

for R - oo, (7.28) 

where ve is defined by (7.2). We assume h < 0, since otherwise the velocity 
field is not homogeneous but has only homogeneous increments. The 
following may be shown. 

Principle of permanence of large eddies . . If the turbulent fl.ow is freely 
decaying (no external force) and initially possesses the property of infrared 
asymptotic self-similarity with a scaling exponent -5/2 < h < 0 and a 
constant C, then this property is preserved for all later times with the same 
hand C. 

This is a nontrivial result, to which we shall return below. Let us first 
examine its consequences. Eq. (7.28) implies that the velocity correlation 
function decreases as R2h for R - oo and that the energy spectrum is 

proportional to k-1- 2h for k - 0. Since h < 0, such a growing energy 
spectrum is unphysical at large wavenumbers (small scales). Let us 
therefore assume that there is a (time-dependent) integral scale Ro, below 
which the turbulence is of the usual fully developed type. This requires 

that the (time-dependent) Reynolds number 

R ,.._, Rovo ~ 1. 
v 

(7.29) 

The r.m.s. (time-dependent) velocity v0 may be evaluated from (7.28) by 
requiring that Vo "'Ve0 • This leads to 

(7.30) 

We now observe that, by (7.9), as long as R ~ 1, we can evaluate the 

rate of dissipation of the mean energy E "'v5 as follows: 

d 2 v6 
dt Vo "' -B "' - Ro · (7.31) 

From (7.30) and (7.31) we obtain the following differential equation for 
the integral scale: 

(7.32) 
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Provided that C is time-independent, (7.32) integrates to 

I 

£0 oc (t + a)i-h, 

and hence 
2h 

E oc (t + a)1-h, 

h 
v0 oc (t +a) 1-h, 

I+h 
R oc (t + a)l-1i. 

(7.33) 

(7.34) 

Observe that, h being negative, the r.m.s. velocity and the energy 
always decrease with time and the integral scale always increases.15 

When h > -1, the Reynolds number increases with time because the 
increase in the integral scale more than makes up for the decrease of the 
r.m.s. velocity. Hence, the flow has nontrivial asymptotics for large times. 
When h < -1 the above derivation ceases to be valid once the Reynolds 
number has dropped to values order unity. 

In his derivation, Kolmogorov (1941b) also makes crucial use of (7.31), 
his eq. (22), a relation whose validity, as we have already observed, is 
broader than the K41 theory used by Kolmogorov to derive it. (He 
actually observes that 'The formula (22) may be established in different 

ways'.) 
The main difference of substance between our derivation of (7.33)­

(7.34) and Kolmogorov's is that he restricted his argument to the case 
h = -5/2, thereby obtaining a t-to/7 law for the energy decay at large 
times. He made this particular choice because of a claim by Loitsyansky 
(1939), according to whom 

A= 100 

bnn(r, t)r4dr (7.35) 

should not depend on time. (Here, bnn(r, t) denotes the longitudinal 
velocity correlation function.) Batchelor and Proudman (1956; see also 
Proudman and Reid 1954) showed that Loitsyansky's derivation was 
invalidated by an effect involving long-range pressure correlations. 

However, there are good reasons to believe that the 'principle of 
permanence of large eddies', as formulated at the beginning of this 
section, holds for h > -5/2. Expressed in Fourier-space language, this 
principle states that if initially the energy spectrum behaves as 

E(k)"" C'ks, s = -1 - 2h, fork - 0, (7.36) 

then the same property will hold at later times with the same h (or s) 
and C'. When s = 2, the coefficient of k2 is proportional to the mean 

15 This increase in the integral scale does not involve a transfer of energy to larger scales 
(inverse cascade). It happens because smaller eddies die faster than larger ones. 



7.8 Beyond phenomenology: finite-time blow-up of ideal flow 115 

square linear momentum and is thus conserved (Saffman 1967a, b). In 
the general case, the constancy of the coefficient of k5 when s < 4 (or 
h > -5/2) is a consequence of the energy transfer relation (6.37) and the 
observation that the transfer function T(k) is proportional to k4 for small 
k. There is no rigorous proof of this result which has been established 
so far only by diagrammatic or renormalization group methods (see 
Sections 9.5 and 9.6.4). 

When s = 4 the coefficient of k4 in the energy spectrum should become 
time-dependent. Finding the law of decay is then an open problem. It 
has so far been solved only within a closure framework, yielding a law of 
decay of the energy oc t-n with n significantly smaller than Kolmogorov's 
value 10/7 (Lesieur and Schertzer 1978;. Frisch, Lesieur and Schertzer 
1980; Lesieur 1990). 

7.8 Beyond phenomenology: finite-time blow-up of ideal flow 

According to Richardson, energy introduced at the scale fo, cascades 
down to the scale Y/ where it is dissipated. Consider the total time T. 
which is the sum of the eddy turnover times associated with all the 
intermediate steps of the cascade. From (7.7), the eddy turnover time 
varies as £213 . If we let the viscosity v, and thus Y/, tend to zero, T. is the 
sum of an infinite convergent geometric series. Thus it takes a finite time 

for energy to cascade to infinitesimal scales. We also know that in the 
limit v ---+ 0, the enstrophy Q goes to infinity as v- 1 (to ensure a finite 
energy dissipation). 

From such observations, it is tempting to conjecture that ideal flow 
(the solution of the Euler equation), when initially regular,16 will sponta­
neously develop a singularity in a finite time (finite-time blow-up). 

This would be incorrect for at least two reasons. Firstly, the kind of 
phenomenology discussed in this chapter is meant only to describe the 
(statistically) steady state in which energy input and energy dissipation 
balance each other. The inviscid ( v = 0) initial-value problem is not 
within its scope. Secondly, a basic assumption needed for K41 is that 
the symmetries of the Navier- Stokes or Euler equation are recovered in 
a statistical sense (hypothesis Hl of Chapter 6). This requires the flow 
to be highly disorganized. Kolmogorov himself was clearly aware of this, 

16 For example, by having only large-scale motion initially, so that the flow is very smooth, 
actually analytic. 
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since in a footnote to his first 1941 paper he wrote: 

. . . In virtue of the chaotic17 mechanism of translation of motion from the pulsations 
of lower orders to the pulsations of higher orders, ... the fine pulsations of higher 
orders are subjected to approximately space-isotropy statistical regime ... 

Complex spatial structures have never been observed in numerical simu­
lations of inviscid flow with smooth initial conditions. Note that inviscid 
flow has frozen-in vortex lines (Lamb 1932; Batchelor 1970), the topology 
of which cannot change since no viscous reconnection can take place. 

There is yet another phenomenological argument, not requiring K41, 
which suggests finite-time blow-up. Consider the vorticity equation (2.15) 
for inviscid flow, rewritten as 

Drw = w · Vv, (7.37) 

where Dr = a1 + v · V denotes the Lagrangian derivative. Observe that Vv 
has the same dimensions as w and can be related to it by an operator 
involving Poisson-type integrals. (For this use the fact that V2v = -V /\w.) 

It is then tempting to predict that the solutions of (7.37) will behave as 
the solution of the scalar nonlinear equation 

(7.38) 

which blows up in a time 1 / s(O) when s(O) > 0. Actually, (7 .38) is 
just the sort of equation one obtains in trying to find rigorous upper 
bounds to various norms when studying the well-posedness of the Euler 
problem (see Section 9.3). This is precisely why the well-posedness 'in the 
large' (i.e. for arbitrary t > 0) is an open problem in three dimensions.18 

This problem has been singled out by Saffman (1981) as 'one of the 
most challenging of the present time for both the mathematician and the 
numerical analyst'. 

The evidence is that the solutions of the Euler equation behave in a 
way much tamer than predicted by (7.38). Since such evidence cannot 
be obtained by experimental means, one has to resort to numerical 
simulations. We briefly summarize here what is known from numerical 
simulations about inviscid three-dimensional flow with smooth initial 
conditions. 

The most reliable method for investigating blow-up uses a combination 
of the spectral technique (see the footnote on page 70 of Section 5.2) and 

17 'khaotitsheskogo' in the original 
18 In two dimensions, the absence of singularities for any t > 0 has been proven by Holder 

(1933) and Wolibner (1933) ; see also Kato (1967) and Sulem and Sulem (1983). 
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the method of tracing of complex singularities (Sulem, Sulem and Frisch 
1983). The latter monitors the imaginary part b(t) of the complex-space 
singularity nearest to the real space as a function of real time t. This b(t) 

is called the 'width of the analyticity strip'. The method takes advantage 
of two rigorous results: (i) that a hypothetical real singularity of the Euler 
equations occurring at time t* is preceded by a positive b(t) which shrinks 
to zero at t = t* (Bardos and Benachour 1977); (ii) that the width b(t) 
of the analyticity strip can be measured directly from the spatial Fourier 
transform of the solution which falls off (roughly) as e-c5 (t )k. As long 
as b(t) is sufficiently large (in practice about two meshes), the energy 
spectrum19 has a rather conspicuous exponential tail; its logarithmic 
decrement is equal to 2b(t). (The factor 2 is present because the energy 
spectrum is proportional to the square of the Fourier amplitude.) 

This procedure has been applied by Brachet et al. (1983) to the Taylor­
Green vortex, introduced in Section 5.2. The simulation was done on 
a grid of 2563 points. The maximum wavenumber was 256/ 3 :::::::: 85. 
Fig. 7.6(a) shows the energy spectrum E(k, t) at various times in linear­
log coordinates, so that the exponential tails appear as straight lines. 
Fig. 7.6(b) shows the evolution of b(t), also in linear- log coordinates: 
except for very short times and for as long as b(t) can be reliably 
measured, it displays almost perfect exponential decrease. If this result 
can be safely extrapolated to later times, it follows that the Taylor- Green 
vortex will never develop a real singularity: there is no inviscid blow-up. 
When this result was obtained in 1981, it came as a rather big surprise.20 

Indeed, based on the kind of phenomenology described above and also 
on results from closure (see Section 9.5), there was a widespread belief 
that finite-time blow-up would take place.21 

But is it safe to extrapolate the behavior of b(t)? About ten years 
later it became possible to extend the Brachet et al. (1983) calculation, 
using a grid of 8643 points and also to study flows with random initial 
conditions without the somewhat special symmetries of the Taylor­
Green vortex which helped in reducing computational work (Brachet, 

19 In numerical simulation of decaying turbulence, it is customary to define the energy 
spectrum as an angular average, without any ensemble averaging. 

20 Results by Morf, Orszag and Frisch (1980), using the Taylor series up to t44 for the 
enstrophy and analytic continuation by Pade approximants, did suggest finite-time blow­
up; Brachet et al. ( 1983) extended the series up to t80 and could not support the previous 
results. 

21 I shared such a belief, but G.I. Taylor did not, as appears from a brief statement made to 
S.A. Orszag in 1969 which was communicated to me privately. As for A.N. Kolmogorov, 
I am not aware of anything he has said on this matter. 
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Fig. 7.6. Spectral simulation of the inviscid Taylor-Green vortex using 2563 

Fourier modes. Evolution of the energy spectrum in linear-log coordinates ; 
from bottom to top: output from time t = 0.5 in increments of 0.5 (a). Time­
dependence of the width of the analyticity strip b(t) in linear-log coordinates; the 
circles and plus signs correspond to 2563 and 1283 Fourier modes, respectively; 
the dashed line gives the threshold of reliability (b) (Brachet et al. 1983). 

Meneguzzi, Vincent, Politano and Sulem 1992). Again, exponential 
decrease of b(t) was observed. 

However formidable a 8643 simulation may look, it can only explore 
a span of scales of about 300, because it uses a uniform grid. Pumir 
and Siggia (1990) developed a different approach using grid-refinement 
'where needed' and were there by able to explore a span of scales of 
up to 105. Still, no blow-up was observed (Pumir and Siggia 1990). 
Somewhat paradoxically, simulations by Grauer and Sideris (1991) and 
Pumir and Siggia (1992) of two-dimensional axisymmetric flow with a 

poloidal component of the velocity (an instance for which there is no 
regularity theorem) have given some evidence of finite-time blow-up. This 
is, however, a controversial issue (see, e.g., E and Shu 1994). 

All these simulations have also given us a qualitative explanation 
for why ideal flow is much more regular then predicted by naive phe­
nomenology: the exponential decrease of b(t) corresponds to an expo­
nential flattening of vorticity 'pancakes' of the sort shown in Fig. 7.7. 
The vorticity in such structures has a very fast dependence on the spatial 
coordinate transverse to the pancake, so that the flow is to leading order 
one-dimensional. If the flow were exactly one-dimensional, the nonlinear­
ity would vanish (as a consequence of the incompressibility condition). 
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Fig. 7.7. Vonicity pancakes ob-;en·ed in an imis.cid simulation of the T.1}lor­
Green vortex. Output at timer .. 3.0 (a), t 125 (h), t :: 3.50 le) and l :: 4 0 (di 
t Brachcl. Mcncguzzi. Vincent. Politano and Sulem I 992). 

rhis depletion of nonlmearirr explains why the growth of the vorticity is 
much slower than predicted by (7.38) which ignore" this phenomenon. 
We shall come back to the issue of depletion in Sections 9.3. 9 5 and 9.7. 

The present section was meant most!} to undcrhne a <;evcrc short­
coming of phenomenology. \Ve can nc\•crthcless conclude 1t with a more 
optimisttc note. Standard phenomenology was here found to orerestmwte 
the strength of nonhneanty for ideal flow. Vlaybe it also overestimates it 
for viscous flow. This would be good news : as shown at the end of Sec­
tion 7.2, standard K41 phenomenology predicts that risc1ms flow never 
blows up, something for which there ts still no proof in three dimensions. 
Leray'!.; ( 1934) result, the best available for more than half a century. 
cannot rule out the presence of singularities at a set of instants which 1s 
very 'small'. We shall return to such matters for both viscous and inv isctd 
flow in Section 9.3. 



8 
Intermittency 

8.1 Introduction 

This chapter is organized as follows. The basic concepts are introduced in 
Section 8.2. Experimental results about intermittency in the inertial range, 
based on velocity measurements, are presented in Section 8.3. Exact re­
sults, independent of any phenomenology, are presented in Section 8.4. 
Two broad classes of phenomenological models of intermittency are then 
discussed. In the first class (Section 8.5), intermittency is studied via 
velocity increments. It comprises the P-model (Section 8.5.1), the bifrac­
tal model (Section 8.5.2) and the multifractal model (Sections 8.5.3 and 
8.5.4). Implications of the multifractal model for the dissipation range 
and for the skewness and flatness of velocity derivatives are presented in 
Sections 8.5.5 and 8.5.6, respectively. In the second class (Section 8.6), in­
termittency is studied via the fluctuation of the dissipation ; inertial-range 
quantities are related to such fluctuations by a bridging ansatz, originally 
introduced by Obukhov and Kolmogorov (Section 8.6.2). Random cas­
cade models are presented in Section 8.6.3; their multifractal behavior 
is shown to be a direct consequence of the probabilistic theory of 'large 
deviations', which is presented in an elementary fashion in Section 8.6.4. 
The lognormal model and its shortcomings are discussed in Section 8.6.5. 
Shell models, a class of deterministic nonlinear models which can display 
intermittency, are presented in Section 8.7. 

The order chosen here for the presentation of the entire material on 
the theory of intermittency is pedagogical, not historical. Most of the 
latter aspects are discussed in Section 8.8. Recent trends in intermittency 
research are presented in Section 8.9. 
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Fig. 8.1. A portion of the graph of the Brownian motion curve, enlarged twice, 
illustrating its self-similarity. 

8.2 Self-similar and intermittent random functions 

A central assumption of the K41 theory is the self-similarity of the ran­
dom velocity field at inertial-range scales. As we shall see this symmetry 
may well be broken. The meaning of the concept of self-similarity as 
applied to a random function is illustrated in Fig. 8.1 in which a sam­
ple of a self-similar random function v(t), here the Brownian motion 
function, is shown with two successive enlargements. It must be stressed 
that the 'general aspect' (actually, the statistical properties) within the 
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magnification window is independent of where the window is positioned. 
In contrast, Fig. 8.2 shows a function, called the 'Devil's staircase'1 

which is not self-similar in the above sense: magnification of windows 
1 and 2 produce completely different results. When dealing with the 
Devil's staircase, the smaller the window, the more carefully it must 
be positioned to produce a nontrivial function. The function shown 
in Fig. 8.2 is said to be intermittent: it displays activity during only a 
fraction of the time, which decreases with the scale under considera­
tion. 

The notion of intermittency may be quantified when the random 
function v(t) is stationary. It is then convenient to work with the high­
pass filtered signal v~(t), defined (in the temporal domain) by 

(8.1) 

Here, we shall say that the random function v(t) 1s intermittent at 
small scales2 if the flatness 

(8.2) 

grows without bound with the filter frequency Q. Note that, by sta­
tionarity, F(Q) does not depend on the time argument. To justify this 
definition, we observe that the inverse of the flatness is a measure of the 
fraction of the time the (high-pass) signal is 'on'. Consider the signals 
in Fig. 8.3. Part (a) shows a stationary signal v(t) and part (b) shows 
the same signal 'chopped-off' a fraction 1 - y of the total time. More 
precisely, vy(t) is obtained from v(t) by setting it equal to zero except 
during 'on intervals' which are randomly selected in such a way that the 
time the signal is on represents a fraction y of the total time. Assuming 
that all relevant moments exist, it follows that 

(8.3) 

1 The Devil's staircase gives the fraction of the mass of the Cantor set in the interval [O, t]. 
It is constructed recursively. One starts with a uniform distribution in the interval [O, 1] 
of unit total mass, removes the middle third and redistributes the removed mass evenly 
among the remaining intervals. The process is repeated indefinitely. 

2 There are other forms of intermittency, not discussed here, which appear in relation to 
transition to turbulence (see, e.g., Pomeau and Manneville 1980). 
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Fig. 8.2. The Devil's staircase: an intermittent function. 
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v(t) 
(a) 

t 

v,.,/t) 
(b) 

t 

Fig. 8.3. A stationary signal (a); the same 'chopped-off' a fraction 1- y of the 
time (b). 

Hence, 

(v¢! 1 (v4 ) 
F.,=--=--

' (v~)2 y (v2)2 · 
I 

(8.4) 

True intermittency seldom ~chieves the 'black-and-white' character of 
Fig. 8.3(b ), but the flatness is still a useful measure of intermittency for 
signals having a bursty aspect. Of course, instead of the flatness, it is 
possible to use other nondimensional ratios, such as the moment of order 
6 divided by the cube of the moment of order 2. Odd order moments are, 
however, inappropriate, since they may vanish for reasons of symmetry 
or accidentally. 

Observe that with our definition, neither Gaussian nor self-similar 
signals are intermittent, because their flatness F(Q) is independent of Q. 
In the Gaussian case, this is because the Gaussian property is conserved 
by any linear operation such as filtering and because a Gaussian random 
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Time 

Fig. 8.4. Velocity signal from a jet with R;. ~ 700 (Gagne 1980). 

Time 

Fig. 8.5. Same signal as in Fig. 8.4, subject to high-pass filtering, showing inter­
mittent bursts (Gagne 1980). 

variable has a flatness of 3 (an immediate consequence of (4.7)). Let us 
now assume that v(t) has self-similar increments with scaling exponent h. 
It is then easily shown that, for any A. > 0, 

> law i - h > 
Vu;i = A Vo. (8.5) 

As a consequence, when Q is changed into }.Q in (8.2), both the nu­
merator and the denominator are multiplied by A,-4h, leaving the flatness 
unchanged. 

Is turbulence self-similar or is it intermittent? Visual inspection of 
Fig. 8.4, a sample of a turbulent signal from a jet (Gagne 1980), suggests 
that it is more like the self-similar example of Fig. 8.1. If, however, the 
same signal is subject to high-pass filtering and the filter frequency Q is 
chosen high enough, intermittent features appear as shown in Fig. 8.5. 
This sort of intermittency becomes very conspicuous only when the scale 
associated with Q is comparable to or smaller than the Kolmogorov 
dissipation scale. It is thus a characteristic of the dissipation range and 
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does not imply violations of the self-similar K41 theory of the inertial 
range. 

Dissipation-range intermittency is an interesting phenomenon which 
deserves some explanation. It was discovered by Batchelor and Townsend 
(1949). They applied successive time-derivatives to a turbulent signal us­
ing analog techniques and observed the results on the screen of an oscillo­
scope. Analog time-differentiation is more or less equivalent to high-pass 
filtering. They observed that the signals tended to become bursty when 
the order of differentiation was increased. Kuo and Corrsin (1971) used 
band-pass filtering and found that the flatness increases drastically with 
mid-band frequency in the dissipation range (until experimental noise 
swamps the signal). They also found some increase of the flatness in the 
inertial range ; this increase is, however, so small that it could be due 
to contamination by the dissipation range. Kraichnan (1967b) was the 
first to propose an explanation for dissipation-range intermittency. He 
used an argument a la Landau, of the sort presented in Section 6.4 and 
Section 7.6, showing that very minute fluctuations in the dissipation rate 
s are tremendously amplified in the (far) dissipation range when faster­
than-algebraic decrease of the spectrum is assumed. He also stressed that 
dissipation-range intermittency does not imply inconsistency with K41. 

The first systematic explanation of dissipation-range intermittency was 
given by Frisch and Morf (1981), stimulated by the aforementioned data 
of Gagne. They considered a wide class of dynamical systems governed 
by ordinary or partial differential equations with solutions which are 
analytic in the time variable.3 A standard result for Fourier transforms 
of analytic functions is that their high-frequency asymptotic behavior 
is dominated by contributions from those singularities in the complex 
time domain which are close to the real line.4 From this, Frisch and 
Morf ( 1981 ) showed that each such singularity produces a burst in the 
high-pass filtered solution. The c~nter of the burst coincides with the real 
part of the singularity and the logarithm of the amplitude is proportional 
to the imaginary part multiplied by the filter frequency Q. Thus, when 
Q ~ oo, only those singularities with very small imaginary parts produce 
conspicuous bursts. Since such events are rare, this gives an increasing 
intermittency. 

3 Analyticity is easily proved for ordinary differential equations such as the Lorenz model 
and is a consequence of the conjectured boundedness of the velocity for the three­
dimensional Navier-Stokes equation with positive viscosity. 

4 This is basically how von Neumann (1949) predicted an exponential fall-off for the 
energy spectrum at high wavenumbers; see Section 6.3.2. 
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There is little doubt about the existence of intermittency in the dissipation 
range. A subtler question concerns the existence of intermittency in the in­
ertial range, since the latter would invalidate the K41 theory. Historically, 
the first attempts to detect such intermittency involved measurements of 
fluctuations of the (local) energy dissipation. Such quantities involve 
simultaneously dissipation-range scales and inertial-range scales. Their 
interpretation is thus very delicate; we shall come back to the matter 
after the appropriate concepts have been introduced (see Section 8.6). 

The K41 theory predicts that the structure function of order p scales 
with an exponent p/3 over inertial-range separations, something which 
can be tested experimentally. However, in his 1941 papers Kolmogorov 
made explicit predictions only for second and third order structure func­
tions. This may be one of the reasons measurements of structure functions 
of order p ~ 4 were not attempted until the early 1970s (Van Atta and 
Chen 1970). Measurements of high-order structure functions are actually 
rather difficult. Indeed, by definition, they require accurate measurements 
of high-order moments of velocity increments. These involve the tail of 
the corresponding probability distribution functions, i.e. very rare events. 
Hence, it is necessary to process very long records of the turbulent sig­
nal. Early measurements of structure functions were limited by recording 
capabilities. As shown by Anselmet, Gagne, Hopfinger and Antonia 
(1984) this can lead to vastly overestimating the discrepancy between 
the measured exponents and their K41 prediction. They give, neverthe­
less, reasonably convincing evidence that significant discrepancies remain. 
Their experiments were performed in the laboratory at Taylor-scale based 
Reynolds numbers R;.. of up to 852. The experiment was repeated by 
Gagne and Hopfinger in the Sl wind tunnel at R;.. = 2700 (Gagne 1987). 
Although this gave a much wider inertial range, it mostly confirmed the 
previous results by Anselmet, Gagne, Hopfinger and Antonia (1984). 

Fig. 8.6 shows the results for the (longitudinal) structure functions 
of order 2, 3 and 6, obtained by Gagne and Hopfinger. It is adapted 
from Gagne (1987). The second order structure function for the same 
data was presented in Fig. 5.1. The presentation of the data in Fig. 8.6 
uses compensating power-law factors to identify exponents of structure 
functions. The results suggest that structure functions follow power-laws 
in the inertial range: 

(8.6) 

where the (ps are called the exponents of structure functions . 
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Fig. 8.6. Structure functions of order 2, 3 and 6 in the time domain, compensated 
by 'guessed' power-law factors for the Sl data (Gagne 1987). 

We mention here that it is not a priori evident that structure functions 
of high order exist. This depends on the shape of the tails of the p.d.f.s of 
velocity increments : if it is algebraic, moments beyond a certain order are 
infinite. Actually the experimental evidence is that the tails decrease in a 
roughly exponential manner (Van Atta and Chen 1970; Gagne, Hopfinger 
and Frisch 1990; Gagne and Castaing 1991). Of course, there could be an 
algebraic tail lost in the noise beyond the exponential tail. Intermittency 
models assuming such 'hyperbolic' tails can be constructed and studied 
(see, e.g., Schertzer and Lovejoy 1984, 1985; Schmitt, Lavallee, Schertzer 
and Lovejoy 1992). 

Let us now examine the results about structure functions (for more de­
tail, see Anselmet, Gagne, Hopfinger and Antonia 1984 and Gagne 1987). 
The third order structure function (represented with the sign reversed to 
make it positive) is in good agreement with the four-fifths law: for £/ 17 
from 500 to 2000 the data fall almost exactly on the value 4/ 5. For lower 
values of £/17, around the Taylor scale, the values are about 20% higher. 
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Deviations from the four-fifths law are intriguing because this law should 
apply irrespective of the validity of K41. Actually, there are many possible 
causes of deviations. They include: lack of asymptoticity (e.g., contam­
ination by the dissipation range), lack of homogeneity and/or isotropy, 
violations of the Taylor hypothesis, violation of the hypothesis H3 of the 
finiteness of the energy dissipation when v --7 0, inaccurate determination 
of the mean energy dissipation rate e, and poor quality of the data. 

Anselmet, Gagne, Hopfinger and Antonia (1984) proposed using the 
range of scales over which the third order structure function is reasonably 
close to 4/ 5 as an operational definition of the inertial range. This is 
shown by the two vertical dash-dotted lines in Fig. 8.6, which delineate 
the inertial range. 

We have already discussed the second order structure function in 
Section 5.1. With the 'compensated' representation of Fig. 8.6, we see 
that it is difficult to make a choice between the three values of (2 tried 
(including the K41 value 2/ 3). As we have already stressed in Section 5.1, 
the Fourier representation in terms of the energy spectrum gives a wider 
inertial range and thereby a more accurate definition of the exponent 
( 2. According to the measurements performed in 1994 by Y. Gagne and 
M. Marchand (private communication) at the Sl wind tunnel, ~2 is too 
close to the K41 value 2/ 3 to detect any discrepancy. Measurements 
of exponents can also be done by wavelet transform methods (Muzy, 
Bacry and Arneodo 1993). For the calculation of structure functions, this 
amounts to using a filter emphasizing the Fourier components of scale I! 
of the velocity, instead of just the increment over a distance £. Perhaps 
the shape of the filter could be optimized to improve the quality of the 
scaling. 

The data for the sixth order structure function shown in Fig. 8.6 suggest 
that the (6 is closer to 1.8 than to its K41 value of 6/ 3. The value (6 = 1.8 
is also proposed in Anselmet, Gagne, Hopfinger and Antonia (1984). A 
consequence of ( 2 ~ 2/ 3 and (6 < 6/ 3 is that the (hyper-)fiatness 

F (£) _ S6( /!) 
6 - (S2(£))3 

(8.7) 

grows as a power-law when £ --7 0 (while staying within the inertial 
range). Thus intermittency, measured by F6(£), becomes arbitrarily strong 
at very high Reynolds numbers and small inertial-range scales. It would 
be harder to reach such a conclusion using the flatness F4(£) since the 
results of Anselmet, Gagne, Hopfinger and Antonia (1984) do not show 
any measurable discrepancy of (4 from its K41 value of 4/ 3. Actually, 
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there is considerable interest in the sixth order structure function because 
the discrepancy from K41, 

(8.8) 

can be interpreted in various models of intermittency as the codimen­
sion (3 minus the dimension) of dissipative structures (see below). Even 
though the discrepancy from the K41 value for (6 appears to be quite 
strong, there is no absolute guarantee that this is genuine. Anselmet, 
Gagne, Hopfinger and Antonia (1984) have checked that the size of their 
sample is sufficient to ensure convergence of the statistics, but there could 
be systematic errors of the sort already mentioned in connection with the 
third order structure function. An additional uncertainty in determining 
the exponent stems from the undulating character of the sixth order struc­
ture function (shared by those of higher order). Novikov (1969) pointed 
out the possibility of log-periodic corrections to scaling, i.e. power-law 
behavior with correction terms involving functions which are periodic in 
the logarithm of the scale (or the wavenumber). Smith, Fournier and 
Spiegel (1986) showed that log-periodic corrections to scaling arise in 
fractal models with lacunarity, i.e. having a preferred ratio of scales (the 
simplest example being the triadic cantor set). According to Benzi and 
coworkers the undulations depend strongly on the global geometry of 
the flow and are particularly affected by recirculation (R. Benzi, private 
communication). The data obtained by Maurer, Tabeling and Zocchi 
(1994) in their helium gas experiment (discussed briefly in Section 5.1) 
for the structure functions of order 2, 3, 4 and 6, shown in Fig. 8.7, are 
nearer a pure power-law than those from the Sl wind tunnel. The helium 
experiment has, however, a fairly large turbulence intensity (the r.m.s. 
velocity fluctuations are about 25% of the mean flow). Hence, the spatial 
scale£= Ur associated with a given time-lag r (by the Taylor hypothesis, 
using the instantaneous velocity U) undergoes large modulations which, 
after averaging, may smooth out the undulations. 

A new processing technique has been proposed by Benzi, Ciliberto, 
Baudet et al. (1993), Benzi, Ciliberto, Tripiccione et al. (1993; see also 
Benzi, Ciliberto, Baudet and Ruiz Chavarria 1995), which may greatly 
improve the accuracy of exponents and which overcomes in particular 
the difficulties stemming from the undulations. Instead of plotting Sp(£) 
vs £, they plot Sp(£) vs Sp'(£) in log-log coordinates. This gives much 
straighter graphs.5 One reason is that the undulations, whatever their 

5 Special instances of this procedure may be found in Anselmet, Gagne, Hopfinger and 
Antonia (1984, Section 5.2). 
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Fig. 8.7. Structure functions of order 2, 3, 4 and 6 (as labeled) in the time 
domain in log-log coordinates for a low temperature helium gas flow between 
counter-rotating cylinders with R;. = 1200. The units are cm3 s-3 for order 3 and 
arbitrary for the other orders (Maurer, Tabeling and Zocchi 1994). 

origin, appear to be correlated among the different orders of structure 
functions (as seen from Fig. 8.6).6 Another reason, stressed by Benzi, 
Ciliberto, Baudet et al. (1993), is that the functional forms of the structure 
functions at the beginning of the dissipative fall-off are the same, down 
to about five times the Kolmogorov scale. They refer to this as extended 
self-similarity (ESS). If the exponent for Sp'(C) is known (say, for p' = 3), 
the exponent for Sp(C) follows. In this way, using various high-Reynolds­
number data (including those from the Sl wind tunnel), ESS gives the 
following numbers (Benzi, Ciliberto, Baudet and Ruiz Chavarria 1995): 
(2 = 0.70, (3 = 1.00 (by assumption), (4 = 1.28, (s = 1.53, (6 = 1.77, 
( 7 = 2.01, (8 = 2.23. The corresponding data points are plotted as black 
triangles in Fig. 8.8. 

An alternative way to improve the accuracy on scaling exponents 
would be to fit the structure functions to power-laws with log-periodic 
corrections as was done by Sornette and Sammis (1995) to improve the 
prediction of the time of occurrence of large earthquakes. 

6 This correlation is particularly strong when considering structure functions of neighbor­
ing orders (A. Noullez, private communication). 
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Fig. 8.8. Exponent (p of structure functions in the time domain of order p vs 
p. Inverted white triangles : data from Van Atta and Park (1972); black circles, 
white squares and black triangles: data from Anselmet, Gagne, Hopfinger and 
Antonia (1984) with RA= 515, 536, 852, respectively ; + signs: Sl data processed 
by 'ESS' (see p. 131). Straight chain line : (p = p/ 3 (K41); dashed line: P-model 
(eq. (8.31)) with D = 2.8; solid line: lognormal model (eq. (8.122)) withµ= 0.2; 
dotted line: log-Poisson model (eq. (8.141)). 

Anselmet, Gagne, Hopfinger and Antonia (1984) have summarized 
all their results in a graph of (p. vs p which is reproduced in Fig. 8.8. 
The straight chain line through the origin of slope 1/ 3 is the K41 
prediction. The straight dashed line and the curved continuous line 
correspond to various models of intermittency which will be discussed 
later. The inverted white triangles, correspond to early data of Van Atta 
and Park (1972), which suffered from unconverged statistics (beyond 
p = 4). The same problem also appears for the data of Anselmet, 
Gagne, Hopfinger and Antonia beyond a value of p somewhere between 
10 and 12. In addition, as already stressed, there may be other causes 
of errors. Even with such caveats the data of Fig. 8.8 have played an 
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important role in turbulence theory because they have directly motivated 
the introduction of the multifractal model to be discussed in Section 8.5.3 
(see also Section 8.8). 

This entire section can be summarized as: It is plausible but not certain 
that there are intermittency corrections to the K41 theory of the inertial 
range. 

8.4 Exact results on intermittency 

In this section we examine some 'exact' constraints which have to be 
satisfied by the exponents (p of structure functions. By 'exact' we under­
stand constraints which can be derived from probabilistic inequalities or 
the basic physics of incompressible flow without recourse to additional 
assumptions beyond the very existence of such exponents. One instance, 
already discussed at length, is Kolmogorov's four-fifths law which implies 
( 3 = 1. Our additional exact results concern structure functions of even 
order. 

The only assumption needed here is that structure functions of even 
order have power-law behavior for large Reynolds numbers at inertial­
range scales. Specifically, we assume the following. 

Sl In the limit R = fovo/v - oo, the structure functions of even order 
2p > 0 possess the exponents (2p, i.e. for £ - 0, one has to leading 
order: 

((bv11(£))2P) (£)(2p 
2p ~ A2p T , 

Vo 0 
(8.9) 

where A2P is a positive numerical constant (not necessarily universal). 

S2 For large finite R, the scaling (8.9) still holds, as intermediate asymp­
totics, over a range of scales (the inertial range) increasing with Rat 
least as a power-law: 

1 £ R-r,r; 
~ fo ~ ' (i, > 0. (8.10) 

We now establish three propositions. 

Pl For any three positive integers p1 ~ p2 ~ p3, we have the convexity 
inequality: 

(8.11) 
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P2 Under assumption Sl, if there exist two consecutive even numbers 2p 
and 2p + 2 such that 

(8.12) 

then the velocity of the flow (measured in the reference frame of the 
mean flow) cannot be bounded. 

P3 Under assumption S2 and under the assumptions made in P2, if the 
Mach number based on vo is held fixed, and the Reynolds number is 
increased indefinitely,7 then the maximum Mach number of the flow 
also increases indefinitely. 

Proof. It follows from the Holder inequality for moments of random 
variables (Feller 1968b) that 

(8.13) 

Substituting expression (8.9) for the structure functions, and letting R----+ 0, 
we obtain (8.11) which expresses that the graph of ( 2p vs pis concave; 

this proves Pl. Let us now denote by Umax the maximum velocity, taken 

over space and time. We have at any instant of time 

(8.14) 

With ensemble averages reinterpreted as time averages, it follows from 
(8.14) that 

((bv11(R))
2
p+

2
) ::::; 4U~ax((bv11(R)) 2P). (8.15) 

Assuming R ~ R0 and using (8.9), we obtain 

max > 2p+2 
u2 1 A ( R ) - ((2p- C2p+2 ) 

---;r - 4 A1p Ro 
(8.16) 

Using (8.12) and letting R ----+ 0, we find that U max = oo. This proves 
proposition P2. 

We now define 

Mo= vo, 
C.1· 

M 
_ Umax 

max - , 
Cs 

(8.17) 

which are respectively the Mach number based on the r.m.s. velocity and 
on the maximum velocity (in the frame of the mean flow). We select a 
scale R: 

(8.18) 

7 For example, by considering a sequence of grid-generated turbulent flows with ever­
increasing mesh, all using the same fluid and the same flow velocity. 
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which, by (8.10), is within the inertial range. Substituting (8.18) into 
(8.16) and using (8.17), we obtain : 

(8.19) 

Proposition P3 follows readily. QED. 

A Mach number, measured in the reference frame of the mean flow, 
which becomes arbitrarily large, violates a basic assumption needed 
in obtaining the incompressible Navier-Stokes equation. It does not, 
however, violate the basic physics since it is conceivable that, at extremely 
high Reynolds numbers, supersonic velocity would appear. Anyway, 
(8.12) is not consistent with a uniform (in Reynolds number) validity of 
the incompressible Navier-Stokes equation. 

We may summarize the findings of this section as follows: If structure 
functions of even order follow power-laws with exponents ( 1p and if the 
incompressible approximation does not break down at high Reynolds 
numbers, then the graph of ( 2p vs pis concave and nondecreasing.8 

8.5 Intermittency models based on the velocity 

8.5.1 The {3-model 

There is a very simple way to modify the phenomenological model 
introduced in Section 7.3, so as to incorporate a form of intermittency. 
Fig. 8.9, which is to be compared with Fig. 7.2, shows the idea of 
the {3-model: at each stage of the Richardson cascade, the number of 
'daughters' of a given 'mother-eddy' is chosen such that the fraction of 
volume occupied is decreased by a factor f3 (0 < f3 < 1 ). The factor f3 is 
an adjustable parameter of the model. Otherwise, nothing is changed in 
the presentation of the cascade made in Section 7.3. In the {3-model, the 
fraction Pe of the space which is 'active', i.e. within a daughter-eddy of 
size £ = rn £0 decreases as a power of £. Indeed, 

where 

ln(i/ t o) {, 

(

I! )3-D 
Pe = pn = /3 Inr = £0 ' 

In /3 
3-D- - . 

ln r 

(8.20) 

(8.21) 

8 Additional exact results, giving inequalities for the exponents ( p, may be found in 
Constantin and Fefferman (1994) and are summarized in Constantin (1994). 
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Fig. 8.9. The cascade according to the ,B-model. Notice that with each step the 
eddies become less and less space-filling. 

The notation chosen for D is justified by the observation that it can be 

interpreted as a fractal dimension (Mandelbrot 1977; Falconer 1990). 

This statement is made intuitive by Fig. 8.10 which shows within a unit 

cube three objects, a point, a curve and a surface having respectively the 

dimension D (in the ordinary sense of manifolds) of zero, one and two. 
We now ask: What is the probability Pe that a ball of (small) radius £, the 
center of which is chosen in the cube with a random uniform distribution, 
will intersect such an object? The answer follows immediately from the 
geometric construction shown in Fig. 8.10. For the surface, the center of 

the intersecting ball has to be within a sandwich of thickness 2£; for the 

curve, it has to be within a sausage of radius £ and for the point it has 

to be within a ball of radius £. Thus, in all cases 

P OC g3-D 
e ' f---+ 0. (8.22) 

This probability would scale the same way if little cubes of size f were 
used instead of balls. If the embedding space is d-dimensional instead of 

three-dimensional, (8.22) becomes 

Nl-D 
Pe oc c ' f-+ 0. (8.23) 

The quantity d - D is called the codimension. 
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Fig. 8.10. The probability that a sphere of radius f, encounters an object of 
dimension D behaves as f,3- 0 as f, --+ 0. 

For more exotic objects, such as Cantor sets, (8.23) can be used as a 
definition of a dimension, which need not be an integer. This dimension is 
closely related to the Kolmogorov capacity dimension also called covering 

dimension.9 

For nonnegative D, i.e. when f3 > r3, there is on average at least one 
daughter per mother-eddy. D is then the dimension of the set ff on 
which the cascade accumulates after indefinite iteration. When f3 < r 3, 

the dimension D is negative, the average number of daughters is less 
than unity, so that the cascade terminates almost surely after a finite 
number of steps and ff is empty. However, there is a finite probability 
pe, given by (8.22), of observing an eddy of any finite size t Hence, 
negative dimensions may be viewed here as controlling the rarefica tion 
of sequences of sets converging to an empty set (Mandelbrot 1990, 1991). 

Returning now to the /J-model, we derive its scaling laws by adapting 
the standard K41 phenomenology used in Section 7.2. The notation is as 

9 For a rigorous but still elementary presentation of the Kolmogorov capacity dimension, 
see Ruelle (1989). This dimension is not to be confused with the capacitary dimension 
which, by a theorem of Frostman, is equal to the Hausdorff dimension; for details, see 
Kahane and Salem (1994, Chapter Ill) or the thesis of Frostman (1935). 
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in that section, except for ve which is now defined as the typical velocity 
difference over a distance f within an active eddy of size ""' £. Observe 
that it is still justified to define the eddy turnover time tt as f /ve, since 
the formation of smaller eddies is supposed to be important only within 
active eddies. Active eddies of size ""' f fill only a fraction Pt of the total 
volume; thus, the energy per unit mass associated with motion on scale 
,..., f is 

( 
f, )3-D 

Ee ,..., v} Pe = v} fo (8.24) 

The energy flux n; from scales ""' f to smaller scales is ""'Ed te. Thus, 

r vl ( f) 3-D Ile ,...., - -
f f o 

(8.25) 

We assume as usual that, at high Reynolds number, there is an inertial 
range in which the energy flux is independent of £: 

3 
I Vo 

II e ""' B ""' Co . (8.26) 

The relation B ""' v6/ eo has already been derived in Section 7.2 where it 
was stressed that it does not use K41; alternatively, it may be seen as a 
consequence of (8.25) evaluated for f ""' £0. 

From (8.25) and (8.26) we obtain 

( 
f_ ) l_ 3-D 

ve ,..., vo f o 3 3 ' (8.27) 

and 

E f o ( f ) ~+
3

-/ 
te ,..., Vp ,..., vo Ro (8.28) 

Eq. (8.27) may be viewed as the statement that the velocity field has 
the scaling exponent · 

1 3-D 
h=----

3 3 
(8.29) 

on the set Y of (fractal) dimension10 Don which the cascade accumulates. 
This reformulation will be useful for the generalization to multifractals 
(Section 8.5.3). 

IO Actually, the Kolmogorov capacity dimension should be used. Fung and Vassilicos 
(1991) pointed out that spiral structures, which are quite common in turbulent flow, can 
have a capacity dimension with a nontrivial fractal value, while possessing an integer 
Hausdorff dimension. 
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We turn now to the structure functions. At a phenomenological level, it 
is difficult to distinguish between longitudinal structure functions (defined 
in (6.61)) and those involving other components. We shall here avoid 
such distinctions and simply denote the structure function of order p by 
(bv~). There are two contributions to this quantity: a factor vf coming 
from active eddies and an 'intermittency factor' Pt = (£/£0) 3-D which 
gives the fraction of the volume filled by active eddies of scale £. Using 
(8.27), we thus obtain 

( 
f, ) ( p 

Sp(£) = (bvf) ,.., vg fo , (8.30) 

with 

(p = ~ + (3 - D) ( 1 - ~). (8.31) 

It is seen that for the /3-model the exponent (p is a linear-plus-constant 
function of the order p. Note that for p = 6 the discrepancy from the 
K41 value is equal to the codimension 3 - D. 

Specializing to p = 2, we find that the second order structure function 

has the exponent 2/ 3 + (3 - D) / 3; hence, the energy spectrum in the 
inertial range satisfies 

( 5+ 3-D) E(k) oc k- 1 -3 , (8.32) 

which is steeper than the Kolmogorov- Obukhov k- 513 spectrum. For 

p = 3, we obtain ( 3 = 1, as required by Kolmogorov's four-fifths law. 

The viscous cutoff for the /3-model is obtained, just as in Section 7.2, 
by equating the eddy turnover time te given by (8.28) and the viscous 
diffusion time. This gives the following dissipation scale 

(8.33) 

where R = f ovo Iv as usual. 
The /3-model has a rather long history which is better presented in the 

perspective of other models (see Section 8.8). 

The K41 theory is recovered when D = 3; indeed, this assumption 
suppresses the intermittency. When D < 2, the exponent h becomes 
negative, so that ve increases when the scale decreases. As a consequence 
the dissipation scale Yf , given by (8.33), can become smaller than the 
mean-free-path ; we shall return to this question in Section 8.5.5. When 
D < 0, the spectrum becomes steeper than k-813. Here, it is of interest to 
point out a rigorous result by Sulem and Frisch (1975). They considered 
solutions of the Navier-Stokes equation with a finite total energy (an 
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assumption consistent with spatial periodicity but not with homogeneity), 
in the limit of vanishing viscosity, and showed that, if the spectrum is 
steeper than k - 813, then the energy flux II K tends to zero for K - oo. 
Finally, we note that the viscous cutoff, given by (8.33), ceases to exist 
when the dimension D :::;; -1. 

As far as scaling is concerned, there is a single adjustable parameter in 
the /3-model, the dimension D associated with the intermittent cascade. 
How does it compare to the experimental data presented in Section 8.3? 
The straight dashed line in Fig. 8.8 corresponds to the /3-model for 
D = 2.8. As stated by Anselmet, Gagne, Hopfinger and Antonia (1984), 
the /3-model fits the data rather well for values of the order p up 
to 8 but not at all beyond p = 12. We have, however, emphasized in 
Section 8.3 that the present limitations on the experimental determination 
of exponents do not allow us to rule out K41 completely, let alone the 
{3-model. Still the data of Anselmet, Gagne, Hopfinger and Antonia, 
taken without further questioning, suggest that the graph of ( p vs p is not 
a straight line. This has led to all sorts of generalizations of the P-model. 
As a pedagogical intermediate step between the {3-model and the full 
multifractal model of Section 8.5.3, we shall now discuss the 'bifractal 
model'. 

8.5.2 The bifractal model 

As we have seen in Section 8.5.1, the /3-model is equivalent to the 
statement that the velocity field has a scaling exponent h on a set g of 
fractal dimension D, such that h and D are related by (8.29). A natural 
extension is to assume bifractality: there are now two sets g 1 and g 2, 

both imbedded in the physical space R 3. Near g 1 the velocity has 
scaling exponent h1 and near g 2 it has scaling exponent h2• Specifically, 
we assume that 

(8.34) 
bve(r) 
-- ,..., 

VO 

Here, bvc(r) denotes the velocity increment between the point r and 
another point a distance f away. As in Chapter 7, all vector notation 
has been eliminated, since this kind of phenomenology is not able to 
distinguish between components. The above scaling laws are meant to 
hold at inertial-range scales. Thus, after the spatial increment f and the 
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velocity increment bve(r) have been divided by £0 and vo, all remaining 
constants are order unity. 

With this assumption we can calculate the structure function of order 
p (at inertial-range separations). The scaling exponent h1 gives a contri­
bution (£/ £0 )Phi which must be multiplied by the probability (£/£0 )3-D1 

of being within a distance £ of the set !/ 1, and similarly for the other 
exponent. We thus obtain 

(<5vn = (i)ph1 (i)3-D1 (i)ph2 (i)3-D2 
p µ, () () + µ2 () () ' 

Vo (,0 (,0 (,0 (,0 
(8.35) 

where µ1 and µ 2 are order unity constants. 
Thus, all the structure functions· comprise the superposition of two 

power-laws. In the inertial range, when f ~ Po, the power-law with the 
smallest exponent will dominate. We thus obtain 

(p =min (ph1 + 3 - D1, ph2 + 3 - D2). (8.36) 

It is seen that, depending on the value of the exponent p, the first 
or second type of singularity dominates. This is reminiscent of what 
Berry (1982) calls a 'battle of catastrophes'. By this he understands the 
competition of two or more singularities which determines the asymptotic 
behavior of certain integrals appearing in problems such as the study of 
the twinkling of light in a random medium (Berry 1977), the distribution 
of circulation times of fluid particles along closed random streamlines, 
etc.11 

As an illustration ofbifractality, let us take a mixture of K41 turbulence 
and /)-model turbulence: D1 = 3, h1 = 1/ 3, 0 < D2 < 3 and h2 = 
1/3 - (3 - D2)/3. We obtain 

{ 
p/ 3 0 < p < 3 

(p = p/ 3 + (3 - D2)(l - p/ 3) p ~ 3. 
(8.37) 

Observe that the parameters have been chosen in such a way that (3 = 1, 
to be consistent with the four-fifths law. Note that (p can also be defined 
for noninteger positive p; in that case it is necessary to take the absolute 
value of bve in the definition of the structure function. The graph of (p 
given by (8.37) is shown in Fig. 8.11. It has a kink at p = 3. This is 
known as a 'phase transition': as far as structure functions are concerned 
this model behaves exactly as in the K41 theory for p ::; 3 and displays 
intermittency only for larger values of p. 

11 This work is quoted here, not just because of its beauty, but also because it could provide 
and alternative to the 'multifractal' interpretation of intermittency, to be discussed in 
Section 8.5.3. 
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Fig. 8.11. Exponent ( p for the 'bifractal model'. Notice the change of slope at 
p = 3. 

A more natural model exists which is exactly bifractal, namely Burgers' 
equation: 

(8.38) 

We shall not here open the Pandora's box of Burgers' equation, how 
it does (and often does not) relate to the turbulence problem. For 
this, see the books by Burgers (1974), Gurbatov, Malakhov and Saichev 
(1991) and Barabasi and Stanley (1995), the articles by Kardar, Parisi and 
Zhang (1986), She, Aurell and Frisch (1992), Sinai (1992) and Vergassola, 
Dubrulle, Frisch and Noullez (1994) and references therein. 

The solutions of Burgers' equation with smooth initial data and/or 
smooth forcing, 12 when considered in the limit of vanishing viscosity, 
develop after some time the kinds of structures sketched in Fig. 8.12. 
There are isolated shocks (D = 0 and h = 0) connected by smooth 
ramps (D = 1 and h = 1). As observed by Aurell, Frisch, Lutsko and 
Vergassola (1992) this implies bifractality: (p = 1 for p ~ 1 and (p = p 
for 0 s p s 1. In other words, at inertial-range separations, structure 
functions of fractional positive order less than one are dominated by the 
smooth ramps, while those of order greater than one are dominated by 
the shocks. 

12 The smoothness assumption is important: different results may be obtained when the 
force has a power-law spectrum, as assumed in Forster, Nelson and Stephen (1977) or 
Kardar, Parisi and Zhang (1986). 
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x 

Fig. 8.12. Solution of Burgers' equation in the limit of zero viscosity: initial time 
(a); after the formation of shocks (b). 

The fact that the ft-model scaling (with D = 0) for structure functions 
of integer order p ~ 0 is exact for solutions of Burgers' equation is useful 
when testing statistical theories of turbulence, particularly those based 
on diagrammatic methods: these methods often use formal machinery 
which is applicable both to the Navier-Stokes equation and to Burgers' 
equation (see Section 9.5). 

8.5.3 The multifractal model 

The data points of Anselmet, Gagne, Hopfinger and Antonia (1984) for 
the function (p, shown in Fig. 8.8, appear to be on a curved line, rather 
than a straight line as in the ft-model or a broken straight line as in 
the bifractal model. This has led Parisi and Frisch (1985) to develop the 
multifractal model. Historical aspects are again postponed to Section 8.8. 

Based on our experience with bifractality it is rather clear that a 
curved function (p will be obtained if we assume a continuous infinity of 
scaling exponents, rather than just two. Actually, there is a more basic 
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reason not to limit ourselves to a finite number of scaling exponents. 
We observed in Section 2.2 that, in the inviscid limit, the Navier- Stokes 
equation is invariant under infinitely many scaling groups, labeled by an 
arbitrary real scaling exponent h. In the K41 theory, a single value of 
h was permitted because we imposed global scale-invariance. This can 
now be weakened into local scale-invariance : all hs (within some range) 
are permitted and, for each h, there is a fractal set with an h-dependent 
dimension D(h) near which scaling holds with exponent h. 

Specifically, we keep hypotheses Hl and H3 of the K41 theory (Sec­
tion 6.1) and replace hypothesis H2 by 

Hmr Under the same assumptions as in H 1, the turbulent flow is assumed 
to possess a range of scaling exponents I = (hmin, hmax). For each h in 
this range, there is a set Y 1i c R 3 of fractal dimension D(h), such that, as 
R ~ 0, 

bve(r) ( R) h 

~"' Ro ' 
(8.39) 

The exponents hmin and hmax and the function D(h) are postulated to be 
universal, i.e. independent of the mechanism of production of the flow. 

From this multifractal assumption, proceeding as in the preceding 
section on bifractals, we derive the expression for the structure function 
of order p: 

S (R) (bvP) j ( R ) ph+3- D(lr) 
~ = -f- "' dµ(h) -

v0 v0 1 Ro 
(8.40) 

Here, the measure dµ(h) gives the weight of the different exponents. 
(As we shall see, its expression is irrelevant. ) The factor (C/ £0)Ph is the 
contribution from (8.39) and the factor ( R /Ro )3- D(h) is the probability of 
being within a distance "' C of the set Y 1i of dimension D(h). Note that 
the sum in (8.35) has now become an integral over the range I of scaling 
exponents. In the limit R ~ 0 the power-law with the smallest exponent 
dominates and we obtain by a steepest descent argument 

where 

1
. ln Sp(R) _ r 
Im l n - i.,p, 

f --+O n .c, 

(p =inf [ph + 3 - D(h)] . 
h 

(8.41) 

(8.42) 

The weights dµ(h) have indeed disappeared from the asymptotic ex­
pressions of the structure functions. More loosely, ignoring logarithmic 
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corrections etc, (8.41) may be written as: 

Sp~f) ,.., (i) (p, R - 0. (8.43) 
v0 Ro 

By Kolmogorov's four-fifths law, the exponent for the third order 
structure function must be unity: 

, 3 =inf [3h + 3 - D(h)] = 1. (8.44) 
h 

In the relation (8.42) between the dimensions D(h) and the exponents 
of structure functions 'P we recognize a Legendre transformation (Sewell 
1987). There is a simple associated geometrical construction illustrated in 
Fig. 8.13(a): the quantity 3 - (pis the maximum signed vertical distance 
between the graph of D(h) and the line through the origin with slope p. 
If D(h) has a nonincreasing derivative, i.e. it is concave, then for a given 
value of p the maximum is attained at the unique value h*(p) such that 

(8.45) 

and (p is given by 

(8.46) 

From there it follows that (8.42) can be inverted as 

D(h) = inf(ph + 3 - (p)· 
p 

(8.47) 

Indeed, from (8.45) and (8.46) we obtain 

d(p [ I ] dh*(p) 
dp = h*(p) + p- D (h*(p)) dP = h*(p). (8.48) 

It is readily seen that (8.46) and (8.48) imply (8.47). Note that, even if 
D(h) is not concave, its Legendre transform (p defined by (8.42) will be 
concave; however, the inversion formula returns then not D(h) but its 
concave hull, i.e. the lowest concave graph lying above the graph of D(h). 

The inversion formula (8.47) can, in principle, be used to extract the 
function D(h) from experimental or numerical data about the exponents 
(p. The corresponding geometrical construction is shown in Fig. 8.13(b). 
In practice this is not a very well-conditioned operation for data such 
as those shown in Fig. 8.8, because the slope of the graph is poorly 
determined, except for small values of p where it is very close to 1 /3 with 
D(h) very close to 3; these are, of course, the K41 values. 

An important consequence of the inversion formula (8.48) is that the 
scaling exponent h is the slope of the graph of (p for the value of p 
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Fig. 8.13. Geometrical construction of the Legendre transform (a) and the inverse 
Legendre transform (b ). 

which minimizes ph + 3 - (p. Hence, the range I of possible values of 
p is the range of slopes of the graph of (p. In view of proposition 
P3 of Section 8.4, the finiteness of the Mach number requires (p to be 
a nondecreasing function of p. Hence, negative scaling exponents h are 
ruled out in the multifractal model for incompressible flow. 

8.5.4 A probabilistic reformulation of the multifractal model 

The phenomenological presentation of the multifractal model, given in 
the preceding section, has two major shortcomings. First, it assumes the 
existence of singularities and, second, it does not distinguish between 
positive and negative velocity increments. As we have seen in Section 7.8 
it is still debatable if singularities can appear after a finite time at 
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zero viscosity (Euler flow) . By Occam's razor, 13 it is better to dispense 
with them. As for the confusion between positive and negative velocity 
increments, it leads to a similar confusion between (bvf) and (lbvelP) . For 
odd values of p this is undesirable, particularly when p = 3 for which we 
have the Kolmogorov four-fifths law, which involves no absolute value. 

Both shortcomings can be overcome if we use the p.d.f. P£"c(bv11) of 
(longitudinal) velocity increments over a distance f, rather than individual 
realizations of the Eulerian velocity field. (The limits t - oo and v - 0 
are assumed to have been taken.) With the assumptions of homogeneity, 
stationarity and isotropy, this p.d.f. does indeed depend only on P. The 
structure functions are then given by 

Sp(R) = L bvf Pf°c(bv11)dbv1i· (8.49) 

We shall here ignore the (unlikely) possibility that the distribution of 
velocity increments would not possess a density with respect to the 
Lebesgue measure. 

We now observe that, starting from the multifractal assumption Hmr 
of the preceding section, the probability of having bve oc fh (ignore the 
sign for a moment) should be proportional to g3-D(hl . This leads us to 
the probabilistic reformulation of the multifractal assumption, in which 
we distinguish positive and negative velocity increments 

Hpmf Under the same assumptions as in H 1, there is a universal function 

D(h) which maps real scaling exponents h to scaling dimensions D ~ 3 

(including negative values and the value - oo), such that for any h, the 

probability of velocity increments satisfies 

. In PJ"c ( +£11
) 

hm I f = 3 - D(h). e .... o n 
(8.50) 

Here, Pj"c(bv11) denotes the cumulative probability, obtained by integrating 
the p.d.f. P)"c( bv11 ), say from bv11 to 2bv11·14 

The value D = - oo takes care of nonexistent scaling exponents. Note 
that no difference is obtained in the limit f - 0 if, instead of the 
argument fh of P, one uses v0(f/ £0)\ which has the dimension of a 
velocity. Note also that we assumed the same limit for positive and 
negative velocity increments, although in principle they could be different. 

13 From Willem of Occam or Ockham (1290-approx. 1349). Occam's razor, aimed at 
unnecessary theological subtleties, ruled out any 'plurality of reasons' founded neither 
in experience nor in Scripture. 

14 In most instances of genuine multifractality, the same result is obtained with the p.d.f. 
P and the cumulative probability P. 
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Our probabilistic definition of multifractality is closely related to what is 
called the 'abstract large deviations principle' in which the function D(h) 
is known as the 'rate or Cramer function' (see, e.g., Varadhan 1984). We 
shall come back to large deviations theory in Section 8.6.4. 

The 'traditional' definition of multifractality implies the probabilistic 
one, but the converse is not true. In order to be able to consider p.d.f.s, we 
must work with the (assumed) invariant measure of the Navier-Stokes 
dynamical system (Section 3.4). The quantity P}nc(bv

11
) is the limit for 

v --+ 0 of the p.d.f. of increments in the viscous case. The fact that we 
assume this limit to exist and to have the singular behavior predicted 
by (8.50) tells us nothing about the behavior for v --+ 0 of individual 
realizations: they need not be singular, let alone fractal. Actually, if 
the Euler equation happens not to have any finite-time singularities 
(Section 7.8), then for any finite time the limit, as v --+ 0, of individual 
realizations cannot be singular; hence, D(h) cannot be interpreted as the 
dimension of such an empty set. As to the limit t --+ oo, there is no reason 
to expect that it exists at the level of individual realizations, whether for 
v > 0 or v = 0. Only the probability distributions have limits. Hence, 
in the absence of finite-time singularities for the Euler equation, D(h) 
cannot be interpreted as the dimension of a singular set. To sum up: 
(multi )fractality does not require finite-time singularities. 

The consequences of the probabilistic multifractal hypothesis for the 
structure functions can be derived mostly as in the preceding section, 
but it is useful to distinguish between positive and negative velocity in­
crements. Let us define the positive-increment (resp. negative-increment) 
structure functions s: ce) (resp. s;;(.e)) as the contribution to the integral 
(8.49) coming from positive (resp. negative) velocity increments. Clearly, 

(8.51) 

We then obtain, for £ --+ 0 

(8.52) 

where (p is still given by (8.42). From (8.51) and (8.52) it follows that 
for even orders 2p the structure function S2p( f ) scales with the exponent 
( 2p. For odd orders 2p + 1, there is the possibility of cancellation, so that 
the actual exponent ( 2p+t could be larger than the expression given by 
(8.42). This relation can, however, be used to predict the exponents for 
structure functions of noninteger positive orders, 15 provided the absolute 

15 There are problems for negative ps to which we shall return in Section 8.6.2. 
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values of the velocity increments are used in the definitions. Hence, (p 
may be considered as a function on the real half-line p :2: 0. 

The probabilistic reformulation of multifractality provides in principle 
a way of measuring D(h) directly in terms of the p.d.f. of velocity 
increments, without performing an inverse Legendre transform. This 
requires, however, a careful measurement of the p.d.f. over a considerable 
range of scales f. So far, only limited data are available (see, e.g., Gagne, 
Hopfinger and Frisch 1990 and references therein). Such measurements 
could also reveal that different functions D(h) are needed for positive 
and negative velocity increments. 

Finally, we observe that the probabilistic reformulation of multifrac­
tality can be made in terms of p.d.f.s of wavelet transforms of the velocity 
field. This allows the explicit construction of random functions with 
multifractal scaling (Benzi, Biferale et al. 1993). 

8.5.5 The intermediate dissipation range and multifractal universality 

The multifractal model presented in the previous sections is a possi­
ble interpretation of experimentally observed discrepancies from K41 
at inertial-range scales, where viscosity has no direct influence. This 
model has also implications for the behavior at smaller scales, where 
viscosity matters. It leads to a prediction about the shape of the energy 
spectrum at large wavenumbers, beyond the inertial range, (this section) 
and to predictions for the skewness and flatness of velocity derivatives 
(Section 8.5.6). In particular, a new form of 'multifractal' universality 
is predicted, which is inconsistent with Kolmogorov's first universality 

assumption (Section 6.3.2) and which can, in principle, be tested exper­
imentally. The key idea is that, when focusing on smaller and smaller 
scales, the inertial-range contributions of the various scaling exponents h 
are successively turned off, thereby producing an intermediate dissipation 

range with pseudo-algebraic fall-off of the energy spectrum. 
We first observe that the phenomenological argument given in Sec­

tion 7.2 for deriving the expression (7.11) of the Kolmogorov dissipation 
scale Y/ can be extended to multifractal turbulence. Indeed, following 
Paladin and Vulpiani (1987a), we can use the local scaling relation (8.39) 
to construct an eddy turnover time te = £/bve which depends on the 
scaling exponent h. Then, equating this eddy turnover time to the viscous 
diffusion time £2 /v, we obtain an h-dependent dissipation scale: 

Y/~:) "'R- i!h, R"' £o:o. (8.53) 
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For h = 1/3 (the K41 value) the Kolmogorov dissipation scale (7.11) is 
recovered. We observe that (8.53) has already been obtained (eq. (8.33)) 
in Section 8.5.1 for the fi-model. 

The main difference with K41 and the fi-model is that in the mul­
tifractal case the scaling exponent h has a whole range of values 
I = (hmin, hmax). Hence, there is a range of dissipation scales extending 
from 17min "' l'oR-110 +hmml to 17max "' l'oR-l/(l+hmaxl. Paladin and Vulpiani 
(1987a) observed that with multifractal scaling the K41 estimate (7.19) 
of the number of degrees of freedom must be modified. We have seen 
in Section 8.5.3 that h has to be nonnegative to be compatible with the 
constraint that (p be nondecreasing (Section 8.4). It can also be easily 
checked that the result of Section 7.5, namely that the dissipation scale 
is much larger than the molecular mean-free-path, could otherwise be 
upset.16 

Let us now, following Frisch and Vergassola (1991), turn to the effect 
of the h-dependence of the dissipation scale for the structure functions. 
First, (8.39) must be modified: for a given scaling exponent h, the power­
la w behavior is valid only at scales l' » 17(h). At values less than this, 
smooth behavior must be assumed. For example, we could take, instead 
of (8.39), 

bve(r) _ (i) h f (-£ ) , 
vo l'o 17(h) 

(8.54) 

where /(x) - 1 for x - +oo and xhf(x) tends to zero smoothly for 
x - 0+. Actually, the precise functional form does not matter for the 
subsequent derivations and we shall just take a step function: /(x) = 1 
for x ~ 1 and /(x) = 0 for 0 ~ x < 1. With the effect of viscosity thus 
included, the expressions (8.40) of the structure functions become 

S (£) (£5vP) 1 ( £ )ph+3-D(h) 
--'7---- - -+ - dµ(h) -

Vo Vo 11(h)<£ l'o 
(8.55) 

Let h*(p) be the scaling exponent which minimizes ph + 3-D(h), defined 
implicitly by (8.45). There is an associated dissipation scale 17 (h*(p)). We 
must now distinguish two asymptotic regions. 

(i) Inertial range: £0 » l' » 17 (h*(p)). Viscous effects are negligible 
and the previously established power-law (8.43) remains valid. Note 
that the dissipation scale now depends on the order of the structure 

16 The negative scaling exponents reported by Bacry, Arneodo, Frisch, Gagne and Hopfin­
ger (1990) were later shown to be an artifact of the processing technique (Vergassola, 
Benzi, Biferale and Pisarenko 1993). 
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function. Since the graph of (p is concave, h.(p) is a decreasing function 
of p. Hence, the dissipation scale Y/ (h.(p)) decreases with p. For p = 2, 
we know that h. is very close to 1 /3 and hence the dissipation scale 
is very close to the K41 value Y/ "' f 0R-314 . Experimental attempts 
to check that smaller dissipation scales are obtained for higher order 
structure functions have been made, for example, by van de Water, 
van der Vorst and van de Wetering (1991). We shall return below 
to the practical difficulties involved in probing scales smaller than the 
Kolmogorov dissipation scale. 

(ii) Intermediate dissipation range: Yf (h.(p)) ~ e ~ Yf (hmin)· In this range 
we have the following situation. The influence of the scaling exponent 
h.(p) which gave the leading order contribution in the inertial range is 
suppressed by viscous dissipation, but smaller scaling exponents h such 
that 11(h) ~ f are still felt. Hence, we expect to obtain for the structure 
function of order p a quasi-algebraic behavior, i.e. a power-law with a 
scale-dependent exponent ph(f ) + 3 - D(h(f)), where h(f ) is the largest 
'acceptable' scaling exponent, i.e. such that the associated dissipation 
scale is equal to £. This heuristic argument thus suggests the following 
relation in the intermediate dissipation range: 

Sp(£) ( f ) ph(e)+3-D(h(e)) } 

vg "' fo ' Y/ (h.(p)) ~ e ~ Y/ (hmin), 

I 

1J(h(f)) = foR- i+Wl ""f. 

(8.56) 

A more systematic derivation requires some precautions since we have 
two expansion parameters: the scale f (which tends to zero) and the 
Reynolds number R (which tends to infinity). The trick is to let R - oo 
and simultaneously f - 0 in such a way that £0 / f behaves as a power of 
R. By application of steepest descent (Bender and Orszag 1978) to (8.55) 

we then obtain the following result: Let R - oo and f, - 0 while 

then 

where 

1. In (fo/f) _ fJ im 
1 

- , 
nR 

0 < fJ < (1 + hmin)-l, (8.57) 

. lnS (£) 
hm In~ = - [ph(p, fJ) + 3 - D(h(p, fJ))] fJ, (8.58) 
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As written here, (8.57)-(8.59) encompass the expression of the struc­
ture functions in both the inertial range (upper line of (8.59)) and the 
intermediate dissipation range (lower line). 

It is of particular interest to express the result for p = 2 in terms of 
the energy spectrum E(k) rather than the structure function. Noting that 
a term oc £P in the structure function gives a term oc k-l-p in the energy 

spectrum, we obtain the following result: Let R - oo and k - oo while 

then 

where 

l. ln(kfo) - 8 0 < 8 < (1 + h )-1 (8.60) Im 1 - ' min ' nR 

l. lnE(k) = (8) 
Im lnR F , (8.61) 

F(8) {-~8, for 0 < 8 < ~' = -2 - 28 + 8D(8-l - 1), for ~ :::;; 8 < (1 + hmin)-1. 
(8.62) 

Here, we have for simplicity used h*(2) ~ 1 /3, so that the inertial-range 
spectrum follows the -5/3 law. In the 'intermediate dissipation range', at 
wavenumbers ranging from £01 R314 to £01 R1/(l+hm;n>, the energy spectrum 

decreases quasi-algebraically, i.e. as a power-law the exponent of which 
changes logarithmically with the wavenumber in a way controlled by the 
function D(h). If the minimum scaling exponent hmin > 0, there exists 
another range of wavenumbers beyond the intermediate dissipation range 
at which it is still legitimate to use hydrodynamics (since the scales remain 
large compared to the mean-free-path). The multifractal model does not 
predict anything about this 'far dissipation range'. If uniform analyticity 
holds, the spectrum will fall off exponentially for the reason pointed out 
at the end of Section 6.3.2. 

Eq. (8.62) is just the -5/3 law in the inertial range. But, as soon 
as scales below the Kolmogorov dissipation scale are included, the pre­
diction of the multifractal model differs significantly from (6.69) which 
expresses Kolmogorov's first universality assumption. A consequence of 
K41 is that lnE(k) should be a universal function of Ink (in the iner­
tial range and the intermediate dissipation range). In contrast, with the 
multifractal assumption, and assuming that D(h) is a universal function, 
we find that ln E (k) /In R is a universal function of ln k / ln R. This is 
called multifractal universality. Our result can also be expressed in more 
operational terms for experimental purposes. Suppose we have a collec­
tion of experimental energy spectra corresponding to different Reynolds 
numbers (all sufficiently high to be in the domain of applicability of our 
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Fig. 8.14. Normalized longitudinal velocity spectrum in the time domain accord­
ing to different authors (Gibson and Schwarz 1963). 

asymptotic laws). According to K41, when plotted in log-log coordi­
nates, all the spectra in the inertial and intermediate dissipation ranges 
can be collapsed onto a single curve after suitable shifts are performed.17 

According to the multifractal scaling (8.62), the same will hold, but only 
after the Ink and the lnE(k) coordinates have been 'renormalized' by a 
factor 1/ ln R. Without this renormalization, the log-log plotted energy 
spectra would appear to be less and less curved in the (intermediate) 
dissipation range as the Reynolds number is increased.18 

In principle it should be possible to distinguish experimentally between 
universality a la Kolmogorov and multifractal universality. Fig. 8.14, 
taken from Gibson and Schwarz (1963),19 shows the kind of single-curve 

17 The shifts are needed because the different data have different r.m.s. velocities and 
integral scales. 

18 Almost identical remarks can be made about structure functions. 
19 Also reproduced as Fig. 75 in Monin and Yaglom (1975, p. 486). 
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Fig. 8.15. Data in the time domain from nine different turbulent flows with R;.s 
ranging from 130 to 13 000, plotted in log-log coordinates. The wavenumber 
(horizontal) and the energy spectrum (vertical) have been divided by ln(R;./ R*) 
with R* = 75 and the resulting curves have been shifted to give the best possible 
superposition (Gagne and Castaing 1991). 

collapse obtained using the Kolmogorov first universality assumption, 
whereas Fig. 8.15, taken from Gagne and Castaing (1991), is a similar 
attempt using the assumed multifractal universality. Both include a 
large set of experimental data over a very substantial range of Reynolds 
numbers: fourteen experiments with Reynolds numbers ranging from 
two thousand to one hundred million for Gibson and Schwarz; nine 
experiments with R). ranging from 130 to 13000 for Gagne and Castaing. 
Which one gives a better collapse? At first, multifractal universality looks 
better. This is emphasized by Gagne and Castaing who also point out 
that the multifractal model is just one of the possible interpretations; they 
actually offer an alternative interpretation.20 It must be stressed, however, 
that the very nice collapse of the data when plotted in the multifractal 

20 Still another interpretation of the same data set, in terms of a combination of a k-513 

law and a k-1 law, is given by She and Jackson (1993). 
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way happens to a large extent because in the variable 8 = ln(kf0)/ In Rall 
the inertial ranges have the same span (roughly from e = 0 toe= 3/4). 

In order to truly discriminate, it will be necessary to have reliable mea­
surements at scales much smaller than the Kolmogorov dissipation scale 
IJ, so as to have a substantial (intermediate) dissipation range. Doing this 
with hot-wire probes is difficult. With current technology, hot-wire probes 
have usually a diameter of the order of 1 µm and a length of a fraction 
of a millimeter. Thus, signals are smoothed over a distance of a fraction 
of a millimeter. The Kolmogorov microscale 1J does not change very 
much with the Reynolds number : if the Reynolds number is raised by 
increasing solely the integral scale (so as not to affect the Mach number), 
the dissipation scale grows as the fourth root of the Reynolds number. 
For most experiments 1J is between 0.1 and 1 mm (see, e.g., Table 1 of 
Meneveau and Sreenivasan 1991 ). Novel nonintrusive optical techniques, 
such as RELIEF (Miles, Lempert, Zhang and Zhang 1991; Noullez, 
Wallace, Lempert, Miles and Frisch 1996), mentioned in Section 5.1, 
seem to have the capability to resolve scales down to 25 µm or less. 

8.5.6 The skewness and the flatness of velocity derivatives accortling to 
the multifractal model 

We begin with a few elementary facts about nondimensionalized moments 
of velocity derivatives. 

As we have seen in Section 6.4.3, in his second derivation of the 1941 
theory, Kolmogorov (1941c) used the skewness of velocity increments 
S3(R)/(S2(R))312 which was postulated to be £-independent as long as .e is 
in the inertial range. If we ignore the restriction that .e should be in the 
inertial range and let .e ~ 0, we obtain (here, u = v1 and x = xi): 

((oxu)3) 
((oxu)2)3/2, 

(8.63) 

which is the definition of the (velocity-derivative) skewness for homo­
geneous and isotropic turbulence.21 We shall also be interested in non­
dimensionalized moments of higher orders : 

((oxut ) 
Sn = ((oxu)2)n/2. (8.64) 

Within the K41 framework, the finiteness of the skewness in the limit 

21 To avoid confusion of notation with the structure function, observe that the skewness 
has no £-argument. 
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v ---+ 0 can be derived from Kolmogorov's first universality assumption 
(6.69). It would, however, not be correct to deduce the finiteness from the 
sole £-independence of the skewness of velocity increments at inertial­
range separations. Indeed, this would require the limits v ---+ 0 and £ ---+ 0 
to be interchanged. 

When intermittency corrections to K41 are taken into account, the 
skewness S3(£)/(S2 (£))312 behaves as £1- 3' 212 and becomes unbounded for 
£ ---+ 0 (unless (2 = 2/3). However, there is good experimental and 
evidence that the skewness increases only very slowly with the Reynolds 
number, if at all. The measured values for -S3 are typically in the range 
0.3-0.5 for laboratory experiments and computer simulations (Monin 
and Yaglom 1975; Vincent and Meneguzzi 1991), rising to about 0.7 
for high-Reynolds-number atmospheric data (Wyngaard and Tennekes 
1970). 

It is a classical result that the skewness is a measure of vortex stretching. 
This may be shown as follows for homogeneous isotropic turbulence. We 
observe that the third order moment of the velocity derivative and the 
physical-space flux (defined in (6.7)) are related by 

3 2 2 ((oxu) ) = -
35 

V1_ e(£) I . 
f-0 

(8.65) 

This follows from (6.36) and the observation that ((8xu)3) is equal to 
(1/6)83S3(£)/8£3, evaluated at £ = 0. In view of (6.41), we can also 
express the third order moment in terms of the transfer function: 

((8xu)3
) = -

3
2
5 

fo00 

k2 T(k)dk. (8.66) 

It may be shown that ((8xu)2) = (2/15).Q, where .Q = f0
00 k2E(k)dk is the 

enstrophy. Hence, the skewness is given by (Batchelor 1953) 

(
135)

112 fr00
k2T(k)dk 

S3 = - 98 Uo~ k2E(k)dk)3/2. 
(8.67) 

By (6.37), the quantity f0
00 k2 T(k)dk is the time-rate-of-change of the 

enstrophy due to nonlinear interactions. Since enstrophy is (one-half) 
mean square vorticity and since vortex stretching is constantly taking 
place in three dimensions at high Reynolds numbers, one expects this 
quantity to be positive and thus the skewness to be negative (Batchelor 
and Townsend 1947). 

We now turn to the consequences of the multifractal model. Our 
arguments will be essentially an adaptation of work by Nelkin (1990). 
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The main result is the following. For high Reynolds numbers the non­
dimensionalized moments of velocity derivatives Sn behave as power-laws 
of the Reynolds number R 

S -R~· 
n ' ~n = p(n) - 3n/2, (8.68) 

where p(n) is the unique solution of 

(p = 2n- p. (8.69) 

Here, the (ps are the usual exponents for the structure functions. 
For the proof, we shall work in units where the r.m.s. velocity and the 

integral scale are order unity, so that the Reynolds number R = 0(1/v ). 
Let us first calculate ((axut). Proceeding as in the previous section, we 
find that the contribution of the scaling exponent h to fJxu is 

(8.70) 

Note that the derivative comes mostly from the neighborhood of the 
h-dependent cutoff 17(h) = v11(1+h), given by (8.53). We now take the nth 
power of axu and average; this introduces a codimension factor as usual. 
Finally, we integrate over all scaling exponents to obtain 

((a u)n\ "' j dµ(h) en(h-1)+3-D(h) I . (8.71) 
x I e=v'lil+hl 

I 

For v - 0, the usual steepest descent argument gives (with possible 
logarithmic corrections omitted): 

(8.72) 

where 
_ . f n( h - 1) + 3 - D( h) 

Pn - I~ l + h . (8.73) 

The minimum is found by setting equal to zero the derivative of the r.h.s. 
with respect to h. Hence, 

n(h* - 1) + 3 - D(h*) 
Pn = 1 + h* (8.74) 

where h* is the solution of 

[n - D'(h*)] (1 + h*) - n(h* - 1)- 3 + D(h*) = 0. (8.75) 

To solve (8.75) we use a trick. We introduce an exponent p related 
to D'(h*) by (8.45) and we express D(h*) in terms of (p, using (8.46). 
Eq. (8.75) then reduces to (8.69). For any n > 0, (8.69) has a unique 
solution p(n), because (p + p increases monotonically and ranges from 
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zero to infinity. Reexpressing Pn, given by (8.74), in terms of n, p(n), h* 
and (p(n), we find that the (explicit) h-dependence cancels out and we are 
left with 

Pn = n - p(n). (8.76) 

For the special case n = 2, eq. (8.69) has the obvious solution p = 3, 
which is a consequence of (3 = 1. Hence, p2 = -1, so that 

(8.77) 

This is equivalent to the statement that the energy dissipation, which is 
proportional to v((llxu)2

), goes to a finite limit as v --+ 0. The relation 
(8.77), obtained by Frisch and Vergassola (1991), shows the consistency 
of the method used to calculate moments of velocity derivatives. Using 
(8.76) and (8.77) in (8.64), we finally obtain (8.68). QED. 

Eqs. (8.68) and (8.69) provide a very simple practical method for 
estimating exponents of nondimensionalized moments of derivatives in 
terms of the ( ps. One just has to find the intersection of the graph of ( p 

with the line (p = 2n - p. Since, for not too large p's, the (/s are very 
close to their K41 values p/3, the intersections will be close top= 3n/ 2, 
the small discrepancy being precisely ~n· 

Let us now consider the special case of the skewness (n = 3). The 
number p is now close to 4.5. Based on the data of Anselmet, Gagne, 
Hopfinger and Antonia (1984), the exponents (4 and ( 5 are too close to 
their K41 values for the discrepancy to be measurable. Hence, 6 is also 
too small to be measurable. If we use the figures of Benzi, Ciliberto, 
Baudet and Ruiz Chavarria ( 1995), based on their extended self-similarity 
analysis of the Gagne- Hopfinger Sl wind-tunnel data, we find ~3 = 0.07, 
which is quite small. Thus, multifractal intermittency is consistent with a 
skewness almost independent of the Reynolds number. For the flatness 
(n = 4), we obtain ~4 = 0.15, based on Anselmet, Gagne, Hopfinger and 
Antonia (1984) and ~4 = 0.18, based on Benzi, Ciliberto, Baudet and 
Ruiz Chavarria (1995). 

Experimental values, quoted or measured by Wyngaard and Tennekes 
(1970), give a flatness rising from S4 ~ 6. for R;. = 200 to a scatter of 
values in the range 20-40 when R;.. is around 3000. Since R;. oc v-112, 

this is consistent with ~4 in the range 0.22-0.35, values somewhat higher 
than suggested by the analysis above. More recent experiments, using the 
same helium gas facility as described on p. 65, give a flatness of around 
12 + 2 for R;, between 200 and 3000 (Tabeling, Zocchi, Belin, Maurer 
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and Willaime 1995). If confirmed, this implies that i;'4 is extremely small 
or vanishing. 

8.6 Intermittency models based on the dissipation 

A central quantity in the K41 theory is the mean energy dissipation. 
Landau's objection to one form of the Kolmogorov theory, as discussed in 
Section 6.4, centered around (large-scale) fluctuations of the dissipation. 
It is thus not surprising that much experimental effort went and still 
goes into the study of such fluctuations (at scales large and small). 
In Section 8.6.1 we shall show how multifractality can be defined and 
measured in terms of the fluctuations of the local dissipation rather than 
in terms of velocity increments. The relation between the two types of 
multifractality will be discussed in Section 8.6.2. Multiplicative random 
models of the dissipation leading to multifractality will be presented 
in Sections 8.6.3-8.6.5 together with some probabilistic background on 
'large deviations theory'. Most historical comments will be postponed to 
Section 8.8. 

8.6.1 Multifractal dissipation 

The key quantity needed to define multifractality in terms of the dissi­
pation is the local space average of the energy dissipation over a ball of 
radius£ centered at the point r, first considered by Obukhov (1962) and 
Kolmogorov (1962): 

1 1 311 """""" ["' / ']2 ee(r) = (
4

/
3

) DJ d r -
2

v L...t OjVi(Y) + a;vj(Y) . 
TC{, lr'-rl<£ · · . lj 

(8.78) 

Let us denote by Pediss(e) the p.d.f. of t:e. (The limits t - oo and v - 0 are 
assumed to have been taken.) By the assumption of homogeneity, PFiss(t:) 
depends only on the radius £ of the ball and not on its position. The 
definition of multifractality is now essentially the same as the one given 
for velocity increments, in the probabilistic formulation of Section 8.5.4. 

Definition. The dissipation is said to be multifractal if there is a function 

F(rx) which maps real scaling exponents rx to scaling dimensions F ::::; 3 
(including negative values and the value -oo), such that for any rx 

lnJ>diss (R:t-1) 
lim PI R = 3 - F(rx), (8.79) 
p___.o n 

where J>fiss(t:) is the cumulative probability of ef. 
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Note that, ee being a positive quantity, there is no need to distinguish 
positive and negative arguments as was the case for velocity increments. 
The choice of the exponent a - 1 rather than a is for historical reasons. 

The more traditional definition of multifractality, analogous to that 
given in Section 8.5.3 for the velocity, which has the drawback that it as­
sumes - possibly nonexistent - singularities for individual realizations, 
is the following: 

ee(r) ( R) ix-1 
-- ,....,, -
v~ /Ro Ro 
for r E ~ix c 1R3 ; 

as R ---+ 0, } 

dim ~ix = F(a). 

(8.80) 

Note that ee(r) and R have been respectively divided by vJ/ Ro (the order of 
magnitude of the mean dissipation) and Ro (the integral scale) to obtain 
dimensionless quantities. Expressed in words, the singularity definition 
of multifractality states that the dissipation, considered as a measure, has 
singularities of exponent a - 1 on sets of dimension F(rx). 

By essentially the same arguments as in Section 8.5.3, we infer from 
one or other definition that, if the dissipation is multifractal, moments 
of ee follow power-laws at small R: 

t:q = minix [q( rx - 1) + 3 - F(rx)]. (8.81) 

The order q of the moment need not be an integer, since ee > 0. It 
may even be negative, if Pfi55(e) goes to zero sufficiently rapidly with e. 
Note that t:q and F(rx) are again related by a Legendre transformation, 
so that -r:q is a concave function of q. Observe that our definition of t:q is 
not the 'standard' one found in the literature, for example in Meneveau 
and Sreenivasan ( 1991) : 

t:~ur = t:~tandard + 3( 1 _ q ). (8.82) 

(Had we worked in d dimensions, there would be a d(l - q).) We find 
it more convenient to define t:q as the exponent for moments of the 
local space average of the dissipation, although the other choice may be 
more convenient for studying multifractals in dynamical systems (Halsey, 
Jensen, Kadanoff, Procaccia and Shraiman 1986). 

In the literature one also often finds the results stated in terms of the 
Renyi dimensions (Grassberger 1983; Hentschel and Procaccia 1983; see 
also Paladin and Vulpiani 1987b): 

(; 

Dq = __!f_l + 3. 
q-

(8.83) 
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Grassberger and Procaccia (1984) showed that Do is the fractal dimension 
of the support of the measure (here the dissipation), D1 the information 
dimension and D2 the correlation dimension. Unfortunately, because of 
the factor q-1 in the denominator of (8.83), Dq is not a concave function 
of q and it is usually better to work with rq. 

Meneveau and Sreenivasan (1987, 1991) have obtained considerable 
evidence that the dissipation of fully developed turbulence is multifractal. 
It is very difficult to measure the local dissipation directly in a turbulent 
fluid, so that various modifications are needed. One-dimensional space 
averages of the dissipation are used as 'representatives' of the three­
dimensional averages. Specifically, one considers a one-dimensional line 
L with coordinate x and, instead of (8.78), one uses 

t:e(x) = ;£ 1 dx' ~v L [o1vi(x') + oiv1(x')J2. 
lx'-xl<C ij 

(8.84) 

Similarly, instead of (8.80), it is assumed that, for small v, the local 
dissipation t:e(x) behaves as follows: 

t:e(x) ( £ )a-1 
-- "-' -

vJ/fo fo 
as £ ~ 0 for x E £C~; 

where ~~ = £Crx. n L and 

f(cx) = F(cx) - 2. 

dim £C~ = f (ex), 

(8.85) 

(8.86) 

Note that the 'dimension' f(cx) has decreased by two units because one­
dimensional cuts are taken. In the literature f(cx) is often called the 
multifractal (singularity) spectrum. For reasons which will become clear 
in Section 8.6.4, we shall call it the (dissipation) Cramer function. Ad­
ditional modifications are needed to make the determination of f(cx) 
practical, as listed below. 

(i) Instead of the full squared rate-of-strain tensor in (8.84), one uses 
(ou/ox)2, the square of the streamwise derivative of the streamwise 
velocity component. 

(ii) When measurements are made in the time domain, the Taylor hy­
pothesis is used to substitute time-derivatives for space-derivatives. 

(iii) Time-derivatives are approximated by time-differences over the 
sampling time of the probe-recorded signal. 

The third item is particularly delicate, since hot-wire probes may be 
barely capable of resolving the very small scales needed to measure 
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Fig. 8.16. Typical signals of a 'representative' of the local dissipation: (a) was 
obtained in a laboratory boundary layer at moderate Reynolds number, and 
(b) in the atmospheric surface layer at high Reynolds number (Meneveau and 
Sreenivasan 1991 ). 

derivatives. In Aurell, Frisch, Lutsko and Vergassola (1992) the reader 
will find a critical discussion of this and other possible causes of spurious 
multifractality. 22 

Let us now turn to the experimental results of Meneveau and Sreeni­
vasan (1991) which, in spite of the aforementioned difficulties, provide 
good evidence for multifractality of the dissipation. Fig. 8.16 shows typ­
ical signals (for two flows) of the representative of the local dissipation, 
namely (auiJat)2 normalized by its mean. The highly intermittent aspect 
of such signals is striking. Fig. 8.17 shows the multifractal spectrum 

22 Spurious multifractality from bad data processing can arise in many areas outside of 
turbulence; a case study for seismic data may be found in Eneva (1994). 
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Fig. 8.17. Cramer function f(a) for the dissipation in the time domain measured 
in the atmospheric surface layer at high Reynolds number (Meneveau and 
Sreenivasan 1991). 

computed by performing an inverse Legendre transformation on the 
function rq . The latter is obtained by identifying power-laws in moments 
of cf , plotted vs f, in log-log coordinates. The fact that the function f(ex) 
achieves a maximum, around unity, near ex = 1 is indicative that there is 
a nonsingular (ex= 1) background of space-filling (f( ex) = 1) dissipation, 
as in the K41 theory. 

Relating multifractality of the dissipation and multifractality of the 

velocity is the subject of the next section. 

8.6.2 Bridging multifractality based on the velocity and multifractality 
based on the dissipation 

Kolmogorov ( 1962) had to relate the statistical properties of fluctuations 
of velocity increments to those of the space-averaged dissipation. For 
this, following a suggestion of Obukhov (1962), he was essentially relying 
on his 1941 result stating that velocity increments over a distance f, 

scale as (d'.)113. The same formula may be used with ee instead of 
e. Specifically, in our notation, Kolmogorov assumed that the velocity 
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increment, nondimensionalized by (Ree)113, namely 

_(f, )= v(r+l,t+r)-v(r,t) 
v ,r (Ree)l/3 ' (8.87) 

has, at very high Reynolds numbers and at inertial-range scales, a uni­
versal probability distribution. He also assumed that v(.f, r) and ee are 
statistically independent.23 This assumption is usually called the refined 
similarity hypothesis (Monin and Yaglom 1975). By taking r = 0, it 
follows from (8.87) that the exponent (p for the moment of order p 
of velocity increments is the same as the exponent for the moment of 
order p of (Ree)113. In other words: Dve has the same scaling proper­
ties as (£ee) 113• In (singularity) multifractal language the refined scaling 
hypothesis can be rephrased by saying that, to any singularity of ex­
ponent CJ. of Ree, there is an associated singularity of exponent h = CJ./3 
for the velocity on the same set (which thus has the same dimension). 
Therefore one has the following 'dictionary' between the two multifractal 
formalisms: 

D(h) = F(CJ.) =/(Ci.)+ 2, (8.88) 

Meneveau and Sreenivasan (1991) have found that Kolmogorov's re­
lation (8.88) between (p and rq is consistent with the current quality of 
experimental data, at least over the range where both can be measured. 
This last restriction is not just a matter of accuracy. As observed by 
Bacry, Arneodo, Frisch, Gagne and Hopfinger (1990), moments of ee can 
stay finite for negative orders, but moments of velocity increments of or­
der ~ -1 are infinite, because the p.d.f. of velocity increments is finite and 
nonvanishing at zero velocity increment (Gagne, Hopfinger and Frisch 
1990). Muzy, Bacry and Arneodo (1993) observed that this difficulty 
is not present if, instead of velocity increments, one uses their wavelet­
transform modulus-maxima method. Stolovitzky, Kailasnath and Sreeni­
vasan (1992) pointed out that Kolmogorov's formulation (8.87) does not 
preclude the divergence of negative-order structure functions, since the 
random variables v is not expected to have finite moments for negative 
orders. Frisch (1991) observed that £3ee, being a space integral, is an 
additive quantity (when one-dimensional rather than three-dimensional 
space averages are used the additive quantity is Ref); similarly, Dv

11 
(r, R) 

23 Actually, Kolmogorov assumed that the nondimensionalized velocity increment, condi­
tioned upon a given value of Ef , is independent of Ef, as long as the local fluctuating 
Reynolds number Re = £(.€Ee)113 /v is much larger than unity; for further discussion of 
this, see Stolovitzky and Sreenivasan (1994). 
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is an additive quantity (if A, B and C are three consecutive points on 
a line, the longitudinal velocity difference between points A and C is 
the sum of the difference between A and B and the difference between 
B and C); however, the cube of an additive quantity is not additive. 
Furthermore, a similar 'dictionary' can be set up for Burgers' equation. 
It may then be shown that inconsistencies already arise for moments 
of positive fractional orders less than unity (Aurell, Frisch, Lutsko and 
Vergassola 1992). 

Actually, the only case where (8.88) can be established in a systematic 
way is for p = 3. It is then just a consequence of Kolmogorov's four-fifths 
law (6.5). Further criticism of the refined similarity hypothesis, presented 
by Hosokawa and Yamamoto (1992), has been found questionable by 
Praskovsky (1992). 

Before the shortcomings of the lognormal model were widely realized 
(Section 8.6.5), there was considerable interest in the exponent 

(8.89) 

which, by (8.83), is equal to 3 - D2, where D2 is the correlation dimension 
of the dissipation. (In the lognormal model,µ is the only free parameter.) 
The value ofµ has been the subject of some debate. Early values, µ ~ 0.5 
were revised downward to µ ~ 0.2 when it was realized by Anselmet, 
Gagne, Hopfinger and Antonia (1984) that the mean dissipation should 
not be subtracted before calculating the dissipation correlation function. 
The value of 0.2 is also consistent with (6 ~ 1.8 measured by Anselmet, 
Gagne, Hopfinger and Antonia (1984). 

We finally mention that the results derived in Sections 8.5.5 and 8.5.6 
for the intermediate dissipation range, the skewness and the flatness can, 
in principle, be derived within the multifractal formalism based on the 
dissipation. This is, however, not natural since in the derivations a key 
role is played by the eddy turnover time f, / bvp_, a quantity not readily 
available in the formalism based on the dissipation. Hence, it is tempting 
to use a single dissipation scale (the Kolmogorov scale Y/ ""' v314), instead 
of making it dependent on the scaling exponent (h or ex). This is why the 
results reported in Keller and Yaglom (1970) and Monin and Yaglom 
(1975, Section 25.4) are not entirely consistent with ours. 

8.6.3 Random cascade models 

One of the simplest methods - and historically the first - for obtaining 
multifractal dissipation measures is to construct multiplicative random 
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cascade models of the sort introduced by the Russian school and studied 
by Mandelbrot. (We shall return to historical aspects in Section 8.8.) 
These are constructed somewhat in the same spirit as the /3-model. They 
can be formulated either in terms of velocity fluctuations or in terms of 
fluctuations of the locally space-averaged dissipation. We shall use the 
latter. 

We begin with a cube of side £0 in which we take the dissipation to be 
uniform. The value per unit volume is t:, a nonrandom positive quantity. 
This defines the generation n = 0. To obtain generation n = 1, we 
subdivide the cube into eight equal cubes of side £1 = £0/2. (The factor 
of 2 is assumed only for simplicity.) In each smaller cube we multiply the 
dissipation by independent realizations of a random variable W, which 
is subject to the following constraints: 

W ~ 0, (W) = 1, (Wq) < oo, 'i/q > 0. (8.90) 

At the nth generation, there are 2n cubes of side 

(8.91) 

In each of them the dissipation (per unit volume) is uniform and assumes 
a value of the form 

(8.92) 

where the W;s are independently and identically distributed. The process 
is repeated indefinitely. 

By (8.90), the (ensemble) average of any of the t:es is still equal to 
t: but ee is usually not related to the sum of the ec;2s over the eight 
subcubes of side £/2 within a given cube of side R. In other words, 
the cascade is nonconservative. Furthermore, the multiplication of many 
random variables leads to very large fluctuations. 

It is a straightforward matter to calculate moments of t:c. From (8.91) 
and (8.92), we obtain for any positive integer q 

(8.93) 

where 

(8.94) 
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By the hypotheses (8.90), all the moments of the dissipation are finite.24 

From the bridging relation (8.88) we obtain the following expression for 
the exponents of structure functions : 

(8.95) 

A particularly simple result is obtained with the black and white25 

choice of Novikov and Stewart (1964). Here, only two values are permit­
ted for the random variable W, 

with probability /J , 
with probability 1 - {J. 

From (8.94) and (8.95), we obtain for the Novikov- Stewart model 

!q = -(1 - q)log2 /J, 

(p = ~ - ( 1 - ~) log2 /3, 

(8.96) 

(8.97) 

(8.98) 

which is exactly the result (8.31) for the (unifractal) /J-model of Sec­
tion 8.5.1. 

Benzi, Paladin, Parisi and Vulpiani (1984) have proposed a random 
{J-model in which the factor /3 is randomly and independently selected 
at each step of the cascade, with the same law. Just as the ordinary 
/J-model is equivalent to the Novikov- Stewart model, as far as scaling is 
concerned, making an arbitrary random choice of f3 is equivalent to the 
general random cascade model. Benzi, Paladin, Parisi and Vulpiani (1984) 
also proposed a restricted choice with a single free parameter x between 
zero and 1, for which the p.d.f. of f3 is P(/J) = x b({J - 0.5)+(1-x) '5 (/J - l). 
A good fit to the data of Anselmet, Gagne, Hopfinger and Antonia (1984) 
is obtained for x = 0.1 25. 

The graph of r q is a straight line in the Novikov- Stewart model ; 
however, as soon as W takes more than one nonvanishing value, (8.94) 
produces a nontrivial concave graph, a consequence of the Schwarz 
inequality (Feller 1968b, Section V.8). Hence, the random cascade models 
usually have multifractal scaling properties. In order to gain a deeper 

24 There is alternative definition of Cf : subdivide the cube of side e = 2-n fo into 2"' 
subcubes of side 2- me, sum the previously defined dissipations over these in' subcubes 
and divide by 23"' (because our dissipations are per unit volume) and, finally, let m--> oo. 
The limit exists but may have divergent moments beyond a certain order qc (Mandelbrot 
1974b; Kahane and Peyriere 1976; Collet and Koukiou 1992). There are interesting 
mathematical problems arising in this approach but the divergence of moments is an 
artifact of the nonconservative character of the cascade. 

25 A term suggested by Mandelbrot (1974b). 
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understanding of why such scaling holds, we digress in the next section 
into the theory of large deviations. 

8.6.4 Large deviations and multifractality 

Large-deviations theory, as already mentioned in Section 4.4, is concerned 
with the very low probability events where the normalized sums or 
integrals of random variables or functions differ from their mean values 
by an amount much larger than the standard deviation. The theory 
originated with the work of Cramer (1938). For a general exposition we 
refer the reader to Varadhan (1984) and Ellis (1985). For the application 
to random cascade models, we shall need only the case of independent 
variables, which is now briefly reviewed, following the exposition of 
Lanford (1973). A presentation of multifractality in terms of large 
deviations may also be found in Evertsz and Mandelbrot (1992). 

Let mi (i = 1, 2,. .. ) be identically distributed and independent random 
variables.26 We know that under suitable conditions (Feller 1968b), 

1 n 

Sn = ~ L mi --+ (m) for n --+ oo, 
i= l 

(8.99) 

the convergence being almost sure by the strong law of large numbers. 
The theory of large deviations gives estimates of the probability that the 
partial averages Sn are, for large n, close to an arbitrary value x, which 
may differ from (m) by 0(1). 

Let 

h(n;a,b) =In Prob{ a< Sn< b}. (8.100) 

The function h(n ; a, b) is nonpositive and superadditive, i.e. 

h(n + n' ;a,b) ~ h(n;a,b) + h(n'; a,b). (8.101) 

This follows immediately from the observation that, by the assumed 
independence of the mis, 

Prob a < -
1
- "'"""" m; < b ~ 

n+n' ~ { 
n+n' } 

I 

{ 
1 n } { 1 n+n' } 

Prob a < -;; ~ m; < b · Prob a < n' ~ m; < b . 

26 In the application to random cascade models, m = - log2 W. 

(8.102) 
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A simple consequence of superadditivity is that the limit 

( b) 
_ 

1
. h(n;a,b) _ h(n;a,b) 

sa, = 1m -sup---
n--.oo n n n 

(8.103) 

exists. (Hint: Pick two integers n and no, perform the Euclidian division 
n = qn0 + r, apply superadditivity and then let n and no successively tend 
to infinity.) The value -Cf) is allowed for the limit. We then define 

s(x) = sup s(a, b ). (8.104) 
a<x<b 

The function s(x) is negative or zero {by construction) and is easily shown 
to be concave. 

The large-deviations theorem, loosely stated, is that for large n (if you 
are a mathematician, skip the next line) 

{ 
1 II } Prob n L mi ::::::; x "' ens(x) . 

1=1 

(8.105) 

In statistical mechanics, large-deviations theory is used to prove rig­
orous results about the approach to the thermodynamic limit. In that 
context the function s(x) can be identified with the entropy; in the 
literature on large deviations, the negative of s(x ) is often called the 
'rate function'. Mandelbrot (1991) has proposed calling s(x) the Cramer 
function. We shall adopt his terminology. 

A simple example of large deviations, taken from Lanford (1973), is the 
coin-tossing problem. The variable m takes only two values, say 0 and 1, 
with equal probabilities. The probability of S11 can be explicitly calculated 
from the binomial formula. Use of Stirling's formula on factorials then 
gives the following expression for the Cramer function: 

s(x) = {-x lnx - (1 - x) ln(l - x) - ln 2 for 0 :s:. x :s; 1 (8.106) 
- Cf) otherwise. 

Note that the function s(x) defined by (8.106) behaves parabolically near 
its maximum x = 1/ 2, s = 0. This is quite general and equivalent to 
the statement that those deviations which are O(n- 112) have essentially 
a Gaussian distribution. Larger deviations, which are 0( 1 ), cannot be 
correctly described as Gaussian. 

In the general case, the Cramer function s(x) can be expressed in terms 
of the logarithm of the characteristic function of the random variable ,m. 
Let us assume that the p.d.f. of the random variable m decreases faster 
than exponentially at large arguments; this ensures the existence of 

(8.107) 
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for any real f3 . The function Z (/3) is the characteristic function, as defined 
in (4.6), evaluated for an imaginary argument z = i/3. 

The functions s(x) and lnZ(/3) are Legendre transforms of each other: 

lnZ(/3) = sup [s(x)- f3x], 
x 

s(x) =inf [lnZ(/3) + f3x] . 
f3 

(8.108) 

(8.109) 

A rigorous but still elementary proof of (8.108) and (8.109) may be found 
in Lanford (1973). Here, we give a simplified proof based on (8.105). We 
observe that 

(8.110) 

By the large-deviations theorem, for large n, the sum m1 + ... + mn is 
close to nx with a probability ,..., ens(xl . Hence, the contribution to Z"(/3) 
coming from sums close to nx is "' e{n[-f3x+s(x)J}. When integrating over 
all possible xs the dominant contribution will come from that x which 
maximizes -f3x + s(x). Thus, 

Z"(/3) "'exp { n s~p [s(x) - f3 x]} . (8.111) 

Taking logarithms, we obtain (8.108). As for (8.109), it is just the inverse 
Legendre transform relation (cf. Section 8.5.3). This concludes our 
digression on large deviations. 

We return to the random cascade model of Section 8.6.3. The dis­
sipation measure £00, which is the limit obtained by the construction 
defined at the beginning of this section, is multifractal in the sense of 
Section 8.6.1. Indeed, setting 

we obtain from (8.91), (8.92) and the large-deviations theorem 

8£ = 2-(m1 +. .. +mn) ~ 2- nx ~ (I) x 

8 ~ 

This holds with a probability 

(

e ) -s(x)/ ln2 
Pt ,..., e ns(x) = -

f o 

(8.112) 

(8.113) 

(8.114) 

In other words, in the nesting construction of cubes, the fraction of the 
space such that the dissipation behaves as ex rarefies as e-s(x)/ In 2. Iden­
tifying, the exponent x with a - 1 of (8.80) and the exponent - s(x)/ ln 2 
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with 3 - F(cx) = 1 - /(ex) of Section 8.6.1, we find that for the random 
cascade model, 

F( ) = 3 s(cx - 1) 
ex + ln 2 ' 

s(cx - 1) 
f(cx) = 1 + ln 2 . (8.115) 

Hence, the /(ex) function is essentially the Cramer function and should 
be called so. Furthermore, it is easily checked that (8.81 ), which states 
that F(cx) and rq are related by a Legendre transformation, is equivalent 
to (8.108). 

We observe that the /}-model of Section 8.5.l is recovered when the 
random variable W takes only two values: 1//} (with probability/}) and 
zero (with probability 1 - /}). By (8.112), the corresponding values for 
m are ln2 P and +oo. This gives a somewhat pathological character to 
the large-deviations result. Indeed, the normalized sums Sn, defined in 
(8.99), also take only two values: ln2 p (with probability pn) and +oo 
(with probability 1 - pn). Hence, there is a single value for the 'deviation' 
x and a single value for the dimension, given by (8.21 ). 

The dimension F(cx) given by (8.115) may well become negative for 
some range of cxs. As already explained in Section 8.5.1, this means that 
the nested set of cubes on which such an ex holds does not terminate, 
because it rarefies too quickly with the generation index n. However, 
F(cx) (or, equivalently, s(x)) is meaningful as a quantity controlling the 
probability of such rarefications (through (8.105)). 

Large-deviations theory was here presented in its simplest form, for 
independent random variables. Like the law of large numbers and the 
central limit theorem, large-deviations theory has extensions to random 
variables with correlations, when they decrease sufficiently fast. Large 
deviations can also occur in deterministic chaos, but need not. Indeed, 
Biferale, Blank and Frisch (1994) have constructed deterministic cascade 
models in which the factors Wn of (8.92) are obtained by iterating a 
deterministic map. These models can display chaotic fluctuations but do 
not deviate from the K41 scaling because they have no large deviations. 

8.6.5 The lognormal model and its shortcomings 

In Section 8.6.3 the distribution of the multiplicative factors W was taken 
in a quite general form (with the restrictions stated at the beginning of 
that section). For mostly historical reasons, to which we shall return in 
Section 8.8, there has been a particular interest in the case where W 
has a lognormal law. Specifically, let us assume W = 2-m, where m is a 
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Gaussian random variable, with mean 

m = (m) (8.116) 

and variance 

(8.117) 

The constraint ( W) = 1 gives 

2m = u2 ln 2. (8.118) 

Since the sums m1 + ... + mn, like m, obey a Gaussian law, it is an 
elementary exercise to calculate the Cramer function: 

( ) 
__ (x - m)2 ln 2 

s x - 4m . 

Hence, by (8.115), 

F( ) = 3 - (o: - 1 - µ/2)2 
0: 2µ ' 

f(o:) = 1 - (o: - 1 - µ/2)2 
2µ 

Here, instead of the parameter m, we have used 

µ-2m, 

(8.119) 

(8.120) 

(8.121) 

a notation which is now traditional in turbulence (see, e.g., Monin and 
Yaglom 1975). From (8.94) and (8.93), it is easily shown that the lognor­
mal model gives the following values for the exponents of moments of 
the dissipation and for the exponents of structure functions, respectively: 

(8.122) 

Hence, in the lognormal model, the second moment of the dissipation 
scales as g-µ and the second order structure function has a correction 
µ/9 to the K41 value 2/3. 

It follows from (8.122) that (p is a decreasing function of p when 

3 3 
p > P• = 2 + µ· (8.123) 

Hence the lognormal model violates the condition of Section 8.4 that 
(2p be a nondecreasing function of p, the condition needed to avoid 
supersonic velocities. 

Furthermore, the lognormal model violates an inequality of Novikov 
( 1970), which states that 

Tq + 3q ~ 0 for q ~ 0 and Tq + 3q ~ 0 for q ~ 0. (8.124) 
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To prove this relation, we start from the definition of ee given in Sec­
tion 8.6, as the local space average over a ball of radius £ of the 
dissipation. Since the quantity being integrated is positive, it follows 
that £3ee (unaveraged) is a nondecreasing function of£. Raising to the 
qth power (q ;:::: 0) and averaging, we obtain that £3q ((ee )q) oc g3q+rq is 
a nondecreasing function of £. For q s 0, it should be a nonincreasing 
function of £. This implies (8.124). Note that, if we had started from a 
definition of e involving one- rather than three-dimensional averages, as 
is the case in the experimental measurements of dissipation fluctuation, 
we would have obtained instead of (8.124): 

Tq + q ;:::: 0 for q ;:::: 0 and rq + q s 0 for q s 0. (8.125) 

The reason why the lognormal model and many other random cascade 
models violate the Novikov inequality is the nonconservative character of 
the cascade as defined in Section 8.6.3 (Mandelbrot 1972). Furthermore, 
Orszag (1970) pointed out that the lognormal distribution is not uniquely 
defined by its moments. 

Another property of the lognormal model is that the dimension F(cx), 
predicted by (8.120), becomes negative for 

(X > 1 + ~ + (6µ)112. (8.126) 

As noticed by Mandelbrot (1990, 1991 ), this is not a shortcoming of the 
lognormal model. Indeed, as already pointed out in Section 8.5.1, a neg­
ative dimension F(cx) just means that the codimension 3 - F(cx) is greater 
than 3 and that the probability Pe of encountering the corresponding 
scaling goes to zero with £ faster than £3. 

Finally, we observe that the lognormal law is sometimes derived in an 
incorrect way. If the individual variables mi in (8.113) are not Gaussian, 
the fact that there are many terms in the sum of the mis does not justify 
using a Gaussian approximation. This would amount to replacing the 
Cramer function by just the first two terms in the Taylor expansion 
around the mean value of the mis.27 The Gaussian approximation is 
justified only when the sum of the mis (minus its mean) has been divided 
by the square root of the number of terms. A mere product of a 
large number of independently and equally distributed positive random 
variables does not have an approximately lognormal distribution. 

27 In this particular respect the otherwise very useful and readable books by Lumley (1970) 
and Papoulis (1991) are somewhat misleading. 
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8. 7 Shell models 

Random cascade models give rise to nontrivial scaling laws which al­
most unavoidably display intermittency, but such models have only the 
remotest contact with the original Navier-Stokes equation. In contrast, 
shell models are deterministic, may or may not display chaos and inter­
mittency and have a bit more of a Navier-Stokes flavor. The simplest 
shell model, of Desnyansky and Novikov (1974), is governed by the fol­
lowing infinite set of coupled nonlinear ordinary differential equations, 
labeled by an index n = 0, 1, 2 ... (called the shell index): 

(d/dt+vk~)u,1 = li.(knu~-1-kn+1UnUn+1) 

(8.127) 

Here, the dynamical variables u11(t) are real numbers; u_1 which appears 
in the equation for n = 0 is taken equal to zero, the forcing term f 11 is 
prescribed, time-independent and restricted usually to a single shell: f n = 

f c5 11,no where c5n,110 is a Kronecker delta. The 'wavenumbers' k11 are given by 

(8.128) 

where ko > 0 is a reference wavenumber. The ratio of a factor 2 between 
the wavenumbers of successive shells is an arbitrary choice, easily mod­
ified. The parameter v > 0 is a viscosity and the control parameters li. 

and f3 are real numbers, one of which may vanish. 
It is immediately seen that this model (and all other shell models to 

be discussed subsequently) has a number of properties in common with 
the Navier- Stokes equation. The nonlinear term is quadratic and has 
dimension [velocity]2 / [length] ; it conserves the energy28 (1 / 2) 2::::

11 
u~ . It 

is invariant under time translations and under a discrete form of scaling 
transformations: when f = v = 0 and the 'boundary condition' for u_1 

is ignored, the equations are invariant under 

(8.129) 

where h is an arbitrary scaling exponent. Finally, the shell model has 
exact static (time-independent) K41 solutions: at those scales where the 
force and the viscosity are negligible, it is readily seen that the nonlinear 
term vanishes when 

u = Ck-1! 3 
II n ' (8.130) 

for arbitrary C. 

28 In two dimensions, enstrophy conservation is also required ; this can lead to unexpected 
effects ( Aurell et al. 1994 ). 
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Shell models may also be viewed as severe truncations of the Navier­
Stokes equation, retaining only one or a few modes as representatives of 
the (0 (k~)) Fourier modes in the nth octave of wavenumbers. In order to 
mimic the supposed 'local' (in scale) character of nonlinear interactions, 
only couplings to the nearest or next-nearest shells are usually kept. 

Shell models originated with Lorenz (1972) and the Russian school 
(Desnyansky and Novikov 1974; Gledzer 1973 and the review in Gledzer, 
Dolzhansky and Obukhov 1981). Interest in shell models grew consid­
erably when it was found that some of them can have a chaotic time­
dependence and display intermittency with non-K41 scaling exponents 
(Pouquet, Gloaguen, Leorat and Grappin 1984; Ohkitani and Yamada 
1989). Of particular interest is the Gledzer- Ohkitani- Yamada (GOY) 
model which has one complex mode per shell and next-nearest shell in­
teractions and may be viewed as a complex version of a model introduced 
by Gledzer (1973). The governing equations are 

(d / dt + vk;)u11 = i (a11Un+ 1Un+2 + bnUn-lU11+l + CnUn- 1 U11- 2 )* + f n , (8.131) 

where the star denotes complex conjugation, 

(8.132) 

and the force is applied to the fourth shell: 

(8.133) 

Ohkitani and Yamada (1989) gave qualitative and quantitative numer­
ical evidence that the GOY model is chaotic; they also measured various 
statistical quantities indicating that the model is intermittent. Jensen, 
Paladin and Vulpiani (1991) calculated the 'structure functions', defined 
for shell models as 

and found that: (i) at inertial-range scales, 

- ( Sp(n) oc kn P; 

(8.134) 

(8.135) 

(ii) the exponents ( p have a nontrivial dependence on the order p, sug­
gesting multifractality. This multifractal behavior is indeed supported by 
further simulations (Pisarenko, Biferale, Courvoisier, Frisch and Vergas­
sola 1993), involving up to 250 x 106 time steps. Figs. 8.18 and 8.19, 
taken from this reference show plots of the structure functions of order 
2-10 (from top to bottom) and of their exponents, respectively. The 
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Fig. 8.18. Structure functions of order 2-10 (top to bottom) for the GOY model. 
The shell index n is log2 wavenumber. The data are averaged over 250 x 106 time 
steps. 
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Fig. 8.19. Exponent (p for the structure function vs order p. The dashed line 
corresponds to K41 ((p = p/3). The error bars are from a least squares fit of the 
structure functions shown in Fig. 8.18 to a power-law in the interval 6 :$; n :$; 18. 
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calculations used 22 shells. The parameters were 

f = (1 + i) x 5 x 10-3
, ko = 2-4

, v = 10- 1
. (8.136) 

The averaging was over a sufficiently long time span (about 5000 eddy 
turnover times at the forcing scale) to ensure that the data were essentially 
free of noise. (For example the oscillations seen in Fig. 8.18 are genuine.) 
The error bars shown in Fig. 8.19 were generated from a least squares fit 
of the logarithms of the structure functions to power-laws in the inertial 
range (from shell n = 6 to shell n = 18).29 

Intermittency in shell models is the subject of much current work and 
is quite poorly understood at the moment. A few salient results will 
now be mentioned. All shell models possess 'pulse solutions' of the form 
(Siggia 1978): 

(8.137) 

where t* and the scaling exponent h < 1 are arbitrary and where the 
functions gh(') are obtained by substitution into the dynamical equations 
(ignoring forcing and dissipation terms). When the function gh0 is 
localized, i.e. decreases rapidly to zero at small and large arguments, the 
temporal evolution of un(t) has the form of a pulse of width 0 (k~-1 ) 
centered around the time t •. If well-separated pulses are generated by an 
instability at random times t., it follows that the structure function of 
order p scales with an exponent (p = 1 + (p - l)h. Indeed, there are p 

factors k;;h (the prefactor in (8.137)) and a probability oc k~-h of being 
within a pulse in the shell number n. To obtain a finite non-vanishing 
energy flux, one must take h = O; then (p = 1, for all p, an extreme 
form of intermittency, similar to that obtained for Burgers' model (see 
Section 8.5.2). An attempt to develop a statistical mechanics of interacting 
pulses with different hs has been made by Parisi ( 1990). 

A very different approach to intermittency in the GOY model is due 
to Benzi, Biferale and Parisi (1993). They constructed a multiplicative 
process of the sort discussed in Section 8.6.3 and required it to be 
consistent with certain exact moment relations derived from the GOY 
model. They were able to satisfy simultaneously to a good accuracy a 
number of constraints in excess of the number of free parameters in their 
multiplicative model and to compute analytically from this a graph of (p 
which is consistent with the one presented in Fig. 8.19. 

29 Gat, Procaccia and Zeitak (1994) have suggested that discrepancies from pure K41 
scaling in the GOY model are caused by the presence of a second quadratic invariant, 
in addition to the energy, which was identified by Kadanoff, Lohse, Wang and Benzi 
(1995). 
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One aspect of shell models which can be investigated systematically 
is the stability of K41 solutions and the bifurcations away from K41 
solutions. Since K41 solutions emerge only in the limit v --+ 0, the control 
parameter must be other than the viscosity, for example the ratio f3 /a 
in the Desnyansky- Novikov model (8.127), or a similar parameter which 
can be introduced into the GOY model (Biferale, Lambert, Lima and 
Paladin 1995). In addition to the technical problems in studying linear 
stability, there is a conceptual difficulty: an intermittent solution cannot 
be uniformly 'close' to K41 and thus amenable to small perturbation 
techniques. Some kind of nonperturbative method may thus be needed. 

8.8 Historical remarks on fractal intermittency models 

In 1961, at the Colloque International de Mecanique de la Turbulence 
in Marseille, Kolmogorov (1962) presented his theory of intermittency, 
often referred to as K62. Landau is given considerable credit: 

But quite soon after they (the K41 hypotheses) originated, Landau noticed that they 
did not take into account a circumstance which arises directly from the assumption 
of the essentially accidental and random character of the mechanism of trans.fer of 
energy from the coarser vortices to the finer: with increase of the ratio £0/ £, the 
variation of the dissipation of energy 

(8.138) 

should increase without limit. 

Curiously, nowhere in Landau's remarks (as quoted in Section 6.4), do 
we find any reference to 'fine' scales. However, it has become a tradition 
to accept Kolmogorov's view crediting Landau (see, e.g., the discussion in 
Section 25.l of Monin and Yaglom 1975). As we have shown, Landau's 
remarks in no way imply that the K41 theory (in its scale-invariant 
version) is inconsistent. 

Actually, a reference to Landau's remark seems to have been intro­
duced at an advanced stage of the writing of the K62 paper, after Yaglom 
drew his attention to the possible relevance of Landau's footnote remark 
(A. Yaglom, private communication). The context of Kolmogorov's work 
on intermittency was the following. There had been experimental work 
by Gurvitch (1960) at the Institute of Atmospheric Physics in Moscow30 

3° Founded by Obukhov as an extension of a laboratory headed by Kolmogorov. 
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which indicated a certain variability of the turbulence intensity, a vari­
ability which Obukhov (1962) pointed out 'may be explained by variance 
of the dissipation rate s'. 

Following Obukhov (1962), Kolmogorov (1962)31 considered fluctua­
tions of the local space averages of the dissipation se(r), defined in (8.78), 
and stated (in our notation) that: 

... it is natural to assume that when £0 / f. ~ 1 the dispersion of the logarithm ... has 
the asymptotic behavior 

(J} =A+µ ln(fo/ £), (8.139) 

where µ is some universal constant. 

This is precisely the lognormal model already discussed in Section 8.6.5. 
Kolmogorov had been interested in the lognormal law in 1941 when 

he proposed an interpretation for the approximate lognormality of the 
size distribution in pulverization of mineral ore (Kolmogorov 1941d). He 
described this process essentially as a multiplicative random cascade, the 
similarity of which to the Richardson cascade must have been obvious to 
him or became so at some point. Obukhov (1962) is the first to make the 
lognormal assumption for the fluctuations of the dissipation. He provides 
no particular justification, but quotes Kolmogorov's (1941d) 'lognormal' 
paper. 

Neither Kolmogorov nor Obukhov have tried to justify the lognormal 
model for turbulence by invoking a multiplicative random cascade. This 
would indeed have been an incorrect application of the theory of large 
deviations (Section 8.6.4).32 Actually, Kolmogorov ( 1962) formulates 
a third hypothesis, which is more or less equivalent to postulating a 
multiplicative process with independent factors, and then states: 

Naturally the.formulation of this hypothesis must be refined if mathematical rigor is 
desired and if it is to be used to derive the logarithmic normality of the distribution 
of velocity differences ... 

Anyway, the lognormal model presents the two known inconsistencies 
discussed in Section 8.6.5. It violates the Novikov (1970) inequality and 
implies supersonic velocities at very high Reynolds numbers since (p is 
not a monotonic function of p. 

31 The french version of the paper (Kolmogorov 1961) begins with a few lines in which he 
gives most of the credit to A.M. Obukhov. 

32 Large deviations were not considered in Kolmogorov's (194ld) 'lognormal' paper; thus, 
he would not have been able to predict correctly moments of the size distribution, had 
he tried. 
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It is paradoxical that despite all the aforementioned difficulties with 
Kolmogorov's 1962 paper, it nevertheless led to many fruitful further 
developments. Theoretical developments were mostly concerned with 
random cascade models of the sort considered in Section 8.6.3. The 
black and white model of Novikov and Stewart (1964) was extended by 
Yaglom (1966), who defined the general class of random cascade models. 
More detailed information on the contribution of the Russian school to 
this question may be fourtd in Monin and Yaglom (1971, 1975). 

In the late 1960s Mandelbrot (1968, 1974b) observed that random 
cascade models, when continued indefinitely (no finite viscous cutoff), 
lead to an energy dissipation generally concentrated on a set of non­
integer (fractal) Hausdorff dimension. He also stressed that the relation 
between the 'dimension' of the dissipation and the correction to the K41 
spectrum is different for the black and white case and for the general case 
(called by him 'weighted curdling'). The intrusion of what was considered 
at that time unnecessary exotic mathematics met with some resistance, 
but the author of this book became one active propagandist.33 

In one respect the random cascade models appeared contrived: they 
were intended to predict scaling laws at inertial-range scales, yet they 
worked with the dissipation which is not an inertial-range quantity, as 
pointed out by Kraichnan (1974). He also gave a hint as to how this 
difficulty could be overcome (Kraichnan 1972, p. 213). A reformulation 
of the Novikov-Stewart model, the /}-model of Section 8.5.1, using only 
inertial-range quantities (velocity increments and energy fluxes), was 
proposed by Frisch, Sulem and Nelkin (1978). This model became 
perhaps excessively popular. Indeed, the /}-model was intended to be a 
minimally complex toy model and not a predictive model. 

A few years later, Anselmet, Gagne, Hopfinger and Antonia (1984) ob­
tained experimental data on high order structure functions of significantly 
better quality than previously feasible (see Section 8.3). Not surprisingly, 
the values of the exponents (p agreed neither with the /}-model nor with 
the lognormal model. The curvature they observed in the graph of (p was 
interpreted by Parisi and Frisch (1985) in terms of the multifractal model 
of Section 8.5.3. Although the manifold of possible scaling laws derived 
in multifractal models is the same as in the random cascade models, the 
use of a Legendre transformation in the Parisi-Frisch approach made 
manifest the multifractal character of such models, which was hardly 

33 Actually, as pointed out by Mandelbrot (1977), Richardson had pioneered the use of 
fractals in studying convoluted coastlines; also Lorenz ( 1963) had shown that they arise 
in simple nonlinear dynamical systems. 
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appreciated before.34 Benzi, Paladin, Parisi and Vulpiani (1984) then 
constructed a particular instance of the multifractal model, the random 
/}-model and also proposed using multifractals to describe the invariant 
measures of chaotic dynamical systems. 

This problem differs from the one considered by Parisi and Frisch in 
several respects. The quantity with multifractal properties is not an (un­
signed) function (the velocity field) but a positive measure, the invariant 
measure of a dynamical system. In this respect it is more like study­
ing the multifractality of the dissipation. However, the dissipation is a 
random measure residing in the physical space and possessing the same 
symmetries as the turbulence (translations, rotations, etc.), whereas the 
invariant measure resides in the phase space, is deterministic and usually 
does not possess any symmetries. Grassberger (1983) and Hentschel and 
Procaccia (1983) have shown that the infinite set of Renyi dimensions 
Dq (Section 8.6.1) can be used to characterize the fine-scale properties of 
invariant measures. Halsey, Jensen, Kadanoff, Procaccia and Shraiman 
(1986) then developed a formalism for dynamical systems incorporating 
the same Legendre transform approach as in Parisi and Frisch, which was 
then also called 'multifractal'. Meneveau and Sreenivasan (1987, 1991; 
see also references therein) carried the formalism of Halsey, Jensen, 
Kadanoff, Procaccia and Shraiman back to turbulence and studied the 
multifractal properties of the dissipation (Section 8.6.1). Wu, Kadanoff, 
Libchaber and Sano (1990), while studying the temporal spectrum of 
temperature fluctuations in thermal convection, found that the data for 
different high Rayleigh numbers would not easily collapse onto a single 
curve (after shifts) when using log- log coordinates. Much better collapse 
was observed if they first divided the logarithms of both the temperature 
spectrum and the frequency by the logarithm of the Rayleigh number, a 
procedure which they (rightly) called 'multifractal'. Frisch and Vergassola 
(1991) then found that the Parisi- Frisch multifractal model of fully devel­
oped turbulence predicts precisely this kind of 'multifractal universality' 
when finite-viscosity effects are included (Section 8.5.5). Nelkin (1990) 
investigated the consequences of the multifractal model for moments of 
velocity-derivatives (Section 8.5.6). 

A much deeper understanding of multifractality was achieved when it 
was realized how random multifractal measures are related to the theory 
of large deviations discussed in Section 8.6.4 (Mandelbrot 1989, 1991 ; 

34 Polyakov (1972) studied the scale-invariance of lepton- hadron interactions using a kind 
of multifractal formalism. 
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Oono 1989; Collet and Koukiou 1992).35 This led to the probabilistic 
definition of multifractality discussed in Section 8.5.4, the velocity-analog 
of Mandelbrot's (1991) Cramer renormalization. One advantage is that 
one need not work with actual singularities. Concepts such as negative 
dimensions (Mandelbrot 1990, 1991; see also Meneveau and Sreenivasan 
1991) thereby lose their magical character. The connection with large­
deviations theory also makes clear what is wrong with the lognormal 
assumption (Section 8.6.5). 

Finally, we mention that multifractals appear in many areas of theo­
retical physics (see, e.g., Paladin and Vulpiani 1987b) and that there is 
now considerable interest in multifractal measures and multifractal sets 
among mathematicians and theoretical physicists (Kahane and Peyriere 
1976; Kahane 1993; Hentschel 1994; Waymire and Williams 1994; Blank 
199 5; see also references therein). 

8.9 Trends in intermittency research 

Half a century after Kolmogorov's work on the statistical theory of fully 
developed turbulence, we still wonder how his work can be reconciled 
with Leonardo's half a millennium old drawings of eddy motion in the 
study for the elimination of rapids in the river Arno (the example given in 
Fig. 8.20 is of particular interest in the context of Section 8.9.1).36 Indeed, 
Kolmogorov's work on the fine-scale properties ignores any structure 
which may be present in the flow. In Section 7.4 we pointed out that 
many turbulent flows are known to possess 'coherent structures'. Their 
(re)discovery by Crow and Champagne (1971) and Brown and Roshko 
(1974) has led to questioning the relevance of the traditional statistical 
theory of turbulence. However, as far as inertial-range properties are 
concerned, coherent structures do not matter if they are confined to the 
large scales of the flow. But, is this really the case? 

Traditional ways of analyzing turbulent flows, based on the velocity sig­
nal recorded by a probe, do not reveal any small-scale structures. Indeed, 
by visual inspection it is almost impossible to distinguish the properties 
at inertial-range scales of the kind of signal shown in Figs. 3.l(a) and 
(b) from that of a Gaussian noise with a k-5/ 3 spectrum. However, the 
discrepancies from K41 scaling have led to the suggestion that the small 

35 In earlier work Mandelbrot ( l 974a) had already used large-deviations theory and intro­
duced an f (a) function without interpreting it as a dimension. 

36 Lumley (1992) points out that Leonardo was probably aware of the need to describe 
turbulent flow as a mixture of coherent and random motion. 
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Fig. 8.20. Leonardo da Vinci: Study of liquid filaments of jets discharging from 
orifice (Ms. F, fo. 47 v., Bibliotheque de l'Institut de France, Paris). 

scales have fractal or multifractal properties, as discussed earlier in this 
chapter. We have seen in Section 8.5.4 that multifractal scaling, in the 
probabilistic sense, does not require any fractal structures to be present in 
individual realizations. The fractal/multifractal description of turbulence 
is essentially of probabilistic nature and does not assume much about 
the geometry of fine scales. 

It is remarkable that what may be called Leonardo's vision of turbu­
lence is in the focus of current research on intermittency: there is growing 
evidence that there are structures with nontrivial geometry down to very 
fine scales, maybe of the order of the Kolmogorov scale. 

Recent results indeed suggest that the fine scales of turbulent flow 
include a tangle of very intense and slender vortex filaments, a property 
which is already well established for super.fluid turbulence (Donnelly and 
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(a) (b) 

Fig. 8.21. View of the vorticity field, represented by a vector of length proportional 
to the vorticity amplitude at each grid point. Only vectors larger than a given 
threshold value are shown ; (b) has a lower threshold than (a) (Vincent and 
Meneguzzi 1991 ). 

Swanson 1986; Schwarz 1988) and for magnetic flux tubes in the solar 
photosphere (Stenfio 1973, 1994). We shall now review some of the 
numerical and experimental evidence for vortex filaments and attempts 
to incorporate them and other vortical structures in a statistical descrip­
tion of turbulence. For theoretical background on vortex filaments, see 
Saffman (1992). 

Figs. 8.21(a) and (b) give a striking example of the tangle of vortex 
filaments obtained in turbulent flow at moderately high Reynolds number 
(R;. ~ 150). The flow was simulated numerically using 2403 grid points. A 
snapshot of the vorticity field is represented. The vorticity is shown only 
when its modulus exceeds a given threshold (chosen higher in (a) than 
in (b )). Similar figures, suggesting the proliferation of vortex filaments, 
may be found in Hosokawa and Yamamoto (1990) and She, Jackson and 
Orszag (1990; see also Fig. 7.4). The earliest simulation revealing such 
filaments seems to be by Siggia (1981; see also Kerr 1985). Additional 
information on the structure of individual vortex filaments comes from 
simulations of the Taylor-Green vortex (see Section 5.2) by Brachet et 
al. (1983) and Brachet (1990, 1991). Such simulations indicate that the 
vortex filaments are regions of high vorticity and low dissipation and 
thus, by (2.32), regions of low pressure. 

Douady, Couder and Brachet (1991) took advantage of this property 
to make direct experimental observations of vortex filaments using a 
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turbulent liquid seeded with bubbles (which migrate to the regions of low 
pressure).37 Fig. 8.22, taken with a video camera monitoring the flow, 
shows an example of what is seen in such experiments. Further work 
was then done by Douady and Couder (1993) and by Bonn, Couder, 
van Dam and Douady (1993). The experiments, done after the simula­
tions, revealed much about the birth and death of vortex filaments and 
their possible role in organizing the large-scale flow. 

Concerning the vortex filaments, the picture emerging from the com­
bined numerical and experimental work is as follows. The filaments 
are actually tubes with an approximately circular cross-section; their 
diameter is of the order of the Kolmogorov dissipation scale and their 
length is somewhere between the Taylor-scale -1 and the integral scale 
.£0• This length is, however, hard to define precisely. Indeed, when a 
vortex tube opens up, the strength of the vorticity decreases (so as to 
conserve the circulation) and may fall below the threshold for visualiza­
tion; this phenomenon is easily observed when comparing Figs. 8.21(a) 
and (b). Jimenez (1993) observes that the vortex-tube Reynolds number 
Ry = y /v, based on the circulation y of the tubes, is typically in the range 
150-400. (He finds similar numbers for compact vortices observed in 
simulations of homogeneous shear flow, channel flow and plane mixing 
layers.) As for the dynamics of the filaments, Bonn, Couder, van Dam 
and Douady (1993) observe the following: 'The filaments appear abruptly 
by the rolling-up of thin layers where both shearing and stretching coexist 
.. .They are unstable and undergo vortex breakdown (Leibovich 1978) by 
formation of helical distortions. The longest filaments are then observed 
to be transformed into large, long-lived eddies.' 

It is then natural to ask the following questions: 

• How are vortex filaments formed, what is their structure and what role 
do they play in the overall dynamics of the flow? 

• What is the signature of vortex filaments in the statistical properties 
of the flow? 

8.9.1 Vortex filaments: the sinews of turbulence? 

Concerning the formation of vortex filaments, Bonn, Couder, van Dam 
and Douady observe that they appear wherever a large structure has cre­
ated a thin layer with both shearing and stretching. The filaments which 

37 Fauve, Laroche and Castaing (1993) showed that low-pressure events can be used to 
detect vortex filaments. 
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Fig. 8.22. Two images of high concentrations of vort1c1ty obtained m water 
seeded with small bubbles for •;isualization. The tank is lit with diffusive light 
from behind : the bubbles appear dark on a light background : (a) a \'Orticity 
filament m a turbulent flow (exposure time O.C>Ol s): (b) the core of an axial 
vortex below a rotating disk (Bonn, Couder. van Dam and Douady 1993 ). 
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are seen in the simulations of Brachet, Meneguzzi, Vincent, Politano 
and Sulem (1992) and Passot, Politano, Sulem, Angilella and Meneguzzi 
(1995) originate from instabilities of pancake structures similar to those 
present in Fig. 7.7. A modulational perturbation analysis by Passot, Poli­
tano, Sulem, Angilella and Meneguzzi ( 1995), extending previous work 
by Neu (1984) and Lin and Corcos (1984) on braids in turbulent mixing 
layers, explained the formation of vortex filaments by the focusing of 
the vorticity within vortex layers with a finite (small) thickness. Jimenez 
(1993) proposed a mechanism of axial straining of an otherwise two­
dimensional flow (see also Jimenez, Wray, Saffman and Rogallo 1993). 
Lundgren (1982, 1993; see also Pullin and Saffman 1993) has indeed 
observed that the strained flow is related to a fictitious unstrained two­
dimensional flow by a simple scaling transformation. Where Lundgren 
and Jimenez differ is that the former stresses the spiral character of 
two-dimensional flow (needed to produce a k-5/ 3 spectrum38 ), whereas 
the latter stresses the tendency of two-dimensional flow to form compact 
coherent vortices (see Section 9.7). It is also possible that some of the 
vortex filaments are born near solid boundaries, the only places where 
vorticity can be generated in an incompressible flow in the absence of 
buoyancy effects. 

Clearly, more remains to be done to understand the formation of 
vortex filaments. 

The internal structure of the vortex filaments can be understood, fol­
lowing Moffatt, Kida and Ohkitani (1994), by studying steady-state two­
dimensional solutions of the Navier-Stokes equation with the vorticity 
of the form (0, 0, w(x1, x2)) in the presence of a three-dimensional large­
scale straining field U = (ax1, f3x2, yx3), with y > 0 and a+ /3 + y = 0. 
The simplest case is obtained when a = f3 (axial strain). It is then 
easily checked that an exact solution with vanishing nonlinearity is the 
Burgers vortex (Burgers 1948; Townsend 1951; Saffman 1992; Moffatt 
1994): 

( ) yr [ y(xf+x~)] w x1,x2 = -
4 

exp - , 
nv 4v 

(8.140) 

where r is the total circulation associated with the vortex. As soon as 
a =F /3, nonlinearities reappear and solutions must be found perturba­
tively. An interesting feature of such nonaxisymmetric solutions, also 
observed by Brachet (1990) and Kida and Ohkitani (1992), is that vortic-

38 A spiral model with a k-513 spectrum has also been proposed by Moffatt (1984). 
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ity contours remain approximately circular, whereas dissipation can be 
strongly anisotropic. 

As to the dynamical role of vortex filaments a very appealing pic­
ture, albeit somewhat tentative, is the suggestion by Moffatt, Kida and 
Ohkitani (1994) that the vortex filaments are the 'sinews' of turbulence: 
'Just as sinews serve to connect a muscle with a bone or other structure, 
so the concentrated vortices of turbulence serve to connect large eddies 
of much weaker vorticity ; and just as sinews can take the stress and 
strain of muscular effort, so the concentrated vortices can accommodate 
the stress associated with the low pressure in their cores and the stress 
imposed by relative motion of the eddies into which they must merge at 
their ends.' 

8.9.2 Statistical signature of vortex filaments: dog or tail? 

Having identified 'simple' geometric objects, the vortex filaments, in tur­
bulent flows, it is natural to ask if any of the known statistical properties 
of turbulence can be thus explained. Are the vortex filaments the dog 

or the tail? In the former case, they would be essential to explain the 
energetics and the scaling properties of high-Reynolds-number flow. In 
the latter case, they would have only marginal signatures, for example on 
the tails of p.d.f.s of various small-scale quantities and on the exponents 
(p for large ps. 

Before discussing various (speculative) dog theories, let us state some 
objections. In the opinion of Brachet (1990, 1991) and Bonn, Couder, 
van Dam and Douady (1993), the vortex filaments cannot be the dog 
insofar as they contain only a small fraction of the total dissipation of 
energy. This is supported by the numerical study of Jimenez, Wray, 
Saffman and Rogallo (1993) who have reconstructed faked velocity fields 
from (lower) truncated vorticity fields in which the vorticity is set equal 
to zero unless its magnitude exceeds a given fraction of the maximum 
vorticity, these truncated fields being then projected onto divergenceless 
vector fields. High thresholds select but the strongest vortex filaments. 
There is experimental evidence - albeit controversial - that vortex 
filaments may become unimportant at high Reynolds numbers: Abry, 
Fauve, Flandrin and Laroche (1994) observe that the frequency of oc­
currence of vortex filaments (in units of the inverse large eddy turnover 
time) decreases with R;.; Belin, Maurer, Tabeling and Willaime (1995) 
find that, around R;. = 700, the filaments may undergo a metamorphosis 
into less structured objects. 
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A major advocate of the dog theory has been Chorin (1988, 1990, 
1994; Chorin and Akao 1991 and references therein). He assumes a 
collection of vortex tubes which have been stretched and folded into 
some complicated vortex tangle. He then introduces an analogy with 
a polymer, considered as a self-avoiding random walk. (Conservation 
of helicity is used to justify the nonintersecting character of vortex 
lines.) In an ordinary random walk, the typical distance traveled after 
N steps goes as N 112, while in a self-avoiding walk it goes as Nµ 
with µ = 3/5 (de Gennes 1971). Equivalently, the vortex tangle has 
dimension D = 1 / µ. If, following Chorin, we now consider D to be 
a correlation dimension (in the sense of Grassberger and Procaccia 
1984) and ignore the vector character of the vorticity, we obtain, from 
(8.83) that the vorticity correlation function scales as RP-3 = g-413. This 
is equivalent to Kolmogorov's £213 law for the second order structure 
function, here obtained from a highly intermittent model ! Actually, 
Chorin points out that: (i) the energy constraint forces the vortices to 
fold and thus raises the dimension of the 'polymer' above 2, (ii) the 
vector character of the vorticity and the folding permit considerable 
cancellation, thereby invalidating the previous calculation. From there 
on, he has to resort to numerical calculation which will not be described 
here. 

Passot, Politano, Sulem, Angilella and Meneguzzi (1995) have tried to 
calculate the contribution of the vortex filaments to the energy spectrum. 
Their argument, reexpressed in the language of the multifractal model, 
is as follows. Each vortex filament produces, by the Biot- Savart law, a 
1 /r velocity field which thus has scaling exponent h = -1. It is assumed 
that the vortex filaments are simple lines with dimension D = 1. We 
thus obtain a contribution oc f ph+3-D = £2-P to the structure function 
of order p (cf. (8.40)). The exponent (p = 2 - p vanishes for p = 2, 
yielding a k-1 contribution to the energy spectrum (Townsend 1951). 
This is shallower than the K41 spectrum, but there may be a viscosity­
dependent constant in front of the k-1 contribution, making this term 
relevant only at sufficiently small scales,39 as Passot, Politano, Sulem, 
Angilella and Meneguzzi (1995) suggest. Our form of the argument, 
when applied to the structure function of order p, suggests that, at very 
small scales there may be a contribution oc £2-P, which overwhelms the 
fPl 3 K41 contribution, particularly at large ps. One could then argue that 
in trying to fit a single power-law with exponent (p to this composite 

39 In this sense Passot, Politano, Sulem, Angilella and Meneguzzi (1995) is a 'tail theory'. 
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function, (p will be underestimated, thereby leading to a 'multifractal 
artifact'. 40 

If multifractahty is not an artifact, can we explain the measured values 
of the exponents (p as reported in Section 8.3? A signature of the 
vortex filaments may be present in the numerical results of Vincent and 
Meneguzzi (1991) for high-order structure functions. We have already 
stressed in Section 8.3 that such structure functions are very difficult to 
measure accurately. Still, if we accept the exponents (p of order 14--30, 
given in their Figure 10, we notice that they fall approximately on a 
straight line (p = ap + b with a ~ 0.9 and b ~ 2. According to the 
multifractal model, a is the minimum scaling exponent hmin and b is the 
codimension 3 -D(hmin). Hence, D(hmin) ~ 1, the dimension of filaments. 

Another signature of vortex filaments may be found in the flatness of 
the velocity derivative: a collection of vortex filaments with a finite core, 
assumed to be approximately straight and independent, can produce a 
large flatness but gives a vanishing contribution to odd order moments 
such as the skewness. 

More ambitiously, is it possible to explain the whole set of exponents 
(p in terms of vortex filaments? 

She and Leveque (1994) proposed a phenomenology involving a hier­
archy of fluctuation structures associated with the vortex filaments. From 
this they derive a relation with no adjustable parameters, namely: 

(p = p/9 + 2 - 2(2/3)Pl3
, (8.141) 

which is in remarkable agreement with experimental results processed by 
ESS (Benzi, Ciliberto, Tripiccione et al. 1993), as discussed in Section 8.3. 
The corresponding Tq exponents, given by (8.88), are consistent with 
Novikov's inequality (8.124) for both positive and negative qs. The slope 
of (p for large p is 1/9. Hence, the most singular (i.e. smallest) scaling 
exponent is hmin = 1/9 ~ 0.11. Note that Gagne's (1987) experimental 
data suggest an asymptotically linear behavior of (p with an exponent 
hmin ~ 0.18. Dubrulle (1994) observed that (8.141) corresponds to a 
log-Poisson distribution: in the notation of Section 8.6.4, the variables 
mi have a Poisson distribution. Dubrulle also noted that (8.141) may be 
obtained as a suitable limit of the random P-model of Benzi, Paladin, 
Parisi and Vulpiani (1984). She and Waymire (1995) independently noted 
the log-Poisson property. A variable with a Poisson distribution is an 
instance of an infinitely divisible random variable, i.e. a variable which 

40 This argument is easily adapted to the case in which the vortex filaments form a fractal 
tangle of dimension D (change rx. £2-P into oc £3-D-P). 
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can be written as the sum of an arbitrary number of independently 
and identically distributed variables (see, e.g., Levy 1965; Feller 1968b ). 
Using the Levy-Khinchine representation of infinitely divisible laws, She 
and Waymire (1994) proposed a generalization of (8.141) which may be 
realized in a context different from incompressible turbulence. 

Reconciling the statistical picture of multifractal turbulence with the 
geometric picture of vortex filaments may be easier if we resort to the 
circulation 41 

Ce = J v(r) · dr, 
hDt 

(8.142) 

rather than to velocity increments. Here, 0D1 is the boundary of a disk 
De of radius £ (or a square of side £). Instead of moments of velocity 
increments, we suggest using here moments of Ce/£. This quantity 
has the same dimension and maybe the same exponents (p as velocity 
increments. It is conjectured that a single vortex filament (say, with unit 
circulation), if sufficiently convolved, can give rise to multifractal scaling 
of the circulation. 

The circulation around oDp is, of course, equal to the flux of the 
vorticity through the disk De. In contrast to the approach based on the 
dissipation, which uses three-dimensional integrals of a positive measure, 
one is here working with two-dimensional integrals of a signed measure. 

It is therefore possible to study aspects other than multifractality, such 
as the cancellation index which measures how much cancellation of 
opposite-sign measure takes place on very fine scales. The importance of 
this in studying magnetic field production by the dynamo effect has been 
recognized by Ott, Du, Sreenivasan, Juneja and Suri (1992) and Du and 
Ott (1993). 

The calculation of the circulation (or of the vorticity flux) appears to be 
much simpler from numerical simulations than from experiments. There 
is, however, a magnetohydrodynamic variant of this problem which, in 
our opinion, can be studied via high-resolution observations of solar 
magnetic fields: one then uses, instead of the vorticity flux, the magnetic 
flux, obtained from the Zeeman effect (see, e.g., Stenflo 1994). 

Whether or not the vortex filaments are the 'dog', there are a number of 
interesting research topics which should be explored, for example the sta­

tistical mechanics of three-dimensional vortex filaments. This is, of course, 
much more difficult than the corresponding two-dimensional problem 

41 Migdal (1994) has shown how to develop a functional formalism for turbulence in terms 
of the p.d.f. of the circulations around all possible contours. 
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with point vortices, pioneered by Onsager (1949; see also Section 9.7.2). 
Indeed, in three dimensions the individual entities, being strings, already 
have infinitely many degrees of freedom. One of the open issues is the 
possibility of Debye-type screening in three dimensions (Ruelle 1990). 

8.9.3 The distribution of velocity increments 

In this section on 'trends' in intermittency we have chosen to discuss 
mostly vortex filaments. Among the other topics of current interest, 
there is the study of probability densities (p.d.f.s) of velocity increments 
and velocity gradients at high Reynolds numbers. Measurements of 
p.d.f.s of increments and gradients are obtained from experimental and 
numerical data (Van Atta and Park 1972; Gagne, Hopfinger and Frisch 
1990; Vincent and Meneguzzi 1991; Noullez, Wallace, Lempert, Miles 
and Frisch 1996). An example is given in Fig. 8.23. 

The main features observed can be summarized as follows. For f ,....., fo, 
the integral scale, the p.d.f. of increments is essentially indistinguishable 
from a Gaussian. At inertial-range separations, the p.d.f. develops 
approximately exponential wings.42 At even smaller scales, the p.d.f. 
takes the form of a 'stretched exponential', i.e. the exponential of (minus 
a constant times) a fractional power of the absolute value of the velocity 
increment ; the exponent is less than unity, so that the p.d.f. decreases 
slower than exponentially. 

The p.d.f. of the increment bve for the smallest separation fmin available 
is generally used to determine the p.d.f. of the velocity gradient, assumed 
to be approximately given by ( bve/ f )lf=tmm. This may be difficult to 
circumvent, but it is a questionable procedure. Indeed, inspection of 
Fig. 8.23 reveals that, even when t'min is comparable to the Kolmogorov 
dissipation scale 17, very large velocity increments (which can become 
comparable to vo) occur with significant probabilities.43 For f, ,....., 17 , the tail 
of the p.d.f. of velocity increments is thus not necessarily representative of 
the tail of the p.d.f. of velocity gradients. Furthermore, the present quality 
of data does not easily permit us to distinguish between (at least) two 
possibilities : (i) different functional forms for the p.d.f.s of increments, 
associated respectively with the energy range, the inertial range and the 

42 For longitudinal increments, the negative wing is higher than the positive wing, as 
dictated by Kolmogorov's four-fifths law (Section 6.2) which implies a negative skewness 
of the velocity increment. 

43 This phenomenon is much more marked for transverse than for longitudinal increments; 
transverse increments are indeed not constrained by the condition of incompressibility. 
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Fig. 8.23. Probability densities of transverse velocity increments obtained by the 
RELIEF flow tagging technique in a turbulent jet at R;. ~ 240 for various 
separations f,, as labeled. The Kolmogorov dissipation scale is 1'/ = 16 µm. The 
velocity increment scale is linear and in units of v0, the r.m.s. transverse velocity 
fluctuation. Lower levels of p.d.f. (not shown) are too noisy to be significant 
(Noullez, Wallace, Lempert, Miles and Frisch 1996). 

dissipation range and (ii) a functional form varying continuously with 
the scale. 

Various theoretical interpretations have been proposed, mostly for the 
latter possibility. Castaing, Chabaud and Hebral's (1990) interpretation is 
based on a variational formulation for fully developed turbulence, intro­
duced by Castaing (1989). She (1991; see also She and Orszag 1991 ; She, 
Jackson and Orszag 1991) proposed a nonlinear transformation relating 
fluctuations of the velocity gradient and fluctuations of the large-scale 
velocity. This is based on a picture of fully developed turbulence as a 
collection of weakly correlated random eddies and strongly correlated 
structured eddies. It also makes use of a 'mapping function' (Kraichnan 
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1990). Benzi, Biferale, Paladin, Vulpiani and Vergassola ( 1991) pro­
posed an extension of the multifractal formalism for p.d.f.s of velocity 
increments and of velocity gradients.44 

More accurate measurements of the tails of the p.d.f.s both for in­
crements and gradients constitute in our view a major challenge for 
experimentalists. 

44 The multifractal model, in its probabilistic formulation of Section 8.5.4, puts some 
constraints on the p.d.f. of increments, but does not determine it in a unique way. 



9 
Further reading: a guided tour 

9.1 Introduction 

This chapter contains supplementary material beyond the scope of the 
previous chapters. The choice of topics is, of course, determined largely by 
the author's own interests and knowledge (or lack thereof). No attempt 
is made, for example, to discuss supersonic and magnetohydrodynamic 
turbulence or turbulent convection. As for numerical simulation of tur­
bulence, one of the most important current tools in turbulence research, 
it defies being summarized and requires a book of its own. Some topics 
are presented rather briefly, either because there is no need to elaborate 
them (Section 9.2 on further reading in turbulence and fluid mechanics) 
or because very good reviews are easily found in the literature (Sec­
tion 9.3 on mathematics and Section 9.4 on dynamical systems). Other 
topics require more detailed presentation for lack of suitable review or 
just because the author's viewpoint is somewhat unusual. Section 9.5 is 
an introduction, occasionally rather critical, to closure, functional and di­
agrammatic methods. Section 9.6 is devoted to eddy viscosity, multiscale 
methods and renormalization; it includes some little known historical 
material on nineteenth century turbulence research. Finally, Section 9.7 
deals mostly with recent developments in two-dimensional turbulence. 

9.2 Books on turbulence and fluid mechanics 

One of the earliest reviews of (mostly homogeneous) turbulence, was 
written by von Neumann (1949) in the form of a report to the Office of 
Naval Research, after he had attended a conference in Paris on Problems 
of Motion of Gaseous Masses of Cosmical Dimensions, organized jointly 
by the International Union of Theoretical and Applied Mechanics and 

195 
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the International Astronomical Union. This report was only privately 
circulated for many years. It was and remains a most remarkable 
paper, containing many original ideas. Von Neumann was the first to 
recognize that, when the Reynolds number is increased, the separation 
of microscopic and macroscopic scales increases also (cf. Section 7.5), 
thereby ruling out any 'ultraviolet catastrophe'. He noted that analyticity 
of the flow suggests an exponential law for the behavior of the energy 
spectrum at high wavenumbers. Thoroughly convinced that a 'high­
speed computing program ... should be undertaken as soon as feasible', 
he made near the end of the paper the following observations which 
deserve being quoted in extenso: 

These considerations justify the view that a considerable mathematical effort to­
wards a detailed understanding of the mechanism of turbulence is called for. The 
entire experience with the subject indicates that the purely analytical approach is 
beset with difficulties, which at this moment are still prohibitive. The reason for this 
is probably as was indicated above: That our intuitive relationship to the subject 
is still too loose - not having succeeded at anything like deep mathematical pen­
etration in any part of the subject, we are still quite disoriented as to the relevant 
factors, and as to the proper analytical machinery to be used. 

Under these conditions there might be some hope to 'break the deadlock' by 
extensive, but well-planned, computational efforts. It must be admitted that the 
problems in question are too vast to be solved by a direct computational attack, 
that is, by an outright calculation of a representative family of special cases. There 
are, however, strong indications that one could name certain strategic points in this 
complex, where relevant information must be obtained by direct calculations. If 
this is properly done, and the operation is then repeated on the basis of broader 
ieformation then becoming available, etc., there is a reasonable chance of effecting 
real penetrations in this complex of problems and gradually developing a useful, 
intuitive relationship to it. This should, in the end, make an attack with analytical 
methods, that is truly more mathematical, possible. 1 

Batchelor's (1953) Homogeneous Turbulence was a landmark in the 
field, written after considerable experimental and theoretical work had 
been done in Cambridge in the years after World War II. This monograph 
contributed to bringing the idea of a 'universal equilibrium' theory of 
turbulence (one aspect of Kolmogorov's contribution) to a wide scientific 
audience. It even included some discussion of intermittency (for velocity­
derivatives) and some ideas about reverse energy flow in two-dimensional 
turbulence (see Section 9.7). 

Ten years later, two important review papers were published in Hand­

buch der Physik. Lin and Reid's (1963) review of theoretical work includes 
1 It took over 20 years until von Neumann's dream started coming true (Orszag and 

Patterson 1972). 
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considerable material on 'early' closures of the quasi-normal type which 
had severe pitfalls (see Section 9.5). It also contains a clear exposition of 
the problems encountered with the so-called Loitsyansky invariant (see 
Section 7.7). Corrsin's (1963) review of experimental work remains a 
classic on how to set up and measure homogeneous tubulence (see also 
the very readable book by Bradshaw 1971). 

The currently most complete book on homogeneous turbulence, by 
Monin and Yaglom (1975) was first published in Russian in 1967, the 
substantially revised English version being edited by John Lumley. It 
contains a wealth of information on theory and experiments, including 
considerable material on intermittency but not on fractal and multifractal 
models. It has about 1000 references (fairly distributed between East 
and West), most of which are discussed at length in the text. This 
'big red book' is the constant companion of anyone working seriously 
in the field. Many important topics not covered in the present book 
are discussed, for example the statistical properties of passive scalars, 
such as temperature fields.2 Written around the same time, and first 
published in Bulgarian and Russian, Panchev's (1971) book contains a 
nice presentation of Kolmogorov's four-fifths law and much material on 
early attempts by Obukhov and others to derive simple closed spectral 
equations by heuristically relating the energy transfer to the energy 
spectrum. Considerable material on compressible turbulence may be 
found in Favre, Kovasznay, Dumas, Gaviglia and Coantic (1976). 

After ways were found to circumvent the more obvious pitfalls of clo­
sure (see Section 9.5) books and reviews tended to devote considerable 
space to what may be called 'advanced closures'. Leslie's (1973) book is 
mostly concerned with Robert Kraichnan's direct interaction approxima­
tion, a topic we shall come back to in Section 9.5.3. Orszag (1977) and 
Rose and Sulem (1978) are among the best reviews of the analytic theory 
of homogeneous turbulence published in the 1970s. Their emphasis is on 
closure and statistical mechanics. Lesieur's (1990) book contains similar 
material with more details, particularly on two-dimensional turbulence; 
in addition it has some material about 'real world turbulence'. The reader 
will appreciate this well-organized book and find that it has relatively 
little overlap with the present one.3 For example, it does not mention 

2 More recent useful references on this are: Sreenivasan (1991), Pumir, Shraiman and 
Siggia (1991), Gollub, Clarke, Gharib, Lane and Mesquita (1991), Holzer and Pumir 
(1993), Pumir (1994), and Tong and Warhaft (1994). 

3 The same author has also produced a very readable adaptation for broad scientific 
audiences, including many beautiful color pictures (Lesieur 1994). 
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Kolmogorov's four-fifths law, an omission it shares with most books and 
reviews, Landau and Lifshitz (1987), Monin and Yaglom (1975) and 
Panchev (1971) being among the exceptions. Many topics of current 
interest in turbulence research are discussed in the Tentative Dictionary 

of turbulence, edited by Tabeling and Cardoso (1994). 
Let us also mention Zeldovich, Ruzmaikin's and Sokoloff's (1990) very 

enjoyable essay The Almighty Chance, which contains ample material on 
fractals and homogeneous turbulence. Concepts such as intermittency 
are presented in an elementary way and illustrated by many nonhydro­
dynamic examples involving, for instance, mushrooms, urban centers, 
nuclear accidents, etc. Finally, it is very enlightening to watch the film 
on turbulence by Stewart (1972). 

Shear flow turbulence, also called 'inhomogeneous' turbulence, is not 
within the scope of this book. Recommended reading includes Hinze 
(1959), Townsend (1976) and Monin and Yaglom (1971). The last is 
by far the most comprehensive treatment of the subject. A new edi­
tion is expected around 1996. Tennekes and Lumley's (1972) A First 

Course in Turbulence, which covers both homogeneous and shear flow 
turbulence, deserves a particular mention: it has become very popular 
among the many users of turbulence, scientists, engineers, etc. Al­
though more than 20 years old, this very readable book is far from 
being obsolete. One could even say that, for much of the material that 
one regretted not finding in it 10 years ago, maybe there is less regret 
now. 

Students and scientists interested in turbulence do not necessarily have 
much background in fluid mechanics. Classical textbooks which can 
provide the required background include Batchelor (1970), Landau and 
Lifshitz (1987), Tritton (1988) and Guyon, Hulin and Petit (1991). Physi­
cists will love the short but penetrating introduction to fluid mechanics 
found in Chapters 40 and 41 of the second volume of Feynman (1964). 
A remarkably intuitive elementary introduction to fluid mechanics is Vo­
gel (1981). More specialized reading on mathematical aspects of fluid 
mechanics, hydrodynamic stability, thermal convection, magnetohydro­
dynamics and vortex dynamics may be found in Chandrasekhar (1961), 
Lions (1969), Temam (1977), Chorin and Marsden (1979), Drazin and 
Reid (1981), Bayly, Orszag and Herbert (1988), Cross and Hohenberg 
(1993), Siggia (1994), Moffatt (1978), Saffman (1992) and Chorin (1994). 
Finally, special mention should be made of the whole set of Geophysical 
Fluid Dynamics Lecture Notes published for over 30 years by the Woods 
Hole Oceanographic Institute (Woods Hole, Massachusetts); these lee-
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ture notes have always been at the forefront of research in turbulence 
and hydrodynamic stability and their applications to astro/geophysical 
sciences. 

9.3 Mathematical aspects of fully developed turbulence 

Since we are presently still lacking a systematic theory of fully developed 
turbulence, is anything to be gained by focusing on rigorous approaches? 
AN. Kolmogorov, a leading mathematician of the twentieth century, 
certainly did not restrict his investigations of turbulence to what he 
could handle rigorously. His scientific activities, as he liked to point 
out, encompassed rather unrelated fields, including history, mathematics 
and turbulence (V.I. Arnold, private communication). Some questions 
relating to high-Reynolds-number flow, which have been identified only 
after the completion of Kolmogorov's work on turbulence, are however 
likely to benefit from a close collaboration between mathematicians and 
physicists. 

The two central issues are singularities and depletion, both of which 
are beyond simple phenomenology (see Section 7.8) and must be tackled 
by exquisitely precise numerical simulations or by rigorous methods. 
If finite-time singularities are present in viscous flow, such flow is not 
analytic and the dissipation-range spectrum should be a power-law. This 
is highly unlikely, but cannot be completely ruled out. If inviscid flow 
blows up (i.e. develops singularities) after a finite time, the nature of the 
singularities may be reflected in the scaling properties of fully developed 
turbulence. We pointed out in Section 8.5.4 that the converse need 
not be true: (multi)fractality does not imply finite-time singularities. 
Furthermore, even if blow-up takes place, the first singularity to occur 
could be different in nature from those taking place after blow-up, when 
the limit of zero viscosity is taken.4 As for depletion or reduction 
of nonlinearity, it provides a possible way to avoid singularities and 
is related to the intriguing tendency of high-Reynolds-number flow to 
organize itself into coherent structures such as vortex sheets, pancakes 
and filaments. 

Let us now briefly list what has been proven rigorously about sin­
gularities in viscous and inviscid three-dimensional flow. For viscous 
(Navier-Stokes) flow no real breakthrough has occurred since Leray 

4 This is indeed the case for Burgers' equation, where the first singularity is locally as 
(x - x. )113 while later singularities are shocks, i.e. discontinuities (Fournier and Frisch 
1983b). 
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(1934) showed the existence of a weak solution. This solution does 
not have enough smoothness to rule out singularities and need not be 
unique. In fact, the lack of uniqueness provided at that time a possible 
explanation of the turbulent behavior. Scheffer (1976, 1977), using a 
functional estimate established by Leray (1934), proved that the Haus­
dorff dimension of the instants of time where the viscous flow is singular 
cannot exceed one-half. The best result in this direction was obtained 
by Cafarelli, Kohn and Nirenberg (1982), who proved that, in the four­
dimensional space-time, the Hausdorff dimension of singularities cannot 
exceed 1. In other words, such hypothetical singularities are on a very 
small set. It is most likely, of course, that this set is empty. Some details 
on these results, putting them into a modern perspective for both math­
ematicians and physicists, may be found in the reviews of Constantin 
(1991) and Gallavotti (1993). For viscous flow, Ladyzhenskaya (1969) 
has proven that regularity for all times (global regularity) holds when the 
viscous term vV2v is replaced by -µ(-V2)'X, where the dissipativity ex> 2. 
As observed by Rose and Sulem (1978), K41 phenomenology suggests 
that regularity holds as soon as ex > 1/3, while the best proven result is 
ex~ 5/4 (Lions 1969). 

We turn now to inviscid (Euler) flow. For lack of a smoothing mecha­
nism, the solutions never become more regular than the initial data. Even 
for sufficiently smooth initial data, for example with a vorticity which is 
Holder continuous,5 regularity is proven only up to a finite time. The first 
result of this kind was obtained by Lichtenstein (1925) who assumed the 
initial vorticity to be Holder continuous and zero outside of a bounded 
set. A number of improvements, obtained in the 1970s, may be found, for 
example, in Ebin and Marsden (1970), Kato (1972), Bardos and Frisch 
(1976) and the review by Rose and Sulem (1978). As already pointed out 
in Section 7.8, none of these results significantly improves on what would 
have been obtained by assuming that the (Lagrangian) rate of change 
of the vorticity modulus is of the order of the squared vorticity. Such 
a relation implies blow-up of the supremum of the vorticity. Actually, 
an important result by Beale, Kato and Majda (1989) ensures that no 
finite-time loss of regularity can occur without blow-up of the supremum 
of the vorticity.6 

In the early 1980s, when the first high-resolution simulations of three-

5 Increments of the vorticity over a small distance f are bounded by a constant times frx 
for some 0 < rx. $; 1. 

6 In fact, if the first loss of regularity occurs at time T .. , the time-integral of the spatial 
supremum of the vorticity modulus from 0 to T. is infinite. 
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dimensional Euler flow did not reveal the expected singularities (Bra­
chet et al. 1983), it became clear that all the existing rigorous bounds 
were overestimating the growth of nonlinearities because they failed to 
take into account the development of structures with strongly depleted 
nonlinearities (see, e.g., Frisch 1983, p. 689). As we now know, de­
pleted structures are ubiquitous: pancakes (Section 7.8), vortex filaments 
with approximately circular cross-sections (Section 8.9), circular two­
dimensional vortices (Section 9. 7), etc. It is a major challenge to take into 
account the depleted geometry of inviscid or turbulent flow and thereby 
to improve on existing rigorous results. This question is now being tack­
led seriously. A reasonably detailed and very enjoyable account of what 
is known may be found in the review by Constantin (1994, Sections 4 
and 5). The key result is the Constantin relation 7 for the Lagrangian 
derivative of the vorticity modulus lwl, viz: 

Drlwl =(or+ v · V)lwl = cxlwl, (9.1) 

where a is given by 

a(r)- 2- P.v.j D(r',w(r+r'),w(r))lw(r+r' )I dr~. (9.2) 
4n 1~1 

Here, the hat on a vector designates the unit vector parallel to this vector, 
the symbol P. V. stands for 'principal value' and 

D(a, h, c) =(a · h) Det (a, h, c), (9.3) 

where Det (a, h, c) is the determinant of the three vectors a, h and c. 

The quantity a has the dimension of a vorticity. Yet, as pointed out 
by Constantin, it is geometrically depleted because of the presence of the 
determinant: if the direction of the vorticity changes very slowly in the 
neighborhood of point r, the determinant is going to be very small. If 
the time-integral of the spatial supremum of a remains finite, so will the 
supremum of the vorticity and blow-up may be avoided altogether. Of 
course, the previous sentence has a big 'if'. What has been established 
so far are various strengthened versions of the Beale, Kato and Majda 
(1989) result (Constantin 1994; Constantin, Pefferman and Majda 1995).8 

7 Called by him the 'alpha and omega' relation. 
8 Other relations, possible starting points for mathematical analysis, may be found in 

Ohkitani and Kishiba (1995). 
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Some hope of obtaining much stronger results comes from related 
work on 'active scalars', i.e. a scalar quantity which is being advected by 
a two-dimensional incompressible flow, the stream function of which is a 
prescribed function of the local intensity of the scalar (Constantin 1994 
and references therein). This problem has features resembling those of the 
three-dimensional Euler flow and global regularity and/ or blow-up results 
seem at hand (A. Majda and P. Constantin, private communication). 
Another two-dimensional problem in which a careful control of the 
geometry has led to a real breakthrough is the two-dimensional vortex 
patch, i.e. the inviscid motion of a domain of uniform vorticity bounded 
by a curve CC, outside of which the vorticity vanishes. The initial data 
are already discontinuous, and the issue is whether or not an initially 
smooth curve CC will remain so for ever or develop a singularity (cusp 
or other) after a finite time (Majda 1986). The topic was the subject 
of some controversy among physicists. This was settled when Chemin 
(1993) proved the regularity for all times. A more elementary proof is 
given by Bertozzi and Constantin ( 1993; see also Constantin 1994 and 
references therein). 

It is now clear that progress on the 'big' Euler and Navier- Stokes 
problems in three dimensions requires more than just better functional 
analysis. Some geometry is needed. But 'how much geometry is enough 
geometry'? The work in progress described above uses only some infor­
mation on the three-dimensional geometry of vortex lines. Actually, there 
is infinitely more geometry in the Euler flow: incompressible Euler flow, 
in any dimension, when formulated in Lagrangian coordinates, may be 
viewed as a geodesic flow in a suitable infinite-dimensional space. Indeed, 
let r(t,a) denote the position at time t of the fluid particle initially at a, 
it is elementary to check that the extremals of the space-time integral of 
lo1r(t, a)l2, subject to r(O, a)= a, to prescribed 'final positions' r(T, a) and 
to the incompressibility constraint Det or;/oa1 = 1, are just the solutions 
of the Euler equation, in which the pressure appears as a Lagrange 
multiplier (see, e.g., Serrin 1959, Chapter IV). 

In more mathematical language, the Euler flow in a domain M is 
described by the geodesics on the group S Diff(M) of volume-preserving 
diffeomorphisms of M, endowed with the right-invariant Riemannian 
metric defined by the kinetic energy. From there, using Lie algebra 
methods, Arnold (1966, 1978) discovered that the Euler flow is actually 
an infinite-dimensional analog of the motion of a solid body around a 
fixed point. This has many interesting consequences for fluid mechanics, 
which are being actively investigated (see, e.g., Arnold and Khesin 1992; 
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Marsden and Weinstein 1983; Zeitlin 1991, 1992; Morrison 1993 and 
other contributions in the same Woods Hole proceedings). Associated to 
such Lagrangian formulations of the Euler equation, there is a symplectic 
structure and various Hamiltonian formulations. This includes the fa­
mous representation in terms of Clebsch variables (see, e.g., Lamb 1932), 
where the vorticity is written as V Jc f\ V µ and Jc and µ are advected scalars 
(material invariants).9 Another Hamiltonian representation, which is use­
ful when dealing with helical flow is due to Kuz'min (1983) and Oseledets 
(1989; see also Gama and Frisch 1993). 

For seriously tackling some of the major open mathematical problems 
of the Euler flow, it may thus be necessary to learn symplectic geometry. 
(Remember that physicists had to learn Riemannian geometry to do 
general relativity !) It is not obvious that such methods can be extended 
to viscous flow, i.e. to true turbulence. 

9.4 Dynamical systems, fractals and turbulence 

Kolmogorov, in addition to being the founder of modern probability 
theory and modern turbulence theory, was also the founder of modern 
dynamical systems theory. We do not intend here to review his numerous 
contributions to this field and just mention the work on invariant tori for 
slightly perturbed Hamiltonian systems, which eventually led to what is 
called KAM theory (Kolmogorov 1954; Arnold 1963; Moser 1962). Since 
the 1970s, physicists all over the world have become strongly interested 
in nonlinear dynamics and in fractals. Key references may be found in 
textbooks, reviews and collection of reprints such as Mandelbrot (1977), 
Berge, Pomeau and Vidal (1984), Guckenheimer and Holmes (1986), 
Schuster (1988), Cvitanovic (1989), Devaney (1989), Ruelle (1989, 1991), 
Falconer (1990), Manneville (1990), Evertsz and Mandelbrot (1992), Iooss 
and Adelmeyer (1992), and Cross and Hohenberg (1993). 

A frequently asked questions is: What have we learned from looking 
at turbulence with a dynamical systems viewpoint? This was one of 
the key topics included in the meeting Wither Turbulence?, organized by 
Lumley (1990; see, in particular, the contribution by H. Aref; see also 
Dracos and Tsinober 1993). It should be clear, from our Chapter 3, 
that turbulence (including fully developed turbulence) is formally a prob­
lem in dynamical systems. Conceptually, this is helpful. For example, 

9 The corresponding vortex lines, being at the intersections of surfaces of constant ). and 
constant µ, have a rather constrained topology; this can be avoided by increasing the 
number of Clebsch variables. 
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we know that there is no need to invoke singularities to explain the 
unpredictable behavior of turbulent flow. Neither is there any need for 
external noise to explain random behavior of turbulent flow. 10 Also, dy­
namical systems theory allows us to think of homogeneous turbulence as 
a flow in which translational and other symmetries are restored through 
chaos. 

On the other hand, the tools which have been developed mostly for 
low order dynamical systems (bifurcations, Lyapunov exponents, dimen­
sion of attractors, etc.) have been rather useless for fully developed 
turbulence, which has a very large number of degrees of freedom (see 
Section 7.4). There are also severe practical limitations on the mea­
surements of dimensions of attractors when these are too high (Atten, 
Caputo, Malraison and Gagne 1984; Ruelle 1989). However, there has 
been some success in modeling the large scales of wall-bounded turbulent 
flow by low-dimensional dynamical systems (Aubry, Holmes, Lumley and 
Sone 1988; Holmes 1990). 

One of the most fruitful applications of dynamical systems to fluid 
mechanics, if not exactly turbulence, is chaotic advection, i.e. the chaotic 
motion of passive tracer particles in a prescribed flow (Aref 1984; Dom­
bre et al. 1986; Ottino 1989). Here, the phase space of the dynamical 
system is just the usual two- or three-dimensional physical space. When 
the flow is incompressible the dynamics are conservative (Hamiltonian). 
Chaotic advection, in the simplest three-dimensional case, exploits the 
observation made by Arnold (1965; see also Henon 1966) that very 
simple steady flow, which is a solution of the Euler equation, can have 
nonintegrable streamlines, so that the Lagrangian motion is chaotic. One 
of the simplest examples, called the Arnold-Beltrami-Childress flow or, 
simply, ABC flow is given by 

u1 = Asinx3 + Ccosx2 l 
u2 = B sin x1 +A cos X3 

W3 = Csinx2+Bcosx1. 

(9.4) 

If, instead of passive particles, one has a passive magnetic field in a 
prescribed conducting flow, chaotic advection can help the dynamo effect, 
i.e. the unbounded growth of magnetic fields (Moffatt 1978). Indeed, in 
the absence of molecular diffusion, the magnetic field would behave just 
like a pair of infinitesimally close tracer particles, so that its growth would 

lO Some external noise is useful insofar as it prevents the system from being trapped in 
one of many possible attractors with small basins. 
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be controlled by the maximum Lyapunov exponent. 11 Diffusion, even 
in very small amounts, makes the problem considerably more complex 
(Arnold, Zeldovich, Ruzmaikin and Sokoloff 1981; Zeldovich, Ruzmaikin 
and Sokoloff 1983 ; Childress et al. 1990; Childress and Gilbert 1995 and 
references therein). 

If turbulence has benefitted, occasionally, from dynamical systems, the 
converse is also true. In Chapter 8 we saw that the concept of multifractal, 

which first appeared in fully developed turbulence, has turned out to 
be very useful in dynamical systems. Paradoxically, the multifractal 
character of fully developed turbulence is still a controversial matter, 
whereas attractors of chaotic dissipative dynamical systems are known, 
and sometimes proven rigorously, to be multifractal. 

This brings us finally to fractals and turbulence, a subject already 
discussed at length in Chapter 8. Here, we just want to add a word of 
warning: fractals with no particular dynamical significance may appear 
when processing data of fully developed turbulence. This has to do 
with fractal level crossing, a phenomenon which may be understood by 
considering the case of the ordinary one-dimensional Brownian motion 
W(t) (Kahane 1985). A simple consequence of the fact that the increments 
of W(t) scale as the square root of the time increments is that the graph 
of W(t) has fractal dimension 3/2. Consequently, the instants of time 
where the graph intersects any smooth curve, for example the crossings 
of a given level, form a set of fractal dimension D = 1/2. Similarly, a one­
dimensional random function with Holder exponent h or a self-similar 
random function with scaling exponent h will produce sets of dimension 
D = 1 - h under level crossing, whether or not the random function is 
Gaussian (Falconer 1990). Even pure K41 turbulence will look fractal 
in this way.12 Similar artifacts are even more likely to occur in higher 
dimensions since graphical representation by level crossing is one of the 
simplest ways to plot a multidimensional field. 13 For further information 
on the geometry of fractal graphs in connection with turbulence, see 
Constantin and Procaccia (1993). 

11 Arnold (1972) already noticed that chaotic advection may favor instability of noncon­
ducting flow. 

12 Praskovsky, Foss, Kleiss and Karyakin ( 1993) analyzed the fractal properties of level 
crossing for high Reynolds number turbulence data and failed to find a wide range of 
scales exhibiting constant fractal dimension; they nevertheless quoted a value D ~ 0.4 ; 
this is not consistent with D = 1 - h for h ~ 1/ 3. 

13 For example, the fractals appearing in a solar magnetogram need not be indicative of 
any genuine fractal small-scale magnetic activity. 
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9.5 Closure, functional and diagrammatic methods 

After the work of Wiener (1930) and Taylor (1935) on the energy spec­
trum of (stationary or homogeneous) random functions, a major chal­
lenge in turbulence appeared to be the prediction and measurement 
of its energy spectrum. For many scientists in the field this became 
the major challenge. Over a period of three decades, starting with 
the work of Millionshchikov (1941a, b) on the fourth-cumulant-discard 
approximation, which has grave inconsistencies, there were many at­
tempts to give a contracted description of the Navier-Stokes dynamics 
involving only the energy spectrum or a finite number of statistical 
functions. This culminated in the work of Kraichnan (1958, 1961) on 
the direct interaction approximation (DIA) and its companions, the La­
grangian history direct interaction approximation (LHDI; Kraichnan 
1965, 1966) and the eddy damped quasi-normal Markovian approxima­
tion (EDQNM; Orszag 1966, 1977) both of which are compatible with the 
K41 theory. 

To the best of our knowledge, Kolmogorov never attempted to derive 
such 'closed' equations. 14 His 1941 work dealt with the global probabilis­
tic structure of the random velocity field and cannot be reduced to the 
prediction of the k-513 energy spectrum. 

A number of more ambitious methods have been developed since the 
1950s, intended precisely to cope with the global probabilistic structure. 
They will be ref erred to here as 'functional' methods. Indeed, they make 
use of the characteristic functional (Section 4.2) of the velocity field or 
some generalization thereof, and not just of a finite set of moments. 
Functional methods were pioneered by Hopf (1952). Their usage grew 
very rapidly when it became clear, around 1960, that the diagrammatic 
and functional methods developed for quantum field theory by Dyson, 
Feynman, Schwinger and others (see also Section 9.6.4) could be applied, 
at least formally, to the Navier-Stokes equation with random initial 
conditions and/or random forces (Kraichnan 1958, 1961; Rosen 1960; 
Wyld 1961; Lewis and Kraichnan 1962; Tatarskii 1962; see also the 
references in Chapter 10 of Monin and Yaglom 1975). The paper by 
Martin, Siggia and Rose (1973) 'Statistical dynamics of classical systems' 
became a landmark in this subject, not only for the Navier-Stokes 
problem, but also for a whole class of nonlinear statistical problems, 
arising, for example, in critical dynamical phenomena. 

14 With the possible exception of his work on modeling of inhomogeneous turbulence 
(Kolmogorov 1942). 
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Functional and diagrammatic methods are sometimes referred to as 
·field-theoretic methods' in turbulence. This is somewhat misleading 

since what they borrowed from field theory (e.g., the so called Dyson 

equation) was mostly introduced in the early 1950s. Developments using 
more recent field-theoretic methods such as conformal invariance for 
two-dimensional turbulence (Polyakov 1993) are generating considerable 
interest (Falkovich and Hanany 1993; Falkovich and Lebedev 1994; 
Benzi, Legras, Parisi and Scardovelli 1995). 

Section 9.5.1 is a brief introduction to one of the most useful func­
tional methods, the Hopf equation. Functional methods using Feynman 

integrals and subsequent diagrammatic expansions are discussed in Sec­
tion 9.5.2. The author is rather critical of such methods, which seem 

so far to have been mostly useless in understanding turbulence. An 
exception to this is Kraichnan's DIA (Section 9.5.3). Closures, whether 
based on heuristic approximations or on functional and diagrammatic 
methods, are discussed in Section 9.5.4, with special emphasis on their 
shortcomings. 

9.5.J The Hopf equation 

An almost trivial example can be used to give an idea of what is the 
essence of Hopf's (1952) functional method. Consider the following 

ordinary differential equation: 

and let us introduce 

dv 2 
dt = v' 

K (t z) = eizv(t) unav. , - , 

where 'unav.' means 'unaveraged'. It is trivial to check that 

( 
1 a )

2 

8rKunav. = iz i az Kunav.· 

Now, let the initial condition v(O) be chosen randomly, and define 

K(t,z) = (Kunav.(t,z)) = (eizv(tl), 

(9.5) 

(9.6) 

(9.7) 

(9.8) 

namely the characteristic function of the random variable v(t). Since 

(9.7) is linear, it is also satisfied by K(t, z). With the label 'unav' removed 

(9.7) is the Hopf equation associated with (9.5). Since knowledge of 
the characteristic function is equivalent to that of the p.d.f., of which 
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it is the Fourier transform, the Hopf equation indirectly determines the 
(single-time) p.d.f. 

The Hopf equation associated with the Navier-Stokes equation is 
obtained in basically the same way. We start from the Navier-Stokes 
equation in the form (2.13), obtained after elimination of the pressure 

term, and observe that it has the general structure: 

o1v = y(v, v) + Lv, (9.9) 

where L and y(. , .) are suitable linear and bilinear operators15 represent­
ing the viscous and nonlinear terms, respectively. All time arguments are 
equal to t and are not written. It is, of course, possible to write these 
objects in explicit form as differential and/ or integral operators (remem­

ber that the solution of the Poisson equation, necessary to eliminate the 
pressure, involves an integral operator). Since differential operators can 
always be written formally as convolutions with suitable derivatives of 
Dirac distributions, it may be assumed that both L and y( ., .) are integral 
operators. 

Mathematicians like to use coordinate-free notation, while physicists 
tend to prefer somewhat more coordinate-explicit notation. Given that 

the velocity field (at any time t) depends on a three-dimensional position 
vector r and has three components, a coordinate-explicit form of (9.9) 
reads 

OtV;1(rt) = J J dr2 dr3 Yi1i2i3(r1,r2, r3)vi2 (r2)V;3 (r3) 

+ J dr2 Li1i2 (r1,r2)vi2 (r2). (9.10) 

Such notation makes subsequent manipulations leading to the Hopf 
equation quite cumbersome, so that one cannot see the forest for the 
trees. Hence, theoretical physicists have invented a shorthand notation 
where arguments such as i1 and r 1 are lumped into just a symbol 1. 
Eq. (9.9) then reads: 

o1v( 1) = y( 1, 2, 3)v(2)v(3) + L( 1, 2)v(2), (9.11) 

where it is understood that repeated arguments are summed/integrated 
over. In this notation, it is straightforward to show that the time­
dependent characteristic functional 

K(t,z) _ \ e[iz( l )v(t,l )]) (9.12) 

15 Without Joss of generality y(., .) may be assumed symmetrical in its arguments. 
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satisfies the Hopf (1952) equation 

. [y(l,2,3) a2 L(l,2) a J 
oiK(t,z) = zz(l) i2 oz(2)8z(3) + i oz(2) K(t,z). (9.13) 

When the Navier- Stokes equation is discretized in the space variables by 
using, for example, finite differences for derivatives and Riemann sums 
for integrals, operators such as a/ ov(2) are partial differential operators ; 
without discretization, they are functional (or Frechet) derivatives. One 
can also work with the spatial Fourier components of the velocity field. 
It is then necessary to separate real and imaginary parts, so that the v(.)s 
are real. Knowing K ( t, z ), from ( 4.12), one can calculate all single-time 
moments of the velocity field. 

When a deterministic forcing term f(t, 1) is added to the r.h.s. of (9.11) 
a term iz(l)f(t, l)K(t,z) must clearly be added to the r.h.s. of the Hopf 
equation. When the force is random, the average of iz(l)f(t, 1) times 
eiz(I)v(t,l) cannot in general be expressed in terms of K(t,z) = (eiz(I)v(c,l )) . 

There is, however, an important exception, when f(t, 1) is a stationary 
Gaussian random function of zero mean and it is rescaled into fe(t, 1) -
(l / €)f(t/ €2, 1), so that, as € ~ 0, the random function fe becomes 1J­
correlated (white noise) in the time variable. It may then be shown 
that, in the limit € ~ 0, the effect of the random force is just to add 
to the r.h.s. of the Hopf equation (9.13) a term i2z(1)z(2)F(l,2)K(t,z), 
where F(l, 2-) = J0

00 
dt (f(t, l)f(O, 2)) (Novikov 1964). Novikov's proof uses 

Gaussian integration by parts (p. 43); alternatively, multiscale techniques 
of the kind discussed in Section 9.6.2 may be used (see, e.g., Gama, 
Vergassola and Frisch 1994, Appendix D). 

The Hopf equation has been rather useful. Hopf (1952) showed that 
when f = v = 0, it possesses Gaussian solutions with an energy spectrum 
E(k) oc k2, corresponding to the equipartition of the kinetic energy 

among all spatial Fourier modes. Such solutions appear already to some 
extent in the work of Burgers (1939, Section 21). Kraichnan (1967) 
refers to them as 'absolute equilibrium solutions'16 (see also Orszag 1977; 
Rose and Sulem 1978; Lesieur 1990). Absolute equilibrium solutions 
seem highly unphysical in view of the approximately k-513 spectrum 
of three-dimensional turbulence. Actually, they are appropriate at the 
very smallest wavenumbers of turbulent flow maintained by forcing at 
intermediate wavenumbers (Forster, Nelson and Stephen 1977). We also 
note that the Hopf equation has been used for a proper mathematical 

16 They played a key role in his theory of the inverse cascade in two dimensions; see also 
Section 9.7.1. 



210 Further reading: a guided tour 

formulation of the problem of homogeneous turbulence (Vishik and 
Fursikov 1988). 

One of the nicest applications of the Hopf equation is the derivation 
of the hierarchy of (single-time) cumulants. From the definition (9.12) of 
the characteristic functional it follows that it is the generating functional 
of (single-time) moments of the velocity field: 

i2 
K(t,z) = 1+iz(l) (v(t,1) ) + 

2
!z(l)z(2)(v(t, l) v(t, 2)) + · · · . (9.14) 

As is well known, moments beyond the second order need not become 
small when some of their spatial arguments are widely separated. For 
example, if the distances r1 - r2 and r3 - r4 are small compared to the 
integral scale Co, while r1 - r 3 is large compared to Co, then 

(v(t, l) v(t, 2)v(t, 3)v(t, 4)) ~ (v(t, l )v(t, 2)) (v(t, 3) v(t, 4)), (9.15) 

which is independent of r1 -r3. Cumulants (v(t, 1) · · · v(t, p))c are defined 
by subtracting from moments all possible factorized terms involving 
lower order moments. It may be checked that the generating function of --..... 
cumulants is just the logarithm of the characteristic functional : 

. i2 
H(t,z) - lnK(t,z) = 1z(l)(v(t, l))c + 

2
!z(l)z(2) (v(t, l) v(t,2))c + · · ·. 

(9.16) 
Substituting K = eH into the Hopf equation (9.13) with the forcing 
term added, we immediately obtain what could be called the log-Hopf 
equation: 

[ 
<PH oH oH l 

oiH(t, z) = - iz(l)y(l , 2• 3) oz(2)oz(3) + oz(2) oz(3) 

oH 
+ z(l)L(l, 2) oz(

2
) - z(l)z(2)F(l , 2). (9.1 7) 

Expanding (9.17) in powers of z and assuming that the mean velocity 
(which is also the first order cumulant) vanishes, we obtain a hierarchy of 
cumulant equations. The first two nonvanishing read (all time arguments 
are equal and omitted): 

81(v(l)v(2))c = 

+ y(l, 3, 4) (v(2)v(3)v(4))c + y(2, 3, 4) (v(l)v(3)v(4))c 

+ L(l , 3) (v(2)v(3))c + L(2, 3) (v(l)v(3))c + 2F(l , 2), (9.18) 
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ac(v(l)v(2)v(3))c = 

+ 2[y(l,4,5) (v(2)v(4))c (v(3)v(5))c 

+ y(2,4, 5) (v(l)v(4))c (v(3)v(5))c 

+ y(3,4, 5) (v(l)v(4))c (v(2)v(5) )c] 

+ y(l , 4, 5) (v(2)v(3)v(4)v(5) )c 

+ y(2,4, 5) (v(l)v(3)v(4)v(5))c 

+ y(3,4, 5) (v(1)v(2)v(4)v(5))c + L(l , 4) (v(2)v(3)v(4))c 

+ L(2,4) (v(l)v(3)v(4))1 + L(3,4) (v(l)v(2)v(4))c. (9.19) 

Subsequent equations in this hierarchy are too cumbersome to be shown 
here. Jn symbolic form, the equation for the nth cumulant (n ~ 4) Cn 
may be written: 

r+s=n+ l , 

r,s22 

It is worth noting that, since the random force is Gaussian, it contributes 
only to (9.18) for the second order cumulant. In the isotropic case, this 
equation reduceS: to the energy transfer relation (6.37), when written in 
the Fourier space. 

The cumulant hierarchy has often been used as a starting point for 
closure approximations (Section 9.5.4). One can also look for statistically 
stationary scaling solutions in the limit of vanishing viscosity (so that 
all terms involving L-operators disappear). In the absence of a force, 
or at scales at which the force is negligible, it is easily checked that 

the cumulant hierarchy is invariant under the rescaling r --+ .Ar and 
Cn --+ Anhcn, where h is an arbitrary scaling exponent. This result is, 
of course, just a restatement of the scale invariance of the Navier­
Stokes equation, discussed in Sections 2.2 and 6.1. Using (9.18), which 
is basically the Karman- Howarth- Manin relation (6.8), one can then 
obtain scale-invariant solutions with the K41 value h = 1/ 3, just as in 
Section 6.3.1. 

It is actually possible to do somewhat better and to use the cumulant 
hierarchy to show that a K41 ansatz does not lead to any blatant 
contradiction. Orszag and Kruskal ( 1966, 1968) investigated the cumulant 
hierarchy (written in the Fourier space), made such a K41 ansatz and 
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looked for possible infrared (small wavenumber) or ultraviolet (large 
wavenumber) divergences in the ensuing Fourier integrals which might 
signal some inconsistencies not captured by naive scaling arguments. 
They found good evidence that all integrals are convergent, implying 
the localness of interactions in the assumed K41 inertial range. The 
main problem is to show that there is no infrared divergence, in spite 
of the divergence of the total energy when a k-513 energy spectrum 
is used. The convergence stems mostly from cancellations among the 
three terms in the r.h.s. of (9.19) involving products of second order 
cumulants. These are the same cancellations as required for random 
Galilean invariance (Section 6.2.5). Indeed, when a uniform isotropic 
Gaussian random velocity U is added to the velocity field v, the second 
order cumulant changes from (vi(r)vj(r')) to (vi(r)vj(r')) + (1/3)\U2)i5ij, 
while all other cumulants are unchanged. Such cancellations take place 
only when working with single-time statistical averages, because all space 
arguments are then shifted by the same amount, -Ut. Methods of the 
sort discussed in Sections 9.5.2 and 9.5.3 use multiple-time formalisms 
and thus lead to more serious infrared difficulties. 

9.5.2 Functional and diagrammatic methods 

While the solution of the Hopf equation contains all the information 
about single-time moments, it may be desirable to have a formalism 
dealing with the full space-time statistical properties of the velocity field. 
This can be done by representing the solution of the Navier-Stokes 
equation in terms of functional integrals of the type first used by Wiener 
and Feynman (for an introduction to functional integrals, see Kac 1959, 
Chapter IV). 

As with the Hopf equation, we shall begin with a very elementary 
example which involves only ordinary integrals. Suppose we want to 
solve the ordinary algebraic equation 

v + h(v) = s. (9.21) 

Here, s is a prescribed real number, which is deterministic at this point 
(but will eventually become random) and h(v) is a polynomial in the 
real variable v chosen such that (9.21) has a single real solution. For 
example, we could take h(v) = v3. Let us denote by v(s) the solution of 
(9.21) and by i5(v - v(s)) the Dirac distribution at v(s). From the relation 
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b(.h) = b(x)/IA.I, it follows that 

b(v - v(s)) = b(s -v - h(v))J(v), J(v) - 11 + h'(v)j. (9.22) 

Using the exponential representation of b-functions, this may also be 
written: 

b(v - v(s)) = 2~ j dp J(v) eip(s-v-h(v)). (9.23) 

Any function of the solution (observable) F(v(s)) may now be represented 
as a double integral : 

F(v(s)) = 2~ j j dvdpF(v)J(v)eip(s-v-h(v)). (9.24) 

At this point, let s become a centered random Gaussian variable ; we 
then have (eips) = e-<1! 2l(s

2
)P

2
• Averaging (9.24), we obtain: 

(F(v(s))) = 2~ j j dvdpF(v)r!J(p,v), (9.25) 

where 

(9.26) 

" Similarly, we can calculate the mean Green's function17 g, i.e. the mean 
of ov / os. Since the multiplication of the integrand in (9.24) by ip is 
equivalent to a derivative with respect to s, we obtain: 

(g) = ( ~~) = 2~ j j dv dp ip v r!J(p, v). (9.27) 

It quite straightforward to extend this formalism to the full Navier­
Stokes equation (6.6) with a Gaussian random force, which may be 
written 

v(l) + y(l, 2, 3)v(2)v(3) = s(l). (9.28) 

Here, symbols such as 1, 2 and 3 are defined as in Section 9.5.1 , but 
with the additional inclusion of the time variable. Eq. (9.28) is obtained 
by applying the inverse of the heat operator 01 - vV2 to (6.6), after 
elimination of the pressure. By going through essentially the same steps 

17 Also called the response function. 
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as before, we obtain the following expression for the mean of an arbitrary 
functional F(v(.)) of the solution of the Navier-Stokes equation: 

where 

(F(v)) = J DvDpF(v)&(p,v), 

&(p,v) - J(v)e- A(p,v), 

1 
A(p, v) = 2(s(l)s(2)) v(l)v(2) 

+ ip(l)[v(l) + y(l , 2, 3)v(2)v(3)]. 

(9.29) 

(9.30) 

Here, J(v) is the Jacobian of the map from v to s defined by (9.28) :18 

J(v) = det { b(l, 2) + 2y(l , 2, 3)v(3)} ; (9.31) 

Dv and Dp are the products of all the discrete dv(.)s and dp(.)s, divided 
by 2n for each dp(.) factor. In the continuous limit, (9.29) becomes a 
functional integral. Similarly, the mean Green's function is expressed as 

(g(l , 2)) = ( ~~g;) = J Dv_Dpv(l) ip(2) &(p, v). (9.32) 

Eqs. (9.29)- (9.32) are superficially similar to Feynman integral repre­
sentations used in quantum field theory with a cubic 'Lagrangian' (Feyn­
man 1950). It is clear that, except for the y(l , 2, 3)v(2)v(3) term, (9.29) and 
(9.32) are Gaussian integrals (i.e. over exponentials of quadratic forms) 
which may be calculated explicitly. Feynman graphs are generated by 
expanding these integrals in powers of the 'bare vertex' y(l , 2, 3), using 
diagrams analogous to those in Fig. 4.1 for bookkeeping. Alternatively, 
functional differential equations a la Schwinger (1951 b) may be obtained. 
Because it is not easy to present such matters in a concise way, we shall 
not dwell on the technical aspects of the subject (see, e.g., Machlup and 
Onsager 1953; Martin, Siggia and Rose 1973; Phythian 1977 ; Frisch, 
Fournier and Rose 1978).19 

Diagrammatic methods have led repeatedly to false hopes in the theory 
of turbulence. A caricature of the situation would be to state that either 

18 For the Navier- Stokes equation, one can use a discretization where the Jacobian be­
comes a constant which may be absorbed into the definition of Dv Dp (Phythian 1977). 
Otherwise, the Jacobian may be written as the integral over auxiliary anticommuting 
ghost fields of the exponential of a quadratic form in these fields (Parisi and Sourlas 
1979). 

19 In Frisch (1968) the reader will find an elementary presentation of the diagrammatic 
machinery for the case of linear equations with random coefficients, which is somewhat 
simpler than the nonlinear Navier-Stokes equation with random forces. 
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they produced wrong results or that, when the results were right, they 
could be obtained by much simpler methods. We shall now try to give a 
more balanced view of the situation. 

One of the difficulties with any multiple-time method is that com­
patibility with K41 is much less straightforward than in a single-time 
formalism such as the Hopf formalism (see end of Section 9.5.1). In 
Chapter 6 (p. 90) we observed that K41 is tantamount to having finite 
limits for the structure functions as the integral scale f o ---+ oo. Structure 
functions are single-time quantities. Multiple-time quantities become sin­
gular in this limit because the Eulerian correlation time for any fixed 
spatial separation f goes to zero. Indeed, this is basically the time for an 
eddy of size f to be moved a distance 0(£) due to the sweeping action 
of the most energetic eddies present. There is worse: the action of very 
large eddies on much smaller ones, which in the K41 theory is akin to 
a random Galilean transformation (Section 7.3), may be misrepresented 
because Galilean invariance is difficult to preserve in a multiple-time 
diagrammatic formalism. Indeed, this invariance involves a cancellation 
between the linear term OtV and the nonlinear term v · Vv . In diagram­
matic methods, the linear term is kept as such, whereas an expansion 
is performed in the nonlinear term. Hence, almost any simplification of 
the expansion will destroy the cancellation. We use the word 'simplifi­
cation' because: (i) the complete_problem is intractable and (ii) there is 
no known approximation procedttre with a clearly identified expansion 
parameter. 20 Instead, one resorts typically to 'loop expansions' involving 
resummations of diagrams of increasing topological complexity (see, e.g., 
Amit 1984). 

Scientists interested in using field-theoretical tools for turbulence have 
been aware of the difficulty with random Galilean invariance since the 
late 1950s (Kraichnan 1958, 1959). The difficulty is usually overcome 
by resorting to some form of Lagrangian coordinates, i.e. one tries to 
follow the trajectory of fluid particles to avoid sweeping effects. One 
successful attempt, which is not directly linked to diagrammatic meth­
ods is Kraichnan's LHDI (see next section). The Russian school has 
developed an alternative method, called 'quasi-Lagrangian', in which the 
true Lagrangian displacement of a reference point is subtracted from all 
spatial arguments (Belinicher and L'vov 1987 ; L'vov 1991 ). 

Once random Galilean invariance is recovered, one can look for possi­
ble remaining divergences which would be indicative of a breakdown of 

20 With some exceptions, such as the problem studied by Forster, Nelson and Stephen 
(1977), discussed in Section 9.6.4.l. 
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K41. None has been found so far. This negative result should certainly 
not be taken as evidence that K41 is the correct theory. If there is a mech­
anism leading to intermittency somewhat similar to what is found in mul­
tiplicative random cascade models (Section 8.6.3), it is unlikely that it can 
be captured by perturbation or even renormalized perturbation theory. 

There is at least one instance for which one can prove that diagram­
matic methods fail to give the correct result even when resummation is 
performed to all orders, namely Burgers' model. It has indeed all the 
required invariance and conservation properties to make it an accept­
able candidate for K41 scaling. However, the presence of shocks leads 
to a different scaling (Section 8.5.2). Furthermore, Fournier and Frisch 
(1983b) showed that formal resummation to all orders leads to an energy 
spectrum at high wavenumbcrs oc k-3 which is neither K41 nor the 
correct oc k-2 spectrum. 

To end on a more optimistic note, we mention recent work on 
anomalous scaling of (local) dissipation correlations. We have seen in 
Sections 8.6.1 and 8.6.2 that the correlation of the dissipation is found 
experimentally to scale as p_-µ with µ ~ 0.2. Golitsyn (1962) showed that 
naive application of K41 scaling arguments gives an exponent21 µ = 8/3. 
Le bedev and L'vov ( 1994) ari'tf· L'vov and Procaccia ( 199 5) suggest that 
K41 scaling in the inertial range could be consistent with the anomalous 
value of~ 0.2 forµ. Since the (local) dissipation is quadratic in velocities, 
they worked with the four-point velocity correlation functions expressed 
via diagrammatic techniques. To obtain the dissipation correlation func­
tion, four gradient operators are applied and then two pairs of points are 
made to coincide.22 This theory predicts also corrections to inertial-range 
scaling involving small powers of the viscosity and which, therefore, may 
stay relevant up to very high Reynolds numbers. Such corrections could 
be mistaken for 'intermittency' corrections to K41.23 Note that in the tra­
ditional fractal/multifractal models the dissipation correlation function 
involves (f,/fo)-µ, where fo is the integral scale. In the alternative theory 
it involves (f/17)-µ, where 17 is the dissipation scale, so that, for fixed /!,, 

the dissipation correlation function goes to zero with the viscosity. 

21 Frisch, Lesieur and Sulem ( 1976) pointed out that such correlations involve both 
dissipation-range and inertial-range quantities; with this taken into account, K4 I predicts 
µ=0. 

22 When this kind of situation occurs in field theory, one speaks of 'composite operators' 
(see, e.g., Itzykson and Zuber 1985, Section 8-2-6); this can lead to anomalous scaling. 

23 It may be hard to fully reconcile this vision of intermittency with the results on anoma­
lous scaling obtained by the extended self-similarity technique applied to experimental 
data (see p. 131 ). 



9.5 Closure, functional and diagrammatic methods 217 

The derivation of this anomalous scaling has a number of delicate 
points. Fortunately, it has been found that similar arguments can be ap­
plied to the anomalous scaling of the dissipation correlation function for 
a passive scalar advected by a prescribed Gaussian random velocity field 
with a very short correlation time (L'vov, Procaccia and Fairhall 1994). 

For the same passive scalar problem, Kraichnan (1994) predicted 
anomalous scaling of structure functions at inertial-range separations,24 

confirmed by two-dimensional numerical simulations using 81922 grid­
points (Kraichnan, Yakhot and Chen 1995). 

Both of these questions can be approached via nondiagrammatic meth­
ods. This requires the study of linear partial differential equations in 
several space variables with N-particle Schrodinger-like operators, satis­
fied by the single-time multiple-point correlation functions of the scalar 
(Kraichnan 1968b ). Anomalous scaling is caused by the presence of 
zero modes (i.e. elements of the null-space) of these operators. The 
equation for the two-point function can be solved analytically. Higher­
order equations require perturbation techniques (Chertkov, Falkovich, 
Kolokolov and Lebedev 1995; Fairhall, Oat, L'vov and Procaccia 1996; 
Gaw~dzki and Kupiainen 1995) or a mixture of analytical and numerical 
techniques (Shraiman and Siggia 1995). The results confirm anomalous 
scaling for both the dissipation correlation function and the structure 
functions of order 4 and beyond. 1For passive vectors, such as magnetic 
fields, anomalous scaling is already present in the structure function of 
order 2 (Vergassola 1996). 

9.5.3 The direct interaction approximation 

The direct interaction approximation (DIA) may be viewed either as a 
closure or as the asymptotically exact solution of a sequence of stochastic 
models closely resembling the Navier- Stokes equation, when written in 
the abstract form (9.28). The models are obtained by introducing random 
couplings among N replicas of the Navier- Stokes equation, labeled by 
Greek indices, running from 1 to N. Specifically, (9.28) is changed into 

1 
Va( l) + N <I>apb y(l , 2, 3) vµ( 2) v0(3) = Sa(l ). (9.33) 

Here, the s:x(.)s are independent copies of the centered Gaussian random 
force25 and the <I>apb s are centered Gaussian random variables of unit 

24 In K raichnan's theory, the corrections to normal scaling involve powers of /'./ f'.o . 
25 More precisely, of the inverse of the heat operator iJ - vV2, applied to the random force. 
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variance, which are all taken to be independent, except for the constraint 
that the tensor <I>cxpD be completely symmetric in a, f3 and J. It is easily 
checked that this constraint ensures that the random coupling model (9.33) 
has the same quadratic invariants (e.g., energy and helicity) as the original 
equation (9.28). 

It may be shown that, in the limit N --+ oo : (i) any finite subset of the 
vcx(.)s of different as becomes a system of independent Gaussian centered 
random functions with common correlation function (v(l)v(2)), (ii) the 
Green's function gcxp (l, 2) = ovcx(l) /osp(2) tends to a deterministic limit 
(g(l , 2)) bcxp· The correlation function and the (mean) Green's function 
satisfy the so-called DIA equation, which can be written in various ways, 
the most symmetrical being 

(g(l , 2)) = 

b( 1, 2) + 4y(l, 3, 4) y(5, 6, 7)(v(3)v(6)) (g( 4, 5)) (g(7, 2)), 

(v(l)v(l')) = 

(g(l, 2))(g(l', 2')) (s(2)s(2'. )) 
I 

+2(g( 1, 2)) (g( 1', 2'))y(2,13, 4)y(2', 3', 4') 

x (v(3)v(3' )) (v( 4 )v( 4') ), 

where b(l, 2) denotes the identity. 

(9.34) 

The derivation of the DIA equations from the random coupling model 
may be found in Kraichnan (1961). It uses a diagrammatic method. 
The key observation is that, when the <I>cxpD-factors are introduced, the 
weight put on most diagrams in the limit N --+ oo goes to zero ; the 
surviving diagrams26 can be summed and lead to closed equations for the 
correlation and mean Green's functions. A nondiagrammatic derivation 
may be found in Lesieur, Frisch and Brissaud (1971). 

The random coupling model shares a number of properties with the 
Na vier-Stokes equation: invariance under space- and time-translations, 
under rotations, under scaling transformations, the same linear and 
quadratic conserved quantities, etc. When Gaussian initial conditions 
are assumed and the correlation function is expanded in powers of the 
Reynolds m-!'mber R, there is agreement up to terms O(R3). One major 
discrepancy is the lack of invariance of the random coupling model 

26 Which may technically characterized by the absence of 'vertex corrections'. 
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(and of the DIA equations) to random Galilean transformations, from 
which it follows that the k-5/ 3 law for the energy spectrum does not 
hold (Kraichnan 1958). Instead, in the inertial range, the DIA gives 
E(k) = const (ev0) 112 k-312, so that the energy spectrum depends not 
only on the wavenumber k and on the mean dissipation rate €, but 
also on the r.m.s. velocity v0 . Although experimental data give a clear 
advantage to a k-5/ 3 law over a k-312 law, the relation between invariance 
under random Galilean transformations and localness (seep. 105) is not 
clear. Kraichnan (1959, p. 536) pointed out that 'A prominent feature of 
turbulence at high Reynolds numbers is the presence of sharply defined, 
extended, and tangled vortex sheets and filaments.' If filaments and 
sheets have an extension comparable to the integral scale £0, then the 
effect of the energy-containing eddies on such structures clearly cannot 
be represented just as a quasi-uniform sweep.27 However, there may be 
other, less coherent, inertial-range structures which contribute more than 
filaments to the energy spectrum and which are approximately swept by 
the energy-containing eddies. 

Kraichnan (1964, 1965, 1966) found a way to overcome the difficulty 
with random Galilean transformations and developed the Lagrangian 
history direct interaction (LHDI).28 This makes use of a generalized 
velocity v(r, t I t') which has both Eulerian an,d Lagrangian characteristics. 
It is defined as the velocity measured at time t' in that fluid element 
which passes through rat time t. When th{DIA equations are written in 
explicit form for the Na vier-Stokes equation, there appear integrals over 
the past history of the flow, which can be altered when working with the 
generalized field in such a way as to recover random Galilean invariance. 

9.5.4 Closures and their shortcomings 

Insofar as Landau's objection to the universality of the Kolmogorov 
constant (Section 6.4) is ignored or considered a marginal issue, it is 
a reasonable goal to develop a closure theory able to predict the Kol­
mogorov constant and other similar dimensionless constants, not given 
by scaling arguments. At least, one would like to reduce the number 
of constants which must be independently adjusted from experimental 
and/ or numerical data. If a closure theory fails to give the k-5!3 energy 

27 This perhaps explains why some data from the simulation of decaying turbulence at 
R;. < 200 agree with the DIA better than they agree with closures that are consistent 
with random Galilean transformations (Herring and Kerr 1993). 

28 This is quoted freely from Kraichnan (1975). 
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spectrum, It 1s most likely that it is inconsistent with one or several 
of the basic properties of the Na vier-Stokes equation, usually Galilean 
invariance. No closure approximation has so far managed to capture any 
genuine intermittency corrections to K41. 

Closures (for homogeneous and isotropic turbulence) are obtained by 
heuristically modifying an infinite set of equations, such as the single­
time cumulant hierarchy (9.18)-(9.20). The simplest way is to work only 
with the energy transfer relation ( 6.37) and to express the energy flux 
nk in terms of the energy spectrum E(k). If the relation involves only 
E(k) and k and is local (in the Fourier space), consistency with K41 is 
inescapable. A somewhat more sophisticated way is to work with the first 
two cumulant relations (9.18)-(9.19) and to express the unknown term, 
involving the fourth order cumulant, in terms of second and third order 
cumulants. Even more sophisticated closures use partial resummations 
of the Feynman diagrams generated, for example, from the functional 
representation discussed in Section 9.5.2. No attempt will be made here 
to review the subject of closure and its numerous applications (see, e.g., 
Panchev 1971 ; Orszag 1977; Rose and Sulem 1978; Lesieur 1990). 

Some of the early closures, particularly the quasi-normal approxima­
tion of Millionshchikov (1941a, b) in which the fourth order cumulant 
is discarded, had difficulties copin~ with probabilistic constraints, such 
as the positivity of the energy spectr~m (Ogura 1963; see also Tatsumi 
1957). Positivity is automatically guaranteed for realizable closures; real­
izability refers to the existence of a stochastic model of which the closure 
is the (asymptotically) exact solution, just as the DIA is the solution of 
the random coupling model (Section 9.5.3). 

A very frequently used realizable closure is the eddy damped quasi­
normal Markovian approximation (EDQNM ; Orszag 1966, 1977). The 
corresponding stochastic model is a modification of Kraichnan's random 
coupling model (9.33): the random coupling factors cJ)apt5 depend now 
on the triad of interacting wavevectors k, p and q which appear in the 
nonlinear term (when written in the Fourier space); they are taken to 
be Gaussian and c5-correlated in the time variable. The coefficient ()kpq• 

in front of the c5-function, which has the dimension of time, is gener­
ally based on (a suitably symmetrized version of) the local eddy turnover 
time. This ensures compatibility with K41, but at the price of introducing 
at least one adjustable numerical constant. The somewhat more cum­
bersome LHDI (Section 9.5.3), which is free of any adjustable constants, 
appears in practice to be realizable, but has never been proven so. 

Closure approximations, because they work only with the second order 



9.5 Closure, functional and diagrammatic methods 221 

moments of the velocity,29 ignore any structure which may be present 
in the flow, such as vortex sheets or filaments. As a consequence, they 
cannot correctly represent a statistical distribution of structures with 
strongly depleted nonlinearities (see pp. 119 and 201). The resulting 
overestimation of the strength of nonlinearities can result in spurious 
finite-time blow-up for the initial value problem with zero viscosity. We 
know that for the three-dimensional Euler problem the blow-up issue 
is far from settled (Sections 7.8 and 9.3) ; as for the EDQNM closure, 
it unequivocally predicts blow-up (see, e.g., Lesieur 1990). A more 
dramatic discrepancy is obtained for the two-dimensional equations of 
magnetohydrodynamics (MHD). Catastrophic stretching of the vorticity 
by the Lorentz force30 leads to blow-up of the mean square vorticity in 
closure calculations (Pouquet 1978). Actually, Frisch, Pouquet, Sulem 
and Meneguzzi (1983) showed that two-dimensional ideal MDH flow 
develops current sheets with strongly depleted nonlinearities; gradients 
(of the velocity and of the magnetic field) grow to very large values, 
but the growth is only exponential, at least for the moderately long 
times accessible in the simulations. They also showed that this depletion 
cannot be captured by a closure, unless it includes (at least) fourth order 
moments. ' 

There are some cases where closaI equations for the energy spectrum 
can be derived systematically. This requires the presence of an expansion 
parameter other than the Reynolds number. One instance is the problem 
studied by Forster, Nelson and Stephen (1977) by renormalization group 
techniques (see Section 9.6.4). Another instance, with many applications 
in geophysics, plasma physics and solid state physics, is the theory of 
resonant wave interactions, developed by Benney and Saff man ( 1966) and 
Benney and Newell (1969 ; see also Zakharov, L'vov and Falkovich 1992; 
L'vov 1994). The general setting is a nonlinear equation of the following 
form: 

Orv= cN(v) + £!t v. (9.35) 

Here, N(v) is some nonlinear partial differential operator, £!t is a purely 
dispersive linear operator with eigenvalues iwk (functions of the wavevec­
tor k) and € is a small parameter. To leading order, only resonant wave 
interactions survive, i.e. nonlinear interactions between wavevectors such 
that the phase-shifts due to the dispersive terms cancel out.31 The original 

29 And partially with third order moments. 
30 In the absence of a magnetic field the vorticity is conserved ; see Section 9.7. 
31 Otherwise, there is suppression of nonlinearity by phase-mixing. 
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theory was worked out in terms of the single-time cumulant hierarchy. 
Depending on the form of the nonlinearity and of the dispersion relation 
wk, cumulants beyond some order may be phase-mixed. In the sim­
plest cases, the quasi-normal approximation may become asymptotically 
exact.32 

9.6 Eddy viscosity, multiscale methods and renormalization 

9.6.1 Eddy viscosity: a very old idea 

The concept of eddy viscosity and the related concept of eddy diffusivity 
(for the transport of scalar quantities) have become perhaps the most 
frequently used tools in the modeling of inhomogeneous turbulent flow, 
including in the work of Kolmogorov (1942). The idea originated in the 
nineteenth century. 

As we have know since the work of Maxwell on kinetic theory, one 
manifestation of molecular motion and collisions is momentum transport 
(diffusion of momentum): in a fluid, shear (gradients of the macroscopic 
velocity) produces stress (momentum fluxes) . Locally, the stress is pro­
portional to the strain (symmetric part of the velocity gradient). The 
coefficient of proportionality, called the viscosity, is typically of the order 
of the velocity of thermal molfcular motion multiplied by the mean-free-
path. ' 

Turbulent transport of momentum might be regarded in an analogous 
way to molecular transport, with the small-scale eddies playing the role 
of molecules and the correlation length (integral scale) playing the role 
of the mean-free-path. This is roughly the vision of Prandtl (1925) 
who introduced the concept of mixing length.33 The analogy between 
microscopic and turbulent transport is hinted at in Lord Kelvin (1887; 
p. 352) and appears clearly in Lamb (1932 ; already in the fourth edition of 
1916) when presenting Reynolds' {1894) theory of the 'Reynolds stresses'. 
Lamb also attributes to Reynolds the introduction of the eddy viscosity. 

Actually, the concept of eddy viscosity emerged before Maxwell's work. 
We shall now try to give a brief account of what we found by searching 
mostly through publications of the French Academy of Sciences. After 

32 It was found by Frisch, Legras and Villane (1996) that the cumulant hierarchy approach 
may give erroneous results when the wavevectors are discrete rather than continuous. 
The correct approach makes use of averaging and normal form techniques which have 
been used for a very long time in celestial mechanics (see, e.g., Arnold, Kozlov and 
Neishtadt 1988). 

33 The concept of mixing length for the transport of vorticity was already present in the 
work of Taylor ( 1915). 
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the introduction of the viscous term in the equations of hydrodynamics 
by Navier (1823), the question arose of whether the viscosity coefficient 
(usually denoted € at that time) is the same everywhere. Saint-Venant34 

(1843) worried briefly about this and a few years later wrote the following 
(Saint-Venant 1851), which is quoted by Boussinesq (1877, p. 7)35 : 

Si l'hypothese de Newton, reproduite par Navier et Poisson, et qui consiste a prendre 
le frottement interieur proportionnel a la vitesse des filets glissants les uns devant 
les autres, peut etre appliquee approximativement pour [es divers points d'une meme 
section fluide, tous [es faits connus portent a inferer qu'il faut faire croftre le coef­
ficient de cette proportionnalite avec les dimensions des sections transversales; ce 
qui s'explique jusqu'a un certain point en remarquant que Jes filets ne marchent pas 
parallelement entre eux avec des vitesses regulierement graduees de l'un a l'autre, 
et que Les ruptures, les tourbillonnements et les autres mouvements compJiques ou 
obliques, qui doivent beaucoup injluer sur la grandeur des frottements, se forment 
et se developpent davantage dans Jes grandes sections.36 

Boussinesq, a former student of Saint-Venant, carried these ideas 
further and stressed that turbulence will greatly increase the viscosity. 
After recalling the work of Poiseuille on the measurement of viscosity 
for laminar flow, he writes the following, which contains a number of 
pioneering ideas on turbulence (Boussinesq 1870): ... 

Maisjefais voir au §IX de ce meme Memoire [Botlssinesq 1868; pp. 402-403] qu'il 
n'en est pas ainsi lorsqu'il s'agit de canaux decouverts ou de tuyaux de conduite d'un 
certain calibre. Le liquide, n'etant plus aJors aussi resserre Jateralement, possede 
toujours des mouvements oscillatoires rapprochant ou eloignant brusquement des 
parois lefluide qui en est voisin. L 'action tangentielle qu'exerce la paroi sur cejluide 
change done sans cesse, et, par ses variations combinees avec la vitesse generaJe de 
translation du meme jiuide, imprime a ce dernier des mouvements rotatoires. Ceux­
ci se transmettant aux couches liquides plus interieures, toute la masse fluide est 
bientot sillonnee de tourbillons dont la matiere glisse, avec une vitesse relative finie, 
sur celle qui l'environne. La moyenne des vitesses observees en un meme point durant 
un petit instant n'est done plus sensiblement egale a chacune d'elles, et la force 
moyenne tangentielle exercee a travers un petit element plan fixe do it dependre, non 
seulement de la maniere dont varie cette vitesse moyenne aux points environnants, 

34 His full last name is Barre de Saint-Venant, but his name is mostly quoted as Saint­
Venant. 

35 A somewhat briefer version of this may be found in Saint-Venant (1850). 
36 In English: If Newton's assumption, reproduced by Navier and Poisson, which consists 

in taking interior friction proportional to the speed of the fluid elements sliding against 
each other, can be applied approximately to the set of points of a given fluid section, all 
the known facts lead us to infer that the coefficient of this proportionality [the viscosity) 
should increase with the size of transverse sections ; this may be explained up to a 
point by noticing that the fluid elements are not progressing parallel to each other with 
regularly graded velocities, and that ruptures, eddies and other complex and oblique 
motion:::, which must strongly affect the magnitude of frictions, are formed and develop 
more in large sections. 
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c'est-a-dire des derivees du premier ordre par rapport aux coordonnees x, y, z de 
ses trois composantes u, v, w suivant les axes, mais encore de la grandeur et du 
nombre des discontinuites dont les vitesses vraies y sont affectees. En effet, les 
frottements produits dans ce cas etant dus a des glissements finis entre couches 
adjacentes, doivent etre bien plus grands que si les vitesses variaient avec continuite 
de chaque point aux points voisins.37 

In the same paper Boussinesq (1870) proposes an expression for the 
friction coefficient (eddy viscosity) for pipe flow, namely Auoh, where A 
is a dimensionless constant depending on wall roughness, uo is the speed 
of the liquid near the wall and h is the mean radius. In the language 
of Taylor and Prandtl this would be called a mixing-length expression. 
Further expressions are presented in the Memoir (Boussinesq 1877).38 

Note that the remarkable work of Saint-Venant and Boussinesq on 
turbulence had its experimental roots in the careful observation of water 

flow in canals, the practical importance of which was still considerable in 
the nineteenth century. This may also explain why it fell somewhat into 
oblivion. Eventually, the needs of the emerging science of aerodynamics 
at the beginning of the twentieth century led to the rediscovery of many 
of the ideas of Saint-Venant and Boussinesq. 

From a more fundamental viewpoint, it seems that the idea of eddy vis­
cosity emerged because the natural state of many 'real' flows is turbulent, 
so that the concept of PlV~ molecular viscosity seemed inappropriate. 
It must be stressed that, early in the nineteenth century, the distinction 
between true molecules and fictitious 'fluid molecules' was a bit blurred. 
Eddies were probably considered just one particular form of molecules. 

37 In English: But I show in §IX of said Memoir [Boussinesq 1868; pp. 402--403] that it is 
not so when open channels or pipes of a sufficient diameter are involved. The liquid, 
being much freer of lateral constraints, possesses always oscillatory motions which will 
suddenly move neighboring fluid towards the wall or away from it. The tangential stress 
exerted by the wall on the fluid thus varies constantly, and, by its variations combined 
with the general translation speed of that very fluid, communicates rotary motions to 
the fluid. These being transmitted to liquid layers further inside, the whole mass of 
the fluid is soon threaded by eddies the substance of which slides, with a finite relative 
velocity, over the surrounding substance. The mean of the velocities observed at a given 
point during a small interval of time thus differs significantly from individual velocities, 
and the mean tangential force exerted through a given small planar element should 
depend not only on the manner of variation of the velocity at nearby points, i.e. on 
the derivatives of the first order with respect to the coordinates x, y , z of its three 
components u, v, w along the axes, but also on the magnitude of the velocity and the 
number of discontinuities it suffers. Indeed, the friction experienced, being caused by 
finite sliding between adjacent layers, will be much larger than would be the case should 
the velocities vary in a continuous way from each point to neighboring points. 

38 This Memoir is quoted, e.g., by Hinze (1959) and Monin and Yaglom (1971) as originating 
the idea of eddy viscosity. It is also famous for its interpretation of Scott Russell's solitary 
wave. 
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Further investigation of the interplay of ideas in kinetic theory and in 
fluid dynamics during the nineteenth century would be of considerable 
interest.39 

The analogy with kinetic theory can help us to understand the limita­
tions of the concept of eddy viscosity and also why this concept has been 
regarded by some theoreticians of turbulence as (at best) a pedagogical 
device. Hilbert, Chapman and Enskog, at the beginning of the twentieth 
century, were able to present systematic derivations of the equations of 
hydrodynamics from kinetic theory (for references, see Brush 1976). They 
started from the Boltzmann equation and used singular expansion meth­
ods in which the expansion parameter, the ratio of the mean-free-path 
to the scale of hydrodynamical motion, known as the Knudsen number, 
has to be small. 

In contrast, when eddy viscosity ideas are applied to turbulence mod­
eling, there is usually no clear separation of scales: the integral scale 
(the analog of the mean-free-path) is comparable to the scale of inho­
mogeneities. It thus becomes hard to justify the use of an eddy viscosity. 
Indeed, in many instances where an eddy viscosity argument gives a 
substantially correct answer, alternative more systematic arguments can 
be used. Two examples will suffice. ~ 

Landau and Lifshitz (1987) used an eddy viscosify\ presentation of the 
Kolmogorov 1941 theory of homogeneous turbulence. It gives the 'right' 
result, i.e. vp "' (d )113. Such a result is, however, uniquely constrained 
by dimensional analysis (if the only ingredients are s and f ). Hence, 
any dimensionally consistent approach gives the same result. Actually, 
Kolmogorov's derivation by a similarity argument is more fundamental. 
Note also that, in this example, the eddy viscosity depends on the scale 
under consideration. 

Von Karman (1930; see also Goldstein 1969, p. 21) and Prandtl (1932) 
derived the logarithmic law of the variation of the mean velocity with 
respect to the distance from the wall for a turbulent boundary layer. 
Again, this can be done by an eddy-viscosity argument or by a somewhat 
deeper similarity argument (both may be found in Section 7-4 of Hinze 
1959). Note that, this time, the eddy viscosity invoked depends on the 
point under consideration. 

Fortunately, there are many problems in turbulence where a clear 
separation of scale is present and justifies the use of an eddy viscosity 
and, more generally, of multiscale methods. These are among the few 

39 An exposition of the early history of kinetic theory may be found in Brush (1976). 
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truly systematic tools which exist in turbulence and deserve to be studied 
carefully. In Section 9.6.2, we give a general idea of what is involved and 
a guide to the existing literature. In Section 9.6.3, we give an overview 
of the variety of problems which can be treated by such techniques. In 
Section 9.6.4, we discuss the renormalization group approach to fully 
developed turbulence, which may be viewed as an extension of multiscale 
methods with admixture of heuristic elements. 

9.6.2 Multiscale methods 

For pedagogical reasons, we shall begin with an elementary example, 
the heat equation with a diffusivity varying periodically in space. Our 
treatment is based on Bensoussan, Lions and Papanicolaou ( 1978) where 
the method is known as homogenization, i.e. the replacement of a hetero­
geneous material by one that is homogeneous at large scales. Consider a 
one-dimensional material, say a metal rod, with a diffusivity (conductiv­
ity) K(x) which is 2n-periodic. The temperature field 8(x, t) satisfies the 
heat equation: 

(9.36) 

(Here, and in what foijqws, the leftmost derivative ax acts on the entire 
expression on its right.) We wish to show that on scales large compared 
to 2n the diffusion of heat may be described by a heat equation with a 
uniform diffusivity Keff, called the effective (or eddy) diffusivity which we 
intend to calculate. 

We first give a very simple heuristic argument. Suppose that at two 
points x 1 and x2, separated by a distance large compared to the period 
2n, the temperature is maintained at two fixed values 8(xt) and 8(x2 ). 
A constant (in space and time) heat flux <l> will be established after 
relaxation of transients. Locally, the temperature gradient and the heat 
flux are related by 

Hence, 

8(x2) - 8(x1) <I> lx2 

dx 
= - X1 K(X) 

'.:::'. - (x2 - xi) /_l_\ <I>, 
\ K(x) / 

(9.37) 

(9.38) 
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where 

I 1 \ 1 r2n dx 

\ K(x) / = 2n }0 K(x)' 
(9.39) 

This may be rewritten as 

<I> = _ 1 8(x2) - 8(xi) 8(x2) - 8(xi) 
(1/K(x)) X2 - X1 = -Keff X2 - X1 

(9.40) 

which demonstrates the existence of an effective diffusivity equal to the 
harmonic mean of the diffusivity, i.e. the inverse of the average (over the 
period) of the inverse diffusivity. 

Now, we rederive this result using a multiscale method. We assume 
that the temperature field 8 depends not just on the fast variables x and 
t, but also on the slow variables X = EX and T = €

2t, where € is a small 
parameter.40 We assume that 8 has the same 2n-periodicity in the fast 
variable x as the diffusivity K(x) and no dependence on the fast time 
t.41 Since the temperature field depends on x and t both through the 
fast variables and through the slow variables, space- and time-derivatives 
must be decomposed as follows: 

We now expand the temperature field in powers of€: 

8 = 8(0) + €8(1) + €28(2) + ... , 

(9.41) 

(9.42) 

where all the 8(n) s depend, in principle, on x, t, X and T. We then use 
(9.41) and (9.42) in (9.36) and identify the various powers of€. Only the 
first three equations are needed. They read 

(9.43) 

(9.44) 

and 

Ot8(2) + Oy8(0) = OxK(x)ox8(2) + OxK(x)ox8(l) 

+ oxK(x)ox8(l) + OxK(x)ox8<0l. (9.45) 

Eq. (9.43) expresses that 8(0) is in the null-space of the heat operator 

40 The rationale for rescaling the time variable by a factor € 2 is that diffusion on spatial 
scales 0(1/€) is expected to occur on times scales 0(1/€2); any other choice would lead 
to mathematical inconsistencies. 

41 A nontrivial dependence on the fast time is obtained only if the diffusivity K itself is 
time-dependent. 
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o1 - OxK(x)ox. With the assumed 2n-periodicity, (J(O) will relax to a 
constant, independent of x and t. In other words, except for transients, 
(J(D) does not depend on the fast variables. It follows that, in (9.44), 
the term containing ox(J(D) vanishes. Eq. (9.44) may be considered as 
an equation for (}(ll, containing an inhomogeneous term OxK(x)ox0(0l, 
which is independent oft. Hence, 010(1) may be assumed to vanish (after 
relaxation of transients). The remaining terms all begin with a Ox and 
may be integrated to give 

(9.46) 

Dividing by K(x) and observing that (ox0(1l) vanishes by the assumed 
periodicity, we find that 

c/_l_\ = oxe(0l, 
\ K(x) I (9.47) 

where the averaging is now only over fast variables. A most interesting 
phenomenon happens with (9.45): it cannot be solved for (}(2l unless an 
additional constraint is imposed on e<0>. Indeed, taking the average of 
(9.45), we obtain (note that (e(o)) = (}(Ol) 

or(}(O) = ox(K(x)) ox(}(O) + ox(K(X)<\ (}(ll). (9.48) 

This condition, known as the solvability condition, occurs in all singular 
perturbation problems.42 We now use the value of eU> from (9.46) and 
(9.47) in (9.48) and obtain,' after a cancellation of the term ox(K(x) )oxO(D) 

f 

or(}(O) = Ketroxox O(O), (9.49) 

with Ketr given by the same expression (9.40) as in the previous heuristic 
derivation. 

The multiscale method just described is easily extended to more than 
one dimension, when K is periodic in several variables. There is one 
major difference: the analog of (9.44) can no longer be solved explicitly. 
However, (J(I) still depends linearly on oxe<0>, the large-scale temperature 
gradient. Therefore, the solvability condition for (9.45) again takes 
the form of a (generally anisotropic) diffusion equation with constant 
coefficients. The expression for the effective diffusivity (now a second 
order tensor) thus involves the solution of an auxiliary problem. This 
solution must be determined numerically or perturbatively by taking 
advantage of an expansion parameter other than €. It is intuitively clear 

42 It expresses a Fredholm alternative, namely that the inhomogeneous term in the equation 
for e(2) is orthogonal to the null-space of the adjoint of the operator acting on e(2). 
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that, even in the isotropic case where the effective diffusivity is just a 
scalar, its value is not the harmonic mean of the periodically varying 
diffusivity. Indeed, in one dimension, regions with a very low diffusivity 
strongly deplete the effective diffusivity by blocking the heat flux, whereas 
in more than one dimension, the heat may diffuse around the regions of 
low diffusivity. 

In the example of the heat equation we have encountered all the key 
ingredients of multiscale methods for linear problems: One starts with 
a linear partial differential equation A</> = 0 where the field </> may be 
scalar- or vector-valued and the operator A possesses a nontrivial null­
space </>{Ol(x, t). One then looks for solutions in which the null-space 
function is slowly modulated in space and time, that is, depends on the 
slow variables X = EX and T = Est. The form of the large-scale (or 
homogenized) equation and the value of the exponent s depend mostly 
on the symmetries of the problem. This is best illustrated by the examples 
discussed in Section 9.6.3. Technically, the solution </> is extended into 
a function of both the fast and the slow variables. Derivatives are 
decomposed according to ax ..._. ax+ Eax and. at ..._. a1 + Esar. The 
solution is expanded in powers of E and substituted into the equation 
(with decomposed derivatives). Equations for the various orders in E are 
then obtained. The large-scale equation always emerges as a solvability 
condition to some order in E. The values of the coefficients in the large­
scale equation are obtained in terms of the solution of the lower order 
equations. Analytic expressions for these are available only in special 
cases. 

The technique is easily extended to nonlinear equations, of the form 
A</>+ B( </>) = 0, where B( </>) is a nonlinear functional of <f> . The main new 
difficulty is that it is necessary to find the order in E of the leading term 
in </>: this is often done by a dominant balance argument in the large­
scale equation (the form of which can usually be guessed by symmetry 
arguments). The final equation, which emerges again as a solvability 
condition, is nonlinear; still, the auxiliary problems to be solved at 
intermediate orders are usually linear in the unknown fields. 

The reader interested in learning about multiscale methods (a good 
investment in this author's view) can study the general theory of homog­
enization in the book by Bensoussan, Lions and Papanicolaou (1978). It 
is written for the mathematician rather than for the physicist and the 
emphasis is on problems related to the heat equation. An introduction to 
multiscale methods for the transport of passive scalars in a turbulent flow 
may be found in Section 3.1 of Frisch (1989) and in Section 2 of Fauve 
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( 1991 ). Among the research papers which are quoted in the next section, 
some may be used as introductory material. These include Fannjiang and 
Papanicolaou (1994), Dubrulle and Frisch (1991) and Gama, Vergassola 
and Frisch ( 1994 ). 

9.6.3 Applications of multiscale methods in turbulence 

Multiscale methods are now quite extensively used in turbulence. Typi­
cally, the questions which can be addressed by them are of the following 
form: a basic 'small-scale' flow with some form of translation invariance 
(periodicity, quasi-periodicity, random homogeneity) is prescribed. This 

flow is 'perturbed' by the introduction of either an advected scalar or 
a modification of the flow itself. The basic flow has spatial scales 0( 1) 
and the perturbation is at much larger scales, which are 0(1 /t} In other 
words, one considers the basic fl.ow as a kind of 'microscopic'43 material 
and one tries to find its macroscopic properties. Depending on how weak 
the perturbation is (or remains), linear or nonlinear theory has to be 
used. 

9.6.3.1 Turbulent transport of scalars 

The simplest and oldest problem which can be solved by multiscale 
techniques is the turbulent transport of passive scalars, such as a dye or 
a passive temperature field. This basic equation is an advection diffusion 
equation: 

<;,o + v ·VB= DV20. (9.50) 

Here, O(r, t) is the concentration of the passive scalar at the position r 
and the time t. D is the molecular diffusivity and v(r, t) is the prescribed 
velocity field, which can be either space-time periodic or random homo­
geneous and stationary. It is essential that (v) = 0. Otherwise, advection 
by the mean velocity dominates the large-scale dynamics on time scales 
0( 1 / E'). Formal application of the multiscale techniques (see, e.g., Frisch 
1989) leads to an a nisotropic diffusion equation for the leading order 
term in the slow variables X = t=x and T = e2 t: 

(9.51) 

where V denotes space-deriva tives in the slow variable and DiJ is an 
effective diffusivity tensor, the expression of which involves the solution 

.n ' Mesoscopic' would be more appropriate. since no atomic scales are involved. 
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of an auxiliary equation. In those instances where the flow has enough 
symmetry to guarantee isotropy44 of the tensor Dij, we shall write 

(9.52) 

where DE is the effective (or eddy) diffusivity. DE is always greater or 
equal to the molecular diffusivity: turbulence can only enhance diffusion. 

If we think of g(O) as representing the p.d.f. of a particle subject to 
turbulent diffusion, a consequence of (9.51) and (9.52) is that the mean 
square displacement of the particle grows linearly in time: 

(9.53) 

This is characteristic of diffusive behavior. Actually, in a turbulent flow 
the long-time behavior may display anomalous diffusion. For example it 
may be superdiffusive(the mean square displacement grows faster than T) 
or subdiffusive (growth slower than T). Such questions and many others 
are discussed in the review by Isichenko (1992; see also Avellaneda and 
Majda 1990). In such instances, there is no-·effective diffusivity and the 
large-scale behavior is not governed by an ~rdinary diffusion equation. 

When normal diffusion holds, it is of interest to find upper and lower 
bounds for DE and to study its behavior as the molecular diffusivity 
tends to zero. For periodic flow, some of the best results may be 
found in Fannjiang and Papanicolaou (1994; see also references therein). 
For turbulent flow, the questions was first addressed by Taylor (1921) 
who actually ignored the molecular diffusion and observed that, for times 
long compared to the Lagrangian velocity autocorrelation time, the mean 
square displacement of a particle, starting at the Lagrangian location a, 
is given by: 

(R2(T)) ~ 2T low (vL(a, s) · vL(a, 0)) ds, (9.54) 

where vL(a, s) is the velocity in Lagrangian coordinates. In view of 
(9.53), (9.54) implies that the limit of the effective diffusivity for vanish­
ing molecular diffusivity is simply the time-integral of the Lagrangian 
autocorrelation function.45 Taylor's formula may become invalid in sit­
uations where particles can get trapped. This can happen because of 
the presence of either closed stream-lines, Kolmogorov- Arnold- Moser 

44 This holds trivially if the flow is random and isotropic; it also holds if it has square 
symmetry in two dimensions or cubic symmetry in three dimensions. 

45 A simple argument of Saffman (1960) shows that this limit is mostly attained from 
below, but there are couterexamples (M. Vergassola, private communication). 
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tori (as in the ABC flows defined in Section 9.4) or closed pockets of 
recirculation (Pomeau, Pumir and Young 1988). 

9.6.3.2 Transport of vector quantities and large-scale instabilities 

When a prescribed fl.ow vis subject to a weak perturbation w, the pertur­
bation satisfies, to leading order, the linearized Navier-Stokes equation: 

01 w + v · Vw + w · Vv = - Vp' + v V2w, } 

V· w= 0. 
(9.55) 

Eq. (9.55) has some similarity with (9.50), the advection-diffusion equa­
tion for a passive scalar. The main difference, stemming from the vector 
character of the perturbation, is the third term on the l.h.s. of the first 
equation, whereby the perturbation couples to the gradient of the pre­
scribed velocity field. This is why there is considerably more life in the 
large-scale transport of vector quantities. 

One possibility is that the large-scale dynamics is first order in both 
time- and space-derivatives. Indeed, it has been shown that when the 
basic fl.ow has no center of symmetry, that is, v lacks parity-invariance 
(cf. Section 2.2), the large-scale equation has the following form (Frisch, 
She and Sulem 1987; Sulem, She, Scholl and Frisch 1989): 

8T(w}0>) ;= rJ.ij£Vj (w}0>) - VP , } 

Vj(w)0~ = 0. 
(9.56) 

(In (9.56), the notation is the same as in Section 9.6.3.1.) In three 
dimensions, plane-wave solutions of (9.56) may grow exponentially with a 
rate proportional to the wavenumber. This is called the anisotropic kinetic 
alpha (AKA) effect and is the hydrodynamic analog of the alpha effect, 
known in magnetohydrodynamics since the 1960s (Steenbeck, Krause 
and Radler 1969; see also Moffatt 1978). The alpha effect is frequently 
used to explain the growth of large-scale magnetic fields (dynamo effect) 
in conducting media lacking parity-invariance.46 In contrast to the alpha 
effect, the AKA effect vanishes for isotropic fl.ow, whence its name. 
The AKA effect arises basically from a modification of the Reynold 
stresses (the mean momentum flux) by a large quasi-uniform fl.ow.47 The 

46 The absence of parity-invariance is more fundamental than the presence of helicity, 
although the latter implies the former (Gilbert, Frisch and Pouquet 1988). 

47 This requires that Galilean invariance be broken, e.g., by the presence of a small-scale 
driving force. 
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nonlinear saturation of the AKA instability has been studied by Sulem, 
She, Scholl and Frisch (1989). 

When the basic flow is parity-invariant, the large-scale equation has 
the following form (Dubrulle and Frisch 1991): 

aT(w~0)) = VijemY'jVe(w~l) - V;P, } 

Vj(wj0l) = 0. 
(9.57) 

This is a pressure-modified diffusion-like equation. For isotropic basic 
flow it reduces to: 

(9.58) 

where VE is the eddy viscosity. The calculation of Vijem or of VE in 
general requires the solution of two auxiliary problems. This can be 
done pertubatively when the Reynolds number of the basic flow is small 
(Dubrulle and Frisch 1991 ).48 

The multiscale method thus provides a rational justification for the use 
of the old concept of eddy viscosity. A nu~b~r of caveats are needed 
however. 

First, the derivation assumes a large separation of scales and this is not 
the case in most traditional applications of the concept of eddy viscosity. 

Second, the eddy viscosity need not be positive: it has been shown, at 
least in two dimensions, that the eddy viscosity is frequently negative and 
thus leads to large-scale instabilities (Vergassola, Gama and Frisch 1993; 
Gama, Vergassola and Frisch 1994; see also Sivashinsky and Frenkel 
1992).49 

Third, when the basic flow is not isotropic, the quantities Vijem in the 
large-scale equation (9.57) are the components of a fourth order tensor; 
the eddy viscosities are actually the eigenvalues of the linear operator 
which appears when plane-wave solutions are assumed in (9.57). In 
two dimensions they are always real, but in three dimensions they may 
become complex; when the imaginary part dominates, the large-scale 
dynamics is more Schrodinger-like than heat-like (Wirth, Gama and 
Frisch 1995). 

48 The exact expression of the eddy viscosity may be obtained by closure (Kraichnan 1976) 
in special instances, e.g., when the basic flow has a very short correlation time. 

49 The idea of negative eddy viscosity appears in Starr (1968) and has been proposed by 
Kraichnan (1976) as an interpretation of the inverse cascade of energy in two dimensions 
(see also Section 9.7). A negative eddy viscosity does not violate any thermodynamic 
principle, since there is usually a saturation mechanism, involving nonlinearities not 
represented in (9.55). 
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Fourth, at the same time as the basic flow induces a change in the 
viscosity from its molecular value to an eddy viscosity, it also usually 
mod!fies the nonlinear term: the coefficient in front of the advection term 
v · V'v changes from unity to another value which may vanish accidentally 
(Gama, Vergassola and Frisch 1994; Vergassola and Gama 1994) ;50 

furthermore, in the absence of mirror-invariance, a new 'chiral' nonlinear 
term appears (in two dimensions) which leads to drastic enhancement of 
vortical structures of a given sign (Vergassola 1993; Gama, Vergassola 
and Frisch 1994). 

For parallel periodic flow, for example flow in the xi-direction which 
depends only on x 1, the eddy viscosities can be calculated in explicit 
form. An instance is the Kolmogorov flow: 

v = (0, sin xr). (9.59) 

Nepomnyashchy (1976; see also Sivashinsky 1985) showed that large­
scale perturbations perpendicular to the basic flow experience an eddy 

viscosity given by 

1 
VE= V - 2v ' (9.60) 

so that a large-scale instability51 appears when v <Ve = 1/ J2. Nepom­
nyashchy (1976) and Sivashinsky (1985) also studied the nonlinear regime 
in which the eddy viscosit)j is

1 

marginally negative. This is governed by 
an equation with cubic nonlinearity of the Cahn- Hilliard type, which has 
been investigated by She (1987; see also Frisch, Legras and Villane 1996). 
When the eddy viscosity is strongly negative, some transient aspects of 
the nonlinear regime are still within the scope of multiscale methods (E 
and Shu 1993). 

Finally, we stress that what we have just discussed is certainly not 
exhaustive of the problems which can be tackled by multiscale methods 
(starting from the Navier-Stokes equation). For example, when Galilean 
invariance holds, the large-scale dynamics may be viscoelastic (Fauve 
1983; Coullet and Fauve 1985; Frisch, She and Thual 1986).52 A 
challenging problem is to find the large-scale description appropriate for 
a tangle of vortex filaments of the kind discussed in Section 8.9. 

50 In field-theoretic language, this is known as 'vertex renormalization'. 
51 This instability was actually discovered by Meshalkin and Sinai (1961). 
52 The possibility of viscoelastic behavior of turbulent flow was considered by Crow ( 1968) 

and, to some extent, by Lord Kelvin (1887). 
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9.6.4 Renormalization group ( RG) methods 

The term 'renormalization' was used originally to denote the elimination 
of infinities in quantum electrodynamics.53 After the work of Dyson, 
Feynmann, Schwinger, Tomonoga and many more (see, e.g., Schwinger 
1958), renormalization became one of the major tools of quantum field 
theory. 

The applicability of similar ideas to the problem of critical phenomena 
was foreseen by Di Castro and Jona-Lasinio (1969). The 'renormaliza­
tion group' (RG) method, which combines elements of quantum field 
renormalization with the spin-blocking ideas of Kadanoff (1966), was 
developed by Wilson and his colleagues (Wilson 1972; Wilson and Fisher 
1972; Wilson and Kogut 1974; see also Toulouse and Pfeuty 1975; Amit 
1984; Parisi 1988; Itzykson and Drouffe 1989; Le Bellac 1992). The 
resulting approach to scaling in critical phenomena is reminiscent of 
the Richardson cascade in turbulence: There is a hierarchy of scales 
of increasing length such that the dynamics at a given scale modifies 
the effective parameters describing the dynamics at the next scale. The 
renormalization group (actually, a semi-group) gives the transformation 
rules. The scaling laws are obtained from the asymptotic behavior after 
indefinite iteration. 

As could be expected, attempts were quickly made to apply similar 
ideas to fully developed turbulence (Nelkin 1974; see also Rose and 
Sulem 1978; Eyink and Goldenfeld 1994). Twenty years later turbulence 
remains unsolved. However, RG methods stand a good chance of playing 
a role in the solution of the problem of turbulence. We shall therefore 
take the reader on a guided tour of what has been done so far. First, 
we should make it clear that none of the problems which have been 
solved in a systematic way by the use of RG methods are genuine 
turbulence problems; they would be better described as (nontrivial) 
statistical Navier-Stokes problems. Extensions of such work to the grand 
problem of turbulence involve a mixture of systematic and heuristic steps. 

9.6.4.1 The Forster-Nelson- Stephen problem 

The problem which Forster, Nelson and Stephen (1977; referred to 
hereafter as FNS) tackled by systematic RG methods is that of the 

53 As stressed by Coleman (1979), the first instance of renormalization actually appeared 
in hydrodynamics: a very light hollow sphere of finite radius, released at the bottom 
of a swimming pool, does not experience an enormous buoyancy-induced upward 
acceleration, since it acquires a virtual mass equal to one half of the mass of the water 
displaced (Stokes 1843; see also Landau and Lifshitz 1987, Section 11). 
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Navier-Stokes equation in the presence of a driving force (2.43)-(2.44), a 
problem closely parallel to dynamical (time-dependent) critical phenom­
ena (see, e.g., Ma and Mazenko 1975). The force f is assumed to be 
Gaussian, white noise in time and such that the energy input to the fluid 
per unit mass and per unit wavenumber (forcing spectrum) is54 

F(k) = Dk3-r:, (9.61) 

with 0 < € ~ 1 and D > 0. Actually, FNS did not vary the exponent 
in the forcing power spectrum, but instead changed the dimension of the 
space, as in Wilson and Fisher (1972). Here, as in Frisch and Fournier 
(1978), the exponent is changed, while the space dimension is kept equal 
to three. 

The resulting energy spectrum has the form 

E(k) oc k l-21:/3. (9.62) 

This result can be predicted by a simple scaling argument. We observe 
that the random force f, when written in the physical space, scales as 
follows: 

f().r, Al-ht) law ).(r:+h- 5)/2 f(r , t), (9.63) 

where the symbol law' equality in law, is defined in Section 4.3. Eq. (9.63) 
follows from (9.61) and the observation that the distribution b(t-t') which 
is present in the space-time correlation of the force has dimension -1 
(it scales as It - t11-1 ). We know that, in the limit of vanishing viscosity, 
the Navier-Stokes equation without a force is invariant under scaling 
transformations with arbitrary scaling exponent h (Section 2.2). The 
Navier-Stokes equation with force f, is still invariant if f transforms like 
the other terms, namely is multiplied by A.2h- l . This requires h = -1+€/3. 
Hence, the energy spectrum has the exponent -1 - 2h = 1 - 2€ / 3. This 
establishes (9.62). The corresponding eddy turnover time te = £/ve is 
proportional to ei-h = e2-r:13. We see that, for £ - oo, this eddy turnover 
time becomes much shorter than the viscous diffusion time (proportional 
to £2

). Hence, at large scales (also called the infrared (IR) domain), it 
is legitimate to ignore viscosity, as required for our scaling argument. 
At small scales (ultraviolet (UV) domain), we expect that the force and 
the viscous dissipation will just balance each other, thereby producing a 

54 The notation € is borrowed from critical phenomena and is not related to the mean 
energy dissipation, denoted e. 
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spectrum 

E(k) = F(k) = E_k 1-€. 

2vk2 2v 
(9.64) 

Observe that in this scaling argument we have used the positivity of€, 
but not its smallness. 

If the matter is so simple, why use the renormalization group at all? 
It is actually needed to obtain the constants in front of the power-laws 
and also for predicting the behavior at € = 0. Let us now try to give a 
flavor of how this is done. In the literature, RG methods make extensive 
use of field-theoretic machinery and cannot be easily approached unless 
one is familiar with this. Actually the RG, as implemented by FNS, 
may be viewed as an iterated multiscale method (Section 9.6.2) involving 
a scale-dependent eddy viscosity. It may indeed be shown that the 
eddy viscosity produced by a flow with an energy spectrum (9.64) has 
a lN divergence55 at € = 0. It follows that, for small € , the dominant 
interactions are between widely separated scales, such that the ratio M 
of their scales has a logarithm of the order of 0(1 / €). The following 
construction then emerges: one considers a sequence of scales .en = .e0 Mn 
(n = 0, 1, ... ) and associated wavenumbers kn = .e; 1. The effect of scale 
.en on scale .en+I is a change in the (eddy) viscosity which is so small that, 
to leading order, the viscosity may be considered a smooth function of 
the wavenumber k. A perturbative calculation then gives 

dv(k) 
-

dk 

AD 
(9.65) 

[ v(k )]2kl+€' 

with an explicitly evaluated constant A (Fournier and Frisch 1983a). 
Eq. (9.65), apart from the constant A, follows from dimensional analysis 
and the condition that dv(k) / dk is evaluated to leading (linear) order in 
the forcing spectrum F(k). Integration of (9.65) and substitution into 
(9.64) gives the desired result (9.62) and produces a log-corrected k1 

spectrum for € = 0 . 
Several comments are now made on the FNS approach. First, we 

stress that at each level the eddy viscosity can be calculated perturbatively 
because the Reynolds number remains small. Actually, the bare Reynolds 
number, based on the molecular viscosity, would grow without bound 
as k --. 0, but the renormalized Reynolds number, based on the eddy 
viscosity evaluated at the previous step, goes to a value 0(€112). 

55 A simple way to show this is to use (50) of Dubrulle and Frisch (1991) which gives the 
eddy viscosity at low Reynolds numbers. 
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Second, it is the separation of scales (also a consequence of the small­
ness of e) which justifies a hydrodynamical (Navier- Stokes) description 
at all levels. In the traditional presentation of the RG, one distinguishes 
'greater wavenumbers' in a finite shell, say from A to A/2 and 'lesser 
wavenumbers', from zero to A/2. One then manipulates the equations to 
eliminate the greaters in favor of the lessers, an operation called 'decima­
tion'. The resulting equation for the lessers is somewhat of a nightmare; it 
contains, in addition to Navier- Stokes terms, infinitely many other terms 
which are eventually shown to be irrelevant, in the sense that they do 
not contribute to the leading order asymptotic behavior of the solution 
for small e and large scales. Decimation of a very wide shell (justified by 
the near divergence of the eddy viscosity) circumvents this difficulty and 
allows us to work with only a finite number of coefficients. 

Third, it may be asked why only the coefficient in front of the viscous 
term in the Navier- Stokes equation is renormalized (changes) at each 
step. We have already observed in Section 9.6.3.2 that the coefficient 
in front of the advection term v · Vv can be renormalized under the 
action of a small-scale flow. In the FNS problem, the force, having a 
white-noise-dependence on the time, preserves the Galilean invariance 
of the Navier- Stokes equation,56 so that 'vertex corrections' are ruled 
out.57 Also, the force itself may be renormalized. Indeed, the nonlinear 
interaction of two large wavenumbers (with nearly opposite wavevectors) 
produces a low wavenumber 'beating' input. This 'eddy noise' (Rose 
1977) has a forcing spectrum proportional to k4 in three dimension and 
is thus irrelevant at small wavenumbers, because the direct forcing (9.61) 
dominates. There are, however, other situations, also considered by FNS, 
where eddy noise is relevant. 

9.6.4.2 Extension of RG to Kolmogorov 1941 scaling regimes 

We have already observed that the exponent 1 - 2e /3 for the spectrum 
of the solution to the problem with the forcing oc k3

-€ is obtained by a 
simple scaling argument. As noticed by de Dominicis and Martin (1979), 
this implies that the result for the exponent is nonperturbative (in e), 
contrary to the constant in front of the power-law. Hence, there should 
be some finite range of es for which (9.62) holds. If e = 4 is in this range, 
the k-513 energy spectrum is obtained. In other words, a forcing with a 

56 f(r - Ut, t) has the same space-time correlation as f(r , t) when f is b-correlated in the 
time. 

57 They do, however, occur in magnetohydrodynamics (Fournier, Sulem and Pouquet 1982). 
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k-1 spectrum may produce the K41 energy spectrum (de Dominicis and 
Martin 1979). 

One possible cause for worry is that, as soon as € ~ 3, the energy 
spectrum (9.62) has a total energy diverging at the IR end. This causes 
difficulties in diagrammatic calculations of the sort discussed in Sec­
tion 9.5, but it is not obvious that anything drastic happens physically 
since the dynamics is much more sensitive to the large-scale mean square 
strain (enstrophy) than to the mean square velocity (Section 7.3). 

A simple phenomenological argument suggests that € = 4 may not 
produce a k-513 spectrum exactly. Let us assume that the forcing spectrum 
F(k) = Dk-1 for k > k0, where k0 is an IR cutoff, and otherwise 
vanishes. The amount of energy injected at wavenumbers k > k0 is 
then e(k) = D ln(k/k0). If we assume that this energy cascades to higher 
wavenumbers and use the K41 expression (6.65) for the energy spectrum, 
with e(k) substituted for the mean energy dissipation rate, we obtain 

E(k) = CK01D'i3 k-5!3 (in ~) 213 

, (9.66) 

i.e. a log-corrected K 41 spectrum. If we then let k0 --+ 0, the energy spec­
trum becomes infinite. Eq. (9.66) could be invalidated by intermittency 
corrections: random Gaussian forcing at all scales need not suppress 
the build-up of intermittency since, after enough cascade steps, the cas­
cade rate may overwhelm the direct input from the force (R. Kraichnan, 
private communication). 

We also observe that, in the FNS regime, at small ES the statistical 
equilibrium results from a balance between the input due to the assumed 
forcing and a drain due to eddy viscosity, whereas in an inertial range, 
both the input and the output originate from nonlinear interactions. 

Yakhot and Orszag (1986a,b ; see also Dannevik, Yakhot and Orszag 
1987) have extended RG ideas to make quantitative predictions about 
amplitudes in K41 scaling regimes. They assumed a random force a la 
FNS with a Dk- 1 spectrum. This force should not be viewed as ex ternal, 
but rather as representing the eddy noise, i.e. the random input to a 
given wavenumber from the beating of larger wavenumbers (cf. above). 
The RG (to lowest order in E) is used to determine the constant in front 
of the energy spectrum in terms of D, as explained in Section 9.6.4.1. 
It remains to relate D and the mean energy dissipation rate e. For this, 
an expression of the energy flux based on the EDQNM closure is used 
(Section 9.5.4). This involves the rate of relaxation of triple correlations, 
which in standard closure must be expressed phenomenologically. Here, 
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it is expressed self-consistently in terms of the RG eddy viscosity, thereby 
avoiding the use of adjustable constants. The use of adjustable constants 
would, indeed, be fatal to a theory which imposes scaling and only 
intends to determine constants. In spite of the somewhat arbitrary 
resort to closure, the RG58 theory leads to numerical values in good 
agreement with experimental data. For example, it gives CKol ~ 1.6 for 
the Kolmogorov constant and K ~ 0.37 for the von Karman constant. The 
method has also been extended to give explicit evaluation of turbulence 
transport coefficients for engineering modeling (Orszag et al. 1993). 

Kraichnan (1987) has pointed out that it is not clear whether RG is 
conceptually superior to closure. Actually, there is more than one way in 
which RG can be used to 'calibrate' closure. For example, closures such 
as EDQNM or Kraichnan's (1971a) 'test field model', which are both 
consistent with K41, can be used to study the same problem as FNS 
for small € and thereby to determine their adjustable constants (Fournier 
and Frisch 1983a). Other observations about the use of renormalization 
group methods in turbulence may be found in Lesieur (1990) and Eyink 
( 1994b ). 

9.7 Two-dimensional turbulence 

By 'two-dimensional turbulence', one generally understands the study 
of high-Reynolds-number solutions of the incompressible Navier- Stokes 
equation ( 1.2) which depend only on two cartesian coordinates, here 
denoted x and y. It is easily checked that the component of the velocity 
along the third coordinate axis satisfies a simple advection-diffusion 
equation without back-reaction on the horizontal (x-y) flow. Hence, 
without loss of generality one may assume that the velocity has only 
two components and work with a stream function 1JJ. It is then simplest 
to use the vorticity equation (2.15). The vorticity has a single (vertical) 
component, denoted (, which satisfies 

where 

or( - l(1JJ , () = 01( + v · V( = vV2
( + 1J , 

V'2lp = - (, 

(9.67) 

(9.68) 

(9.69) 

Note that (9.67) contains a forcing term IJ , the curl of the driving force. 

58 In the Yakhot- Orszag extension, it is known as RNG. 



9. 7 Two-dimensional turbulence 241 

As is well known, (9.67) includes no vortex-stretching term, so that 
one essential aspect of three-dimensional turbulence is lost.59 Two­
dimensional turbulence might thus be viewed as just a toy model, some­
what easier to analyze and certainly easier to simulate and to visualize 
than three-dimensional turbulence. 

Actually, there exist numerous situations, in natural flow and in lab­
oratory experiments, which are constrained to quasi-two-dimensional or 
layer-wise motion. The most important examples arise in geophysical 
and planetary flow. For example, two-dimensional turbulence is rele­
vant to the dynamics of oceanic currents, the motion of intense eddies 
such as tropical cyclones, the existence of the polar vortex and the mix­
ing of chemical species in the polar stratosphere, a key factor in the 
production of the ozone hole, and in other large-scale motions of plan­
etary atmospheres (see, e.g., Dritschel and Legras 1993; Waugh et al. 
1994). Two-dimensional turbulence dominates the short- and medium­
term internal variability of the climate system, and largely contributes to 
determining the average conditions and the probability of extreme events. 
The use of two-dimensional approximations in geophysical flow was pro­
posed by Charney (1947). It is presented in detail in Lesieur (1990; see 
also Pedlosky 1979). In addition, the two-dimensional Euler (inviscid) 
equation applies to strongly magnetized plasmas in the 'guiding-center' 
approximation (see, e.g., Kraichnan and Montgomery 1980). 

Two-dimensional turbulence is also a very active area of experimental 
investigation (see, e.g., Bondarenko, Gak and Dolzhansky 1979; Gledzer, 
Dolzhansky and Obukhov 1981; Couder 1984; Sommeria 1986; Gharib 
and Derango 1989; Cardoso, Marteau and Tabeling 1994). 

Hence, there is a large body of literature, which we shall not attempt 
to review in detail here. After a brief overview of - now classical -
material on cascades and vortices (Section 9.7.1), our emphasis will be on 

two recent (or recently revived) topics which could be also of relevance 
for three-dimensional turbulence (Sections 9.7.2- 9.7.3).w 

9.7.1 Cascades and vortices 

Two-dimensional turbulence has been reviewed by Kraichnan and Mont­
gomery (1980) and by Lesieur (1990) and others. What distinguishes it 
most from three-dimensional turbulence is the conservation of vorticity 
along fluid particle paths when viscosity and forcing are ignored. As a 

59 But stretching of vorticity gradients is definitely present. 
60 The reader is also referred to a very interesting essay by Pomeau (1994). 
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consequence, the enstrophy ! ((2) cannot increase under the sole action 
of nonlinearity. 

Kraichnan (1967a) conjectured that, if energy is injected into the flow 
at a constant rate e at some intermediate scale fo, an inverse cascade of 
energy will take place until the largest scales available are attained. This 
inverse cascade should follow the same k-5!3 law as the direct three­
dimensional cascade. Kraichnan's conjecture was based on a 'absolute 
equilibrium' statistical mechanics argument using the Euler equation 
with finitely many Fourier modes (Galerkin truncation), no force and 
no viscosity. Later, he gave a negative eddy viscosity interpretation 
(Kraichnan 1976). The inverse cascade, possibly the most important 
result in fully developed turbulence since Kolmogorov's work, has been 
largely confirmed by simulations of increasing size (Lilly 1971; Siggia and 
Aref 1981; Frisch and Sulem 1984; Herring and Mc Williams 1985; Smith 
and Yakhot 1993; Borue 1994) and, to a lesser extent, by experiment 
(Sommeria 1986). Once the inverse cascade reaches the 'size of the 
box' (when simulated with periodic boundary conditions), vortices are 
formed, with a size comparable to that of the forcing, and the k-513 range 
is disrupted at large scales (Smith and Yakhot 1993, 1994; Borue 1994). 
The shape of the spectrum at the smallest wavenumbers depends on what 
kind of mechanism is or is not assumed for removing the energy. For 
example, with a constant 'Ekman' friction term -a( added to the r.h.s. 
of (9.67), a k-3 range is observed at the largest scales (Smith and Yakhot 
1994); it corresponds to a balance of nonlinear transfer with friction, 
which may be obtained by equating the eddy turnover time £/vc with the 
time of damping by friction a-1. This is one of the possible explanations 
of the paradoxical fact that in the atmosphere k-3 and k-513 ranges are 
indeed observed, but the former is at larger scales (Lilly and Peterson 
1983). 

The analog of the K41 energy cascade towards small scales is an en­
strophy cascade (Kraichnan 1967a; Batchelor 1969), for which the energy 
spectrum follows a k-3 law with a logarithmic correction. This correction 
stems from the highly non-local character of nonlinear interactions in 
the enstrophy cascade: most of the shear acting on a given small scale 
comes from much larger scales. Although closure theory and closure 
calculations completely support the dual picture of a direct enstrophy 
cascade and an inverse energy cascade in forced turbulence (see, e.g., 
Kraichnan 1971b; Pouquet, Lesieur, Andre and Basdevant 1975), direct 
numerical simulations do not very strongly support the k-3 law for forced 
turbulence. Legras, Santangelo and Benzi (1988) obtained considerably 



9. 7 Two-dimensional turbulence 243 

steeper spectra at small scales, but Borue (1994), using higher Reynolds 
numbers, obtained reasonably clean k-3 spectra. Unfortunately, most of 
these calculations do not integrate the Navier-Stokes equation (9.67), but 
a modified equation with a high power of the Laplacian as dissipation 
term.61 

The Batchelor-Kraichnan theory also predicts a k-3 spectrum for 
unforced (decaying) two-dimensional turbulence. Again, the numerical 
evidence is not so strong. Brachet, Meneguzzi, Politano and Sulem (1988) 
obtained a k-3 spectrum in a moderately long but genuine Navier­
Stokes simulation. Santangelo, Benzi and Legras (1989) found that, 
eventually, the energy spectrum becomes quite steep and does so in a 
fashion which depends on the initial conditions. They ascribe this to the 
formation of a hierarchy of coherent vortices. These have been observed 
in simulations by Pomberg (1977) and Basdevant, Legras, Sadourny and 
Beland (1981) and were studied systematically by McWilliams (1984): 
the long-time evolution of two-dimensional fields is dominated by small 
coherent vortices whose vorticities are much stronger than that of the 
well-mixed background. Individually, the vortices are well described (in 
a suitable frame of motion) as solutions of the two-dimensional time­
independent Euler equation: 

(9.70) 

This is an extremely broad class of functions.62 It includes circular 
vortices, in which 1P is a function only of the distance to the vortex 
center. Circular vortices, as long as they are well separated, behave 
mostly as a system of point-vortices, a problem which has been studied 
for more than a century (see, e.g., Kirchhoff 1877; Lamb 1932; Aref 1983 
and Section 9.7.2). Within such vortices, the nonlinearity is completely 
depleted, so that cascade arguments cease to be valid; in a sense coherent 
vortices constitute drops of 'laminar' fluid in an otherwise turbulent flow 
(Benzi, Paladin, Paternello, Santangelo and Vulpiani 1986). 

9. 7.2 Two-dimensional turbulence and statistical mechanics 

Statistical mechanics, as developed by Maxwell, Boltzmann, Gibbs and 
their followers, has been amazingly successful in predicting the behavior 
of systems with very many degrees of freedom. Its main successes have, 
however, been in the area of equilibrium distributions for conservative 

61 A procedure referred to as 'modified dissipativity' or 'hyperviscosity'. 
62 We shall return to this matter in Section 9.7.2. 



244 Further reading: a guided tour 

(Hamiltonian) dynamics. Three-dimensional turbulence is dissipative: as 
seen in Section 5.2, a very minute amount of viscosity suffices to produce 
a finite energy dissipation. In two dimensions, when the viscosity is small, 
so is the energy dissipation; ignoring the viscosity altogether may thus 
be of some relevance.63 In the absence of viscosity the two-dimensional 
Navier-Stokes equation (9.67) reduces to the Euler equation. As we know, 
the Euler equation in any dimension may be written in Hamiltonian form 
(Section 9.3). In two dimensions a particularly simple formulation is 
obtained when the vorticity field ((r) is approximated by a large number 
N of point vortices of individual circulations Cj: 

(9.71) 

where r stands now for (x, y ). The canonically conjugate Hamiltonian 
variables are then simply the c;x;s and the c;y;s (no summation on i) and, 
in the absence of boundaries, the Hamiltonian is the energy of interaction 
of the vortices (see, e.g., Batchelor 1970): 

Here, 

H = LcicjV(r;, rj). 
i<j 

I 1 I 
V(r,r)=--lnlr-rl 

2n 

(9.72) 

(9.73) 

is the Green's function for the negative Laplacian. Note that, if we define 
the stream function 

VJ(r) = j V(r, r')((r') dr', (9.74) 

with ( given by the r.h.s. of (9. 71 ), the Hamiltonian is (after removal of 
an infinite self-energy term) equal to ! J ( lpdr = ! J v2dr, i.e. the kinetic 
energy of the system.64 

Onsager (1949) investigated the equilibrium statistics for such point­
vortices and discovered the possibility of negative temperature states in 
which the entropy is a decreasing function of the energy and close 
clustering of equal-sign vortices is favored. Onsager's theory provides an 
attractive interpretation for the formation of coherent vortices. Actually, 
Frohlich and Ruelle (1982) found that negative temperature states are 
ruled out if one considers the limit N ---+ oo and simultaneously assumes 

63 We shall come back to the difficulty that enstrophy dissipation cannot be neglected. 
64 In a bounded domain, the appropriate Green's function must be used and a term of 

interaction of the individual point vortices with the boundary is present. 
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that the mean energy per vortex remains finite. Eyink and Spohn (1993; 
see also Caglioti, Lions, Marchioro and Pulverenti 1992) were able to 
prove the existence of negative temperature states when N - oo by 
considering a mean field theory: the Hamiltonian H in (9.72) is replaced, 
by H / N so that the mean energy per vortex pair remains finite. For 
the case of a bounded domain and when all the vortices have the same 
circulation, they obtained the following equation for the single-vortex 
distribution (which may be interpreted as a mean vorticity and is here 
denoted(): 

-V2VJ(r) = ((r) = F(VJ(r)), (9.75) 
-a-/J1JJ(r) J 

F(VJ(r)) = e z (/3) , F(VJ(r')) dr' = 1. (9.76) 

For the neutral case of an equal number of + 1 and -1 vortices, the 
function F(.) is often a hyperbolic sine65 instead of an exponential and 
(9.75) is known as the 'sinh-Poisson' equation. 

Actually, the sinh- Poisson equation has been known since the work 
of Joyce and Montgomery (1973; see also Montgomery and Joyce 1974, 
and Kraichnan and Montgomery 1980) who derived it by a maximum 
entropy principle.66 The mere fact that there is a functional relation 
between the vorticity C and the stream function 1P (whatever the function 
F(.)) implies that they are steady-state solutions of the Euler equation. 
Montgomery, Matthaeus, Stribling, Martinez and Oughton (1992) have 
performed very long high-Reynolds-number integrations of the decay­
ing two-dimensional Na vier-Stokes equation and found that such flow 
relaxes to a configuration with vanishing nonlinearity which is well de­
scribed by the sinh- Poisson equation.67 

This brings us to a fundamental question: to what extent is it legitimate 
to infer the long-time behavior of the slightly dissipative two-dimensional 
Navier-Stokes equation by studying equilibrium properties of conser­
vative systems such as point vortices? How can we take into account 
the dissipation of enstrophy, a phenomenon which is always observed in 
high-Reynolds-number simulations? 

65 The hyperbolic sine law holds only if the 'chemical potentials' IX+ and IX- associated with 
each vortex species are equal; this may not be the case, even with an equal number of 
+ 1 and -1 vortices: the equilibrium state may break the parity symmetry of the system. 

66 In the context of stellar dynamics, (9.76) has also been derived by Lynden-Bell (1967) 
for the Jeans- Vlasov- Poisson equation of gravitationally interacting stars. He also 
considered a variant which is the gravitational counterpart of the case of continuous 
vorticity distribution discussed below. 

67 According to Pasmanter (1994) F(ip) = cip/ (1-ip2) with -1<1P < +1 gives an equally 
satisfactory fit. 
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The beautiful work of Robert and Sommeria (Robert 1990, 1991 ; 
Robert and Sommeria 1991) and of Miller (1990) indicates that the use 
of conservative statistical mechanics may actually be justified for real 
fluids.68 We shall now try to give a flavor of this work. For this, we shall 
borrow occasionally from Eyink and Spohn (1993) and from Pasmanter 
(1994). Let us first observe that inviscid evolution of a smooth (or 
piecewise smooth) vorticity field leads to extremely convoluted vorticity 
contours with steep vorticity gradients (Zabusky, Hughes and Roberts 
1979; Dritschel 1989). Vorticity and area are conserved along fluid 
particle paths. As a consequence all the integrals 

(9.77) 

are conserved, in addition to the energy 

E = ~ J ( (r)tp(r)dr = ~ J J V(r,r' )((r)((r')drdr'. (9.78) 

If the vorticity field is smoothed over a distance a, small compared to the 
size of large vortical structures, the energy and the integrated vorticity Ql 

will be barely affected, but the other integrals, in particular the enstrophy 
Q2, can be drastically reduced because smoothing permits cancellation 
between neighboring vortical structures with opposite vorticities. In other 
words, a coarse-grained description of the vorticity may mimic the effect 
of viscous dissipation which removes enstrophy without much affecting 
the energy. Miller (1990) explicitly makes use of such a coarse-graining. 
Robert and Sommeria (1991) resort to a more radical approach by using 
'Young measures': 'at each point we have a probability distribution of 
vorticity which gives, in some statistical sense, a local description of 
the small-scale oscillations of the microscopic vorticity function'. They 
actually give up, not only the deterministic description of the vorticity, 
but also its single-valuedness, although ordinary vorticity fields can be 
recovered as mean fields. The Euler equation is then extended to such 
Young measures and, by means of a suitable entropy, an invariant mea­
sure is constructed and shown to characterize the 'most likely' behavior. 
Physical intuition (at least of a standard kind) may be somewhat lost 
in the intermediate steps. Fortunately, at the end Robert and Sommeria 
(1991) come up with a simple mean field relation, also found in Miller 
(1990). It differs from the Joyce and Montgomery relation (9.76), but 

68 See also Kuz'min (1982). 
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reduces to it in the limit of initial vorticity patches with a small area 
embedded in irrotational flow. 

Specifically, let us assume that the dynamics is taking place in a 
bounded set A of area IAI and let P0(/c) be the initial vorticity p.d.f., i.e. 
P0(J.)dJ. is the fraction of the total area in which the initial vorticity is 
between J. and J. + dJ.: 

Po(J.)dJ. = _l f dr. 
IAI Jk((r,O)<Hdl.. 

(9.79) 

Because vorticity and area are conserved, this quantity will be invariant 
under the evolution. The Robert-Sommeria-Miller equilibrium p.d.f. of 
the vorticity is a function of the point r, given by 

P(r J.) = 1 el-a(.l.J-/J.l.ip(r)] 
' Z [lp(r)] ' 

(9.80) 

where the parameter f3 (the inverse temperature) and the function o:(J.) 
are Lagrange multipliers and Z ( 1P(r) ), the partition function, is given by 

Z(lp) = j d A_ e[-a(l..)-/Jl..ip], (9.81) 

which ensures the normalization of P(r, J.). The mean field result for 
point-vortices (9.76) is recovered in the limit Z - 1 (with generalization 
to a distribution of vortex strengths J.). The vorticity is then so diluted in 
irrotational fluid that the local normalization constraint for P(r, J.) is not 
effective. Note, however, that the distribution of vortex strengths is an 
arbitrary modeling choice for vortex statistics, while here it is completely 
determined by the global distribution of the vorticity levels in the initial 
condition. 

For each r, a mean (or macroscopic) vorticity is defined as 

((r) = JJ.P(r,A.)dA. = - jf lnZ(lJJ)I . (9.82) 
JJ lp ip=ip(r) 

It is in terms of this macroscopic vorticity that the stream function 1P is 
constructed via the Poisson equation: 

2 _ 1 a 
- V' 1P = ( = F(lJJ) = -p Olp lnZ(lJJ). (9.83) 

It follows that the macroscopic vorticity is a steady-state solution of the 
Euler equation. The Lagrange multipliers f3 and o:(A.) are determined: 
(i) by the scalar constraint that the total energy (9.78) is equal to its 
initial value and (ii) by the one-parameter family of constraints that the 
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space-averaged p.d.f. of the fluctuating (microscopic) vorticity is equal to 
the p.d.f. of the initial vorticity, i.e. 

Po(A.) = l~ l 1 P(r, 2) dr. (9.84) 

Eqs. (9.82) and (9.84) imply that the mean macroscopic vorticity is still 
equal to its initial value, but the mean square macroscopic vorticity is 
generally less than its initial value. Hence, some of the macroscopic en­
strophy has been converted into microscopic enstrophy. Pomeau (1992) 
has shown that the mechanism of dissipation of a macroscopic invari­
ant which gets transferred to very-small-scale fluctuations is quite gen­
eral; it is also present, for example, in the (defocusing) cubic nonlinear 
Schrodinger equation, where the particle number and the energy play 
respectively the roles of the energy and the enstrophy. 

A key issue in assessing the applicability of this sort of quasi-inviscid 69 

equilibrium theory is whether the macroscopic to microscopic enstrophy 
conversion faithfully represents the effect of viscous dissipation. Does it 
have the right time scale? Is the final distribution of vorticity the same 
as predicted by the quasi-inviscid equilibrium theories? We have already 
quoted the numerical evidence in favor of applicability (Montgomery, 
Matthaeus, Stribling, Martinez and Oughton 1992). Some conceptual 
issues may be raised. First, it is obvious that a flow which is even slightly 
viscous will eventually decay to zero and not to the steady state predicted 
by quasi-inviscid equilibrium theory. This is, however, not an acceptable 
objection, since the flow may well remain for a very long time in a quasi­
steady state where nonlinearities vanish, so that direct viscous decay 
(as opposed to cascade-enhanced decay) is exceedingly slow. It may be 
observed that, in their present state, quasi-inviscid equilibrium theories 
fail to take into account the topological constraint that vortex contours 
cannot cross (V. Zeitlin, private communication). Eyink and Spohn (1993) 
observe that strict ergodicity of a gas of point-vortices is: (i) unlikely 
and (ii) not really needed for applicability of quasi-inviscid equilibrium 
theories. As for the time scale, they observe that 'local equilibrium' of 
individual clusters of vortices is probably established rather quickly but 
global equilibrium may take much longer if the individual clusters are 
widely scattered, as in the example discussed in Section 9.7.3. 

Our feeling is that much work remains to be done to delineate the 
niche of applicability of quasi-inviscid equilibrium theories in two dimen­
sions. Already some attempts have been made to incorporate additional 

69 A term proposed by Pasmanter (1994). 



9. 7 Two-dimensional turbulence 249 

elements such as the quasi-geostrophic extension of the two-dimensional 
Navier-Stokes equation, needed to describe planetary motion, to explain, 
for example, Jupiter's Great Red Spot (Sommeria, Nore, Dumont and 
Robert 1991; Michel and Robert 1994). 

9.7.3 Conservative dynamics 'punctuated' hy dissipative events 

The quasi-inviscid equilibrium theory is clearly inapplicable as long as 
there are many well-separated vortices. In high-resolution numerical 
simulations with random initial conditions and a correlation length much 
smaller than the size of the numerical box, the formation of a large 
number of (monopolar) vortices is typically observed; their density p(t), 
for example, the mean number of vortices per unit area, is found to 
decreases as 

p(t) oc t-~, (9.85) 

with ~ ~ 0.70 - 0.75 (McWilliams 1990). A scaling theory of this 
phenomenon has been proposed by Carnevale, McWilliams, Pomeau, 
Weiss and Young (1991) and developed further by Weiss and McWilliams 
(1993); a similar approach may be found in Benzi, Colella, Briscolini 
and Santangelo (1992). The general idea is that most of the time the 
vortices are sufficiently far from each other that their motion can be 
described by the Hamiltonian dynamics of point-vortices. Occasionally, 
two vortices of like sign approach each other sufficiently closely to permit 
merger. Mergers are dissipative events which 'punctuate' the otherwise 
conservative dynamics. 

It is assumed that during vortex-merger neither the energy nor the peak 
(absolute value of the) vorticity (exi(t) of the vortices changes. However, 
the typical vortex size a(t) and the enstrophy are allowed to change.70 

The conservation of energy is clearly a reasonable assumption for high­
Reynolds-number two-dimensional turbulence. As for conservation of 
peak vorticity, it may be observed that it typically occurs at the center of 
the vortices while enstrophy dissipation during merger typically occurs 
at the periphery where filaments 71 are quickly destroyed by viscosity. 

70 In the simplest model, all the vortices are assumed to be of roughly equal size, but Weiss 
and McWilliams (1993) assume a distribution of sizes. 

71 It is a bit unfortunate that the same word filament is used: (i) in three dimensions 
for slender high-vorticity regions with approximately circular cross-section of the kind 
discussed in Section 8.9.1 and (ii) in two dimensions for very long and thin ribbons of 
quasi-uniform vorticity. Maybe the latter could be called 'hairs of vorticity'. 
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The energy <ff per unit area is approximately given by p ,;xta4. (Note 
that 'a is the typical velocity induced within the vortex.) From the above 
assumptions, it follows that p(t)a4(t) should be constant. Hence, from 
(9.85), we have 

a(t) oc tU4 . (9.86) 

There is no complete theoretical justification of the t-~ law for the 
evolution of the density of vortices. The merger itself is amenable 
to rather detailed theoretical modeling, but finding the probability that 
point-vortices will come within the critical distance de needed for merging 
requires numerical calculations. However, a renormalization trick can be 
used to prevent the total number of vortices from dropping too quickly 
(Weiss and McWilliams 1993). This allows the determination of the 
exponent ~ with an accuracy of a few per cent.72 

It is a tautology to state that numerical simulations support the scaling 
theory. Early experimental results by Tabeling, Burkhart, Cardoso and 
Willaime (1991) also gave some support to the theory/simulations. Their 
experiment uses a thin layer of electrolyte, a technique already used by 
Bondarenko, Gak and Dolzhansky (1979; see also Gledzer, Dolzhansky 
and Obukhov 1981) for studying the Kolmogorov flow. The initial eddy­
motion is produced by forcing with an array of permanent magnets, 
acting on a current flowing through the electrolyte, which is then switched 
off to let the eddies decay freely. The measurements are made during a 
phase where vortex-merger proceeds faster than overall decay by friction 
against the bottom of the vessel, so that the latter may be safely ignored. 
Typically, the vortex size is found to grow as a(t) oc t0·22±o.o3 which is 
close to being consistent with (9.86) when ( ~ 0.70 - 0.75 is assumed. 
Further improvements in the technique with measurements of the peak 
vorticity (Cardoso, Marteau and Tabeling 1994) however reveal that it 
is far from being constant, in contrast to previously reported theoretical 
and numerical results. Furthermore, the density of vortices, instead of 
decreasing as t-~, has a much smaller exponent, of about -0.44. Actually, 
in these experiments the vortices do not become sparse but remain packed 
like the molecules of a liquid. We suspect that the main reason for the 
discrepancy is not so much the bottom friction as the smallness of the 
Reynolds number R: based on the size of the cell, R ~ 2000 and based 
on the size of individual vortices, R ~ 200. 

72 With once more the caveat that dissipation in the simulations uses the squared Laplacian 
rather than the ordinary Laplacian. 
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9.7.4 From Flatland to three-dimensional turbulence 

Doing physics in Flatland requires no apologies: many areas of theo­
retical and condensed matter physics have benefitted greatly from such 
studies. Indeed, two-dimensional models have often helped us in under­
standing new concepts, as in Onsager's theory of the the two-dimensional 
Ising model (see, e.g., Huang 1963). Furthermore, surprisingly many 
phenomena of our three-dimensional world are actually governed by 
two-dimensional equations. In this final section, we want to address 
two questions: (i) How far do we understand (high-Reynolds-number) 
two-dimensional turbulence? (ii) What have we learned that could be 
relevant in three dimensions? 

The forced and unforced (decaying) problems differ much more in 
two than in three dimensions. For two-dimensional turbulence in an 
unbounded domain with forcing at a fixed scale, Kolmogorov's theory 
of a statistically self-similar flow with a k-5/ 3 spectrum, as reworked by 
Kraichnan (1967a), constitutes a very good description of the inverse 
cascade; indeed, no coherent vortical structures (which would ruin this 
description) seem to be generated at large scales. At small scales, where 
vortices abound, their properties depend very much on the nature of the 
forcing, so that universality is questionable. It is conceivable that the 
background between the vortices has universal properties as predicted 
by the Batchelor (1969) and Kraichnan (1967a) theory of the enstrophy 
cascade or by the Polyakov (1993) theory of conformal turbulence, but 
this remains to be confirmed. 

Decaying two-dimensional turbulence in an unbounded domain evolves 
into a dilute gas of vortices, governed by the kind of punctuated scaling 
regime discussed in Section 9.7.3 in which universality seems to hold. 
A complete theory is still lacking but there is good hope for one. In 
a bounded domain, the quasi-inviscid equilibrium theory discussed in 
Section 9.7.2 leads to the remarkable (and well-supported) prediction 
that the flow evolves 73 to a state with totally depleted nonlinearities; 
the detailed structure of the emerging vortex (or pair of vortices) may 
depend on the initial vorticity distribution. 

Two-dimensional turbulence has thus a L eonardo- Kolmogorov dual­

ity, reminiscent of the particle- wave duality. Vortices are part of the 
Leonardian realm, while the near-Gaussian inverse cascade belongs to 
the Kolmogorovian realm. The latter may be analyzed indifferently in 

73 With possible transients described by the punctuated scaling regime when the initial 
correlation length is much smaller than the size of the domain. 
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the Fourier space or in the physical space,74 while the former can become 
utterly obscure in the Fourier space. 

Let us now try to assess what can be transposed from two- to three­
dimensional turbulence. We are not aware of any successful attempt to 
extend quasi-inviscid equilibrium theories from two to three dimensions. 
The key physical difficulty is, of course, that in three dimensions a very 
small viscosity does not prevent the energy from decaying quickly. 

The idea of conservative dynamics punctuated by dissipative events 
could be directly relevant in three dimensions. In two dimensions, it is 
intimately related to the generations of structures with strongly depleted 
nonlinearities, namely the vortices. In three dimensions, there are even 
more possibilities for depletion. The vortex filaments (Section 8.9.1) are 
an outstanding example: their interactions and self-interaction can be 
studied inviscidly as long as they remain well-separated ; the dissipative 
events which punctuate such conservative dynamics include vortex break­
down and collisions of filaments leading to reconnection. 

What is clear from the two-dimensional studies is that no meaningful 
statistical theory can be developed for flow dominated by coherent struc­
tures, until these have been identified and parametrized. They are in a 
sense the 'molecules' of the theory. In three dimensions, the analog could 
be strings, viz the vortex filaments, but there are many other possibilities, 
including vortex sheets, Burgers vortices (cf. p. 187) and other compact 
vortices and Fourier components. 

The role of simulations and experiments needs some comment. In two 
dimensions we are now able to perform simulations which achieve very 
high Reynolds numbers and therefore can often be trusted to be truly 
asymptotic. Furthermore, simulated two-dimensional flow is very easy 
to visualize. Also, simulations clearly have an edge over experiments, 
since it is hard to set up genuine two-dimensional experiments, partic­
ularly at high Reynolds numbers. In three dimensions the opposite is 
true: computers have a long way to go before we can achieve inertial 
ranges of several decades, as needed for accurate measurements of ex­
ponents, while experiments can do this at relatively low cost. However, 
multidimensional reconstruction of fine-scale structures from computer 
simulations is considerably easier (but far from trivial) and von Neu­
mann's (1949) statement about 'break(ing) the deadlock ' by ex tensive, but 
well-planned, computational efforts remains as true as ever. Actually, one 
observes an increasing synergy between experiments and computations 

74 And is well represented by closure. 
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Extrait du "Guide de l'Alpiniste Turbulent" 

Ascensions du Pie de NA VIER-STOKES 

Le Pie de NA VIER-STOKES est 
a coup sur le sommet le plus difficile 
a atteindre, mais l'un des plus beaux. 

Lafiere devise des eleves de 
/'Ecole des Hautes Montagnes 
en Friches: "QUO NON ASCENDAM" 
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doit guider l 'ardeur de taus 
ceux qui s'attaquent ace 
Massif. 

zone fractale 

Sur le croquis ci-contre, 

directissime 
mathemati.que 

Quatre voies sont actuellement identi.fiees: 

voie 
experimentale 

Cliche, mise en page, 
et traduction des notes 

originales par ~e 

La face de la fermeture: paroi glade, pente raide mais constante, de 166 % ( =513 ). 
Le sommel est en vue directe tout au long du chemin. 
La directissime mathematique: escalade artificielle, mais la voie est sure, et pitonnee 
dans toute sa partie explorie. 
Lavoie du groupe de renormalisation: a condition de n'emprunter que /es gros 
tourbillons, on arn·ve au sommet. Les petits tourbil/ons n 'ant pas ete approches avec 
succes: pour certains, cette voie s'apparente a du ''rocher pourri" demandant 
une extreme delicatesse. 
La voie experimentale: consideree par certains comme la voie normale, elle est 
semee d'embilches, et / 'on n 'a pas encore reussi a l'ouvrir jusqu'au sommet. 
Enfin, ii existe un rocher-ecole. dit de la simulation numerique, tout semblable 
au Pie de NA VIER-STOKES - Des prises artificielles om ete menagees sur ce rocher 
peu eleve, suivant un mail/age regulier. 

Fig. 9.1. Cartoon drawn in 1977 by the astronomer Philippe Delache, a pene­
trating observer of the turbulence community. He was the author's friend and 
died prematurely in 1994. The figure shows the 'Navier- Stokes peak' and four 
explored faces: experimentation, closure, mathematics and renormalization. It 
also shows a reduced model, the rock-climbing school of numerical simulation. 
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made possible by novel high-Reynolds-number experimental techniques 
illustrating that 'small is beautiful'. 

State-of-the-art experiments and computations are certainly a prerequi­
site for progress in turbulence. However, it is a long way from measuring 
and seeing everything to understanding. Indeed, turbulent flow has been 
observed carefully for five centuries, measured for a century and simu­
lated for a quarter of a century. Fig. 9.1, a cartoon of the state-of-the-art 
drawn in 1977 by Philippe Delache, remains largely valid today. Such 
long time scales are most unusual in physics but are occasionally en­
countered in mathematics. Is it by accident that the deepest insight into 
turbulence came from Andrei Nikolaevich Kolmogorov, a mathematician 
with a keen interest in the real world? 
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