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PREFACE TO THE SECOND ENGLISH EDITION

The content and treatment in this edition remain in accordance with what was said in
the preface to the first edition (see below). My chief care in revising and augmenting has
been to comply with this principle.

Despite the lapse of thirty years, the previous edition has, with very slight exceptions,
not gone out of date. Its material has been only fairly slightly supplemented and modified.
About ten new sections have been added.

In recent decades, fluid mechanics has undergone extremely rapid development, and
there has accordingly been a great increase in the literature of the subject. The
development has been mainly in applications, however, and in an increasing complexity of
the problems accessible to theoretical calculation (with or without computers). These
include, in particular, various problems of instability and its development, including non-
linear regimes. All such topics are beyond the scope of our book; in particular, stability
problems are discussed, as previously, mainly in terms of results.

There is also no treatment of non-linear waves in dispersive media, which is by now a
significant branch of mathematical physics. The purely hydrodynamic subject of this
theory consists in waves with large amplitude on the surface of a liquid. Its principal
physical applications are in plasma physics, non-linear optics, various problems of
electrodynamics, and so on, and in that respect they belong in other volumes of the Course.

There have been important changes in our understanding of the mechanism whereby
turbulence occurs. Although a consistent theory of turbulence is still a thing of the future,
there is reason to suppose that the right path has finally been found. The basic ideas now
available and the results obtained are discussed in three sections (§§30-32) written jointly
with M. L. Rabinovich, to whom I am deeply grateful for this valuable assistance. A new
area in continuum mechanics over the last few decades is that of liquid crystals. This
combines features of the mechanics of liquid and elastic media. Its principles are discussed
in the new edition of Theory of Elasticity.

This book has a special place among those I had occasion to write jointly with L. D.
Landau. He gave it a part of his soul. That branch of theoretical physics, new to him at the
time, caught his fancy, and in a very typical way he set about thinking through it ab initio
and deriving its basic results. This led to a number of original papers which appeared in
various journals, but several of his conclusions or ideas were not published elsewhere than
in the book, and in some instances even his priority was not established till later. In the new
edition, I have added an appropriate reference to his authorship in all such cases that are
known to me.

In the revision of this book, as in other volumes of the Course, I have had the help and
advice of many friends and colleagues. I should like to mention in particular numerous
discussions with G. 1. Barenblatt, L. P. Pitaevskii, Ya. G. Sinai, and Ya. B. Zel’dovich.
Several useful comments came from A. A. Andronov, S. I. Anisimov, V. A. Belokon’, A. L.
Fabrikant, V. P. Krainov, A. G. Kulikovskii, M. A. Liberman, R. V. Polovin, and A. V.
Timofeev. To all of them I express my sincere gratitude.

Institute of Physical Problems E. M. LiFsHiTZ
August 1984
ix
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PREFACE TO THE FIRST ENGLISH EDITION

The present book deals with fluid mechanics, i.e. the theory of the motion of liquids and
gases.

The nature of the book is largely determined by the fact that it describes fluid mechanics
as a branch of theoretical physics, and it is therefore markedly different from other
textbooks on the same subject. We have tried to develop as fully as possible all matters of
physical interest, and to do so in such a way as to give the clearest possible picture of the
phenomena and their interrelation. Accordingly, we discuss neither approximate methods
of calculation in fluid mechanics, nor empirical theories devoid of physical significance. On
the other hand, accounts are given of some topics not usually found in textbooks on the
subject: the theory of heat transfer and diffusion in fluids; acoustics; the theory of
combustion; the dynamics of superfluids; and relativistic fluid dynamics.

In a field which has been so extensively studied as fluid mechanics it was inevitable that
important new results should have appeared during the several years since the last Russian
edition was published. Unfortunately, our preoccupation with other matters has
prevented us from including these results in the English edition. We have merely added
one further chapter, on the general theory of fluctuations in fluid dynamics.

We should like to express our sincere thanks to Dr Sykes and Dr Reid for their excellent
translation of the book, and to Pergamon Press for their ready agreement to our wishes in
various matters relating to its publication.

Moscow 1958 LAaNDAU

L. D.
E. M. LiFsHITZ



EVGENII MIKHAILOVICH LIFSHITZ (1915-1985)t

Soviet physics suffered a heavy loss on 29 October 1985 with the death of the outstanding
theoretical physicist Academician Evgenii Mikhailovich Lifshitz.

Lifshitz was born on 21 February 1915 in Khar’kov. In 1933 he graduated from the
Khar’kov Polytechnic Institute. He worked at the Khar’kov Physicotechnical Institute
from 1933 to 1938 and at the Institute of Physical Problems of the USSR Academy of
Sciences in Moscow from 1939 until his death. He was elected an associate member of the
USSR Academy of Sciences in 1966 and a full member in 1979.

Lifshitz’s scientific activity began very early. He was among L. D. Landau’s first
students and at 19 he co-authored with him a paper on the theory of pair production in
collisions. This paper, which has not lost its significance to this day, outlined many
methodological features of modern relativistically invariant techniques of quantum field
theory. It includes, in particular, a consistent allowance for retardation.

Modern ferromagnetism theory is based on the ‘“‘Landau-Lifshitz” equation, which
describes the dynamics of the magnetic moment in a ferromagnet. A 1935 article on this
subject is one of the best known papers on the physics of magnetic phenomena. The
derivation of the equation is accompanied by development of a theory of ferromagnetic
resonance and of the domain structure of ferromagnets.

In a 1937 paper on the Boltzmann kinetic equation for electrons in a magnetic field, E.
M. Lifshitz developed a drift approximation extensively used much later, in the 50s, in
plasma theory.

A paper published in 1939 on deuteron dissociation in collisions remains a brilliant
example of the use of quasi-classical methods in quantum mechanics.

A most important step towards the development of a theory of second-order phase
transitions, following the work by L. D. Landau, was a paper by Lifshitz dealing with the
change of the symmetry of a crystal, of its space group, in transitions of this type (1941).
Many years later the results of this paper came into extensive use, and the terms “Lifshitz
criterion” and “Lifshitz point,” coined on its basis have become indispensable com-
ponents of modern statistical physics.

A decisive role in the detection of an important physical phenomenon, second sound in
superfluid helium, was played by a 1944 paper by E. M. Lifshitz. It is shown in it that
second sound is effectively excited by a heater having an alternating temperature. This was
precisely the method used to observe second sound in experiment two years later.

A new approach to the theory of molecular-interaction forces between condensed
bodies was developed by Lifshitz in 1954—-1959. It is based on the profound physical idea
that these forces are manifestations of stresses due to quantum and thermal fluctuations of
an electromagnetic field in a medium. This idea was pursued to develop a very elegant and
general theory in which the interaction forces are expressed in terms of electrodynamic
material properties such as the complex dielectric permittivity. This theory of E. M.

t By A. F. Andreev, A. S. Borovik-Romanov, V. L. Ginzburg, L. P. Gor’kov, L. E. Dzyaloshinskii, Ya. B.
Zerdovich, M. 1. Kaganov, L. P. Pitaevskif, E. L. Feinberg, and 1. M. Khalatnikov; published in Russian in
Uspekhi fizicheskikh nauk 148, 549—550, 1986. This translation is by J. G. Adashko (first published in Soviet
Physics Uspekhi 29, 294295, 1986), and is reprinted by kind permission of the American Institute of Physics.

xi



xii E. M. Lifshitz

Lifshitz stimulated many studies and was confirmed by experiment. It gained him the M.
V. Lomonosov Prize in 1958.

E. M. Lifshitz made a fundamental contribution in one of the most important
branches of modern physics, the theory of gravitation. His research into this field started
with a classical 1946 paper on the stability of cosmological solutions of Einstein’s theory
of gravitation. The perturbations were divided into distinctive classes—scalar, with
variation of density, vector, describing vortical motion, and finally tensor, describing
gravitational waves. This classification is still of decisive significance in the analysis of the
origin of the universe. From there, E. M. Lifshitz tackled the exceedingly difficult question
of the general character of the singularities of this theory. Many years of labor led in 1972
to a complete solution of this problem in papers written jointly with V. A. Belinskii and L.
M. Khalatnikov, which earned their authors the 1974 L. D. Landau Prize. The singularity
was found to have a complicated oscillatory character and could be illustratively
represented as contraction of space in two directions with simultaneous expansion in the
third. The contraction and expansion alternate in time according to a definite law. These
results elicited a tremendous response from specialists, altered radically our ideas
concerning relativistic collapse, and raised a host of physical and mathematical problems
that still await solution.

His life-long occupation was the famous Landau and Lifshitz Course of Theoretical
Physics, to which he devoted about 50 years. (The first edition of Statistical Physics was
written in 1937. A new edition of Theory of Elasticity went to press shortly before his last
illness.) The greater part of the Course was written by Lifshitz together with his teacher
and friend L. D. Landau. After the automobile accident that made Landau unable to
work, Lifshitz completed the edition jointly with Landau’s students. He later continued to
revise the previously written volumes in the light of the latest advances in science. Even in
the hospital, he discussed with visiting friends the topics that should be subsequently
included in the Course.

The Course of Theoretical Physics became world famous. It was translated in its entirety
into six languages. Individual volumes were published in 10 more languages. In 1972 L. D.
Landau and E. M. Lifshitz were awarded the Lenin Prize for the volumes published by
then.

The Course of Theoretical Physics remains a monument to E. M. Lifshitz as a scientist
and a pedagogue. It has educated many generations of physicists, is being studied, and will
continue to teach students in future generations.

A versatile physicist, E. M. Lifshitz dealt also with applications. He was awarded the
USSR State Prize in 1954.

A tremendous amount of E.M. Lifshitz’s labor and energy was devoted to Soviet
scientific periodicals. From 1946 to 1949 and from 1955 to his death he was deputy editor-
in-chief of the Journal of Experimental and Theoretical Physics. His extreme devotion to
science, adherence to principles, and meticulousness greatly helped to make this journal
one of the best scientific periodicals in the world.

E. M. Lifshitz accomplished much in his life. He will remain in our memory as a
remarkable physicist and human being. His name will live forever in the history of Soviet
physics.
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NOTATION

density

pressure

temperature

entropy per unit mass

internal energy per unit mass

&+ p/p heat function (enthalpy)

¢,/c, ratio of specific heats at constant pressure and constant volume
dynamic viscosity

n/p kinematic viscosity

thermal conductivity

Kk/pc, thermometric conductivity

Reynolds number

velocity of sound

ratio of fluid velocity to velocity of sound (Mach number)

Vector and tensor (three-dimensional) suffixes are denoted by Latin letters i, k, I, . . . .
Summation over repeated (“dummy”) suffixes is everywhere implied. The unit tensor is d;,:
References to other volumes in the Course of Theoretical Physics:

Fields = Vol. 2 (The Classical Theory of Fields, fourth English edition, 1975).

OM = Vol. 3 (Quantum Mechanics, third English edition, 1977).

SP 1 = Vol. 5 (Statistical Physics, Part 1, third English edition, 1980).

ECM = Vol. 8 (Electrodynamics of Continuous Media, second English edition, 1984).
SP 2 = Vol. 9 (Statistical Physics, Part 2, English edition, 1980).

PK = Vol. 10 (Physical Kinetics, English edition, 1981).

All are published by Pergamon Press.
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CHAPTER I

IDEAL FLUIDS

§1. The equation of continuity

Fluid dynamics concerns itself with the study of the motion of fluids (liquids and gases).
Since the phenomena considered in fluid dynamics are macroscopic, a fluid isregarded as a
continuous medium. This means that any small volume element in the fluid is always
supposed so large that it still contains a very great number of molecules. Accordingly, when
we speak of infinitely small elements of volume, we shall always mean those which are
“physically” infinitely small, i.e. very small compared with the volume of the body under
consideration, but large compared with the distances between the molecules. The
expressions fluid particle and point in a fluid are to be understood in a similar sense. If, for
example, we speak of the displacement of some fluid particle, we mean not the
displacement of an individual molecule, but that of a volume element containing many
molecules, though still regarded as a point.

The mathematical description of the state of a moving fluid is effected by means of
functions which give the distribution of the fluid velocity v = v(x, y, z, t) and of any two
thermodynamic quantities pertaining to the fluid, for instance the pressure p(x, y, z, t) and
the density p(x, y, z, t). All the thermodynamic quantities are determined by the values of
any two of them, together with the equation of state; hence, if we are given five quantities,
namely the three components of the velocity v, the pressure p and the density p, the state of
the moving fluid is completely determined.

All these quantities are, in general, functions of the coordinates x, y, zand of the time t.
We empbhasize that v(x, y, z, t) is the velocity of the fluid at a given point (x, y, z) in space
and at a given time ¢, i.e. it refers to fixed points in space and not to specific particles of the
fluid; in the course of time, the latter move about in space. The same remarks apply to
p and p.

We shall now derive the fundamental equations of fluid dynamics. Let us begin with the
equation which expresses the conservation of matter. We consider some volume V, of
space. The mass of fluid in this volume is | pdV, where p is the fluid density, and the
integration is taken over the volume V. The mass of fluid flowing in unit time through an
element df of the surface bounding this volume is pv - df; the magnitude of the vector df is
equal to the area of the surface element, and its direction is along the normal. By
convention, we take df along the outward normal. Then pv-df is positive if the fluid is
flowing out of the volume, and negative if the flow is into the volume. The total mass of
fluid flowing out of the volume ¥, in unit time is therefore

§pv-df,

where the integration is taken over the whole of the closed surface surrounding the volume
in question.



2 Ideal Fluids §2

Next, the decrease per unit time in the mass of fluid in the volume ¥, can be written

0
-_—— V.
ot )P d
Equating the two expressions, we have
0
— |pdV = — -df. 1.1
5 |P §pvd (L.1)

The surface integral can be transformed by Green’s formula to a volume integral:

§pv-df= Jdiv(pv)dV.

op . _
ﬂ:a—t +div (pv)]d V=0

Since this equation must hold for any volume, the integrand must vanish, i.e.
dp/ot +div (pv) = 0. (1.2)

This is the equation of continuity. Expanding the expression div (pv), we can also write (1.2)
as

Thus

dp/ot+pdivv+v-gradp =0. (L.3)

The vector
i=pv (1.4)
is called the mass flux density. Its direction is that of the motion of the fluid, while its

magnitude equals the mass of fluid flowing in unit time through unit area perpendicular to
the velocity.

§2. Euler’s equation

Let us consider some volume in the fluid. The total force acting on this volumeis equal to

the integral
- § pdf

of the pressure, taken over the surface bounding the volume. Transforming it to a volume

integral, we have
—§pdf = —Jgradpd V.

Hence we see that the fluid surrounding any volume element d V' exerts on that element a
force —d V grad p. In other words, we can say that a force — grad p acts on unit volume of
the fluid.

We can now write down the equation of motion of a volume element in the fluid by
equating the force — gradp to the product of the mass per unit volume (p) and the
acceleration dv/dt:

pdv/dt = —gradp. 2.1)



§2 Euler’s equation 3

The derivative dv/dt which appears here denotes not the rate of change of the fluid
velocity at a fixed point in space, but the rate of change of the velocity of a given fluid
particle as it moves about in space. This derivative has to be expressed in terms of
quantities referring to points fixed in space. To do so, we notice that the change dv in the
velocity of the given fluid particle during the time d¢ is composed of two parts, namely the
change during dt in the velocity at a point fixed in space, and the difference between
the velocities (at the same instant) at two points dr apart, where dr is the distance moved
by the given fluid particle during the time d¢. The first part is (v/0t)dt, where the derivative
Ov/ot is taken for constant x, y, z, i.e. at the given point in space. The second part is

ov ov

0
dx—v+dy—+dz

o 3y Frie (dr - grad)v.

Thus
dv = (dv/0t)dt + (dr - grad)v,

or, dividing both sides by d¢,

dv 0v
E = E + (V . grad)v. (22)
Substituting this in (2.1), we find
ﬁ + (v-gradjv = — lgra(l p- (2.3)
ot p

This is the required equation of motion of the fluid; it was first obtained by L. Euler in 1755.
It is called Euler’s equation and is one of the fundamental equations of fluid dynamics.

If the fluid is in a gravitational field, an additional force pg, where g is the acceleration
due to gravity, acts on any unit volume. This force must be added to the right-hand side of
equation (2.1), so that equation (2.3) takes the form

@ gradp

P + (v-grad)v = —

+g (2.9)

In deriving the equations of motion we have taken no account of processes of energy
dissipation, which may occur in a moving fluid in consequence of internal friction
(viscosity) in the fluid and heat exchange between different parts of it. The whole of the
discussion in this and subsequent sections of this chapter therefore holds good only for
motions of fluids in which thermal conductivity and viscosity are unimportant; such fluids
are said to be ideal.

The absence of heat exchange between different parts of the fluid (and also, of course,
between the fluid and bodies adjoining it) means that the motion is adiabatic throughout
the fluid. Thus the motion of an ideal fluid must necessarily be supposed adiabatic.

In adiabatic motion the entropy of any particle of fluid remains constant as that particle
moves about in space. Denoting by s the entropy per unit mass, we can express the
condition for adiabatic motion as

ds/dt = 0, 2.5)

1 Thederivative d/d¢ thus defined is called the substantial time derivative, to emphasize its connection with the
moving substance.



4 Ideal Fluids §2

where the total derivative with respect to time denotes, as in (2.1), the rate of change of
entropy for a given fluid particle as it moves about. This condition can also be written

Os/0t+v-grads = 0. (2.6)

This is the general equation describing adiabatic motion of an ideal fluid. Using (1.2), we
can write it as an “equation of continuity” for entropy:

0(ps)/ot +div (psv) = 0. 2.7

The product psv is the entropy flux density.

The adiabatic equation usually takes a much simpler form. If, as usually happens, the
entropy is constant throughout the volume of the fluid at some initial instant, it retains
everywhere the same constant value at all times and for any subsequent motion of the fluid.
In this case we can write the adiabatic equation simply as

s = constant, (2.8)

and we shall usually do so in what follows. Such a motion is said to be isentropic.
We may use the fact that the motion is isentropic to put the equation of motion (2.3)ina
somewhat different form. To do so, we employ the familiar thermodynamic relation

dw = Tds+ Vdp,

where w is the heat function per unit mass of fluid (enthalpy), V = 1/p is the specific
volume, and 7 is the temperature. Since s = constant, we have simply

dw = Vdp = dp/p,
and so (grad p)/p = grad w. Equation (2.3) can therefore be written in the form
ov/ot + (v-grad)v = —grad w. (2.9

It is useful to notice one further form of Euler’s equation, in which it involves only the
velocity. Using a formula well known in vector analysis,

1 gradv? = vxcurlv + (v- grad)v,
we can write (2.9) in the form
ov/ot — vxeurl v = — grad (w +1v?). (2.10)

If we take the curl of both sides of this equation, we obtain
éa—t(curl v) = curl (vxcurl v), (2.11)

which involves only the velocity.

The equations of motion have to be supplemented by the boundary conditions that
must be satisfied at the surfaces bounding the fluid. For an ideal fluid, the boundary
condition is simply that the fluid cannot penetrate a solid surface. This means that the
component of the fluid velocity normal to the bounding surface must vanish if that surface
is at rest:

v, =0. (2.12)

In the general case of a moving surface, v, must be equal to the corresponding component
of the velocity of the surface.
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At a boundary between two immiscible fluids, the condition is that the pressure and the
velocity component normal to the surface of separation must be the same for the two
fluids, and each of these velocity components must be equal to the corresponding
component of the velocity of the surface.

As has been said at the beginning of §1, the state of a moving fluid is determined by five
quantities: the three components of the velocity v and, for example, the pressure p and the
density p. Accordingly, a complete system of equations of fluid dynamics should be five in
number. For an ideal fluid these are Euler’s equations, the equation of continuity, and the
adiabatic equation. )

PROBLEM

Write down the equations for one-dimensional motion of an ideal fluid in terms of the variables a, t, where a
(called a Lagrangian variablet) is the x coordinate of a fluid particle at some instant t = t,.

SoLuTION. In these variables the coordinate x of any fluid particle at any instant is regarded as a function of ¢

and its coordinate a at the initial instant: x = x(a, t). The condition of conservation of mass during the motion of a
fluid element (the equation of continuity) is accordingly written p dx = p, da, or

(ax) _
p aa l—p()’

where p,(a)is a given initial density distribution. The velocity of a fluid particle is, by definition, v = (0x/dt),, and
the derivative (dv/dt), gives the rate of change of the velocity of the particle during its motion. Euler’s equation

becomes
()= ()
o), po\éa)’

(ds/dt), = 0.

and the adiabatic equation is

§3. Hydrostatics
For a fluid at rest in a uniform gravitational field, Euler’s equation (2.4) takes the form

gradp = pg. 3.1

This equation describes the mechanical equilibrium of the fluid. (If there is no external
force, the equation of equilibrium is simply grad p = 0,i.e. p = constant; the pressureis the
same at every point in the fluid.)

Equation (3.1) can be integrated immediately if the density of the fluid may be supposed
constant throughout its volume, i.e. if there is no significant compression of the fluid under
the action of the external force. Taking the z-axis vertically upward, we have

op/0x = dp/dy =0,  0p/0z= —pg.
Hence
p = — pgz + constant.

If the fluid at rest has a free surface at height h, to which an external pressure p,, the same at
every point, is applied, this surface must be the horizontal plane z = h. From the condition
p = p, for z = h, we find that the constant is p, + pgh, so that

p = po +pg(h—2z) (3.2)

1 Although such variables are usually called Lagrangian, the equations of motion in these coordinates were
first obtained by Euler, at the same time as equations (2.3).
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For large masses of liquid, and for a gas, the density p cannot in general be supposed
constant; this applies especially to gases (for example, the atmosphere). Let us suppose that
the fluid is not only in mechanical equilibrium but also in thermal equilibrium. Then the
temperature is the same at every point, and equation (3.1) may be integrated as follows. We
use the familiar thermodynamic relation

d® = —sdT+ Vdp,

where @ is the thermodynamic potential (Gibbs free energy) per unit mass. For constant
temperature

d® = Vdp = dp/p.

Hence we see that the expression (grad p)/p can be written in this case as grad @, so that the
equation of equilibrium (3.1) takes the form

gradd =g
For a constant vector g directed along the negative z-axis we have

g = —grad(g2).
Thus

grad (® +gz) =0,
whence we find that throughout the fluid
® + gz = constant; (3.3

gzis the potential energy of unit mass of fluid in the gravitational field. The condition (3.3)
is known from statistical physics to be the condition for thermodynamic equilibrium of a
system in an external field.

We may mention here another simple consequence of equation (3.1). If a fluid (such as
the atmosphere) is in mechanical equilibrium in a gravitational field, the pressure in it can
be a function only of the altitude z (since, if the pressure were different at different points
with the same altitude, motion would result). It then follows from (3.1) that the density

1dp
= —-—= 4
p gdz (34

is also a function of z only. The pressure and density together determine the temperature,
which is therefore again a function of z only. Thus, in mechanical equilibrium in a
gravitational field, the pressure, density and temperature distributions depend only on the
altitude. If, for example, the temperature is different at different points with the same
altitude, then mechanical equilibrium is impossible.

Finally, let us derive the equation of equilibrium for a very large mass of fluid, whose
separate parts are held together by gravitational attraction—a star. Let ¢ be the
Newtonian gravitational potential of the field due to the fluid. It satisfies the differential
equation

N ¢ = 4nGp, (3.5)

where G is the Newtonian constant of gravitation. The gravitational acceleration is
—grad ¢, and the force on a mass p is — pgrad ¢. The condition of equilibrium is
therefore

gradp = —pgrad ¢.
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Dividing both sides by p, taking the divergence of both sides, and using equation (3.5), we
obtain

div (%grad p) = —4nGp. (3.6)

It must be emphasized that the present discussion concerns only mechanical equilibrium;
equation (3.6) does not presuppose the existence of complete thermal equilibrium.

If the body is not rotating, it will be spherical when in equilibrium, and the density and
pressure distributions will be spherically symmetrical. Equation (3.6) in spherical polar
coordinates then takes the form

1d/r*dp
7&?(__> = —4nGp. (3.7

§4. The condition that convection be absent

A fluid can be in mechanical equilibrium (i.e. exhibit no macroscopic motion) without
being in thermal equilibrium. Equation (3.1), the condition for mechanical equilibrium,
can be satisfied even if the temperature is not constant throughout the fluid. However, the
question then arises of the stability of such an equilibrium. It is found that the equilibrium
is stable only when a certain condition is fulfilled. Otherwise, the equilibrium is unstable,
and this leads to the appearance in the fluid of currents which tend to mix the fluid in such a
way as to equalize the temperature. This motion is called convection. Thus the condition
for a mechanical equilibrium to be stable is the condition that convection be absent. It can
be derived as follows.

Let us consider a fluid element at height z, having a specific volume V(p, s), where pand s
are the equilibrium pressure and entropy at height z. Suppose that this fluid element
undergoes an adiabatic upward displacement through a small interval ¢; its specific volume
then becomes V(p',s), where p’ is the pressure at height z + . For the equilibrium to be
stable, it is necessary (though not in general sufficient) that the resulting force on the
element should tend to return it to its original position. This means that the element must
be heavier than the fluid which it “displaces™ in its new position. The specific volume of the
latter is V(p',s’), where s’ is the equilibrium entropy at height z + ¢. Thus we have the
stability condition

V(p,s)—V(p,s)>0.

Expanding this difference in powers of s'—s = £ds/dz, we obtain

v\ ds
<g)p-d; > 0. 4.1)

The formulae of thermodynamics give

ov\ _T(ov
0s p_cp or ),

where ¢, is the specific heat at constant pressure. Both ¢, and T are positive, so that we can

write (4.1) as
ary\ ds
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The majority of substances expand on heating, i.e. (6V/0T), > 0. The condition that
convection be absent then becomes

ds/dz > 0, @.3)

i.c. the entropy must increase with height.
From this we easily find the condition that must be satisfied by the temperature gradient
dT/dz. Expanding the derivative ds/dz, we have

ds _(9s)dT  (0s\dp_c,dT_(0V)dp
dz \oT),dz \ép/rdz  Tdz \oT/,dz~

Finally, substituting from (3.4) dp/dz = —g/V, we obtain
—dT/dz < gBT/c,, (4.4)

where = (1/V)(0V/dT), is the thermal expansion coefficient. For a column of gas in
equilibrium which can be taken as a thermodynamically perfect gas, BT = 1 and (4.4)
becomes

—-dT/dz < g/c,,. 4.5)

Convection occurs if these conditions are not satisfied, i.e. if the temperature decreases
upwards with a gradient whose magnitude exceeds the value given by (4.4) and (4.5).F

§5. Bernoulli’s equation

The equations of fluid dynamics are much simplified in the case of steady flow. By steady
flow we mean one in which the velocity is constant in time at any point occupied by fluid. In
other words, vis a function of the coordinates only, so that dv/0t = 0. Equation (2.10) then

reduces to
1gradv? —vxcurlv = —gradw. (5.1

We now introduce the concept of streamlines. These are lines such that the tangenttoa
streamline at any point gives the direction of the velocity at that point; they are determined
by the following system of differential equations:

dx dy dz

v, v, U,

52

In steady flow the streamlines do not vary with time, and coincide with the paths of the
fluid particles. In non-steady flow this coincidence no longer occurs: the tangents to the
streamlines give the directions of the velocities of fluid particles at various points in space
at a given instant, whereas the tangents to the paths give the directions of the velocities of
given fluid particles at various times.

We form the scalar product of equation (5.1) with the unit vector tangent to the
streamline at each point; this unit vector is denoted by 1. The projection of the gradient on
any direction is, as we know, the derivative in that direction. Hence the projection of grad w
is dw/0l. The vector vxcurl vis perpendicular to v, and its projection on the direction of 1is
therefore zero.

t+ For water at 20-C, the right-hand side of (4.4) is about one degree per 6.7 km; for air, the right-hand side of
(4.5) is about one degree per 100 m.
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Thus we obtain from equation (5.1)
6 1.2
a(zv + W) =0.

It follows from this that $v? +w is constant along a streamline:
1v? +w = constant. (5.3)

In general the constant takes different values for different streamlines. Equation (5.3) is
called Bernoulli’s equation.}

If the flow takes place in a gravitational field, the acceleration g due to gravity must be
added to the right-hand side of equation (5.1). Let us take the direction of gravity as the z-
axis, with z increasing upwards. Then the cosine of the angle between the directions of g
and 1 is equal to the derivative —dz/dl, so that the projection of g on 1 is

—gdz/dl
Accordingly, we now have

3l 2 +w+gz)=0.
Thus Bernoulli’s equation states that along a streamline

302 +w+ gz = constant. (5.4)

§6. The energy flux

Let us choose some volume element fixed in space, and find how the energy of the fluid
contained in this volume element varies with time. The energy of unit volume of fluid is

3pv% + pe,
where the first term is the kinetic energy and the second the internal energy, ¢ being the
internal energy per unit mass. The change in this energy is given by the partial derivative

0
P 1pv? + pe).
To calculate this quantity, we write

01 2 _120P av

5PV =20 o v,

or, using the equation of continuity (1.2) and the equation of motion (2.3),
0

E(%pvz) = —3v?div(pv)—v-gradp—pv-(v- grad)v.

In the last term we replace v - (v - grad)v by 3v - grad v?, and grad p by p gradw — pT grad s
(using the thermodynamic relation dw = Tds + (1/p)dp), obtaining

0
a(%pvz) = —4v?div(pv)— pv-grad (v + w) + pTv-grads.

t It was derived for an incompressible fluid (§10) by D. Bernoulli in 1738.
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In order to transform the derivative d(pe)/dt, we use the thermodynamic relation
de = Tds—pdV = Tds + (p/p?)dp.

Since ¢+ p/p = ¢+ pV is simply the heat function w per unit mass, we find
d(pe) = edp + pde = wdp + pTds,

and so

d(pe)  0p Js .
Fra w—a;-i-pT(—a;— —wdiv (pv)— pTv-grads.

Here we have also used the general adiabatic equation (2.6).
Combining the above results, we find the change in the energy to be

0 :
= (dpv® +pe) = — (402 +w)div (pv) - pv - grad (fo? + w),
or, finally,
a 1 2 : 1..2
a—t(ipv + pe) = —div[pv(zv° +w)]. (6.1)

In order to see the meaning of this equation, let us integrate it over some volume:
a 1 2 H 1,2
% Gpvt + pe)dV = — {div[pv(zv* +w)]dV,
or, converting the volume integral on the right into a surface integral,
a 1 2 1.2
% Gpv +pe)dV = — QPpv(zv* +w)-df. (6.2)

The left-hand side is the rate of change of the energy of the fluid in some given volume.
The right-hand side is therefore the amount of energy flowing out of this volume in unit
time. Hence we see that the expression

pv(3v? +w) (6.3)

may be called the energy flux density vector. Its magnitude is the amount of energy passing
in unit time through unit area perpendicular to the direction of the velocity.

The expression (6.3) shows that any unit mass of fluid carries with it during its motion an
amount of energy w +1v?. The fact that the heat function w appears here, and not the
internal energy ¢, has a simple physical significance. Putting w = ¢ + p/p, we can write the
flux of energy through a closed surface in the form

—-épv(%v2 +¢)-df — §pv -df.

The first term is the energy (kinetic and internal) transported through the surface in unit
time by the mass of fluid. The second term is the work done by pressure forces on the fluid
within the surface.
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§7. The momentum flux

We shall now give a similar series of arguments for the momentum of the fluid. The
momentum of unit volume is pv. Let us determine its rate of change, d(pv)/0t. We shall use
tensor notation. We have

dv; 0dp

(p ) = p—+5
Using the equation of continuity (1.2) in the form
a_P — _6(ka)

ot ox, ’

and Euler’s equation (2.3) in the form
ov; ov; 10p

ot —v,‘a pox;’

we obtain
o, . ov_dp ()
az("”") - pv"éxk 0x; Vi 0
op 0
= ‘“&:—E;;(Pvivk)-
We write the first term on the right in the form
o _5 %P
ox;  ‘*ox,’
and finally obtain
arl
(P v;) = (7.1)
k
where the tensor I, is defined as
Iy = pdu + pvvy. (1.2)

This tensor is clearly symmetrical.
To see the meaning of the tensor I1,,, we integrate equation (7.1) over some volume:

—fpvdV— —f kdy.
0x;

The integral on the right is transformed into a surface integral by Green’s formula:}

)
'6—t pv,~dV= —§H,‘kd_ﬁ‘. (7'3)

The left-hand side is the rate of change of the ith component of the momentum
contained in the volume considered. The surface integral on the right is therefore the

t Therule for transforming an integral over a closed surface into one over the volume bounded by that surface
can be formulated as follows: the surface element df must be replaced by the operator d V - 8/6x;, which is to be
applied to the whole of the integrand.
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amount of momentum flowing out through the bounding surface in unit time.
Consequently, I, df is the ith component of the momentum flowing through the surface
element df. If we write df, in the form n, df, where dfis the area of the surface element, and
n is a unit vector along the outward normal, we find that IT;n, is the flux of the ith
component of momentum through unit surface area. We may notice that, according to
(7.2), I1 ,n, = pn; + pvvn,. This expression can be written in vector form

pn+ pv(v-n). (74)

ThusIT ;, is the ith component of the amount of momentum flowing in unit time through
unit area perpendicular to the x,-axis. The tensor I, is called the momentum flux density
tensor. The energy flux is determined by a vector, energy being a scalar; the momentum
flux, however, is determined by a tensor of rank two, the momentum itself being a vector.

The vector (7.4) gives the momentum flux in the direction of n, i.e. through a surface
perpendicular to n. In particular, taking the unit vector n to be directed parallel to the fluid
velocity, we find that only the longitudinal component of momentum is transported in this
direction, and its flux density is p + pv?. In a direction perpendicular to the velocity, only
the transverse component (relative to v) of momentum is transported, its flux density being
just p.

§8. The conservation of circulation

The integral

r =§)v-dl,

taken along some closed contour, is called the velocity circulation round that contour.

Let us consider a closed contour drawn in the fluid at some instant. We supposeit to be a
“fluid contour”, i.e. composed of the fluid particles that lie on it. In the course of time these
particles move about, and the contour moves with them. Let us investigate what happens
to the velocity circulation. In other words, let us calculate the time derivative

d
a§v . dl.

We have written here the total derivative with respect to time, since we are seeking the
change in the circulation round a “fluid contour” as it moves about, and not round a
contour fixed in space.

To avoid confusion, we shall temporarily denote differentiation with respect to the
coordinates by the symbol , retaining the symbol d for differentiation with respect to time.
Next, we notice that an element dl of the length of the contour can be written as the
difference or between the position vectors r of the points at the ends of the element. Thus
we write the velocity circulation as § v - dr. In differentiating this integral with respect to
time, it must be borne in mind that not only the velocity but also the contour itself (i.e. its
shape) changes. Hence, on taking the time differentiation under the integral sign, we must
differentiate not only v but also Jr:

d dv dor
a—t'§"'5l' = §d'—t"5l' + §V'F{.
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Since the velocity v is just the time derivative of the position vector r, we have
dor dr

“ar = V04

The integral of a total differential along a closed contour, however, is zero. The second
integral therefore vanishes, leaving

d dv
aév-ér = %'51’.

It now remains to substitute for the acceleration dv/dt its expression from (2.9):

v

=v-0v=6(1v?).

dv/dt = — grad w.

Using Stokes’ formula, we then have

dv dv)
%-& =§curl(—§)tof= 0,

since curl gradw = 0. Thus, going back to our previous notation, we findt

d
a§v-dl =0,

év -dl = constant. (8.1

or

We have therefore reached the conclusion that, in an ideal fluid, the velocity circulation
round a closed “fluid” contour is constant in time (Kelvin’s theorem (1869) or the law of -
conservation of circulation).

It should be emphasized that this result has been obtained by using Euler’s equation in
the form (2.9), and therefore involves the assumption that the flow is isentropic. The
theorem does not hold for flows which are not isentropic.

By applying Kelvin’s theorem to an infinitesimal closed contour 6C and transforming
the integral according to Stokes’ theorem, we get

év -dl = J curlv-df >~ 6f - curl v = constant, (8.2)

where df is a fluid surface element spanning the contour 6C. The vector curl vis often called
the vorticity of the fluid flow at a given point. The constancy of the product (8.2) can be
intuitively interpreted as meaning that the vorticity moves with the fluid.

PROBLEM

Show that, in flow which is not isentropic, any moving particle carries with it a constant value of the product
(1/p) grads-curlv (H. Ertel 1942).

1 This result remains valid in a uniform gravitational field, since in that case curlg = 0.
1 Mathematically, it is necessary that there should be a one-to-one relation between p and p (which for

isentropic flow is s(p, p) = constant); then — (1/p) grad p can be written as the gradient of some function, a result
which is needed in deriving Kelvin’s theorem.
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SoLuTION. When the flow is not isentropic, the right-hand side of Euler’s equation (2.3) cannot be replaced by
—gradw, and (2.11) becomes

dw/dt = curl (vxw) + (1/p?) grad pxgradp,

where for brevity w = curl v. We multiply scalarly by grad s; since s = s(p, p), grad s is a linear function of grad p
and grad p, and grad s - (grad pxgrad p) = 0. The expression on the right-hand side can then be transformed as
follows:

grads-dw/dt = grads-curl (vXw)
= —div [grad sX(vXw)]
—div [v(w-grads)] +div [w(v-grads)]

= —(w-grads)divv—v-grad (o-grads)+ w-grad (v-grads).
From (2.6), v-grads = — 0s/0t, and therefore

0
E(w-grads)+v-grad(w-grads)+(w-grads)divv =0.

The first two terms can be combined as d(w - grad s)/dt, where d/dt = d/dt + v - grad; in the last term, we put from
(1.3) pdivv = —dp/dt. The result is

d (m- grad s) -0

de p o

which gives the required conservation law.

§9. Potential flow

From the law of conservation of circulation we can derive an important result. Let us at
first suppose that the flow is steady, and consider a streamline of which we know that curl v
is zero at some point. We draw an arbitrary infinitely small closed contour to encircle the
streamline at that point. In the course of time, this contour moves with the fluid, but always
encircles the same streamline. Since the product (8.2) must remain constant, it follows that
curl v must be zero at every point on the streamline.

Thus we reach the conclusion that, if at any point on a streamline the vorticity is zero, the
same is true at all other points on that streamline. If the flow is not steady, the same result
holds, except that instead of a streamline we must consider the path described in the course
of time by some particular fluid particle; } we recall that in non-steady flow these paths do
not in general coincide with the streamlines.

At first sight it might seem possible to base on this result the following argument. Let us
consider steady flow past some body. Let the incident flow be uniform at infinity; its
velocity v is a constant, so that curl v =0 on all streamlines. Hence we conclude that curl v
is zero along the whole of every streamline, i.e. in all space.

A flow for which curlv = 0 in all space is called a potential flow or irrotational flow, as
opposed to rotational flow, in which the curl of the velocity is not everywhere zero. Thus we
should conclude that steady flow past any body, with a uniform incident flow at infinity,
must be potential flow.

Similarly, from the law of conservation of circulation, we might argue as follows. Let us
suppose that at some instant we have potential flow throughout the volume of the fluid.
Then the velocity circulation round any closed contour in the fluid is zero.} By Kelvin’s

+ To avoid misunderstanding, we may mention here that this result has no meaning in turbulent flow. We may
also remark that a non-zero vorticity may occur on a streamline after the passage of a shock wave. We shall see
that this is because the flow is no longer isentropic (§114).

1 Here we suppose for simplicity that the fluid occupies a simply-connected region of space. The same final

result would be obtained for a multiply-connected region, but restrictions on the choice of contours would have
to be made in the derivation.
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theorem, we could then conclude that this will hold at any future instant, i.e. we should find
that, if there is potential flow at some instant, then there is potential flow at all subsequent
instants (in particular, any flow for which the fluid is initially at rest must be a potential
flow). This is in accordance with the fact that, if curlv = 0, equation (2.11) is satisfied
identically.

In fact, however, all these conclusions are of only very limited validity. The reason is that
the proof given above that curl v = 0 all along a streamline is, strictly speaking, invalid for
a line which lies in the surface of a solid body past which the flow takes place, since the
presence of this surface makes it impossible to draw a closed contour in the fluid encircling
such a streamline. The equations of motion of an ideal fluid therefore admit solutions for
which separation occurs at the surface of the body: the streamlines, having followed the
surface for some distance, become separated from it at some point and continue into the
fluid. The resulting flow pattern is characterized by the presence of a “surface of tangential
discontinuity” proceeding from the body; on this surface the fluid velocity, which is
everywhere tangential to the surface, has a discontinuity. In other words, at this surface one
layer of fluid “slides” on another. Figure 1 shows a surface of discontinuity which separates
moving fluid from a region of stationary fluid behind the body. From a mathematical point
of view, the discontinuity in the tangential velocity component corresponds to a surface on
which the curl of the velocity is non-zero.

——
==

Fic. 1

When such discontinuous flows are included, the solution of the equations of motion for
an ideal fluid is not unique: besides continuous flow, they admit also an infinite number of
solutions possessing surfaces of tangential discontinuity starting from any prescribed line
on the surface of the body past which the flow takes place. It should be emphasized,
however, that none of these discontinuous solutions is physically significant, since
tangential discontinuities are absolutely unstable, and therefore the flow would in fact
become turbulent (see Chapter 111).

The actual physical problem of flow past a given body has, of course, a unique solution.
The reason is that ideal fluids do not really exist; any actual fluid has a certain viscosity,
however small. This viscosity may have practically no effect on the motion of most of the
fluid, but, no matter how small it is, it will be important in a thin layer of fluid adjoining the
body. The properties of the flow in this boundary layer decide the choice of one out of the
infinity of solutions of the equations of motion for an ideal fluid. It is found that, in the
general case of flow past bodies of arbitrary form, solutions with separation must be
taken, which in turn will result in turbulence.

In spite of what we have said above, the study of the solutions of the equations of motion
for continuous steady potential flow past bodies is in some cases meaningful. Although, in
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the general case of flow past bodies of arbitrary form, the actual flow pattern bears almost
no relation to the pattern of potential flow, for bodies of certain special (“streamlined”—
§46) shapes the flow may differ very little from potential flow; more precisely, it will be
potential flow except in a thin layer of fluid at the surface of the body and in a relatively
narrow “wake” behind the body.

Another important case of potential flow occurs for small oscillations of a body
immersed in fluid. It is easy to show that, if the amplitude a of the oscillations is small
compared with the linear dimension [/ of the body (a< l), the flow past the body will be
potential flow. To show this, we estimate the order of magnitude of the various terms in
Euler’s equation

0v/0t + (v-grad)v = — gradw.

The velocity vchanges markedly (by an amount of the same order as the velocity u of the
oscillating body) over a distance of the order of the dimension [ of the body. Hence the
derivatives of v with respect to the coordinates are of the order of u/l. The order of
magnitude of v itself (at fairly small distances from the body) is determined by the
magnitude of u. Thus we have (v - grad)v ~ u?/l. The derivative dv/dt is of the order of wu,
where  is the frequency of the oscillations. Since w ~ u/a, we have dv/t = u?/a. It now
follows from the inequality a < [ that the term (v - grad)vis small compared with dv/0t and
can be neglected, so that the equation of motion of the fluid becomes dv/0t = — grad w.
Taking the curl of both sides, we obtain d(curl v)/0t = 0, whence curlv = constant. In
oscillatory motion, however, the time average of the velocity is zero, and therefore curl v
= constant implies that curl v = 0. Thus the motion of a fluid executing small oscillations
is potential flow to a first approximation.

We shall now obtain some general properties of potential flow. We first recall that the
derivation of the law of conservation of circulation, and therefore all its consequences,
were based on the assumption that the flow is isentropic. If the flow is not isentropic, the
law does not hold, and therefore, even if we have potential flow at some instant, the
vorticity will in general be non-zero at subsequent instants. Thus only isentropic flow can
in fact be potential flow.

In potential flow, the velocity circulation along any closed contour is zero:

§v-dl = [curlv-df =0. 9.1)

It follows from this that, in particular, closed streamlines cannot exist in potential flow.§
For, since the direction of a streamline is at every point the direction of the velocity, the
circulation along such a line can never be zero.

In rotational flow the velocity circulation is not in general zero. In this case there may be
closed streamlines, but it must be emphasized that the presence of closed streamlines is not
a necessary property of rotational flow.

Like any vector field having zero curl, the velocity in potential flow can be expressed as
the gradient of some scalar. This scalar is called the velocity potential; we shall denote it by
¢:

v = grad ¢. _ 9.2)

+ This result, like (9.1), may not be valid for motion in a multiply-connected region of space. In potential flow
in such a region, the velocity circulation may be non-zero if the closed contour round which it is taken cannot be
contracted to a point without crossing the boundaries of the region.
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Writing Euler’s equation in the form (2.10)
ov/ot +4gradv? —v x curlv = — gradw

and substituting v = grad ¢, we have
0
grad(a—f +4? +w) =0,

whence
op/ot+3v2 +w = f(t), 9.3)

where f (t)is an arbitrary function of time. This equation is a first integral of the equations
of potential flow. The function f (t) in equation (9.3) can be put equal to zero without loss
of generality, because the potential is not uniquely defined: since the velocity is the space
derivative of ¢, we can add to ¢ any function of the time.

For steady flow we have (taking the potential ¢ to be independent of time) d¢/dt =0,
f(¢t) = constant, and (9.3) becomes Bernoulli’s equation:

1v? + w = constant. (9.4)

It must be emphasized here that there is an important difference between the Bernoulli’s
equation for potential flow and that for other flows. In the general case, the “constant” on
the right-hand side is a constant along any given streamline, but is different for different
streamlines. In potential flow, however, it is constant throughout the fluid. This enhances
the importance of Bernoulli’s equation in the study of potential flow.

§10. Incompressible fluids

In a great many cases of the flow of liquids (and also of gases), their density may be
supposed invariable, i.e. constant throughout the volume of the fluid and throughout its
motion. In other words, there is no noticeable compression or expansion of the fluid in
such cases. We then speak of incompressible flow.

The general equations of fluid dynamics are much simplified for an incompressible fluid.
Euler’s equation, it is true, is unchanged if we put p = constant, except that p can be taken
under the gradient operator in equation (2.4):

0
5% + (v-grad)v = — grad <§) +g. (10.1)
The equation of continuity, on the other hand, takes for constant p the simple form

divv=0. (10.2)

Since the density is no longer an unknown function as it was in the general case, the
fundamental system of equations in fluid dynamics for an incompressible fluid can be
taken to be equations involving the velocity only. These may be the equation of continuity
(10.2) and equation (2.11):

a%(curl v) = curl(vxcurlv). (10.3)

Bernoulli’s equation too can be written in a simpler form for an incompressible fluid.
Equation (10.1) differs from the general Euler’s equation (2.9) in that it has grad (p/p) in
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place of gradw. Hence we can write down Bernoulli’s equation immediately by simply
replacing the heat function in (5.4) by p/p:

10?2+ p/p + gz = constant. (10.4)

For an incompressible fluid, we can also write p/p in place of w in the expression (6.3) for
the energy flux, which then becomes

pv (%v2 + %) . (10.5)

For we have, from a well-known thermodynamic relation, the expression de = Tds —pdV
for the change in internal energy; for s = constant and V = 1/p = constant, de = 0,
i.e. ¢ = constant. Since constant terms in the energy do not matter, we can omit ¢ in
w = ¢+ p/p.

The equations are particularly simple for potential flow of an incompressible fluid.
Equation (10.3) is satisfied identically if curlv = 0. Equation (10.2), with the substitution
v = grad ¢, becomes

Ad =0, (10.6)

i.e. Laplace’s equationt for the potential ¢. This equation must be supplemented by
boundary conditions at the surfaces where the fluid meets solid bodies. At fixed solid
surfaces, the fluid velocity component v, normal to the surface must be zero, whilst for
moving surfaces it must be equal to the normal component of the velocity of the surface (a
given function of time). The velocity v,, however, is equal to the normal derivative of the
potential ¢: v, = 0¢/0n. Thus the general boundary conditions are that 6¢/on is a given
function of coordinates and time at the boundaries.

For potential flow, the velocity is related to the pressure by equation (9.3). In an
incompressible fluid, we can replace w in this equation by p/p:

0d/0t+ 102 +p/p = £ (1) (10.7)

We may notice here the following important property of potential flow of an
incompressible fluid. Suppose that some solid body is moving through the fluid. If the
result is potential flow, it depends at any instant only on the velocity of the moving body at
that instant, and not, for example, on its acceleration. For equation (10.6) does not
explicitly contain the time, which enters the solution only through the boundary
conditions, and these contain only the velocity of the moving body.

From Bernoulli’s equation, v + p/p = constant, we see that, in steady flow of an
incompressible fluid (not in a gravitational field), the greatest pressure occurs at points
where the velocity is zero. Such a point usually occurs on the surface of a body past which
the fluid is moving (at the point O in Fig. 2), and is called a stagnation point. If u is the
velocity of the incident current (i.e. the fluid velocity at infinity), and p, the pressure at
infinity, the pressure at the stagnation point is

Pmax = Po +%pu2' (108)

If the velocity distribution in a moving fluid depends on only two coordinates (x and y,
say), and the velocity is everywhere parallel to the xy-plane, the flow is said to be two-

T The velocity potential was first introduced by Euler, who obtained an equation of the form (10.6) for it; this
form later became known as Laplace’s equation.



§10 Incompressible fluids 19

dimensional or plane flow. To solve problems of two-dimensional flow of an incompressible
fluid, it is sometimes convenient to express the velocity in terms of what is called the stream
function. From the equation of continuity divy = dv, /0x + dv,/0y = 0 we see that the
velocity components can be written as the derivatives

v, = 0y/0y, v, = —0y/0x (10.9)

of some function Y (x, y), called the stream function. The equation of continuity is then
satisfied automatically. The equation that must be satisfied by the stream function is
obtained by substituting (10.9) in equation (10.3). We then obtain

0 oy 0 oy 0 _

If we know the stream function we can immediately determine the form of the streamlines
for steady flow. For the differential equation of the streamlines (in two-dimensional flow)
is dx/v, = dy/v, or v,dx — v, dy = 0; it expresses the fact that the direction of the tangent
to a streamline is the direction of the velocity. Substituting (10.9), we have

0

%dx +%‘:—dy =dy =0,
whence Y = constant. Thus the streamlines are the family of curves obtained by putting
the stream function ¥ (x, y) equal to an arbitrary constant.

If we draw a curve between two points A and B in the xy-plane, the mass flux Q across
this curve is given by the difference in the values of the stream function at these two points,
regardless of the shape of the curve. For, if v, is the component of the velocity normal to the
curve at any point, we have

B B B
Q= ptﬁ v,dl = p§> (—vdx+v.dy)= ded/,
:'4 A A
or
Q=pWs—V.) (10.11)
There are powerful methods of solving problems of two-dimensional potential flow of
an incompressible fluid past bodies of various profiles, involving the application of the

FM-B
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theory of functions of a complex variable.t The basis of these methods is as follows. The
potential and the stream function are related to the velocity components by}

v, = 0¢/0x = oY /0y, v, = 0¢/0y = — Oy /0x.

These relations between the derivatives of ¢ and , however, are the same, mathematically,
as the well-known Cauchy—Riemann conditions for a complex expression

W= ¢+iy (10.12)

to be an analytic function of the complex argument z = x +iy. This means that the
function w(z) has at every point a well-defined derivative

dw d¢ oy

oY it o —iv. 10.13

dz 6x+lax Ux = 1y ( )
The function w is called the complex potential, and dw/dz the complex velocity. The
modulus and argument of the latter give the magnitude v of the velocity and the angle 6
between the direction of the velocity and that of the x-axis:

dw/dz = ve . (10.14)

At a solid surface past which the flow takes place, the velocity must be along the tangent.
That is, the profile contour of the surface must be a streamline, i.e. Yy = constant along it;
the constant may be taken as zero, and then the problem of flow past a given contour
reduces to the determination of an analytic function w(z) which takes real values on the
contour. The statement of the problem is more involved when the fluid has a free surface;
an example is found in Problem 9.

The integral of an analytic function round any closed contour C is well known to be
equal to 27i times the sum of the residues of the function at its simple poles inside C; hence

é)w'dz = 2mi Y A,
k

where A, are the residues of the complex velocity. We also have

§w’ dz= §(vx —ivy) (dx +idy)

= §(vxdx +v,dy)+ i§(vxdy —v,dx).
The real part of this expression is just the velocity circulation I" round the contour C. The

imaginary part, multiplied by p, is the mass flux across C; if there are no sources of fluid
within the contour, this flux is zero and we then have simply

r=2miY A, (10.15)
k

all the residues A, are in this case purely imaginary.

1 A more detailed account of these methods and their numerous applications may be found in many books
which treat fluid dynamics from a more mathematical standpoint. Here, we shall describe only the basic idea.

1 The existence of the stream function depends, however, only on the flow’s being two-dimensional, not
necessarily a potential flow.
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Finally, let us consider the conditions under which the fluid may be regarded as
incompressible. When the pressure changes adiabatically by Ap, the density changes by
Ap = (9p/0p),Ap. According to Bernoulli’s equation, however, Ap is of the order of pv” in
steady flow. We shall show in §64 that the derivative (0p/dp), is the square of the velocity ¢
of sound in the fluid, so that Ap ~ pv?/c?. The fluid may be regarded as incompressible if
Ap/p < 1. We see that a necessary condition for this is that the fluid velocity be small
compared with that of sound:

v<ec. (10.16)

However, this condition is sufficient only in steady flow. In non-steady flow, a further
condition must be fulfilled. Let t and [ be a time and a length of the order of the times and
distances over which the fluid velocity undergoes significant changes. If the terms dv/0t
and (1/p) grad p in Euler’s equation are comparable, we find, in order of magnitude, v/t
~ Ap/lp or Ap ~ lpv/1, and the corresponding change in p is Ap ~ lpv/tc’. Now
comparing the terms dp/dt and pdivyv in the equation of continuity, we find that the
derivative 0p/dt may be neglected (i.e. we may suppose p constant) if Ap/t < pv/I, or

> l/c. (10.17)

If the conditions (10.16) and (10.17) are both fulfilled, the fluid may be regarded as
incompressible. The condition (10.17) has an obvious meaning: the time I/c taken by a
sound signal to traverse the distance | must be small compared with the time t during
which the flow changes appreciably, so that the propagation of interactions in the fluid
may be regarded as instantaneous.

PROBLEMS
ProOBLEM 1. Determine the shape of the surface of an incompressible fluid subject to a gravitational field,
contained in a cylindrical vessel which rotates about its (vertical) axis with a constant angular velocity Q.

SOLUTION. Let us take the axis of the cylinder as the z-axis. Then v, = — yQ, v, = xQ, v, = 0. The equation of
continuity is satisfied identically, and Euler’s equation (10.1) gives
_1dp ., _1aop 1dp

QZ = > s -
X p Ox pdy poz
The general integral of these equations is
p/p = $Q%(x* + y?)— gz + constant.
At the free surface p = constant, so that the surface is a paraboloid:
z=30%(x* +y?)/g,

the origin being taken at the lowest point of the surface.

PrOBLEM 2. A sphere, with radius R, moves with velocity u in an incompressible ideal fluid. Determine the
potential flow of the fluid past the sphere.

SoLuTiON. The fluid velocity must vanish at infinity. The solutions of Laplace’s equation A¢ =0
which vanish at infinity are well known to be 1/r and the derivatives, of various orders, of 1/r with respect to the
coordinates (the origin is taken at the centre of the sphere). On account of the complete symmetry of the sphere,
only one constant vector, the velocity u, can appear in the solution, and, on account of the linearity of both
Laplace’s equation and the boundary condition, ¢ must involve u linearly. The only scalar which can be formed
from u and the derivatives of 1/r is the scalar product u-grad(1/r). We therefore seck ¢ in the form

¢ =A-grad(1/r) = — (A-m)/r?,

where n is a unit vector in the direction of r. The constant A is determined from the condition that the normal
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components of the velocities v and u must be equal at the surface at the sphere, i.c. v-n = u-n for r = R. This
condition gives A = 1uR3, so that

R? R3
o= —pu-n, v=iﬁ[3n(u-n)—n].
The pressure distribution is given by equation (10.7):
P = Ppo —3pv’ — pd¢/ot,

where p, is the pressure at infinity. To calculate the derivative 0¢/dt, we must bear in mind that the origin (which
we have taken at the centre of the sphere) moves with velocity u. Hence

d¢/0t = (0¢/0u)-u—u-grad ¢.
The pressure distribution over the surface of the sphere is given by the formula
P = Po +3pu?(9cos? 6 — 5)+4pRn-du/dt,

where 0 is the angle between n and u.

PrOBLEM 3. The same as Problem 2, but for an infinite cylinder moving perpendicular to its axis.t

SoLuTioN. The flow is independent of the axial coordinate, so that we have to solve Laplace’s equation in two
dimensions. The solutions which vanish at infinity are the first and higher derivatives of log r with respect to the
coordinates, where r is the radius vector perpendicular to the axis of the cylinder. We seek a solution in the form

¢=A-gradlogr=A-n/r,

and from the boundary conditions we obtain A = — R?u, so that
2 2
¢=——r—u-n, v=—[2n(u-n)—u].
r

The pressure at the surface of the cylinder is given by
p = po +1pu*(4cos’0—3)+ pRn-du/dt.
PROBLEM 4. Determine the potential flow of an incompressible ideal fluid in an ellipsoidal vessel rotating
about a principal axis with angular velocity €, and determine the total angular momentum of the fluid.

SOLUTION. We take Cartesian coordinates x, y, z along the axes of the ellipsoid at a given instant, the z-axis
being the axis of rotation. The velocity of points in the vessel wall is

u=Qxr,
so that the boundary condition v, = d¢/0n = u,, is
0¢/0n = Q(xn, — yn,),
or, using the equation of the ellipsoid x*/a® + y?/b* + z?/c? = 1,
x0p ydp z070¢ 1 1
@ox Thiay Taa T (?‘?ﬁ)'
The solution of Laplace’s equation which satisfies this boundary condition is
a* —b?

¢=Qa2+b2xy. (1)

The angular momentum of the fluid in the vessel is

M=p I(xvy —yv,)drb.

+ The solution of the more general problems of potential flow past an ellipsoid and an elliptical cylinder may
be found in: N. E. Kochin, I. A. Kibel’ and N. V. Roze, Theoretical Hydromechanics (Teoreticheskaya

gidromekhanika), Part 1, chapter VII, Moscow 1963; H. Lamb, Hydrodynamics, 6th ed., §§103-116, Cambridge
1932
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Integrating over the volume J of the ellipsoid, we have

2 2)\2
M= QpV (@*—b )_
5 a?+b?

Formula (1) gives the absolute motion of the fluid relative to the instantaneous position of the axes x, y, zwhich
are fixed to the rotating vessel. The motion relative to the vessel (i.e. relative to a rotating system of coordinates
x, y, z) is found by subtracting the velocity QXr from the absolute velocity; denoting the relative velocity of the
fluid by v’, we have

’

, 0¢ 470 2Qq® , 2Qb? 0
v, = — = — = = =5 X, =0
Ta T T ey U aib? v
The paths of the relative motion are found by integrating the equations x = v',, y = v/, and are the ellipses
x2/a* + y*/b* = constant, which are similar to the boundary ellipse.

PrROBLEM 5. Determine the flow near a stagnation point (Fig. 2).

SoLUTION. A small part of the surface of the body near the stagnation point may be regarded as plane. Let us
take it as the xy-plane. Expanding ¢ for x, y, z small, we have as far as the second-order terms

¢ =ax+by+cz+ Ax? + By* +Cz® + Dxy+ Eyz + Fzx;

aconstant term in ¢ is immaterial. The constant coefficients are determined so that ¢ satisfies the equation A ¢
= 0 and the boundary conditions v, = 0¢/0z = 0 for z = Qand all x, y, 0¢/0x = d¢/0y =0forx =y =2=0
(the stagnation point). This givesa =b =c¢ = 0;C = — A— B, E = F = 0. The term Dxy can always be removed
by an appropriate rotation of the x and y axes. We then have

¢ = Ax* + By’ — (A + B)z>. )

If the flow is axially symmetrical about the z-axis (symmetrical flow past a solid of revolution), we must have
A = B, so that

¢ = A(x* +y*>—22%).

The velocity components are v, = 24x, v, = 2A4y,v, = — 4A4z. The streamlines are given by equations (5.2), from
which we find x?z = ¢, y?z = ¢,, i.e. the streamlines are cubical hyperbolae.

If the flow is uniform in the y-direction (e.g. flow in the z-direction past a cylinder with its axis in the y-
direction), we must have B = 0 in (1), so that

¢ = A(x*-2%).
The streamlines are the hyperbolae xz = constant.

PROBLEM 6. Determine the potential flow near an angle formed by two intersecting planes.

SOLUTION. Let us take polar coordinates r, 8 in the cross-sectional plane (perpendicular to the line of
intersection), with the origin at the vertex of the angle; 0 is measured from one of the arms of the angle. Let the
angle be a radians; for « < = the flow takes place within the angle, for « > = outside it. The boundary con-
dition that the normal velocity component vanish means that 6¢/00 = 0 for 6 = 0 and 6 = «. The solution of
Laplace’s equation satisfying these conditions can be writtent

¢ = Ar"cosnf, n=n/a,
so that
v, = nAr"~*cosnb, vy = —nAr" " 'sinnf.

For n < 1 (flow outside an angle; Fig. 3), v, becomes infinite as 1/7! ~"at the origin. For n > 1 (flow inside an angle;
Fig. 4), v becomes zero for r = 0.

The stream function, which gives the form of the streamlines, is y = Ar"sin nf. The expressions obtained for ¢
and y are the real and imaginary parts of the complex potential w = 4z".}

PrROBLEM 7. A spherical hole with radius a is suddenly formed in an incompressible fluid filling all space.
Determine the time taken for the hole to be filled with fluid (Besant 1859; Rayleigh 1917).

1 We take the solution which involves the lowest positive power of r, since r is small.

1 If the boundary planes are supposed infinite, Problems 5 and 6 involve degeneracy, in that the values of the
constants 4 and Bin the solutions are indeterminate. In actual cases of flow past finite bodies, they are determined
by the general conditions of the problem.
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SoLuTION. The flow after the formation of the hole will be spherically symmetrical, the velocity at every point
being directed to the centre of the hole. For the radial velocity v, = v < 0 we have Euler’s equation in spherical
polar coordinates:

@ + v@ = - l@ (1)
a or por
The equation of continuity gives
r’v = F(1), 2

where F (t)is an arbitrary function of time; this equation expresses the fact that, since the fluid is incompressible,
the volume flowing through any spherical surface is independent of the radius of that surface.

A

FiG. 3

NN N\

FiG. 4

Substituting v from (2) in (1), we have
F(@ ov 10p
o =

+ -———.
r or por
Integrating this equation over r from the instantaneous radius R = R(t) < a of the hole to infinity, we obtain

F
__(t_).;_%[/z:& 3)
R p

where ' = dR(t)/dt is the rate of change of the radius of the hole, and p, is the pressure at infinity; the fluid
velocity at infinity is zero, and so is the pressure at the surface of the hole. From equation (2) for points on the
surface of the hole we find

F@oy=R*@0) V),
and, substituting this expression for F(t) in (3), we obtain the equation
-2 -2
_ 3y a %Rd 12 _Po
2 dR P

4
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The variables are separable; integrating with the boundary condition }' = 0 for R = a (the fluid being initially at

rest), we have
- B G]
de 3p \R?

Hence we have for the required total time for the hole to be filled

\/ 3p J dR
T= [— .
2, J V(a/R) 1]
This integral reduces to a beta function, and we have finally

3a%pn I(5/6) \/ p
= [ _0915q [ £
i s/ 200 T(1/3) “Vre

PROBLEM 8. A sphere immersed in an incompressible fluid expands according to a given law R = R(t).
Determine the fluid pressure at the surface of the sphere.

SOLUTION. Let the required pressure be P (t). Calculations exactly similar to those of Problem 7, except that
the pressure at r = R is P(t) and not zero, give instead of (3) the equation

_f_,(_l)+l[/’2 _p_o_f(_t)

RO o p
and accordingly instead of (4) the equation
po—P@ _ 3V: . 4V
p 2 dR

Bearing in mind the fact that V' = dR/dt, we can write the expression for P(t) in the form

d?(R? dR \?
P(t)=Po+%P[ d(tz‘)'*'(—dt—) ]

PROBLEM 9. Determine the form of a jet emerging from an infinitely long slit in a plane wall.

SOLUTION. Let the wall be along the x-axis in the xy-plane, and the aperture be the segment —a < x < 4aof
that axis, the fluid occupying the half-plane y > 0. Far from the wall (y — o0) the fluid velocity is zero, and the
pressure is p,, say.

At the free surface of the jet (BC and B'C’ in Fig. 5a) the pressure p = 0, while the velocity takes the constant
value v, = \/(2p,/p), by Bernoulli’s equation. The wall lines are streamlines, and continue into the free boundary
of the jet. Let § be zero on the line ABC; then, on the line A'B'C’,yy = —Q/p,where Q = pa, v, is the rate at which
the fluid emerges in the jet (a,, v, being the jet width and velocity at infinity). The potential ¢ varies from — co to
+ co both along ABC and along 4'B'C’; let ¢ be zero at Band B'. Then, in the plane of the complex variable w, the
region of flow is an infinite strip of width Q/p (Fig. 5b). (The points in Fig. 5b, ¢, d are named to correspond with
those in Fig. 5a.)

We introduce a new complex variable, the logarithm of the complex velocity:

= — log[ 1 - d_w] = logv—l +idn +06); ()
\ z v

here vle%"' is the complex velocity of the jet at infinity. On 4'B’ we have 6 = 0; on AB, § = —&; on BC and
BC', v = v,, while at infinity in the jet § = — 4. In the plane of the complex variable {, therefore, the region of
flow is a semi-infinite strip of width n in the right half-plane (Fig. 5c). If we can now find a conformal
transformation which carries the strip in the w-plane into the half-strip in the {-plane (with the points
corresponding as in Fig. 5), we shall have determined w as a function of dw/dz, and w can then be found by a
simple quadrature.

In order to find the desired transformation, we introduce one further auxiliary complex variable, u, such that
the region of flow in the y-plane is the upper half-plane, the points Band B’ correspondingtou = + 1, the points
Cand C’ to u = 0, and the infinitely distant points A and A" tou = + oo (Fig. 5d). The dependence of w on this
auxiliary variable is given by the conformal transformation which carries the upper half of the u-plane into the
strip in the w-plane. With the above correspondence of points, this transformation is

w= — g log u. )
pr

FM-BY
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In order to find the dependence of { on u, we have to find a conformal transformation of the half-strip in the (-
plane into the upper half of the u-plane. Regarding this half-strip as a triangle with one vertex at infinity, we can
find the desired transformation by means of the well-known Schwarz—Christoffel formula; it is

u. 3

Formulae (2) and (3) give the solution of the problem, since they furnish the dependence of dw/dz on w in
parametric form.

Let us now determine the form of the jet. On BC we havew = ¢,{ = i(3n + 6), while u varies from 1to 0. From
(2) and (3) we obtain

= —isin”?!

= - —g log (— cos 6), “4)
pr

and from (1) we have
d¢/dz = v,e™ ",

or
. 1 ] ay i0
dz=dx+idy=—€’d¢p = —€“tan6do,
vy n

whence we find, by integration with the conditions y = 0, x = 4a for § = —x, the form of the jet, expressed
parametrically. In particular, the compression of the jet is a,/a = n/(2+ =) = 0-61.

§11. The drag force in potential flow past a body

Let us consider the problem of potential flow of an incompressible ideal fluid past some
solid body. This problem is, of course, completely equivalent to that of the motion of a
fluid when the same body moves through it. To obtain the latter case from the former, we
need only change to a system of coordinates in which the fluid is at rest at infinity. We shall,
in fact, say in what follows that the body is moving through the fluid.

Let us determine the nature of the fluid velocity distribution at great distances from the
moving body. The potential flow of an incompressible fluid satisfies Laplace’s equation,
A ¢ = 0. We have to consider solutions of this equation which vanish at infinity, since the
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fluid is at rest there. We take the origin somewhere inside the moving body; the coordinate
system moves with the body, but we shall consider the fluid velocity distribution at a
particular instant. As we know, Laplace’s equation has a solution 1/r, where r is the
distance from the origin. The gradient and higher space derivatives of 1/r are also
solutions. All these solutions, and any linear combination of them, vanish at infinity. Hence
the general form of the required solution of Laplace’s equation at great distances from the
body is

1
= —£—1+ A-grad—+ ...,
r r

where a and A are independent of the coordinates; the omitted terms contain higher-order
derivatives of 1/r. It is easy to see that the constant a must be zero. For the potential
¢ = —a/r gives a velocity

v= —grad(a/r) = ar/r.

Let us calculate the corresponding mass flux through some closed surface, say a sphere
with radius R. On this surface the velocity is constant and equal to a/R?; the total flux
through it is therefore p(a/R*)4nR? = 4npa. But the flux of an incompressible fluid
through any closed surface must, of course, be zero. Hence we conclude that a = 0.

Thus ¢ contains terms of order 1/r? and higher. Since we are seeking the velocity at large
distances, the terms of higher order may be neglected, and we have

¢=A-grad(1/r)= —A-n/r?, (11.1)
and the velocity v = grad ¢ is

V= (A-grad)grad%=3(A.l:gn—A, (11.2)

where n is a unit vector in the direction of r. We see that at large distances the velocity
diminishes as 1/r. The vector A depends on the actual shape and velocity of the body, and
can be determined only by solving completely the equation A ¢ = 0 at all distances, taking
into account the appropriate boundary conditions at the surface of the moving body.

The vector A which appears in (11.2) is related in a definite manner to the total
momentum and energy of the fluid in its motion past the body. The total kinetic energy of
the fluid (the internal energy of an incompressible fluid is constant)is E = § | pv>*d}, where
the integration is taken over all space outside the body. We take a region of space V
bounded by a sphere with large radius R, whose centre is at the origin, and first integrate
only over V, later letting R tend to infinity. We have identically

jvzdl/ = fude'+f(v+u)-(v—u)dV',

where u is the velocity of the body. Since u is independent of the coordinates, the first
integral on the right is simply u?( V' — V,), where J; is the volume of the body. In the
second integral, we write the sum v+ u as grad (¢ + u-r); using the facts that divv =0
(equation of continuity) and divu = 0, we have

Jvzdl/ =u¥(V— Vo)+jdiv[(¢+u-r)(v—u)]dV.
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The second integral is now transformed into an integral over the surface S of the sphere
and the surface S, of the body:

Jv”dV= w2 (V—-"ry)+ § (¢ +u-r)(v—u)-df.
S+5,

On the surface of the body, the normal components of v and u are equal by virtue of the
boundary conditions; since the vector df is along the normal to the surface, it is clear that
the integral over S, vanishes identically. On the remote surface S we substitute the
expressions (11.1), (11.2) for ¢ and v, and neglect terms which vanishas R — co. Writing the
surface element on the sphere S in the form df = nR*do, where do is an element of solid
angle, we obtain

jvz dV =u?3nR3>-V,)+ J[3(A -n)(u-n) — (u-n)’R*]do.

Finally, effecting the integrationt and multiplying by 4p, we obtain the following
expression for the total energy of the fluid:

E =4p(dnA-u—Vyu?). (11.3)

As has been mentioned already, the exact calculation of the vector A requires a complete
solution of the equation A ¢ = 0, taking into account the particular boundary conditions
at the surface of the body. However, the general nature of the dependence of A on the
velocity u of the body can be found directly from the facts that the equation is linear in ¢,
and the boundary conditions are linear in both ¢ and u. It follows from this that A must be
a linear function of the components of u. The energy E given by formula (11.3)is therefore
a quadratic function of the components of u, and can be written in the form

E = %m;kuiuk, (11.4)

where m;, is some constant symmetrical tensor, whose components can be calculated from
those of A; it is called the induced-mass tensor.

Knowing the energy E, we can obtain an expression for the total momentum P of the
fluid. To do so, we notice that infinitesimal changes in E and P are related by} dE = u-dP;

+ The integration over o is equivalent to averaging the integrand over all directions of the vector n and

multiplying by 4n. To average expressions of the type (A -n) (B-n) = 4;n,B,n,, where A, B are constant vectors,
we notice that

(A—’“)(B'“) = Ainn-'_"; =404 4,B, =1A-B.

t For, let the body be accelerated by some external force F. The momentum of the fluid will thereby be
increased; let it increase by dP during a time dt. This increase is related to the force by dP = Fdt, and on scalar
multiplication by the velocity u we have u-dP = F-udt, i.e. the work done by the force F acting through the
distance udt, which in turn must be equal to the increase dE in the energy of the fluid.

It should be noticed that it would not be possible to calculate the momentum directly as the integral fpvd}’
over the whole volume of the fluid. The reason is that this integral, with the velocity v distributed in accordance
with (11.2), diverges, in the sense that the result of the integration, though finite, depends on how the integral is
taken: on effecting the integration over a large region, whose dimensions subsequently tend to infinity, we obtain
a value depending on the shape of the region (sphere, cylinder, etc.). The method of calculating the momentum
which we use here, starting from the relation u-dP = dE, leads to a completely definite final result, given by
formula (11.6), which certainly satisfies the physical relation between the rate of change of the momentum and the
forces acting on the body.
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it follows from this that, if E is expressed in the form (11.4), the components of P must be
Pi = m,—kuk. (11.5)

Finally, a comparison of formulae (11.3), (11.4) and (11.5) shows that P is given in terms of
A by
P =4npA —pV,u. (11.6)

It must be noticed that the total momentum of the fluid is a perfectly definite finite
quantity.

The momentum transmitted to the fluid by the body in unit time is dP/dz. With the
opposite sign it evidently gives the reaction F of the fluid, i.e. the force acting on the body:

= —dP/dt. (11.7)

The component of F parallel to the velocity of the body is called the drag force, and the
perpendicular component is called the lift force.

If it were possible to have potential flow past a body moving uniformly in an ideal fluid,
we should have P = constant, since u = constant, and so F = 0. That is, there would be no
drag and no lift; the pressure forces exerted on the body by the fluid would balance out (a
result known as &’ Alembert’s paradox). The origin of this paradox is most clearly seen by
considering the drag. The presence of a drag force in uniform motion of a body would
mean that, to maintain the motion, work must be continually done by some external force,
this work being either dissipated in the fluid or converted into kinetic energy of the fluid,
and the result being a continual flow of energy to infinity in the fluid. There is, however, by
definition no dissipation of energy in an ideal fluid, and the velocity of the fluid set in
motion by the body diminishes so rapidly with increasing distance from the body that
there can be no flow of energy to infinity.

However, it must be emphasized that all these arguments relate only to the motion of a
body in an infinite volume of fluid. If, for example, the fluid has a free surface, a body
moving uniformly parallel to this surface will experience a drag. The appearance of this
force (called wave drag) is due to the occurrence of a system of waves propagated on the
free surface, which continually remove energy to infinity.

Suppose that a body is executing an oscillatory motion under the action of an external
force f. When the conditions discussed in §10 are fulfilled, the fluid surrounding the body
moves in a potential flow, and we can use the relations previously obtained to derive the
equations of motion of the body. The force f must be equal to the time derivative of the
total momentum of the system, and the total momentum is the sum of the momentum Mu
of the body (M being the mass of the body) and the momentum P of the fluid:

Mdu/dt +dP/dt = 1.
Using (11.5), we then obtain
M du;/dt +my du, /dt = f,
which can also be written

du,
de

This is the equation of motion of a body immersed in an ideal fluid.

(Méy +my)=f. (11.8)
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Let us now consider what is in some ways the converse problem. Suppose that the fluid
executes some oscillatory motion on account of some cause external to the body. This
motion will set the body in motion also.t We shall derive the equation of motion of the
body.

We assume that the velocity of the fluid varies only slightly over distances of the order of
the dimension of the body. Let v be what the fluid velocity at the position of the body
would be if the body were absent; that is, v is the velocity of the unperturbed flow.
According to the above assumption, v may be supposed constant throughout the volume
occupied by the body. We denote the velocity of the body by u as before.

The force which acts on the body and sets it in motion can be determined as follows. If
the body were wholly carried along with the fluid (i.e. if v = u), the force acting on it would
be the same as the force which would act on the liquid in the same volume if the body were
absent. The momentum of this volume of fluid is p¥,v, and therefore the force on it is
pV, dv/dt. Inreality, however, the body is not wholly carried along with the fluid; thereis a
motion of the body relative to the fluid, in consequence of which the fluid itself acquires
some additional motion. The resulting additional momentum of the fluid is m; (v, —v;),
since in (11.5) we must now replace u by the velocity u — v of the body relative to the fluid.
The change in this momentum with time results in the appearance of an additional reaction
force on the body of —m; d(u, —uv;)/dt. Thus the total force on the body is

dv,
p Vogt" - ikaqt'(uk — ).

This force is to be equated to the time derivative of the body momentum. Thus we obtain
the following equation of motion:

d . dy; d
a(M“i) = Pl’oa* —mika(uk — ;).
Integrating both sides with respect to time, we have

(Mo + my)u, = (my+ pVdu vy (11.9)

We put the constant of integration equal to zero, since the velocity u of the body in its
motion caused by the fluid must vanish when v vanishes. The relation obtained determines
the velocity of the body from that of the fluid. If the density of the body is equal to that of
the fluid (M = pV|,), we have u = v, as we should expect.

PROBLEMS

PROBLEM 1. Obtain the equation of motion for a sphere executing an oscillatory motion in an ideal fluid, and
for a sphere set in motion by an oscillating fluid.

SoLuTION. Comparing (11.1) with the expression for ¢ for flow past a sphere obtained in §10, Problem 2, we
see that '

A =4R3g,

where R is the radius of the sphere. The total momentum transmitted to the fluid by the sphere is, according to
(11.6), P = $mnpR>u, so that the tensor m, is

— 2. R3
my = 3npR>6,.

1 For example, we may be considering the motion of a body in a fluid through which a sound wave is
propagated, the wavelength being large compared with the dimension of the body.
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The drag on the moving sphere is
= —%npR3du/dt,

and the equation of motion of the sphere oscillating in the fluid is
du
%nRJ (pO +%p)—(§ = f9

where p,, is the density of the sphere. The coefficient of du/dt is the virtual mass of the sphere; it consists of the
actual mass of the sphere and the induced mass, which in this case is half the mass of the fluid displaced by the
sphere.

If the sphere is set in motion by the fluid, we have for its velocity, from (11.9),

3p
u=
P+2po

If the density of the sphere exceeds that of the fluid (p, > p), u < v,i.e. the sphere “lags behind” the fluid;if p, < p,
on the other hand, the sphere “goes ahead”.

V.

PrROBLEM 2. Express the moment of the forces acting on a body moving in a fluid in terms of the vector A.

SOLUTION. As we know from mechanics, the moment M of the forces acting on a body is determined from its
Lagrangian function (in this case, the energy E) by the relation 6E = M- 60, where 68 is the vector of an
infinitesimal rotation of the body, and SE is the resulting change in E. Instead of rotating the body through an
angle 60 (and correspondingly changing the components m,, ), we may rotate the fluid through an angle —40
relative to the body (and correspondingly change the velocity u). We have éu = —é0Xu, so that

OE=P:6u= —60-uxP.
Using the expression (11.6) for P, we then obtain the required formula:

M = —uXP =4npAxu.

§12. Gravity waves

The free surface of a liquid in equilibrium in a gravitational field is a plane. If, under the
action of some external perturbation, the surface is moved from its equilibrium position at
some point, motion will occur in the liquid. This motion will be propagated over the whole
surface in the form of waves, which are called gravity waves, since they are due to the action
of the gravitational field. Gravity waves appear mainly on the surface of the liquid; they
affect the interior also, but less and less at greater and greater depths.

We shall here consider gravity waves in which the velocity of the moving fluid particles is
so small that we may neglect the term (v-grad)v in comparison with dv/ot in Euler’s
equation. The physical significance of this is easily seen. During a time interval of the order
of the period 7 of the oscillations of the fluid particles in the wave, these particles travel a
distance of the order of the amplitude a of the wave. Their velocity v is therefore of the order
of a/t. It varies noticeably over time intervals of the order of 7 and distances of the order of
Ain the direction of propagation (where A is the wavelength). Hence the time derivative of
the velocity is of the order of v/7, and the space derivatives are of the order of v/A. Thus the
condition (v-grad)v < 0v/0t is equivalent to

la2<a1
E) 2.2
A1 T T

a<i, (12.1)

i.e. the amplitude of the oscillations in the wave must be small compared with the
wavelength. We have seen in §9 that, if the term (v - grad)v in the equation of motion may

or
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be neglected, we have potential flow. Assuming the fluid incompressible, we can therefore
use equations (10.6) and (10.7). The term {02 in the latter equation may be neglected, since
it contains the square of the velocity; putting f(¢) = 0 and including a term pgz on account
of the gravitational field, we obtain

p= —pgz—pog/ot. (12.2)

We take the z-axis vertically upwards, as usual, and the xy-plane in the equilibrium surface
of the liquid.

Let us denote by { the z coordinate of a point on the surface; { is a function of x, y and ¢.
In equilibrium { =0, so that { gives the vertical displacement of the surface in its
oscillations. Let a constant pressure p, act on the surface. Then we have at the surface, by
(12.2),

Po = —pgl —pod/ot.

The constant p, can be eliminated by redefining the potential ¢, adding to it a quantity
Pot/p independent of the coordinates. We then obtain the condition at the surface as

gl +(0¢/0t), - = 0. (12.3)

Since the amplitude of the wave oscillations is small, the displacement { is small. Hence we
can suppose, to the same degree of approximation, that the vertical component of the
velocity of points on the surface is simply the time derivative of {:

v, = 0(/0t.
But v, = 0¢/0z, so that

2
(06/82), - = 8/t = —(gﬂ) :
z={

Since the oscillations are small, we can take the value of the derivatives at z = 0 instead
of z = {. Thus we have finally the following system of equations to determine the motion in
a gravitational field:

A¢p=0, (12.49)
op 1% _
(Z+558).., = .

We shall here consider waves on the surface of a liquid whose area is unlimited, and we
shall also suppose that the wavelength is small in comparison with the depth of the liquid;
we can then regard the liquid as infinitely deep. We shall therefore omit the boundary
conditions at the sides and bottom.

Let us consider a gravity wave propagated along the x-axis and uniform in the y-
direction; in such a wave, all quantities are independent of y. We shall seek a solution which
is a simple periodic function of time and of the coordinate x, i.e. we put

¢ = f(z)cos (kx — wt).

Here w is what is called the circular frequency (we shall say simply the frequency) of the
wave; k is called the wave number; A = 2n/k is the wavelength.
Substituting in the equation A ¢ = 0, we have

d2f/dz2 —k*f = 0.



§12 Gravity waves 33
The solution which decreases as we go into the interior of the liquid (i.e. as z = — 00) is
¢ = Aé**cos (kx — wt). (12.6)

We have also to satisfy the boundary condition (12.5). Substituting (12.6), we obtain
w? = kg (12.7)

as the relation between the wave number and the frequency of a gravity wave (the
dispersion relation).

The velocity distribution in the moving liquid is found by simply taking the space
derivatives of ¢:

v, = —Aké*sin (kx —wt), v, = Aké**cos (kx — wt). (12.8)

We see that the velocity diminishes exponentially as we go into the liquid. At any given
point in space (i.e. for given x, z) the velocity vector rotates uniformly in the xz-plane, its
magnitude remaining constant.

Let us also determine the paths of fluid particles in the wave. We temporarily denote by
x, z the coordinates of a moving fluid particle (and not of a point fixed in space), and by x,,
2z, the values of x and z at the equilibrium position of the particle. Then v, = dx/dt,
v, = dz/dt, and on the right-hand side of (12.8) we may approximate by writing x,, z, in
place of x, z, since the oscillations are small. An integration with respect to time then gives

X— Xy = —Age"’o cos (kx, — wt),
(12,9
z2—2z5 = —Aa)k—e"zo sin (kx, — wt).
Thus the fluid particles describe circles about the points (x,, z,) with a radius which

diminishes exponentially with increasing depth.
The velocity of propagation U of the wave is, as we shall show in §67, U = dw/dk.

Substituting here w = \/(kg), we find that the velocity of propagation of gravity waves on
an unbounded surface of infinitely deep liquid is
U =14/(g/k) = 3/ (gh/2n). (12.10)

It increases with the wavelength.

LONG GRAVITY WAVES

Having considered gravity waves whose length is small compared with the depth of the
liquid, let us now discuss the opposite limiting case of waves whose length is large
compared with the depth. These are called long waves.

Let us examine first the propagation of long waves in a channel. The channel is supposed
to be along the x-axis, and of infinite length. The cross-section of the channel may have any
shape, and may vary along its length. We denote the cross-sectional area of the liquid in the
channel by S = S(x,t). The depth and width of the channel are supposed small in
comparison with the wavelength.

We shall here consider longitudinal waves, in which the liquid moves along the channel.
In such waves the velocity component v, along the channel is large compared with the
components v, v,.
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We denote v, by v simply, and omit small terms. The x-component of Euler’s equation
can then be written in the form

ov _ 10p
ot pox’
and the z-component in the form
10p )
;a_z. - _ga

we omit terms quadratic in the velocity, since the amplitude of the wave is again supposed
small. From the second equation we have, since the pressure at the free surface (z = {) must
be p 0>

p=po+gp((—2)

Substituting this expression in the first equation, we obtain

ov/ot = —gd(/ox. (12.11)

The second equation needed to determine the two unknowns v and { can be derived
similarly to the equation of continuity; it is essentially the equation of continuity for the
casein question. Let us consider a volume of liquid bounded by two plane cross-sections of
the channel at a distance dx apart. In unit time a volume (Sv), of liquid flows through one
plane, and a volume (Sv), , 4, through the other. Hence the volume of liquid between the
two planes changes by

(80)esax— (60, = "0 ax.
Since the liquid is incompressible, however, this change must be due simply to the change
in the level of the liquid. The change per unit time in the volume of liquid between the two
planes considered is (0S/0t)dx. We can therefore write

oS . 0(Sv)
0= T 9%
or
S  o(Sv) _
5t =0 (12.12)

This is the required equation of continuity.

Let S, be the equilibrium cross-sectional area of the liquid in the channel. Then
S = §p + §', where S’ is the change in the cross-sectional area caused by the wave. Since the
changein the liquid level is small, we can write S’ in the form b, where b is the width of the
channel at the surface of the liquid. Equation (12.12) then becomes

74 5(300)_
ot Tax

Differentiating (12.13) with respect to t and substituting dv/dt from (12.11), we obtain

3 gof.
S ia(5e) o (1219

b 0. (12.13)
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If the channel cross-section is the same at all points, then S, = constant and

0% g5 0%

— = =0 12.15

ot b ox? ( )
This is called a wave equation: as we shall show in §64, it corresponds to the propagation of
waves with a velocity U which is independent of frequency and is the square root of the
coefficient of 02¢/0x2. Thus the velocity of propagation of long gravity waves in channels is

U = /(gSo/b). (12.16)

In an entirely similar manner, we can consider long waves in a large tank, which we
suppose infinite in two directions (those of x and y). The depth of liquid in the tank is
denoted by h. The component v, of the velocity is now small. Euler’s equations take a form
similar to (12.11):

N SEP

5t 9T a9 "

The equation of continuity is derived in the same way as (12.12) and is

0. (12.17)

oh _d(hv,)  O(hv,) _

0.
5t ox "oy

We write the depth h as hy + {, where h,, is the equilibrium depth. Then

% a(hovx) a(hovy) _
atTox oy -

0. (12.18)

Let us assume that the tank has a horizontal bottom (h, = constant). Differentiating
(12.18) with respect to t and substituting (12.17), we obtain

0% 0% 0%
This is again a (two-dimensional) wave equation; it corresponds to waves propagated with
a velocity

U = /(gho). (12.20)

PROBLEMS

PrOBLEM 1. Determine the velocity of propagation of gravity waves on an unbounded surface of liquid with
depth h.

SOLUTION. At the bottom of the liquid, the normal velocity component must be zero, i.e. v, = d¢/0z = 0 for
z= —h. From this condition we find the ratio of the constants A and B in the general solution

¢ = [Ae* + Be **]cos (kx — wt).
The result is
¢ = Acos (kx — wt)cosh k(z + h).
From the boundary condition (12.5) we find the relation between k and w to be
@? = gktanh kh.
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The velocity of propagation of the wave is

1 g kh
U=z [— % | tanhkh+—2 |
2\/ ktanh kh[ AN Cosh? kh]

For kh > 1 we have the result (12.10), and for kh < 1 the result (12.20).

PROBLEM 2. Determine the relation between frequency and wavelength for gravity waves on the surface
separating two liquids, the upper liquid being bounded above by a fixed horizontal plane, and the lower liquid
being similarly bounded below. The density and depth of the lower liquid are p and h, those of the upper liquid
are p’and I, and p > p'.

SOLUTION. We take the xy-plane as the equilibrium plane of separation of the two liquids. Let us seek a
solution having in the two liquids the forms

¢ = Acosh k(z + h)cos(kx — wt), }
M)
¢’ = Bcosh k(z— h’)cos(kx — wt),

so that the conditions at the upper and lower boundaries are satisfied; see the solution to Problem 1. At the
surface of separation, the pressure must be continuous; by (12.2), this gives the condition

o0 ,0¢' _
PQC+p5?-—PQC+PE~ for z={,
or
1 09 a¢)
= — ——— o 2
‘ g(p—p’)(pat ot @

Moreover, the velocity component v, must be the same for each liquid at the surface of separation. This gives the
condition

0¢p/0z =0¢'/0z for z=0. 3)
Now v, = d¢p/0z = d{ /0t and, substituting (2), we have
o¢ oty 0%
—p)—=p——p—. 4
9P =), =P o P @

Substituting (1) in (3) and (4) gives two homogeneous linear equations for 4 and B, and the condition of
compatibility gives
2 _ kg(p—p)
pcothkh + p’coth kb’
For kh> 1, kh' > 1 (both liquids very deep),

p—p
(D2 kg—*"T,
p+p
while for kh < 1, kh’ < 1 (long waves),
\/g(p — p' )ik’
o=k [——— —.
ph' +p'h

Lastly, if kh 2 1 and kh' < 1,
o’ = k’gh’(p—p')/p-

PROBLEM 3. Determine the relation between frequency and wavelength for gravity waves propagated
simultaneously on the surface of separation and on the upper surface of two liquid layers, the lower (density p)
being infinitely deep, and the upper (density p’) having depth k' and a free upper surface.

SOLUTION. We take the xy-plane as the equilibrium plane of separation of the two liquids. Let us seek a
solution having in the two liquids the forms

¢ = Ae**cos(kx — wt), }

¢’ = [Be™* +Ce**] cos (kx — wt).

Y
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At the surface of separation, i.e. for z = 0, we have the conditions (see Problem 2)

0 _o¢' ¢ _ ¢ ¢

')a =y @
2o PP TP G TP
and at the upper surface, i.e. for z = h’, the condition
oy 19%*¢
—+——5=0. 3
22 gt )

The first equation (2), on substitution of (1), gives A = C — B, and the remaining two conditions then give two
equations for Band C; from the condition of compatibility we obtain a quadratic equation for w?, whose roots are

0 = kg PP
pHp+(p—ple

For h’ — oo these roots correspond to waves propagated independently on the surface of separation and on the
upper surface.

PROBLEM 4. Determine the characteristic frequencies of oscillation (see §69) of a liquid with depth hin a
rectangular tank with width a and length b.

SoLuTION. We take the x and y axes along two sides of the tank. Let us seek a solution in the form of a
stationary wave:

¢ = f(x,y)cosh k(z + h)cos wt.
We obtain for f the equation
2 2
S—X{ + gy—{ +k*f=0,
and the condition at the free surface gives, as in Problem 1, the relation
w? = gktanh kh.
We take the solution of the equation for fin the form
f=cospxcosqy, p*+q>=k>%
At the sides of the tank we must have the conditions
v, =0¢/0x=0 for x=0,aq;
v, =0¢/0y=0 for y=0,b.

Hence we find p = mn/a, q = nn/b, where m, n are integers. The possible values of k? are therefore

m*> n?
2 2fMm "
ki=m <02+b2).

§13. Internal waves in an incompressible fluid

There is a kind of gravity wave which can be propagated inside an incompressible fluid.
Such waves are due to an inhomogeneity of the fluid caused by the gravitational field. The
pressure (and therefore the entropy s) necessarily varies with height; hence any
displacement of a fluid particle in height destroys the mechanical equilibrium, and
consequently causes an oscillatory motion. For, since the motion is adiabatic, the particle
carries with it to its new position its old entropy s, which is not the same as the equilibrium
value at the new position.
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We shall suppose below that the wavelength is small in comparison with distances over
which the gravitational field causes a marked change in density {; and we shall regard the
fluid itself as incompressible. This means that we can neglect the change in its density
caused by the pressure change in the wave. The change in density caused by thermal
expansion cannot be neglected, since it is this that causes the phenomenon in question.

Let us write down a system of hydrodynamic equations for this motion. We shall use a
suffix 0 to distinguish the values of quantities in mechanical equilibrium, and a prime to
mark small deviations from those values. Then the equation of conservation of the entropy
§ = S, + ' can be written, to the first order of smallness,

0s'/0t+v-grads, =0, (13.1)

where s, like the equilibrium values of other quantities, is a given function of the vertical
coordinate z.

Next, in Euler’s equation we again neglect the term (v - grad)v (since the oscillations are
small); taking into account also the fact that the equilibrium pressure distribution is given
by gradp, = p,g, we have to the same accuracy

ov ad radp’ rad
__ & P+ __¢8 P+g ZPop,_

a p Po Po

Since, from what has been said above, the change in density is due only to the change in
entropy, and not to the change in pressure, we can put

. 0po \ _,
P—(aso)pS,

and we then obtain Euler’s equation in the form

v _ g(0po P
—==0 )y —. 13.2
P po(aso) s’ — grad (13.2)

We can take p, under the gradient operator, since, as stated above, we always neglect the
change in the equilibrium density over distances of the order of a wavelength. The density
may likewise be supposed constant in the equation of continuity, which then becomes

divv=0. (13.3)
We shall seek a solution of equations (13.1)-(13.3) in the form of a plane wave:
v = constant x eik-T-ot)
and similarly for s’ and p'. Substitution in the equation of continuity (13.3) gives

v-k=0, (13.4)

t The density and pressure gradients are related by
gradp = (0p/dp), gradp = c* grad p,

where cis the speed of sound in the fluid. The hydrostatic equation grad p = pg thus gives grad p = (p/c?)g. The
density in the gravitational field therefore varies considerably over distances ! > ¢?/g. For air and water,
I >~ 10 km and 200 km respectively.
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1.e. the fluid velocity is everywhere perpendicular to the wave vector k (a transverse wave).
Equations (13.1) and (13.2) give

1/0 k
iws’ = v-grads,, —iwv = —(_p") s'g_l_p'.
Po\05o /, Po
The condition v-k = 0 gives with the second of these equations

ik%p’ =(_a_£q) sg-k,
0o /,

and, eliminating vand s’ from the two equations, we obtain the desired dispersion relation,

w? = wy? sin6, (13.5)

2_ _9(0p) ds
We* = p(as)pdz. (13.6)

Here and henceforward we omit the suffix zero to the equilibrium values of thermo-
dynamic quantities; the z-axis is vertically upwards, and 6 is the angle between this axis and
the direction of k. If the expression on the right of (13.6) is positive, the condition for the
stability of the equilibrium distribution s(z) (the condition that convection be absent—see
§4) is fulfilled.

We see that the frequency depends only on the direction of the wave vector, and not on
its magnitude. For § = Q we have w = 0; this means that waves of the type considered, with
the wave vector vertical, cannot exist.

If the fluid is in both mechanical equilibrium and complete thermodynamic equilibrium,
its temperature is constant and we can write

ds_(os\dp _ _ (0
dz \ép/ydz Pg op/r
Finally, using the well-known thermodynamic relations
a5\ _L(dp) (%) _T(%
op)r p*\oT), os ), c,\oT),

where c, is the specific heat per unit mass, we find

Tga_p
T/,

Wy = [—=
Wo = — 2. (13.8)
e,

c,P

The dependence of the frequency on the direction of the wave vector has the result that
the wave propagation velocity U = dw/dk is not parallel to k. Representing w(k) in the
form

where

} (13.7)

In particular, for a perfect gas,

o = g/ [1— (k- v/k)*],



40 Ideal Fluids §14
where v is a unit vector in the vertically upward direction, and differentiating, we find
U = — (wo?/wk) (m-v) [v—(n-v)n] (13.9)
(where n = k/k). This is perpendicular to k, and its magnitude is
U = (wy/k)cos 6.
Its vertical component is

U-v= —(wy/k)cosfsin 0.

§14. Waves in a rotating fluid

Another kind of internal wave can be propagated in an incompressible fluid uniformly
rotating as a whole. These waves are due to the Coriolis forces which occur in rotation.

We shall consider the fluid in coordinates rotating with it. With this treatment, the
mechanical equations of motion must include additional (centrifugal and Coriolis) terms.
Correspondingly, forces (per unit mass of fluid) must be added on the right of Euler’s
equation. The centrifugal force can be written as grad3(Qxr)?, where Q is the angular
velocity vector of the fluid rotation. This term can be combined with the force
—(1/p) grad p by using an effective pressure

P=p—1p@xr)> (14.1)

The Coriolis force is 2vX{Q, and occurs only when the fluid has a motion relative to the
rotating coordinates, v being the velocity in those coordinates. We can transfer this term to
the left-hand side of Euler’s equation, writing the equation as

ov/0t+ (v-grad)v + 2Qxv = —(1/p)grad P. (14.2)

The equation of continuity is unchanged; for an incompressible fluid, it is simply divv = 0.
We shall again assume the wave amplitude to be small, and neglect the term quadratic in
the velocity in (14.2), which becomes

ov/ot+2Qxv = —(1/p)gradp’, (14.3)

where p' is the variable part of the pressure in the wave, and p is a constant. The pressure
can be eliminated by taking the curl of both sides. The right-hand side gives zero, and on
the left-hand side, since the fluid is incompressible,

curl (Qxv) = Qdivv— (Q-grad)v

= —(Q-grad)v.
Taking the direction of € as the z-axis, we write the resulting equation as
d ov :
— curly=2Q—— 14.4
ER curlv = 2Q Ee (14.4)
We seek the solution as a plane wave
v=Adkr-on) (14.5)

which, since div v = 0, satisfies the transversality condition

k-A=0. (14.6)
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Substitution of (14.5) in (14.4) gives
wkxXv = 2iQk,v. (14.7)

The dispersion relation for these waves is found by eliminating v from this vector
equation. Vector multiplication on both sides by k gives

— wk?v = 2iQk kxv
and a comparison of the two equations yields the dependence of w on k:
o =2Qk, [k = 2Qcos 0, (14.8)

where 0 is the angle between k and Q.
With (14.4), (14.7) takes the form

nxXv =iy,

where n = k/k. If we use the complex wave amplitude in the form A = a +ib with real
vectors a and b, it follows that nxb = a: the vectors a and b (both lying in the plane
perpendicular to k) are at right angles and equal in magnitude. By taking their directions as
the x and y axes, and separating real and imaginary parts in (14.5), we find

v, = acos (wt—k-r), v,= —asin(wt—k-r).

The wave is thus circularly polarized: at each point in space, the vector v rotates in the
course of time, remaining constant in magnitude.t
The wave propagation velocity is

U = 0w/dk = 2Q/k)[v—n(n-v)], (14.9)

where v is a unit vector along €; as with internal gravity waves, it is perpendicular to the
wave vector. Its magnitude and its component along Q are

U= (2Q/k)sin8, U-v= (2Q/k)sin%0 = Usiné.

These are called inertial waves. Since the Coriolis forces do no work on the moving fluid,
the energy in the waves is entirely kinetic energy.

One particular form of axially symmetrical (not plane) inertial waves can be propagated
along the axis of rotation of the fluid; see Problem 1.

There is one more comment to be made, regarding steady motions in a rotating fluid
rather than wave propagation in it.

Let [ be a characteristic length for such motion, and u a characteristic velocity. In order
of magnitude, the term (v-grad)v in (14.2) is u?/I, and 2QXv is Qu. The former can be
neglected in comparison with the latter if u/IQ < 1,and the equation of steady motion then
reduces to

20xv = —(1/p)grad P (14.10)

or

2Qu, = (1/p)oP/0x, 2Qv, = —(1/p)oP/dy, 0P/oz =0,

T This motion is relative to rotating coordinates. For fixed coordinates, it is combined with the rotation of the
whole fluid.
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where x and y are Cartesian coordinates in the plane perpendicular to the axis of rotation.
Hence we see that P, and therefore v, and v,, are independent of the longitudinal
coordinate z. Next, eliminating P from the first two equations, we get

9o O _ g,

ox dy
and the equation div v = 0 then shows that dv,/dz = 0. Thus steady motion (in rotating
coordinates)in a rapidly rotating fluid is a superposition of two independent motions: two-

dimensional flow in the transverse plane and axial flow independent of z (J. Proudman
1916).

PROBLEMS

PrOBLEM 1. Determine the motion in an axially symmetrical wave propagated along the axis of an
incompressible fluid rotating as a whole (W. Thomson 1880).

SoLUTION. We take cylindrical polar coordinates r, ¢, z, with the z-axis parallel to Q. In an axially symmetrical
wave, all quantities are independent of the angle variable ¢. The dependence on time and on the coordinate z is
given by a factor exp [i(kz — wt)]. Taking components in (14.3), we get

—iwv, —2Quvy = —(1/p)op’/or, 1)
—iwvy +2Qu, = 0, —iwv, = —(ik/p)p’. )
These are to be combined with the equation of continuity
10
——(rv,) + ikv, = 0. 3)
ror
Expressing vy, and p’ in terms of v, by means of (2) and (3) and substituting in (1), we find the equation
d?F 1dF [4Q%*? 1
—t—t| ——k*=-S |F=0 4
dr2+rdr+[ ? rz] @
for the function F(r) which determines the radial dependence of v,:
I?, — F(r)ei(wl—k:).

The solution that vanishes for r = 0 is
F = constant x J, [kr./{(4Q*/w?*) - 1}], )

where J, is a Bessel function of order 1.
The motion comprises regions between coaxial cylinders with radius r, such that

kr,/{(4Q?/w*)—1} = x,,
where x;, x,, . . . are the successive zeros of J,(x). On these cylindrical surfaces v, = 0, and the fluid therefore
does not cross them.

For these waves in an infinite fluid, w is independent of k. The possible values of the frequency are, however,
restricted by the condition @ < 2€); if this is not satisfied, (4) has no solution satisfying the necessary conditions of
finiteness.

If the rotating fluid is bounded by a cylindrical wall with radius R, we have to use the condition v, = 0 at the
wall. This gives the relation

ka,/{(4Q*/w?) -1} = x,

between w and k for a wave with a given n (the number of coaxial regions in it).

PrOBLEM 2. Derive an equation describing an arbitrary small perturbation of the pressure in a rotating fluid.
SoLuTiON. Equation (14.3) in components is

6v,_ lﬁ ov, _ 10p dv, _ _l% )

at Y pox’ P pdy’ ot poz
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Differentiating these with respect to x, y, and z, adding, and using div v = 0, we find

1 dv, Ov
“Ap =20 % =)
pAp (6x 6y)

Differentiation with respect to t, again using equations (1), gives

10 ov
——Ap =4Q* =,
pot P 0z

and by a further differentiation with respect to ¢t we arrive at the final equation
az az pr
—S AP +4Q? =0. 2
Fr A @
For periodic perturbations with frequency w, this becomes
o*p + o*p ( ) 40? )61p' _
ox?  9y? w? Joz?

For waves having the form (14.5), this of course gives the known dispersion relation (14.8), with w < 2Q and a
negative coefficient of 02p’/dz* in (3). Perturbations from a point source are propagated along generators of a
cone whose axis is along  and whose vertical angle is 26, where sin 0 = w/2Q.

When o > 2Q, the coefficient of 82p'/9z? in (3) is positive, and this equation becomes Laplace’s equation by an
obvious change in the z scale. In this case, a point source of perturbation affects the whole volume of the fluid, to
an extent that decreases away from the source according to a power law.
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