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AUTHORS’ PREFACE

The present course is based on lectures given by I. M.
Gelfand in the Mechanics and Mathematics Department
of Moscow State University. However, the book goes
considerably beyond the material actually presented in
the lectures. Our aim is to give a treatment of the ele-
ments of the calculus of variations in a form which is
both easily understandable and sufficiently modern.
Considerable attention is devoted to physical applica-
tions of variational methods, e.g., canonical equations,
variational principles of mechanics and conservationlaws.

The reader who merely wishes to become familiar with
the most basic concepts and methods of the calculus of
variations need only study the first chapter. The first
three chapters, taken together, form a more compre-
hensive course on the elements of the calculus of varia-
tions,-but one which is still quite elementary (involving
only necessary conditions for extrema). The first six
chapters contain, more or less, the material given in
the usual university course in the calculus of variations
(with applications to the mechanics of systems with a
finite number of degrees of freedom), including the
theory of fields (presented in a somewhat novel way)
and sufficient conditions for weak and strong extrema.
Chapter 7 is devoted to the application of variational
methods to the study of systems with infinitely many
degrees of freedom. Chapter 8 contains a brief treat-
ment of direct methods in the calculus of variations.

The authors are grateful to M. A. Yevgrafov and A. G.
Kostyuchenko, who read the book in manuscript and
made many useful comments.
I. M. G.
S. V. F.



TRANSLATOR’S PREFACE

This book is a modern introduction to the calculus of
variations and certain of its ramifications, and I trust
that its fresh and lively point of view will serve to make
it a welcome alidition to the English-language literature
on the subject. The present edition is rather different
from the Russian original. With the authors’ consent,
I have given free rein to the tendency of any mathe-
matically educated translator to assume the functions
of annotator and stylist. In so doing, I have had two
special assets: 1) A substantial list of revisions and
corrections from Professor S. V. Fomin himself, and
2) A variety of helpful suggestions from Professor J. T.
Schwartz of New York University, who read the entire
translation in typescript.

The problems appearing at the end of each of the eight
chapters and two appendices were made specifically for
the English edition, and many of them comment further
on the corresponding parts of the text. A variety of
Russian sources have played an important role in the
synthesis of this material. In particular, I have consulted
the textbooks on the calculus of variations by N. I.
Akhiezer, by L. E. Elsgolts, and by M. A. Lavrentev
and L. A. Lyusternik, as well as Volume 2 of the well-
known problem collection by N. M. Gyunter and R. O.
Kuzmin, and Chapter 3 of G. E. Shilov's “Mathematical
Analysis, A Special Course.”

At the end of the book I have added a Bibliography
containing suggestions for collateral and supplementary
reading. This list is not intended as an exhaustive cata-
log of the literature, and is in fact confined to books
available in English.

R. A.S.
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ELEMENTS
OF THE THEORY

l. Functionals. Some Simple Variational Problems

Variable quantities called functionals play an important role in many
problems arising in analysis, mechanics, geometry, etc. By a functional, we
mean a correspondence which assigns a definite (real) number to each function
(or curve) belonging to some class. Thus, one might say that a functional is
a kind of function, where the independent variable is itself a function (or
curve). The following are examples of functionals:

1. Consider the set of all rectifiable plane curves.! A definite number is
associated with each such curve, namely, its length. Thus, the length
of a curve is a functional defined on the set of rectifiable curves.

2. Suppose that each rectifiable plane curve is regarded as being made
out of some homogeneous material. Then if we associate with each
such curve the ordinate of its center of mass, we again obtain a
functional.

3. Consider all possible paths joining two given points 4 and B in the
plane. Suppose that a particle can move along any of these paths,
and let the particle have a definite velocity v(x, y) at the point (x, »).
Then we obtain a functional by associating with each path the time the
particle takes to traverse the path.

! In analysis, the length of a curve is defined as the limiting length of a polygonal line
inscribed in the curve (i.e., with vertices lying on the curve) as the maximum length of
the chords forming the polygonal line goes to zero. If this limit exists and is finite, the
curve is said to be rectifiable.

|



2 ELEMENTS OF THE THEORY CHAP. 1

4. Let y(x) be an arbitrary continuously differentiable function, defined
on the interval [a, b].2 Then the formula

b ’
J0) = [ y2) d
defines a functional on the set of all such functions y(x).

5. As a more general example, let F(x, y, z) be a continuous function of
three variables. Then the expression

T = [ Flox, y(0), ¥ M

where y(x) ranges over the set of all continuously differentiable functions
defined on the interval [a, b], defines a functional. By choosing
different functions F(x, y, z), we obtain different functionals. For
example, if
F(x,y,2) = VI + 2%,
J[»] is the length of the curve y = )(x), as in the first example, while if
F(x, y, z) = 22,

J[»] reduces to the case considered in the fourth example. In what
follows, we shall be concerned mainly with functionals of the form (1).

Particular instances of problems involving the concept of a functional
were considered more than three hundred years ago, and in fact, the first
important results in this area are due to Euler (1707-1783). Nevertheless,
up to now, the “calculus of functionals’ still does not have methods of a
generality comparable to the methods of classical analysis (i.e., the ordinary
“calculus of functions’). The most developed branch of the ‘““calculus of
functionals” is concerned with finding the maxima and minima of functionals,
and is called the “calculus of variations.” Actually, it would be more
appropriate to call this subject the “calculus of variations in the narrow
sense,” since the significance of the concept of the variation of a functional
is by no means confined to its applications to the problem of determining the
extrema of functionals.

We now indicate some typical examples of variational problems, by which
we mean problems involving the determination of maxima and minima of
functionals.

1. Find the shortest plane curve joining two points A and B, i.e., find the
curve y = y(x) for which the functional

[ VT ax

achieves its minimum. The curve in question turns out to be the straight
line segment joining A and B.

2 By [a, b] is meant the closed interval a < x < b.
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2. Let A and B be two fixed points. Then the time it takes a particle to
slide under the influence of gravity along some path joining 4 and B
depends on the choice of the path (curve), and hence is a functional.
The curve such that the particle takes the least time to go from 4 to B
is called the brachistochrone. The brachistochrone problem was posed
by John Bernoulli in 1696, and played an important part in the develop-
ment of the calculus of variations. The problem was solved by John
Bernoulli, James Bernoulli, Newton, and L’Hospital. The brachisto-
chrone turns out to be a cycloid, lying in the vertical plane and passing
through 4 and B (cf. p. 26).

3. The following variational problem, called the isoperimetric problem,
was solved by Euler: Among all closed curves of a given length I, find the
curve enclosing the greatest area. The required curve turns out to be
a circle.

All of the above problems involve functionals which can be written in
the form

f 'F (x, », ") dx.

Such functionals have a “localization property” consisting of the fact that
if we divide the curve y = y(x) into parts and calculate the value of the
functional for each part, the sum of the values of the functional for the
separate parts equals the value of the functional for the whole curve. It is
just these functionals which are usually considered in the calculus of variations.
As an example of a “nonlocal functional,” consider the expression

f: xVT + y2dx
[viTrma

which gives the abscissa of the center of mass of a curve y = y(x), a < x < b,
made out of some homogeneous material.

An important factor in the development of the calculus of variations was
the investigation of a number of mechanical and physical problems, e.g.,
the brachistochrone problem mentioned above. In turn, the methods of the
calculus of variations are widely applied in various physical problems. It
should be emphasized that the application of the calculus of variations to
physics does not consist merely in the solution of individual, albeit very
important problems. The so-called ‘“variational principles,” to be discussed
in Chapters 4 and 7, are essentially a manifestation of very general physical
laws, which are valid in diverse branches of physics, ranging from classical
mechanics to the theory of elementary particles.

To understand the basic meaning of the problems and methods of the
calculus of variations, it is very important to see how they are related to
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problems of classical analysis, i.e., to the study of functions of n variables.
Thus, consider a functional of the form

T = [ Few 3, dx, 3@ = 4, yb) = B

Here, each curve is assigned a certain number. To find a related function
of the sort considered in classical analysis, we may proceed as follows.
Using the points

a= Xg, X15-..5 Xpy Xp41 = b’

we divide the interval [a, b] into n + 1 equal parts. Then we replace the
curve y = y(x) by the polygonal line with vertices

(x05 A)y (X1, Y(x1)), - s (Xns M(X4)), (X415 B),
and we approximate the functional J[y] by the sum

n+1

J(yl’ L] yn) = Z: F(xi,yiy yi —hyi_l) ha (2)
i=1
where

»= y(xy), h=x — x_;.

Each polygonal line is uniquely determined by the ordinates y,,..., y, of
its vertices (recall that y, = 4 and y,,, = B are fixed), and the sum (2)
is therefore a function of the n variables y;,..., y,. Thus, as an approxi-
mation, we can regard the variational problem as the problem of finding the
extrema of the function J(»y,...,»,). In solving variational problems,
Euler made extensive use of this method of finite differences. By replacing
smooth curves by polygonal lines, he reduced the problem of finding extrema
of a functional to the problem of finding extrema of a function of » variables,
and then he obtained exact solutions by passing to the limit as n— oo.
In this sense, functionals can be regarded as “functions of infinitely many
variables” [i.e., the values of the function y(x) at separate points], and the
calculus of variations can be regarded as the corresponding analog of
differential calculus.

2. Function Spaces

In the study of functions of n variables, it is convenient to use geometric
language, by regarding a set of n numbers (y,...,y,) as a point in an
n-dimensional space. In just the same way, geometric language is useful
when studying functionals. Thus, we shall regard each function y(x)
belonging to some class as a point in some space, and spaces whose elements
are functions will be called function spaces.

In the study of functions of a finite number n of independent variables,
it is sufficient to consider a single space, i.e., n-dimensional Euclidean space
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&,.2 However, in the case of function spaces, there is no such ‘““universal”
space. In fact, the nature of the problem under consideration determines
the choice of the function space. For example, if we are dealing with a
functional of the form

b
[ Fe 3.y dx,

it is natural to regard the functional as defined on the set of all functions
with a continuous first derivative, while in the case of a functional of the
form

b
L E(x, y, ¥, ") dx,

the appropriate function space is the set of all functions with two continuous
derivatives. Therefore, in studying functionals of various types, it is
reasonable to use various function spaces.

The concept of continuity plays an important role for functionals, just
as it does for the ordinary functions considered in classical analysis. In
order to formulate this concept for functionals, we must somehow introduce
a concept of “closeness” for elements in a function space. This is most
conveniently done by introducing the concept of the norm of a function,
analogous to the concept of the distance between a point in Euclidean space
and the origin of coordinates. Although in what follows we shall always
be concerned with function spaces, it will be most convenient to introduce
the concept of a norm in a more general and abstract form, by introducing
the concept of a normed linear space.

By a linear space, we mean a set Z of elements x, y, z,... of any kind,
for which the operations of addition and multiplication by (real) numbers
o, B, ... are defined and obey the following axioms:

Lx+y=y+x;

2.x+y+z=x+(y + 2);

3. There exists an element O (the zero element) such that x + 0 = x for
any x e#;*

4. For each x € Z, there exists an element —x such that x + (—x) = 0;

5. 1-x =x;

6. a(Bx) = (2f)x;

T (o + B)x = ax + Bx;

8. a(x + y) = ax + ay.

3 See e.g., G. E. Shilov, An Introduction to the Theory of Linear Spaces, translated by
R. A. Silverman, Prentice-Hall, Inc., Englewood Cliffs, N. J. (1961), Theorem 14 and
Corollary, pp. 48-49.

¢ By x € #, we mean that the element x belongs to the set Z. In these axioms, x, y
and z are arbitrary elements of #, while « and B are arbitrary real numbers.
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A linear space Z is said to be normed, if each element x € Z is assigned a
nonnegative number | x|, called the norm of x, such that

L |x| = 0if and only if x = 0;
2. fox|| = lof I¥[;
3. %+ yl < Ixl + 1y

In a normed linear space, we can talk about distances between elements,
by defining the distance between x and y to be the quantity |x — y|.

The elements of a normed linear space can be objects of any kind, e.g.,
numbers, vectors (directed line segments), matrices, functions, etc. The
following normed linear spaces are important for our subsequent purposes:

1. The space %, or more precisely ¥(a, b), consisting of all continuous
functions y(x) defined on a (closed) interval [a, b} By addition of
elements of ¥ and multiplication of elements of € by numbers, we mean
ordinary addition of functions and multiplication of functions by

numbers, while the norm is defined

as the maximum of the absolute

value, i.e.,

Iylo = max |yl
ag<z<gb

Thus, in the space ¥, the distance
between the function y*(x) and the
function y(x) does not exceed ¢ if
the graph of the function y*(x) lies
FIGURE 1 inside a strip of width 2¢ (in the
vertical direction) “bordering” the

graph of the function y(x), as shown in Figure 1.

2. The space &,, or more precisely Z,(a, b), consisting of all functions
y(x) defined on an interval [a, ] which are continuous and have
continuous first derivatives. The operations of addition and multi-
plication by numbers are the same as in €, but the norm is defined by
the formula

I7li = max |y(x)| + max |y(x)l.
Thus, two functions in &, are regarded as close together if both the

functions themselves and their first derivatives are close together, since

Iy =zl <e
implies that

y®) —z()| <& Y —Z(X)] <e

foralla < x < b.
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3. The space Z,, or more precisely Z,(a, b), consisting of all functions
¥(x) defined on an interval [a, b] which are continuous and have
continuous derivatives up to order »n inclusive, where » is a fixed integer.
Addition of elements of &2, and multiplication of elements of 2, by
numbers are defined just as in the preceding cases, but the norm is
now defined by the formula

n
I¥la = D, max |y¥(x)],
{=0 as<z<b

where y'(x) = (d/dx)'y(x) and »®(x) denotes the function y(x) itself.
Thus, two functions in &, are regarded as close together if the values
of the functions themselves and of all their derivatives up to order n
inclusive are close together. It is easily verified that all the axioms of a
normed linear space are actually satisfied for each of the spaces ¢, 2,,
and 2,

Similarly, we can introduce spaces of functions of several variables, e.g.,
the space of continuous functions of n variables, the space of functions of n
variables with continuous first derivatives, etc. After a norm has been
introduced in the linear space # (which may be a function space), it is
natural to talk about continuity of functionals defined on £ :

DEFINITION.  The functional J[y] is said to be continuous at the point
yER if foranye > 0, there is a 8 > 0 such that
Iyl = Il < (3
provided that |y — 7| < 3.
Remark 1. The inequality (3) is equivalent to the two inequalities
J1-J] > —« “@
and
J-Jly] <= &)
If in the definition of continuity, we replace (3) by (4), J[y] is said to be lower

semicontinuous at y, while if we replace (3) by (5), J[y] is said to be upper
semicontinuous at y. These concepts will be needed in Chapter 8.

Remark 2. At first, it might appear that the space €, which is the largest
of those enumerated, would be adequate for the study of variatiohal problems.
However, this is not the case. In fact, as already mentioned, one of the basic
types of functionals considered in the calculus of variations has the form

I = [ Fexy, y')d.

It is easy to see that such a functional (e.g., arc length) will be continuous if
we interpret closeness of functions as closeness in the space 2,. However,
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in general, the functional will not be continuous if we use the norm intro-
duced in the space %,° even though it is continuous in the norm of the space
2,. Since we want to be able to use ordinary analytic methods, e.g., passage
to the limit, then, given a functional, it is reasonable to choose a function
space such that the functional is continuous.

Remark 3. So far, we have talked about linear spaces and functionals
defined on them. However, in many variational problems, we have to deal
with functionals defined on sets of functions which do not form linear spaces.
In fact, the set of functions (or curves) satisfying the constraints of a given
variational problem, called the admissible functions (or admissible curves),
is in general not a linear space. For example, the admissible curves for the
‘“simplest” variational problem (see Sec. 4) are the smooth plane curves
passing through two fixed points, and the sum of two such curves does not
pass through the two points. Nevertheless, the concept of a normed linear
space and the related concepts of the distance between functions, continuity
of functionals, etc., play an important role in the calculus of variations. A
similar situation is encountered in elementary analysis, where, in dealing
with functions of n variables, it is convenient to use the concept of an
n-dimensional Euclidean space &,, even though the domain of definition of
a function may not be a linear subspace of &,.

3. The Variation of a Functional. A Necessary Condition
for an Extremum

3.1. In this section, we introduce the concept of the wvariation (or
differential) of a functional, analogous to the concept of the differential of a
function of n variables. The concept will then be used to find extrema of
functionals. First, we give some preliminary facts and definitions.

DEFINITION. Given a normed linear space X, let each element he X
be assigned a number ¢[h), i.e., let p[h] be a functional defined on Z. Then
@[h] is said to be a (continuous) linear functional if

1. olah] = ag[h] for any h € # and any real number o;

2. glhy + hs] = o[h] + olho] for any hy, hy e R

3. ¢[h] is continuous (for all h € R).

Example 1. If we associate with each function h(x) € €(a, b) its value at
a fixed point x, in [a, b}, i.e., if we define the functional ¢[h] by the formula
CP[h] = h(xo)’
then ¢[h] is a linear functional on €(a, b).
5 Arc length is a typical example of such a functional. For every curve, we can find

another curve arbitrarily close to the first in the sense of the norm of the space ¢, whose
length differs from that of the first curve by a factor of 10, say.
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Example 2. The integral
b
olh] = f h(x) dx

defines a linear functional on €(a, b).
Example 3. The integral
b
olh] = [ a(0h(x) dx,

where x(x) is a fixed function in ¥(a, b), defines a linear functional on %(a, b).

Example 4. More generally, the integral
b
olh] = L [eo(x)A(x) + o1 ()A'(x) + - -+ + aa(x)A™(x)] dx, (6)

where the a;(x) are fixed functions in %(a, b), defines a linear functional
on Z,(a, b).

Suppose the linear functional (6) vanishes for all #(x) belonging to some
class. Then what can be said about the functions «(x)? Some typical
results in this direction are given by the following lemmas:

LemMA 1. If a(x) is continuous in [a, b], and if
[ " w()h(x) dx = 0

for every function h(x) € €(a, b) such that h(a) = h(b) = 0, then «(x) = 0
for all x in [a, b].

Proof. Suppose the function «(x) is nonzero, say positive, at some
point in [a,b]. Then «(x) is also positive in some interval [x;, x,]
contained in [a, b]. If we set

h(x) = (x — x1)(x2 — X)

for x in [xy, x,] and A(x) = 0 otherwise, then A(x) obviously satisfies
the conditions of the lemma. However,

[ * a(Oh(x) dx = [ atox — x)(xa = M dx > 0,

since the integrand is positive (except at x; and x,). This contradiction
proves the lemma.

Remark. The lemma still holds if we replace €(a, b) by Z2,(a, b). To
see this, we use the same proof with

h(x) = [(x — x))(x2 — x)]**?

for x in [x;, x,] and A(x) = O otherwise.
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LEMMA 2. If a(x) is continuous in [a, b], and if

[ ? (oK (x) dx = 0

for every function h(x)e D,(a, b) such that h(a) = h(b) = 0, then
a(x) = c for all x in [a, b], where ¢ is a constant.

Proof. Let c be the constant defined by the condition

[ty = clax = o,
and let

hex) = [ [®) — e,

so that A(x) automatically belongs to Z,(aq, b) and satisfies the con-
ditions A(a) = h(b) = 0. Then on the one hand,

[ " o) = cJh'(x) dx = [ * (X (x) dx — clh(b) — ha)] = O,
while on the other hand,
f’ [o) — el () dx = | " (%) — o] dx.

It follows that a(x) — ¢ = 0, i.e., a(x) = ¢, for all x in [a, b].
The next lemma will be needed in Chapter 8:

LemMA 3. If a(x) is continuous in [a, b, and if

[ * w(OH(x) dx = 0

for every function h(x)e Dj(a, b) such that h(a) = h(b) = 0 and
h'(a) = h'(b) = 0, then a(x) = ¢o + ¢,x for all x in [a, b), where coand ¢,
are constants.

Proof. Let ¢, and ¢, be defined by the conditions
b
[ 1) = ¢ — exxlax =0,

b T (7)
[ax [ 1®) - co - citlaE = 0,
and let

W) = [ a2 [T ~ ¢ — cutl d,

so that h(x) automatically belongs to Z,(a, b) and satisfies the conditions
h(a) = h(b) = 0, W'(a) = h'(b) = 0. Then on the one hand,

fb [e(x) — ¢y — 1 x]0"(x) dx

fb a(X)M"(x) dx — colh'(B) — W' (@)] — ¢, Jb xh"(x) dx
= —c,[bH(b) — ah'(a)] — c1[h(b) — h(a)] = O,
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while on the other hand,
fb [dx) — ¢ — e x]h"(x) dx = fb [(x) — co — €1x]?dx = 0.

It follows that «(x) — ¢ — ¢;x = 0, i.e., a(x) = ¢, + c,x, for all x in
[a, B].

LemMa 4. If «(x) and B(X) are continuous in [a, b, and if

b
[ ) + B ) dx = 0 ®)

for every function h(x) € 2,(a, b) such that h(a) = h(b) = 0, then B(x)
is differentiable, and B'(x) = a(x) for all x in [a, b].

Proof. Setting

AR = [ a) dE,

and integrating by parts, we find that
f’ 2(h(x) dx = — f” AR (x) dx,
i.e., (8) can be rewritten as
f" [— A(x) + B (x) dx = 0.

But, according to Lemma 2, this implies that
B(x) — A(x) = const,
and hence by the definition of A(x),
P (x) = a(x),

for all x in [a, b), as asserted. We emphasize that the differentiability
of the function (x) was not assumed in advance.

3.2. We now introduce the concept of the variation (or differential) of a
functional. Let J[y] be a functional defined on some normed linear space,
and let

AJp] =Jly + h] = Ty

be its increment, corresponding to the increment # = h(x) of the “independent
variable” y = y(x). If y is fixed, AJ[h] is a functional of A, in general a
nonlinear functional. Suppose that

AJ[R] = olh] + €|l

where @[h] is a linear functional and e — 0 as || — 0. Then the functional
J[y] is said to be differentiable, and the principal linear part of the increment
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AJ[h], i.e., the linear functional ¢[h] which differs from AJ[A] by an infinitesi-
mal of order higher than 1 relative to ||4|, is called the variation (or differ-
ential) of J[y] and is denoted by 8J[A].6

THEOREM 1. The differential of a differentiable functional is unique.

Proof. First, we note that if ¢[#] is a linear functional and if

olh]
a0

as k| — 0, then ¢[h] = 0, i.e., ¢[h] = O for all h. In fact, suppose
@lho] # O for some hy # 0. Then, setting

b

h ¢lho]
hy == A=
n o]

we see that ||h,| — 0 as n— oo, but
- ha) . nolho]
lim olha] _ lim O =A#0,
new [ aww nlhol

contrary to hypothesis.
Now, suppose the differential of the functional J[y] is not uniquely
defined, so that

AJ[h] = o1[h] + & ]|A],
AJ[h] = @o[h] + o)A,

where ¢, [h] and ¢,[#] are linear functionals, and ¢,, e — 0 as |h| — 0.
This implies

¢1[h] — cPz[h] = 52"}’“
and hence ¢,[#] — ¢5[A] is an infinitesimal of order higher than 1 relative

to ||h||. But since ¢,[h] — ¢4[h] is a linear functional, it follows from the
first part of the proof that ¢,[h] — ¢,[/#] vanishes identically, as asserted.

Next, we use the concept of the variation (or) differential of a functional
to establish a necessary condition for a functional to have an extremum.
We begin by recalling the corresponding concepts from analysis. Let
F(xy, ..., x,) be a differentiable function of n variables. Then F(x,,..., x,)
is said to have a (relative) extremum at the point (%, ..., X,) if

AF = F(xy,...,Xxp) — F(®y, ..., %)

has the same sign for all points (x, . . ., x,) belonging to some neighborhood
of (%4, ..., X,), where the extremum F(X,,..., £,) is a minimum if AF > 0
and a maximum if AF < 0.

Analogously, we say that the functional J[y] has a (relative) extremum
for y = p if J[y] — J[J] does not change its sign in some neighborhood of

§ Strictly speaking, of course, the increment and the variation of J[y], are functionals
of two arguments y and A, and to emphasize this fact, we might write AJ[y; h] =
3J[y; k] + e|h|.
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the curve y = j(x). Subsequently, we shall be concerned with functionals
defined on some set of continuously differentiable functions, and the functions
themselves can be regarded either as elements of the space € or elements
of the space &,. Corresponding to these two possibilities, we can define
two kinds of extrema: We shall say that the functional J[y] has a weak
extremum for y = y if there exists an € > 0 such that J[y] — J[y] has the
same sign for all y in the domain of definition of the functional which satisfy
the condition |y — J||, < ¢, where | ||; denotes the norm in the space Z,.
On the other hand, we shall say that the functional J[y] has a strong extremum
for y = j if there exists an € > 0 such that J[y] — J[§] has the same sign
for all y in the domain of definition of the functional which satisfy the
condition |y — J|, < &, where | |, denotes the norm in the spack €.
It is clear that every strong extremum is simultaneously a weak extremum,
since if |y — J|l; <&, then ||y — |0 < &, a fortiori, and hence, if J[J] is
an extremum with respect to all y such that |y — J|o < &, then J[J] is
certainly an extremum with respect to all y such that |y — j||; < e. How-
ever, the converse is not true in general, i.e., a weak extremum may not be a
strong extremum. As a rule, finding a weak extremum is simpler than
finding a strong extremum. The reason for this is that the functionals
usually considered in the calculus of variations are continuous in the norm
of the space &, (as noted at the end of the previous section), and this con-
tinuity can be exploited in the'theory of weak extrema. In general, however,
our functionals will not be continuous in the norm of the space €.

THEOREM 2. A necessary condition for the differentiable functional
JIy] to have an extremum for y = y is that its variation vanish for y = j,
i.e., that

3J[h] =0

for y = y and all admissible h.

Proof. To be explicit, suppose J[y] has a minimum for y = j.
According to the definition of the variation 8J[h], we have

AJTH] = 3JTH) + |l ©
where e — 0 as |h| — 0. Thus, for sufficiently small ||4|, the sign of
AJ[h] will be the same as the sign of 8J[#]. Now, suppose that
3J[ho] # O for some admissible 4,. Then for any o« > 0, no matter
how small, we have

SJ[—oahy] = —8J[who].

Hence, (9) can be made to have either sign for arbitrarily small |4|.
But this is impossible, since by hypothesis J[y] has a minimum for y = ,
i.e.,

AJ[hl = J[p + h] = J[p] = 0

for all sufficiently small ||A4||. This contradiction proves the theorem.
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Remark. In elementary analysis, it is proved that for a function to have
a minimum, it is necessary not only that its first differential vanish (df = 0),
but also that its second differential be nonnegative. Consideration of the
analogous problem for functionals will be postponed until Chapter 5.

4. The Simplest Variational Problem. Euler’s Equation

4.1. We begin our study of concrete variational problems by considering
what might be called the “simplest” variational problem, which can be
formulated as follows: Let F(x, y, z) be a function with continuous first and
second (partial) derivatives with respect to all its arguments. Then, among
all functions y(x) which are continuously differentiable for a < x < b and
satisfy the boundary conditions

find the function for which the functional

I = [ P 3,5 dx an

has a weak extremum. In other words, the simplest variational problem
consists of finding a weak extremum of a functional of the form (11), where
the class of admissible curves (see p. 8) consists of all smooth curves joining
two points. The first two examples on pp. 2, 3, involving the brachistochrone
and the shortest distance between two points, are variational problems of
just this type. To apply the necessary condition for an extremum (found in
Sec. 3.2) to the problem just formulated, we have to be able to calculate the
variation of a functional of the type (11). We now derive the appropriate
formula for this variation.
Suppose we give y(x) an increment h(x), where, in order for the function

¥(x) + h(x)
to continue to satisfy the boundary conditions, we must have
h(a) = h(b) = 0.
Then, since the corresponding increment of the functional (11) equals
AT =J[y + h] —Jy] = f:F(x,y + h )y + h)dx — f:F(x,y,y’) dx
= [Py + by + ) = Fix, 3, ) dx,

it follows by using Taylor’s theorem that

b
AJ = fa [Fy(xa s y')h + Fy.(x, Y, y')h’] dx +---, (12)
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where the subscripts denote partial derivatives with respect to the corres-
ponding arguments, and the dots denote terms of order higher than 1 relative
tohand #. Theintegral in the right-hand side of (12) represents the principal
linear part of the increment AJ, and hence the variation of J[y] is

b
oJ = L [F,(x,y, ¥)h + F,(x,y, y)h'] dx.

According to Theorem 2 of Sec. 3.2, a necessary condition for J[y] to have
an extremum for y = y(x) is that

57 = [ (Eh + Flyds =0 (13)

for all admissible 4. But according to Lemma 4 of Sec. 3.1, (13) implies
that
d

Fy—a

F, =0, (14)

a result known as Euler’s equation.” Thus, we have proved

THEOREM 1. Let J[y] be a functional of the form

fb F(x,y,¥) dx,

defined on the set of functions y(x) which have continuous first derivatives
in [a, b] and satisfy the boundary conditions y(a) = A, y(b) = B. Then
a necessary condition for J[y] to have an extremum for a given function
¥(x) is that y(x) satisfy Euler’s equation®

d

F!’_d_x

F, =0.

The integral curves of Euler’s equation are called extremals. Since
Euler’s equation is a second-order differential equation, its solution will in
general depend on two arbitrary constants, which are determined from the
boundary conditions y(a) = 4, y(b) = B. The problem usually considered
in the theory of differential equations is that of finding a solution which is
defined in the neighborhood of some point and satisfies given initial con-
ditions (Cauchy’s problem). However, in solving Euler’s equation, we are
looking for a solution which is defined over all of some fixed region and
satisfies given boundary conditions. Therefore, the question of whether
or not a certain variational problem has a solution does not just reduce to the

7 We emphasize that the existence of the derivative (d/dx)F,. is not assumed in
advance, but follows from the very same lemma.

8 This condition is necessary for a weak extremum. Since every strong extremum is
simultaneously a weak extremum, any necessary condition for a weak extremum is
also a necessary condition for a strong extremum.
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usual existence theorems for differential equations. In this regard, we now
state a theorem due to Bernstein,® concerning the existence and uniqueness of
solutions “in the large” of an equation of the form

y' = F(x, ). (15

THEOREM 2 (Bernstein). If the functions F, F, and F,. are continuous
at every finite point (x, y) for any finite y', and if a constant k > 0 and
Sfunctions

a=ax) 20, PL=px)y)=0

(which are bounded in every finite region of the plane) can be found such
that

F(x,,9) >k, |F(x,3,))| < oy’ + B,

then one and only one integral curve of equation (15) passes through any
two points (a, A) and (b, B) with different abscissas (a # b).

Equation (13) gives a necessary condition for an extremum, but in general,
one which is not sufficient. The question of sufficient conditions for an
extremum will be considered in Chapter 5. In many cases, however,
Euler’s equation by itself is enough to give a complete solution of the prob-
lem. Infact, the existence of an extremum is often clear from the physical or
geometric meaning of the problem, e.g., in the brachistochrone problem,
the problem concerning the shortest distance between two points, etc. If in
such a case there exists only one extremal satisfying the boundary conditions
of the problem, this extremal must perforce be the curve for which the
extremum is achieved.

For a functional of the form

Jb F(x, y, y") dx

Euler’s equation is in general a second-order differential equation, but it
may turn out that the curve for which the functional has its extremum is
not twice differentiable. For example, consider the functional

1
I = [ yex - yydx,
where
W-1)=0, »1)=1
The minimum of J[y] equals zero and is achieved for the function

0 for —1<x<0,

y=xyx) = x2 for 0<x<l,

9 S. N. Bernstein, Sur les équations du calcul des variations, Ann. Sci. Ecole Norm.
Sup.,29,431-485(1912).
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which has no second derivative for x = 0. Nevertheless, y(x) satisfies
the appropriate Euler equation. In fact, since in this case

F(xs Y, y’) = y2(2x - y')2’
it follows that all the functions

d
dx
vanish identically for —1 < x < 1. Thus, despite the fact that Euler’s
equation is of the second order and y“(x) does not exist everywhere in
[—1, 1], substitution of y(x) into Euler’s equation converts it into an identity.

We now give conditions guaranteeing that a solution of Euler’s equation
has a second derivative:

F, =2y2x — y')?, F, ==2y’Q2x — )", F,

THEOREM 3. Suppose y = y(x) has a continuous first derivative and
satisfies Euler’s equation

d
T dx

Then, if the function F(x, y, y') has continuous first and second derivatives
with respect to all its arguments, y(x) has a continuous second derivative
at all points (x, y) where

Fyylx, y(x), y'(x)] # 0.
Proof. Consider the difference

F, F, = 0.

AF, = Fu(x + Ax,y + Ay, Y + Ay') — Fu(x, 3, ))
= AxFI/I + AyFll’ll + Ay'Fy’y’,

where the overbar indicates that the corresponding derivatives are evalu-
ated along certain intermediate curves. We divide this difference by
Ax, and consider the limit of the resulting expression

s

A ’
Fy,I + Ax _y

Ax Eyy

Fy'y +
asAx—0. (This limit exists, since F,. has a derivative with respect to
x, which, according to Euler’s equation, equals F,.) Since, by hypoth-
esis, the second derivatives of F(x, y,z) are continuous, then, as
Ax — 0, F,., converges to F, ., i.e., to the value of 92F/dy’ ox at the point
x. It follows from the existence of y* and the continuity of the second
derivative F,., that the second term (Ay/Ax)F,. also has a limit as
Ax— 0. But then the third term also has a limit (since the limit of the
sum of the three terms exists), i.e., the limit
. Ay -
Jim, Ax fo
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exists. AsAx— 0, F,.,. converges to F,,- # 0, and hence

. Ay "
Jim x5 = Y'®)

’

exists. Finally, from the equation

d
e F, —F, =0,
we can find an expression for y”, from which it is clear that y” is

continuous wherever F,.,. # 0. This proves the theorem.

Remark. Here it is assumed that the extremals are smooth.'° 1In Sec. 15
we shall consider the case where the solution of a variational problem may
only be piecewise smooth, i.e., may have “corners’ at certain points.

4.2. Euler’s equation (14) plays a fundamental role in the calculus of
variations, and is in general a second-order differential equation. We now
indicate some special cases where Euler’s equation can be reduced to a first-
order differential equation, or where its solution can be obtained entirely
in terms of quadratures (i.e., by evaluating integrals).

Case 1. Suppose the integrand does not depend on y, i.e., let the functional
under consideration have the form

b
f F(x, y') dx,
where F does not contain y explicitly. In this case, Euler’s equation becomes
d
o F, =0,
which obviously has the first integral
F, =C, (16)

where C is a constant. This is a first-order differential equation which
does not contain y. Solving (16) for y’, we obtain an equation of the form

Y =/ C),
from which y can be found by a quadrature.

Case 2. If the integrand does not depend on x, i.e., if

b ’
ID) = [ FO.y) dx,
then
d

Fy—a

Fy’ = Fy - Fy'yyl - Fy’y’y”- (17)

10 We say that the function y(x) is smooth in an interval [a, b] if it is continuous in
[a, b), and has a continuous derivative in [a, b]. We say that y(x) is piecewise smooth in
[a, b] if it is continuous everywhere in [a, 4], and has a continuous derivative in [a, b)
except possibly at a finite number of points.
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Multiplying (17) by y’, we obtain
’ ’ r " d ’
Ey _Fy'yyz_Fy'y’yy =E(F_yFy')°

Thus, in this case, Euler’s equation has the first integral
F—-yF,=C,
where C is a constant.
Case 3. If F does not depend on y', Euler’s equation takes the form
F(x,y) =0,
and hence is not a differential equation, but a ‘“finite”” equation, whose
solution consists of one or more curves y = y(x).

Case 4. In a variety of problems, one encounters functionals of the form

fb f(x, »WVT + y2dx,

representing the integral of a function f(x, y) with respect to the arc length
s(ds= V1 + y2dx). In this case, Euler's equation can be transformed
into

oF d (OF\ _ —s d y

T T Yy ey y
_./;/\/1+y fl\/i+_y'2 ./11 f(l

”

V142 + )y
L (s rpy_r Y ] _

ie.,

— [ y” =
f;/ f:y fl +yl2 0'

Example 1. Suppose that
V1 + )2
I = —ax, =0, ) =1.
1 X
The integrand does not contain y, and hence Euler’s equation has the form
F,, = C (cf. Case 1). Thus,
yl

— 2 =,

xVT + y2
so that

Y21 — C2x2) = C2x2

or

, Cx

Y= e
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from which it follows that

Cx dx 1 ——
_,{\/1 _szz_c\/l_czxz kG
or

1

O-CP+x =G
Thus, the solution is a circle with its center on the y-axis. From the
conditions y(1) = 0, ¥(2) = 1, we find that

so that the final solution is
(y—22+x2=35,

Example 2. Among all the curves joining two given points (x,, y,) and
(X1, ¥1), find the one which generates the surface of minimum area when rotated
about the x-axis. As we know, the area of the surface of revolution generated
by rotating the curve y = y(x) about the x-axis is

2 le yVI1 + y'2dx.
Zo

Since the integrand does not depend explicitly on x, Euler’s equation has the
first integral

F—-yF,=C
(cf. Case 2), i.e.,

2
WIHyr-y—L—_-=c

VT + y?
or
y=CVI+y?
so that
, y-C
y = cz
Separating variables, we obtain
dx = C——-_..dy_:
\/yz —C2
i.e.,
12 _ (2
x+C;,=Cln Z.i.l/%__c,
so that

y=Cmmxzq- (18)
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Thus, the required curve is a catenary passing through the two given
points. The surface generated by rotation of the catenary is called a catenoid.
The values of the arbitrary constants C and C; are determined by the
conditions

Y(x0) = Yo, Y(x1) = y1.

It can be shown that the following three cases are possible, depending on
the positions of the points (xo, o) and (xy, y,):

1. If a single curve of the form (18) can be drawn through the points
(x0, ¥o) and (xy, y;), this curve is the solution of the problem [see
Figure 2(a)].

2. If two extremals can be drawn through the points (xo, ¥o) and (x, y,),
one of the curves actually corresponds to the surface of revolution
of minimum area, and the other does not.

3. If there is no curve of the form (18) passing through the points (xq, y,)
and (x,, »,), there is no surface in the class of smooth surfaces of revo-
Jution which achieves the minimum area. In fact, if the location of the

V4 B V4
| 1 B
| ! A
] ! |
1 |
Xo X, X Xo P2 4
() (b)
FIGURE 2

two points is such that the distance between them is sufficiently large
compared to their distances from the x-axis, then the area of the surface
consisting of two circles of radius y, and y;, plus the segment of the
x-axis joining them [see Figure 2(b)] will be less than the area of any
surface of revolution generated by a smooth curve passing through the
points. Thus, in this case the surface of revolution generated by the
polygonal line Ax,x,B has the minimum area, and there is no surface
of minimum area in the class of surfaces generated by rotation about the
x-axis of smooth curves passing through the given points. (This case,
corresponding to a “broken extremal,” will be discussed further in
Sec. 15.)

Example 3. For the functional

T = [ @ - e, (19
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Euler’s equation reduces to a finite equation (see Case 3), whose solution
is the straight line y = x. In fact, the integral (19) vanishes along this line.

5. The Case of Several Variables

So far, we have considered functionals depending on functions of one
variable, i.e., on curves. In many problems, however, one encounters
functionals depending on functions of several independent variables, i.e., on
surfaces. Such multidimensional problems will be considered in detail in
Chapter 7. For the time being, we merely give an idea of how the formula-
tion and solution of the simplest variational problem discussed above carries
over to the case of functionals depending on surfaces.

To keep the notation simple, we confine ourselves to the case of two
independent variables, but all our considerations remain the same when there
are n independent variables. Thus, let F(x, y, z, p, q) be a function with
continuous first and second (partial) derivatives with respect to all its argu-
ments, and consider a functional of the form

J[z] = f fR F(x, , 2, z,, z,) dx dy, (20)

where R is some closed region and =z, z, are the partial derivatives of
z = z(x,y). Suppose we are looking for a function z(x, y) such that

1. z(x, y) and its first and second derivatives are continuous in R;

2. z(x, y) takes given values on the boundary I' of R;

3. The functional (20) has an extremum for z = z(x, y).
Since the proof of Theorem 2 of Sec. 3.2 does not depend on the form of
the functional J, then, just as in the case of one variable, a necessary condition
for the functional (20) to have an extremum is that its variation (i.e., the
principal linear part of its increment) vanish. However, to find Euler’s

equation for the functional (20), we need the following lemma, which is
analogous to Lemma 1 of Sec. 3.1 (see also the remark on p. 9):

LeMMA. If a(x, y) is a fixed function which is continuous in a closed

region R, and if the integral

[ ], e htx, ) dx ay 0)

vanishes for every function h(x, y) which has continuous first and second
derivatives in R and equals zero on the boundary T" of R, then a(x,y) = 0
everywhere in R.

Proof. Suppose the function o(x,y) is nonzero, say positive, at
some point in R. Then a(x, y) is also positive in some circle

(x = x> + (¥ —yo)? < € (22)
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contained in R, with center (x,, yo) and radius €. If we set A(x, y) = 0
outside the circle (22) and
h(x,y) = [(x — x0)> + (¥ — yo)* — €*°

inside the circle, then A(x) satisfies the conditions of the lemma. How-
ever, in this case, (21) reduces to an integral over the circle (22) and is
obviously positive. This contradiction proves the lemma.

In order to apply the necessary condition for an extremum of the functional
(20), i.e., 8J = 0, we must first calculate the variation 8J. Let A(x, y) be an
arbitrary function which has continuous first and second derivatives in the
region R and vanishes on the boundary I of R. Then if z(x, y) belongs to
the domain of definition of the functional (20), so does z(x, y) + A(x, y).
Since

AT =Jlz + k) =Tl = [ (FOopz + bz + bz + hy)

- F(x7 y’ z’ zI’ z!l)] dx dy’
it follows by using Taylor’s theorem that

A = [[ (Fh+ Foh, + Fhydxdy + -,
R * v

where the dots denote terms of order higher than 1 relative to A, 4, and hA,.
The integral on the right represents the principal linear part of the increment
AJ, and hence the variation of J[Z] is

8J = f fn (Fh + Foh, + F,h,)dx dy.
Next, we observe that

[ [ Fehe+ Fohyaxay

- [[ [% (F.h) + %(Fzyh)] dxdy - [ | (% F., + % Fzy) h dx dy
= [(Fhdy = F han - [ [ (% F, + ;}—)F) hdx dy,

where in the last step we have used Green’s theorem??!

[, (% —@6—5) axdy = [ (Pdx + Q dy)

The integral along I' is zero, since A(x, y) vanishes on I', and hence, comparing
the last two formulas, we find that

0 0
SJ = J‘fﬂ (Fz ~ o Fe - % Fzy) h(x, y) dx dy. (23)

11 See e.g., D. V. Widder, Advanced Calculus, second edition, Prentice-Hall, Inc.,
Englewood Cliffs, N.J. (1961), p. 223.
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Thus, the condition 8J = 0 implies that the double integral (23) vanishes for
any h(x, y) satisfying the stipulated conditions. According to the lemma,
this leads to the following second-order partial differential equation, again
known as Euler’s equation:

0 0

F,— o F,— , F, =0 (24)

We are looking for a solution of (24) which takes given values on the
boundary T'.

Example. Find the surface of least area spanned by a given contour.
This problem reduces to finding the minimum of the functional

Jlz] = ”Rx/l ¥ 22 + Zdxdy,

so that Euler’s equation has the form

r(1 + q%) — 2spq + t(1 + p?) =0, (25)
where
D=2y Q=24 F=2Zy, 8§=2Z, I=2,.
Equation (25) has a simple geometric meaning, which we explain by using
the formula
11 1\ Eg —2Ff 4 Ge
M“i(—+ )‘ 2EC — F9)

X1 ;;
for the mean curvature of the surface, where E, F, G and e, f, g are the
coefficients of the first and second fundamental quadratic forms of the
surface.!? If the surface is given by an explicit equation of the form
z = z(x, ), then

E=1+p* F=pg, G=1+¢,
e — r f= N g = t
\/1+p2+q2 \/1+p2+q2 \/l+p2+q2
and hence
_ (L +p)r—2spg + (1 +g%)r.

M —
\/1+p"’+q2

Here, the numerator coincides with the left-hand side of Euler’s equation
(25). Thus, (25) implies that the mean curvature of the required surface
equals zero. Surfaces with zero mean curvature are called minimal surfaces.

12 See e.g., D. V. Widder, op. cit., Chap. 3, Sec. 6, and E. Kreysig, Differential
Geometry, University of Toronto Press, Toronto (1959), Chap.4. Here,x, and x, denote
the principal normal curvatures of the surface.
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6. A Simple Variable End Point Problem

There are, of course, many other kinds of variational problems besides
the “simplest” variational problem considered so far, and such problems
will be studied in Chapters 2 and 3. However, this is a suitable place for
acquainting the reader with one of these problems, i.e., the variable end
point problem, a particular case of which can be stated as follows: Among all
curves whose end points lie on two given vertical lines x = a and x = b,
find the curve for which the functional

10 = [ F(x, 3, y) d 26)

has an extremum.*®
We begin by calculating the variation 3J of the functional (26). As
before, 8J means the principal linear part of the increment

b
AJ = ULy + K = JD) = [ [FGy + by + ) = F(x,p, )] dx.
Using Taylor’s theorem to expand the integrand, we obtain
A = [ Eh+ Foliyde + -,

where the dots denote terms of order higher than 1 relative to 4 and 4’, and
hence

5= | " (Fh + Fyh) dx.

Here, unlike the fixed end point problem, 4(x) need no longer vanish at the
points a and b, so that integration by parts now gives!*

3 = [" (R - 5 B) 0 dx + Fl2:
b d

- [ (Fy - £ Fy.) ) dx + Fylany HB) — Fylene h(a).

We first consider functions A(x) such that #(a) = A(b) = 0. Then, as in
the simplest variational problem, the condition 8J = 0 implies that

_4
dx

@7

F, F, =0. (28)
Therefore, in order for the curve y = y(x) to be a solution of the variable
end point problem, y must be an extremal, i.e., a solution of Euler’s equation.

13 The more general case where the end points lie on two given curves y = ¢(x) and
y = Y(x) is treated in Sec. 14.
14 As usual, f(x)|ZZ2 stands for f(b) — f(a).
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But if y is an extremal, the integral in the expression (27) for 3J vanishes,
and then the condition 8J = 0 takes the form

Fyl.p h(b) — Fy|z=q h(a) = 0,
from which it follows that
Fy’|z=a =0, Fyli=s = 0, (29

since h(x) is arbitrary. Thus, to solve the variable end point problem, we
must first find a general integral of Euler’s equation (28), and then use the
conditions (29), sometimes called the natural boundary conditions, to determine
the values of the arbitrary constants.

Besides the case of fixed end points and the case of variable end points,
we can also consider the mixed case, where one end is fixed and the other is
variable. For example, suppose we are looking for an extremum of the
functional (26) with respect to the class of curves joining a given point A4
(with abscissa @) and an arbitrary point of the line x = 4. In this case, the
conditions (29) reduce to the single condition

Fy’|z=b = O,

and y(a) = A serves as the second boundary condition.

Example. Starting from the point P = (a, A), a heavy particle slides
down a curve in the vertical plane. Find the curve such that the particle
reaches the vertical line x = b (#a) in the shortest time. (This is a variant
of the brachistochrone problem, p. 3.)

For simplicity, we assume that the original point coincides with the origin
of coordinates. Since the velocity of motion along the curve equals

_ds g dx
U—E—\/1+y 7

we have

1T L 2 1T L 2
_Vi+y dx=\/1+y

dt —=
v V2gy

dx,
so that the transit time 7T is given by the equation

1T 1 2
r- [V,
V2gy
The general solution of the corresponding Euler equation consists of a

family of cycloids

x =r0 — sin0) + ¢, y = r(1 — cos 0).
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Since the curve must pass through the origin, we must have ¢ = 0. To
determine r, we use the second condition

’

Y
F, =——————=0 for x=b,
Y Vagy V1 + )

ie., y' = 0 for x = b, which means that the tangent to the curve at its right
end point must be horizontal. It follows that r = b/x, and hence the
required curve is given by the equations

b . b
x=E(0—sm6), y=;:(1—cos6).

7. The Variational Derivative

In Sec. 3.2 we introduced the concept of the differential of a functional.
We now introduce the concept of the variational (or functional) derivative,
which plays the same role for functionals as the concept of the partial
derivative plays for functions of n variables. We begin by considering
functionals of the type

I = [ Fo ) dy, ey =4, ) =B, (30)

corresponding to the simplest variational problem. Our approach is to
first go from the variational problem to an n-dimensional problem, and then
pass to the limit n — oco.

Thus, we divide the interval [a, ] into n + 1 equal subintervals by
introducing the points

Xo = Q, Xyy5...5 Xnp, xn+1=bs (XH_I—X(:AX),
and we replace the smooth function y(x) by the polygonal line with vertices
(XO’ J’o), (xla }’1), LN (xm yn)a (xn+1, yn+l)’
where y; = y(x;).'®* Then (30) can be approximated by the sum

J(yl’- . 'ayn) = Z F(xbyb‘zi'HA—;y‘) A-x! (31)
i=0

which is a function of n variables. (Recall that y, = 4 and y,,, = B are
fixed.)
Next, we calculate the partial derivatives

I 1 y)
Oy

and we consider what happens to these derivatives as the number of points
of subdivision increases without limit. Observing that each variable y,

15 This is the method of finite differences (cf. Secs. 1, 40).
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in (31) appears in just two terms, corresponding to i = k and i =k — 1,
we find that

oJ -
—=F, (xk, Yk }_)—"LAx-ﬁ) Ax

e (32)

+ Fy’ (xk—b Yi-15 }%ﬂ) - Fy' (xk’ Vies yk+1AX_ yk)

As Ax— 0, i.e., as the number of points of subdivision increases without
limit, the right-hand side of (32) obviously goes to zero, since it is a quantity
of order Ax. In order to obtain a limit which is in general nonzero as
Ax — 0, we divide (32) by Ax, obtaining

oJ Ye+1 — yk)
_ayk‘A'x‘ =F (x,,, Vi T Ax
1 - - Vi—
~ Ax [Fy' (xk, Yies Zﬁa—xl‘) - F, (xk—byk—-l’ ykA—;:kl)]

We note that the expression 0y, Ax appearing in the denominator on the left
has a direct geometric meaning, and is in fact just the area of the region
lying between the solid and the dashed curves in Figure 3.

(33)

<
N
N
N
->
7
7
7
4

<

>

>
X
N

FIGURE 3

As Ax— 0, the expression (33) converges to the limit

8]___ ’ d 4
g; = Fy(xaysy) - ‘TxFy'(x!y’y)’

called the variational derivative of the functional (30). We see that the
variational derivative 8J/8y is just the left-hand side of Euler’s equation
(28), and hence the meaning of Euler’s equation is just that the variational
derivative of the functional under consideration should vanish at every point.
This is the analog of the situation encountered in elementary analysis, where
a necessary condition for a function of n variables to have an extremum is
that all its partial derivatives vanish.

In the general case, the variational derivative is defined as follows: Let
J[y] be a functional depending on the function y(x), and suppose we give
y(x) an increment A(x) which is different from zero only in the neighborhood
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of a point x,. Dividing the corresponding increment J[y + #] — J[y] of
the functional by the area Ac lying between the curve y = A(x) and the
Xx-axis,'® we obtain the ratio

Iy + Al = I,

Ac (34

Next, we let the area Ac go to zero in such a way that both max |A(x)| and
the length of the interval in which A(x) is nonvanishing go to zero. Then,
if the ratio (34) converges to a limit as Ac— 0, this limit is called the
variational derivative of the functional J[y] at the point x, [for the curve
y = y(x)], and is denoted by

37
8.y ZT=1I0

It can be shown that the analogs of all the familiar rules obeyed by ordinary
derivatives (e.g., the formulas for differentiating sums and products of func-
tions, composite functions, etc.) are valid for variational derivatives.

Remark. 1t is clear from the definition of the variational derivative
that if A(x) is different from zero in a neighborhood of the point x, and if
Ac is the area between the curve y = h(x) and the x-axis, then

_ 3J

AT =Jly + hl —Jly] = Sy

where € — 0 as both max |A(x)| and the length of the interval in which A(x)

is nonvanishing go to zero. It follows that in terms of the variational

derivative, the differential or variation of the functional J[y] at the point x,
[for the curve y = y(x)] is given by the formula

+ g3 Ao,

z=19

3J

=g

Ao.

z=1z9

8. Invariance of Euler’s Equation

Suppose that instead of the rectangular plane coordinates x and y, we
introduce curvilinear coordinates # and v, where

x = x(u, v),
y = Mu,v),

Xu Xy

0. 35
Yu Wv * (33)

Then the curve given by the equation y = y(x) in the xy-plane corresponds
to the curve given by some equation

v =v(u)

16 Ao can also be regarded as the area between the curvesy = y(x) and y = y(x) + h(x).
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in the uv-plane. When we make the change of variables (35), the functional

b
I = | Fxp,y) dx
goes into the functional
_ ! Yu T+ yvv’] ’
Ji[v] = J.al F [x(u, v), y(u, v), " (x. + x,0") du
b
= f ' Fi(u, v, V') du,
where '

n yu + yvv’ ’
Fi(u,v,v') = F [x(u, v), y(u, v), o oo x,,v’] (x, + x,0).

We now show that if y = y(x) satisfies the Euler equation

— —=—-—==0 (36)
corresponding to the original functional J[y], then v = v(u) satisfies the
Euler equation

%1 37

corresponding to the new functional J;[v]. To prove this, we use the concept
of the variational derivative, introduced in the preceding section. Let Ao
denote the area bounded by the curves y = y(x) and y = y(x) + h(x), and
let Ao, denote the area bounded by the corresponding curves v = v(x) and
= v(u) + n(u) in the wv-plane. By the standard formula for the trans-
formation of areas, the limit as Ag, Ao, — 0 of the ratio As/As, approaches
the Jacobian
Xy Xy

Yu Do
which by hypothesis is nonzero. Thus, if

lim LA =JDT_

Ac—0 (o3

’

then

lim Jl[v + 7)] _ JI[U] =0
Acy—0 AO‘l
as well. It follows that v(u) satisfies (37) if y(x) satisfies (36). In other
words, whether or not a curve is an extremal is a property which is independent
of the choice of the coordinate system.

In solving Euler’s equation, changes of variables can often be used to
advantage. Because of the invariance property just proved, the change of
variables can be made directly in the integral representing the functional
rather than in Euler’s equation, and we can then write Euler’s equation for the
new integral.
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Example. Suppose we are looking for the extremals of the functional
I = [ VI dy, (38)
®o

where r = r(p). The corresponding Euler equation has the form
_r _4_r _ 0
Vi dpvages
The change of variables
X = rcos ¢, y=rsing

transforms (38) into an integral of the form
le VT ¥ y?dx,
Zo
which has the Euler equation

with general solution
y=oax+p.
Therefore, the solution of (38) is

rsing = arcos ¢ + .

PROBLEMS

1. Use the method of finite differences (Sec. 1) to find the shortest plane curve
joining two points 4 and B.

2. A set # in a normed linear space Z is said to be convex if # contains all
elements of the form ax + By, where o, 8 = 0, « + B = 1, provided that .#
contains x and y. Prove that the set of all elements x € Z satisfying the
inequality |x — xo| < ¢, where x, is a fixed element of Z and ¢ > 0, is convex.

3. Show that the set ?(a, b) of all continuous functions defined on the
interval [a, b], equipped with the norm

1 ={ [ 1o axf ™

forms a normed linear space.

4. An infinite sequence of elements y;, y;, ... of elements of a normed
linear space Z is called a Cauchy sequence (or fundamental sequence) if, given
any e > 0, thereexists an integer N = N(e) such that ||y, — ya| < ¢, provided
that m > N, n > N. A normed linear space Z is said to be complete if every
Cauchy sequence in Z converges to some element in Z. Prove that the space
% (a, b) introduced in the preceding problem is not complete, but that the space
% (a, b) introduced in Sec. 2 is complete.

Comment. See e.g., G. E. Shilov, op. cit., p. 249.
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5. Prove that any norm defined on a linear space Z is a continuous functional
on A.

6. Suppose the norm of the space Z,(a, b) is defined as

Iyl = max {{yx)|, [y, ..., [ Y@},
agzr<gd
instead of
n
Iyl = 2 max |y®)],
=0 a<z<d

asonp.7. Prove that any functional on 2,(a, b) which is continuous with
respect to one of these norms is continuous with respect to the other.

7. Let J[y] be the arc-length functional, defined for all y € 2,(a, b). Show

that J[y] is lower semicontinuous with respect to the norm of the space
€(a, b).

Comment. As remarked in footnote 5, p. 8, J[y] is not continuous with
respect to the norm of €(a, b).

8. Let ¢[h] be a linear functional defined on a normed linear space #. Prove
that if ¢[A] is continuous for & = 0, it is continuous for all & € Z.

9. Prove that a linear functional ¢[h] cannot have an extremum unless
o[h] = 0.

10. Prove that if two linear functionals ¢[#] and ¢[h] defined on the same
space vanish on the same set of elements, then ¢[h] = AJ[h], where A is a
constant.

11. Show that constants ¢, and c; can always be chosen satisfying the
conditions (7) used to prove Lemma 3, p. 10.

12. Prove that the square of a differentiable functional is differentiable, and
write a formula for its differential (variation).

13. Prove that if two differentiable functionals defined on the same normed
linear space have the same differential at every point of the space, then they
differ by a constant.

14. Analyze the variational problems corresponding to the following func-
tionals, where in each case y(0) = 0, y(1) = 1:

1 1 1

a) f y' dx; b) f yy dx; c) f xyy’ dx.
V] W) )

15. Find the extremals of the following functionals:

b by&

a) f (%2 + y? — 2y sin x) dx; b) f = dx;
a a X
b b

<) f (»* — y'% — 2y cosh x) dx; d) j (* + ¥2 + 2pe) dx;
1 a

e) f (¥® — y? — 2ysin x) dx.

Ans. b) y = Cix* + Cg; d) y = dxe® + Cie* + Cae™ 2.
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16. Prove the uniqueness part of Bernstein’s theorem (p. 16).

Hint. Let A(x) = @2(x) — ¢1(x), where ¢,(x) and ¢5(x) are two solutions
of (15), write an expression for A”(x) and use the condition F,(x, y, y') > k.

17. Prove that one and only one extremal of each of the functionals
fe-2%(y2 = 1)dx, o2+ ytan'y —InvVT + y2)dx
passes through any two points of the plane with different abscissas.

Hint. Apply Bernstein’s theorem.

18. Find the general solution of the Euler equation corresponding to the
functional

01 = [ VT F 7 dx,

and investigate the special cases f(x) = Vx and f(x) = x.
Comment. The case f(x) = 1/x is treated in Example 1, p. 19.

19. Find all minimal surfaces whose equations have the form z = ¢(x) + $(»).
cos a(y — yo).

Ans. z = Ax + By + C, ez -20) =
cos a(x — Xxo)

20. Which curve minimizes the integral
1
J; G2+ 3y + ¥ +y)dx

when the values of y are not specified at the end points?
Ans. y = 3(x2 — 3x + 1).

21. Calculate the variational derivative at the point x, of the quadratic
functional

b (b
) = [ [7 K, 03930 ds .
22. Find the extremals of the functional

IVEF VT + y2dx.

Hint. Use polar coordinates.

Ans. x?cos « + 2xy sin « — y2 cos « = {3, where « and B are constants.
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FURTHER GENERALIZATIONS

In this chapter, we consider some further generalizations of the simplest
variational problem. These include variational problems in spaces of dimen-
sion greater than two (Sec. 9), problems in parametric form (Sec. 10),
problems involving higher derivatives (Sec. 11), and problems with subsidiary
conditions (Sec. 12).

9. The Fixed End Point Problem for n Unknown Functions

Let F(x, y1,..-, ¥n» 21, - - -» Z,) be a function with continuous first and
second (partial) derivatives with respect to all its arguments. Consider
the problem of finding necessary conditions for an extremum of a functional
of the form

b
J[yl"'~$yn] = J:l F(x,.Vn---,Yn,ya,---,y;n)d-& (l)

which depends on n continuously differentiable functions y,(x), ..., y.(x)
satisfying the boundary conditions

y(@ =4, yb)=8  (i=1,...,n). @
In other words, we are looking for an extremum of the functional (1) defined
on the set of the set of smooth curves joining two fixed points in (n + 1)-
dimensional Euclidean space &,,,. The problem of finding geodesics, i.e.,
shortest curves joining two points of some manifold, is of this type. The
same kind of problem arises in geometric optics, in finding the paths along
which light rays propagate in an inhomogeneous medium. In fact, according
to Fermat’s principle, light goes from a point P, to a point P, along the

path for which the transit time is the smallest.
34
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To find necessary conditions for the functional (1) to have an extremum,
we first calculate its variation. Suppose we replace each y(x) by a “varied”
function y(x) + h(x). By the variation 3J of the functional J[y, ..., y.],
we mean the expression which is linear in Ay, h; (i = 1,...,n) and differs
from the increment

AJ = J[yl + hly""yn + hn] - J[yls"~’yn]

by a quantity of order higher than 1 relative to h;, h; ( = 1,...,n). Since
both y,(x) and y(x) + h(x) satisfy the boundary conditions (2), for each i,
it is clear that

h(a) = h(b) =0 (G=1,...,n).

We now use Taylor’s theorem, obtaining
b
AJ = j F -y ¥ + by Yy + By ) dx — F(xy oy pi Yi .. )] dx
b n
= [ > Fuh+ Ftiydx + -,
@ i=1

where the dots denote terms of order higher than 1 relative to A, h;
(i=1,...,n). The last integral on the right represents the principal
linear part of the increment AJ, and hence the variation of J[y,,..., y,] is

b n
8 = j > (Fyhs + Fik) dx.
e =1
Since all the increments /(x) are independent, we can choose one of them
quite arbitrarily (as long as the boundary conditions are satisfied), setting
all the others equal to zero. Therefore, the necessary condition 8J = 0 for
an extremum implies

b
L (Fyhi + Fih)dx =0  (i=1,...,n).

Using Lemma 4 of Sec. 3.1, we obtain the following system of Euler
equations::
d
F, — P
Since (3) is a system of n second-order differential equations, its general
solution contains 2n arbitrary constants, which are determined from the
boundary conditions (2). Thus, we have proved the following

Fi=0 (i=1,...,n). 3)

THEOREM. A necessary condition for the curve

y,=y1(x) (i=1,...,n)
to be an extremal of the functional

b
fa F(X, Y1y vy Vs Vis e 5 Vo) dX

is that the functions y(x) satisfy the Euler equations (3).
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Remark 1. We have just shown how to find a well-defined system of
Euler equations (3) for every functional of the form (1). However, two
different integrands F can lead to the same set of Euler equations. In fact,

let
D =D(x,y1,...,¥n)

be any twice differentiable function, and let

’ ’ aQ o a(D ’
\F(xayl"'-,ymyls-'-,yn)_a+ Zla_yiyt' (4)
Then we find at once by direct calculation that
o _4d (?X) —0
oy, dx\oyj) 7
and hence the functionals
b
J.a F(xsyl’---’ymy,ly---,y;n)dx (5)

and
b
[ FGo o v b 90 + W 1y Y Yoo 30X (6)

lead to the same system of Euler equations.
Given any curve y; = y(x), the function (4) is just the derivative

d
a o [x9 yl(x)’ ceey }’n(x)]-
Therefore, the integral

b , , b dP
fa \F(X,J’b---,Jf'm.Vb---a yn)dx = J-a de

takes the same value along all curves satisfying the boundary conditions (2).
In other words, the functionals (5) and (6), defined on the class of functions
satisfying (2), differ only by a constant. In particular, we can choose @
in such a way that this constant vanishes (but V" # 0).

Remark 2. Two functionals are said to be equivalent if they have the
same extremals. According to Remark 1, two functionals of the form (1)
are equivalent if their integrands differ by a function of the form (4). Itis
also clear that two functionals of this form are equivalent if their integrands
differ by a constant factor ¢ # 0. More generally, the functional (5) is
equivalent to the functional (6) with F replaced by cF.

Example 1. Propagation of light in an inhomogeneous medium. Suppose
that three-dimensional space is filled with an optically inhomogeneous
medium, such that the velocity of propagation of light at each point is some
function v(x, y, z) of the coordinates of the point. According to Fermat’s
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principle (see p. 34), light goes from one point to another along the curve
for which the transit time of the light is the smallest. If the curve joining
two points 4 and B is specified by the equations

y = y(x) z = z(x),
the time it takes light to traverse the curve equals

PR,
a v(x, Ys Z) .

Writing the system of Euler equations for this functional, i.e.,

wvV1i+y?+2% d Y’ _o
oy v? ax oVl + y2 + 22
wVI+y2+z2 d_ 7
oz 02 dx v\/l +y'2 + 2'2 -

we obtain the differential equations for the curves along which the light
propagates.

Example 2. Geodesics. Suppose we have a surface ¢ specified by a vector
equation?

r = r(y, v). )

The shortest curve lying on ¢ and connecting two points of ¢ is called the
geodesic connecting the two points. Clearly, the equations for the geodesics
of ¢ are the Euler equations of the corresponding variational problem, i.e.,
the problem of finding the minimum distance (measured along o) between
two points of a.

A curve lying on the surface (7) can be specified by the equations

u = u(), v = v(t).

The arc length between the points corresponding to the values ¢, and ¢,
of the parameter ¢ equals

tl
Jlu, v] = VEU? + 2Fu'v’ + Guv'? dt, ®)
to

where E, F and G are the coefficients of the first fundamental (quadratic)
form of the surface (7), i.e.,?

E=r,r, F =r,r,, G =r,r,

! Here, vectors are indicated by boldface letters, and a-b denotes the scalar product
of the vectors a and b.
2See D. V. Widder, op. cit., p. 110.
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Writing the Euler equations for the functional (8), we obtain
Eu? + 2Fu'v' + G  d 2(Eu’ + Fv')
VEUT ¥ 2Fu'v + Gv? At VEU? + 2Fu'v + Gu'?
Eu® + 2Fu'v' + G d 2(Fu’ + GV)
VEU? + 2Fu'v’ + Gv?: At VEU? + 2Fui'v + Gu'®

As a very simple illustration of these considerations, we now find the
geodesics of the circular cylinder

r = (a cos ¢, a sin ¢, z), )

where the variables ¢ and z play the role of the parameters u and ». Since
the coefficients of the first fundamental form of the cylinder (9) are

E = a%, F=0, G=1,

the geodesics of the cylinder have the equations

4d__a _, 4__z _ 0
dt Va2 + 7% 7 dit/g%? 4 72

ie.,
% _ __Z ____c

Dividing the second of these equations by the first, we obtain

dz
d_@ = Cy,
which has the solution
Z=C19+ Cy

representing a two-parameter family of helical lines lying on the cylinder (9).

The concept of a geodesic can be defined not only for surfaces, but also
for higher-dimensional manifolds. Clearly, finding the geodesics of an
n-dimensional manifold reduces to solving a variational problem for a
functional depending on » functions.

10. Variational Problems in Parametric Form

So far, we have considered functionals of curves given by explicit equations,
e.g., by equations of the form

Y =yx) (10)

in the two-dimensional case. However, it is often more convenient to
consider functionals of curves given in parametric form, and in fact we have
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already encountered this case in Example 2 of the preceding section (involving
geodesics on a surface). Moreover, in problems involving closed curves
(like the isoperimetric problem mentioned on p. 3), it is usually impossible
to get along without representing the curves in parametric form. Thus,
in this section, we extend our previous results to the case where the curves
are given parametrically, confining ourselves to the simplest variational
problem.
Suppose that in the functional

[ Feepydx, (an

we wish to regard the argument y as a curve which is given in parametric
form, rather than in the form (10). Then (11) can be written as

[ F[x0. ), y(—’)] s(tydi = [* O(x, y, % ) dr (12)
to x(1) to
(where the overdot denotes differentiation with respect to ¢), i.e, as a
functional depending on two unknown functions x(¢) and y(z). The
function @ appearing in the right-hand side of (12) does not involve ¢
explicitly, and is positive-homogeneous of degree 1 in x(t) and y(¢), which
means that
O(x, y, Ax, 1) = A(x, y, X, y) (13)

forevery A > 0.3

Conversely, let

tl
[ 0y, 1,5) dt
to

be a functional whose integrand ®@ does not involve ¢ explicitly and is positive-
homogeneous of degree 1 in x and y. We now show that the value of such
a functional depends only on the curve in the xy-plane defined by the para-
metric equations x = x(¢), y = y(¢), and not on the functions x(¢), y(¢)
themselves, i.e., that if we go from ¢ to some new parameter t by setting

t = 1(v),

where dt/dr > 0 and the interval [¢t,, #,] goes into [to, 7,], then

1 dx dy _ t . .
f o (x, V> 7 _‘r) dt = J;o O(x, y, x, y) dt.

To

3 The example of the arc-length functional
t S
j‘ VX ¥R,
0

whose value does not depend on the direction in which the curve x = x(t), y = y(t) is
traversed, shows why (13) does not hold for A < 0.
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In fact, since ® is positive-homogeneous of degree 1 in x and p, it follows
that

o dx dy ™ .dt . dt
Lo () (x, 7= c?r) dr = J;o ()] (x, »x d_‘r) dv

g .o dt , [h -
= [l e gar=[ 0wy 1,
as asserted. Thus, we have proved the following

THEOREM. A necessary and sufficient condition for the functional
by ..
j: o, x, p, x,p)dt
]

to depend only on the curve in the xy-plane defined by the parametric

equations x = x(t), y = y(t) and not on the choice of the parametric

representation of the curve, is that the integrand ® should not involve

t explicitly and should be a positive-homogeneous function of degree 1 in

X and y.

Now, suppose some parameterization of the curve y = y(x) reduces the
functional (11) to the form

t y t
[ F(x,y,-.)xdz=f O(x, , %, ) dt. (14)
t X to

0

The variational problem for the right-hand side of (14) leads to the pair of
Euler equations

d d

(l)x—d_tq)'t:()’ d)y—th)y:O, (15)
which must be equivalent to the single Euler equation
d
F, — g F, =0,

corresponding to the variational problem for the original functional (11).
Hence, the equations (15) cannot be independent, and in fact it is easily
verified that they are connected by the identity

. d . d
x(CI),—d—t(Di) +y(c1>y—7t<1>y.) 0. (16)

We shall discuss this point further in Sec. 37.5.

Il. Functionals Depending on Higher-Order Derivatives

So far, we have considered functionals of the form

[} ey ax,
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depending on the function y(x) and its first derivative y’(x), or of the more
general form

b
Ja F(X,J’h---,.}’my'b- ,.}’;u) dx’

depending on several functions y;(x) and their first derivatives y;j(x). How-
ever, many problems (e.g., in the theory of elasticity) involve functionals
whose integrands contain not only y;(x) and yj(x), but also higher-order
derivatives y{(x), y;(x),... The method given above for finding extrema
of functionals (in the context of necessary conditions for weak extrema) can
be carried over to this more general case without essential changes. For sim-
plicity, we confine ourselves to the case of a single unknown function y(x).

Thus, let F(x, y, z,, .. ., z,) be a function with continuous first and second
(partial) derivatives with respect to all its arguments, and consider a
functional of the form

b
JD] = fa F(x,y,y,...,y™)dx. (17

Then we pose the following problem: Among all functions y(x) belonging to
the space 9 ,(a, b) and satisfying the conditions

y(a) = AO, y'(a) = Al’ RS} y("_l)(a) = An—ls (18)

() = Bo, y'(b) = By, ..., y""V(b) = B,_,,
find the function for which (17) has an extremum. To solve this problem, we
start from the general result which states that a necessary condition for a
functional J[y] to have an extremum is that its variation vanish (Theorem 2,
p- 13). Thus, suppose we replace y(x) by the ““varied” function y(x) + h(x),
where h(x), like y(x), belongs to 2,(a, b).* By the variation 38J of the
functional J[y], we mean the expression which is linear in A, &', ..., h'™,
and which differs from the increment

AJ =Jly + h] — J[y]

by a quantity of order higher than 1 relative to A, /', ..., A™. Since both
y(x) and y(x) + h(x) satisfy the boundary conditions (18), it is clear that

ha) = K@) = -+ = K"~ Ya) = 0,
W) = H(B) = - = k*=D(b) = 0, (19)

Next, we use Taylor’s theorem, obtaining
b
AT = [TTFGoy + Y + Wy 3™ + K%)= F(5, 3, ¥, y¥™)] d
b
= [ (Fh+ Fl' + - Fyoh®ydx + -,

* The increment h(x) is often called the variation of y(x). In problems involving
‘“‘fixed end point conditions” like (18), we often write h(x) = 3y(x).
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where the dots denote terms of order higher than 1 relative to A, /', ..., A™.
The last integral on the right represents the principal linear part of the
increment AJ, and hence the variation of J[y] is

b
8 = [ (Fh+ Folt + - + Fyol™) dx.
Therefore, the necessary condition 8J = 0 for an extremum implies that
b
f (F,h + F i + - -+ + Fyoh™)dx = 0. (20)

Repeatedly integrating (20) by parts and using the boundary conditions (19),
we find that

[ [F I U ] hx)dx =0 Q1)
e Y dx7? dx2V dx" "V
for any function h which has n continuous derivatives and satisfies (19). It
follows from an obvious generalization of Lemma 1 of Sec. 3.1 that

F, dF + sz -+ (=D -—F(n) 0, (22)

v odx dx> =

a result again called Euler’s equation. Since (22) is a differential equation
of order 2n, its general solution contains 2n arbitrary constants, which can
be determined from the boundary conditions (18).

Remark. This derivation of the Euler equation (22) is not completely
rigorous, since the transition from (20) to (21) presupposes the existence
of the derivatives

d d? dr

TX Fy», W Fy», ey d " F ), (23)
However, by a somewhat more elaborate argument, it can be shown that
(20) implies (22) without this additional hypothesis. In fact, the argument
in question proves the existence of the derivatives (23), as in Lemma 4 of
Sec. 3.1.5

12. Variational Problems with Subsidiary Conditions

12.1. The isoperimetric problem. In the simplest variational problem
considered in Chapter 1, the class of admissible curves was specified (apart
from certain smoothness requirements) by conditions imposed on the end
points of the curves. However, many applications of the calculus of varia-
tions lead to problems in which not only boundary conditions, but also

5 Of course, this argument is unnecessary if it is known in advance that F has contin-
uous partial derivatives up to order n + 1 (with respect to all its arguments).
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conditions of quite a different type known as subsidiary conditions (synony-
mously, side conditions or constraints) are imposed on the admissible curves.
As an example, we first consider the isoperimetric problem,® which can be
stated as follows: Find the curve y = y(x) for which the functional

b
IO = [ F(x, 3, ¥) d (24)
has an extremum, where the admissible curves satisfy the boundary conditions

Wa) = A, yb) =B,

and are such that another functional

KU = [ Gx, 3, y) d (25)

takes a fixed value l.

To solve this problem, we assume that the functions F and G defining
the functionals (24) and (25) have continuous first and second derivatives in
[a, b] for arbitrary values of y and y’. Then we have

THEOREM 1.7  Given the functional

I = [ Fs, 3, ¥) dx

let the admissible curves satisfy the conditions
b
W =4, =8 Kbl=[ Gxyyydx=1 (26

where K[y] is another functional, and let J[y] have an extremum for

y = ¥(x). Then, if y = y(x) is not an extremal of K[y], there exists a
constant A such that y = y(x) is an extremal of the functional

f” (F + 2G) dx,

i.e., y = ¥x) satisfies the differential equation

Fo- 4G -

dx
Proof. Let J[y] have an extremum for the curve y = y(x), subject to
the conditions (26). We choose two points x; and x; in the interval

Gy,) -0 @7)

8 Originally, the isoperimetric problem referred to the following special problem
(already mentioned on p. 3): Among all closed curves of a given length |, find the curve
enclosing the greatest area. This explains the designation ‘‘isoperimetric” = ‘‘ with the
same perimeter.”’

7 The reader will easily recognize the analogy between this theorem and the familiar
method of Lagrange multipliers for finding extrema of functions of several variables,
subject to subsidiary conditions. See e.g., D. V. Widder, op. cit., Chap. 4, Sec. 5, espe-
cially Theorem 5.
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[a, b], where x, is arbitrary and x, satisfies a condition to be stated below,
but is otherwise arbitrary. Then we give y(x) an increment &, y(x)
+ 3,¥(x), where 8, y(x) is nonzero only in a neighborhood of x,, and
d2y(x) is nonzero only in a neighborhood of x,. (Concerning this
notation, see footnote 4, p. 41.) Using variational derivatives, we can
write the corresponding increment AJ of the functional J in the form

dOF dF

M=% S

+ el} Ao, +

+ 32} AG 2 (28)

z=1y =129

where
b b
Aoy = j S.y(x) dx, Ao, = j 8o (x) dx

and ¢y, e, — 0 as Ac,, Aa, — 0 (see the Remark on p. 29).
We now require that the “varied” curve

Y =y*(x) = ¥(x) + 3, y(x) + 8, (x)
satisfy the condition

K[y*] = K[»).
Writing AK in a form similar to (28), we obtain
3G
AK = K[y*] - KD = {5
Y lz=2, (29)

, 3G

+ 51} Aoy + {g

where €, 5 — 0 as Ac;, Ac,— 0. Next, we choose x; to be a point for
which

+ E’z} AO’z = O,

z=129

3G

g # 0.

I=Ig3

Such a point exists, since by hypothesis y = y(x) is not an extremal of
the functional K. With this choice of x,, we can write the condition
(29) in the form

3G
Sy
3G
3y

AO'2=—

20 4 ¢ Asy, (30)

I=I3

where ¢’ — 0 as Ag; — 0. Setting

dF
.§J—; I=22
=73
B

A

2

=TI
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and substituting (30) into the formula (28) for AJ, we obtain

dF

AJ = 5y

+7\
=) Sy

}Acl + £Aoy, @31
=12z

where € — 0 as Ao, — 0. This expression for AJ explicitly involves
variational derivatives only at x = x;, and the increment A(x) is now
just 3, y(x), since the “compensating increment” 3,y(x) has been taken
into account automatically by using the condition AK = 0. Thus, the
first term in the right-hand side of (31) is the principal linear part of AJ,
i.e., the variation of the functional J at the point x, is

SF } Aa,.

3y
Since a necessary condition for an extremum is that 8J = 0, and since
Ao, is nonzero while x, is arbitrary, we finally have

dF 3G d
8y+)\8y Fy_ﬁ

d3J = +7\——

2=1, 3y

Fy + l(Gy - dixcy,) =0,

which is precisely equation (27). This completes the proof of the
theorem.

To use Theorem 1 to solve a given isoperimetric problem, we first write
the general solution of (27), which will contain two arbitrary constants in
addition to the parameter A. We then determine these three quantities from
the boundary conditions y(a) = A, y(b) = B and the subsidiary condition
K[yl =1

Everything just said generalizes immediately to the case of functionals
depending on several functions y,, ..., y, and subject to several subsidiary
conditions of the form (25). Infact, suppose we are looking for an extremum
of the functional

b
T pd = [ FGys o ym i 20 dx, (32)
subject to the conditions
yi(a) = Ab yl(b) = Bi (l = 1’- RS n) (33)

and
b
fa Gf(x’yhaymy;.’,y:t)dx:lj (.]= la,k) (34)

In this case a necessary condition for an extremum is that

ai (”Z“’G' d{ay, F+ ZNG/)}—O (=1...,m. 3

The 2n arbitrary constants appearing in the solution of the system (395),
and the values of the k parameters Ay,..., A,, sometimes called Lagrange
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multipliers, are determined from the boundary conditions (33) and the
subsidiary conditions (34). The proof of (35) is not essentially different
from the proof of Theorem 1, and will not be given here.

12.2. Finite subsidiary conditions. In the isoperimetric problem, the
subsidiary conditions which must be satisfied by the functions yy,..., y,
are of the form (34), i.e., they are specified by functionals. We now consider
a problem of a different type, which can be stated as follows: Find the
Sfunctions y(x) for which the functional (32) has an extremum, where the
admissible functions satisfy the boundary conditions

yl(a) = Ah .V:(b) = Bi (l = 1" . ',n)
and k *“finite” subsidiary conditions (k < n)

gj(x,yl,...,y,,)=0 (_]= 1,---,k)- (36)
In other words, the functional (32) is not considered for all curves satisfying
the boundary conditions (33), but only for those which lie in the (n — k)-
dimensional manifold defined by the system (36).

For simplicity, we confine ourselves to the case n = 2, k = 1. Then we
have

THEOREM 2. Given the functional

b
Iy, 2l = [ Fx, 3,25, 7) dx, (37)
let the admissible curves lie on the surface
g(x,y,2) =0 (38)

and satisfy the boundary conditions
Ha) = Ay, Wb) = By,
z(a) = A23 Z(b) = B2s
and moreover, let J[y] have an extremum for the curve

y=yx), z=2zx). (40)
Then, if g, and g, do not vanish simultaneously at any point of the surface
(38), there exists a function N(x) such that (40) is an extremal of the
functional

(39)

b
[ IF + gl dx,
i.e., satisfies the differential equations

d
Fy+7\gy—d—.'xFyr=0,

41

4, (41)
dx %

Proof. As might be expected, the proof of this theorem closely

resembles that of Theorem 1. Let J[y, z] have an extremum for the

F, + g, —
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curve (40), subject to the conditions (38) and (39), and let x, be an arbi-
trary point of the interval [a, b]. Then we give y(x) an increment 3y(x)
and z(x) an increment 8z(x), where both 8y(x) and 3z(x) are nonzero
only in a neighborhood [«, 8] of x,. Using variational derivatives, we
can write the corresponding increment AJ of the functional J[y, z] in the

fOI'm
AJ {8 E] AG] + {_8 + €9 A(’z, (42)
_} Z|z= 3

b b
As, = j Sy(x)dx, Aoy = f 82(x) dx,

T=I1
where

and ¢,, e,— 0 as Acy, Ac, — 0.
We now require that the “varied” curve

Y =y*x) = y(x) + 3(x),  z = z*(x) = z(x) + dz(x)
satisfy the condition®
g(x, y*, z*) = 0.

In view of (38), this means that

b b
0= ["lg(x, 3% 2%) — glny, Dldx = [ (&, & + £.82) dx

(43)
= {gu|z=rl + E,].} Acl + {gz|z=11 + 5,2} AG2’

where ¢!, e, -0 as Ag,, Ac, — 0, and the overbar indicates that the

corresponding derivatives are evaluated along certain intermediate curves.

By hypothesis, either g,|,-., or g.|.-., is nonzero. Ifg,|,-,, # 0, we

can write the condition (43) in the form

Ao, = — {——i”[l"“ + s'} Aoy, (44)

where ¢’ — 0 as Ao, — 0. Substituting (44) into the formula (42) for

AJ, we obtain
8, dF
S

8 The existence of admissible curves y = y*(x), z = z*(x) close to the original curve
y = y(x), z = z(x) follows from the implicit function theorem, which goes as follows:
If the equation g(x, y, z) = 0 has a solution for x = xo, ¥y = yo, 2 = 2o, if g(x, y, z) and its
first derivatives are continuous in a neighborhood of (x,, yo, 20), and if g.(xo, Yo, z0) # 0,
then g(x, y, z) = 0 defines a unique function z(x, y) which is continuous and differ-
entiable with respect to x and y in a neighborhood of (x,, yo) and satisfies the condition
2z(xo0,Y0) = 2o. [There is an exactly analogous theorem for the case where
&y(Xo, Yo, 20) # 0.] Thus, if g:[x, y(x), 2(x)] # 0 in a neighborhood of the point xo,
we can change the curve y = y(x) to y = y*(x) in this neighborhood and then determine
z*(x) from the relation z*(x) = z[x, y*(x)].

}AGI + 14 AO']_,
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where € — 0 as Ao, -> 0. The first term in the right-hand side is the
principal linear part of AJ, i.e., the variation of the functional J at the

point x, is
} Ao;.

Since a necessary condition for an extremum is that 8J = 0, and since
Ao, is nonzero while x, is arbitrary, we finally have

dF
Sy

gSF

8 = r=1, g 82

SF 8,5F d g d o\ _
o em B b SR gE) =0
or
= (45)
8y £

Along the curve y = y(x), z = z(x), the common value of the ratios
(45) is some function of x. If we denote this function by —2A(x), then
(45) reduces to precisely the system (41). This completes the proof of
the theorem.

Remark 1. We note without proof that Theorem 2 remains valid when
the class of admissible curves consists of smooth space curves satisfying the
differential equation®

g(x,y,2,2)=0. (46)

More precisely, if the functional J has an extremum for a curve v, subject
to the condition (46), and if the derivatives g,,, g, do not vanish simul-
taneously along vy, then there exists a function A(x) such that y is an integral
curve of the system

d d

®, -, =0 & -0 =0,

where
® = F +)G.

Remark 2. In a certain sense, we can consider a variational problem with
a finite subsidiary condition to be a limiting case of an isoperimetric problem.
In fact, if we assume that the condition (38) does not hold everywhere, but
only at some fixed point

g(xls y’ Z) = 0;

we obtain a condition whose left-hand side can be regarded as a functional
of y and z, i.e., a condition of the type appearing in the isoperimetric problem.

® In mechanics, conditions like (46), which contain derivatives, are called nonholonomic
constraints, and conditions like (38) are called holonomic constraints.
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Thus, the condition (38) can be regarded as an infinite set of conditions,
each of which is a functional. As we have seen, in the isoperimetric problem
the number of Lagrange multipliers X, ..., A, equals the number of con-
ditions of constraint, In the same way, the function A(x) appearing in the
problem with a finite subsidiary condition can be interpreted as a *Lagrange
multiplier for each point x.”

Example 1. Among all curves of length | in the upper half-plane passing
through the points (—a, 0) and (a, 0), find the one which together with the
interval [—a, a] encloses the largest area. We are looking for the function
y = y(x) for which the integral

Il = [ yax
takes the largest value subject to the conditions
H-a)=y@) =0, KDl=[ VIiF2de=1

Thus, we are dealing with an isoperimetric problem. Using Theorem 1,
we form the functional

IO+ KD = [+ AT+ dx,

and write the corresponding Euler equation
d Yy

l+A5-———==0,
dx VT + 7
which implies
y!
X+ A——x=C,. 47
'\/l i y,z 1 ( )

Integrating (47), we obtain the equation
(x—=C)P+(y—C)=»n

of a family of circles. The values of C;, C, and A are then determined from
the conditions

¥—a)=)a) =0 KDhl=1
Example 2. Among all curves lying on the sphere x* + y* + z2 = a? and
passing through two given points (xo, Yo, Zo) and (X, ¥1, 21), find the one which

has the least length. The length of the curve y = y(x), z = z(x) is given by
the integral

(" VI 2+ 22dx

Jzo

Using Theorem 2, we form the auxiliary functional

[P IVTH T+ 27 400 + 5% + 9] d,
70
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and write the corresponding Euler equations

I

de1+y’2+z

20) = gy =

Solving these equations, we obtain a family of curves depending on four
constants, whose values are determined from the boundary conditions

2p0(x) — =0,

¥(Xo) = Yo, ¥(x1) =y,
z(Xxo) = Zo, 2(x,) = z;.

Remark. As is familiar from elementary analysis, in finding an extremum
of a function of n variables subject to k constraints (k < n), we can use the
constraints to express k variables in terms of the other n — k variables.
In this way, the problem is reduced to that of finding an unconstrained
extremum of a function of n — k variables, i.e., an extremum subject to no
subsidiary conditions. The situation is the same in the calculus of variations.
For example, the problem of finding geodesics on a given surface can be
regarded as a problem subject to a constraint, as in Example 2 of this section.
On the other hand, if we express the coordinates x, y and z as functions of
two parameters, we can reduce the problem to that of finding an unconstrained
extremum, as in Example 2 of Sec. 9.

PROBLEMS
1. Find the extremals of the functional

/2
Jly, z] = L (y? + 2% + 2yz) dx,

subject to the boundary conditions
0 =0 yr2)=1, 20 =0 z(=/2)=1.

2. Find the extremals of the fixed end point problems corresponding to the
following functionals:

T
a) J;l (2 + 2% + y'z') dx;
0
b) j YQyz — 2% + y? — 7?) dx.
z0
3. Find the extremals of a functional of the form
(31
[ Fiv 2y ax,
70
given that F,., F,.,, — (Fy»)? # 0 for xo < x < x;.

Ans. A family of straight lines in three dimensions.
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4. State and prove the generalization of Theorem 3 of Sec. 4.1 for functionals
of the form

b
J; F(x’ Yise o3 Vs Y1s oo oy .Vn) dx.
Hint. The condition F,.,- # Oisreplaced by the condition det || Fyjy;| # O.

5. What is the condition for a functional of the form

t , ,
fto F(t,y15.. s Yoy Y1, .-, Yn) dt,

depending on an n-dimensional curve y, = y(x), i=1,...,n, to be
independent of the parameterization?

6. Generalizing the definition of Sec. 10, we say that the function f(x, . . ., x,)
is positive-homogeneous of degree k in x,, . . ., x, if

f(lxl. «oey )\Xn) = )\kf(xli ceey xﬂ)

for every A > 0. Prove the following result, known as Euler’s theorem:
If f(x,,...,x,) is continuously differentiable and positive-homogeneous of
degree k, then

2; %x‘ = kf.
7. State and prove the converse of Euler’s theorem.
8. Verify formula (16) of Sec. (10).
Hint. Use Euler’s theorem.

9. Prove that the Euler equations (15) of the variational problem in para-
metric form can be written as

Dy — Opy + (2§ — £9)0y =0, (@)

where @, is a positive-homogeneous function of degree —3 satisfying the
relations
d)Ii‘ = yzq)l, (I)‘tg = —X_}'I‘Dl, (I)g_,] = X2<D1.

Comment. Equation (a) is known as Weierstrass’ form of the Euler
equations. It can also be written as

1 _ > — O,y
e = O,(x2 + }-,2)3/2’

where p is the radius of curvature of the extremal.

10. Prove that Weierstrass’ form of the Euler equations is invariant under
parameter changes ¢t = #(x), dt/dx > 0.

11. Find the extremals of the functional
1
T = [ a4y

subject to the boundary conditions
0 =0 yO®=1 =1, y@)=1
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12. Find the extremals of the functional

/2
=" 07—+ ) dx
subject to the boundary conditions
=1, y@©0 =0, yx2)=0, y(/2)=1
13. Show that the Euler equation of the functional
f,: F(x, y, 5, y") dx
has the first integral

F, — %Fyn = const

if the integrand does not depend on y, and the first integral

F — y’(Fy‘ - d—‘iFy») — y"F,” = const
if the integrand does not depend on x.
14. Find the curve joining the points (0, 0) and (1, 0) for which the integral
"1
J y"2dx
1]
is a minimum if
a) y'(0) = a, y'(1) = b;
b) No other conditions are prescribed.
15. Supply the details of the argument mentioned in the remark on p. 42.

16. By direct calculation, without recourse to variational methods, prove
that the isosceles triangle has the greatest area among all triangles with a
given base line and a given perimeter.

Hint. All the triangles in question have the given base line and a vertex
lying on a certain ellipse.

17. Find the equilibrium position of a heavy flexible inextensible cord of
length /, fastened at its ends.

Hint. Minimize the ordinate of the center of gravity of the cord. By
making a suitable change of variables, reduce the problem to Example 2 of
Sec. 4.2.

18. Find the extremals of the functional
T = [+,
subject to the conditions
W) =0, =0, [a=2

19. Suppose an airplane with fixed air speed v, makes a flight lasting T
seconds. Along what closed curve should it fly if this curve is to enclose
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the greatest area? It is assumed that the wind velocity has constant direction
and magnitude a < v,.

Ans. An ellipse whose major axis is perpendicular to the wind velocity
and whose eccentricity is afvo. The velocity of the airplane is perpendicular
to the radius vector of the ellipse.

20. Given two points 4 and B in the xy-plane, let ¥ be a fixed curve joining
them. Among all curves of length / joining A and B, find the curve which
together with y encloses the greatest area.

21. Generalizing the preceding problem, suppose the xy-plane is covered by
a mass distribution with continuous density p(x, ). As before, let 4 and B
be two points in the plane, and let ¥ be a fixed curve joining them. Among
all curves of length / joining A4 and B, find the curve which together with y
bounds the region of greatest mass.

Hint. Introduce the auxiliary function V(x,y) = [ u(x, y) dx. Then use
Green’s theorem and Weierstrass’ form of the Euler equations.

22. Among all curves joining a given point (0, b) on the y-axis to a point on
the x-axis and enclosing a given area S together with the x-axis, find the curve
which generates the least area when rotated about the x-axis.

Ans. Theline

ISR

+

(Sl ]

=1,
where ab = 28S.
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THE GENERAL VARIATION
OF A FUNCTIONAL

13. Derivation of the Basic Formula

In this section, we derive the general formula for the variation of
a functional of the form

T
Jn ooyl = [ FG pie ey s Yooy ) A, M
z0

beginning with the case where (1) depends on a single function y and hence
reduces to

T = [ Feo v )

We assume that all admissible curves are smooth, but, departing from our
previous hypothesis, we assume that the end points of the curves for which
(2) is defined can move in an arbitrary way. By the distance between two
curves y = y(x) and y = y*(x) is meant the quantity

e(y, ¥*) = max |y — y*| + max |y’ — y*'| + o(Po, P§) + o(Py, P¥), (3)

where P,, P¥ denote the left-hand end points of the curves y = y(x),
y = y*(x), respectively, and P,, P} denote their right-hand end points.?
In general, the functions y and y* are defined on different intervals I and I*.
Thus, in order for (3) to make sense, we have to extend y and y* onto some
interval containing both 7 and I*. For example, this can be done by drawing
tangents to the curves at their end points, as shown in Figure 4.

! In the right-hand side of (3), ¢ denotes the ordinary Euclidean distance.
54
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Now let y = y(x) and y = y*(x) be two neighboring curves, in the sense
of the distance (3), and let?
h(x) = y*(x) — »(x).

Po=(xo,)’o), P1=(xl’y1)
denote the end points of the curve y = y(x), while the end points of the
curve y = y*(x) = y(x) + h(x) are denoted by

P¥ = (xo + 8x0, Yo + 3¥0), P¥ = (x; + 8x5, y1 + 1)

Moreover, let

y

S
P
+
o
&
x

X +ox, X

FIGURE 4
The corresponding variation 8J of the functional J[y] is defined as the
expression which is linear in A, #’, 8x,, 8y,, dx,, 8¥,, and which differs from

the increment
AT =Jly + h] — Jy]

by a quantity of order higher than 1 relative to p(y, y + h). Since?®

z, +61, !
AJ = FOx,y+ hy + K)dx — | " F(x,y, ¥) dx
z0

10 + 620
= [P FGuy + oy + ) = Fery, )] d @
70

o+

z, +61, , , 6z,
+ F(x,y + by + h)dx — | F(x,y + h y + I')dvx,
z

o

it follows by using Taylor’s theorem and letting the symbol ~ denote equality
except for terms of order higher than 1 relative to p(y, ¥ + h) that

AT ~ [ (x5, ¥ + Bl , ) d
+ F(x, y, yl)|z=11 3x; — F(x’ s y')|,=,0 3xo
= f:: [Fy — d_(iF”'] h(x)dx + F|,_., 3x; + Fyh|,-.,
- F|1-=zo 8x0 - Fy’h|x=:os

2 Note that it is no longer appropriate to write A(x) = 8y(x), as in footnote 4, p. 41.
In fact, in the more precise notation of Sec. 37, h(x) = 8y(x).

3 Recall that we have agreed to extend y(x) and y*(x) linearly onto the interval
[xo, x1 + 8x,], so that all integrals in the right-hand side of (4) are meaningful.
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where the term containing /' has been integrated by parts. However, it is
clear from Figure 4 that

h(xo) ~ 8yo — ¥'(x0) 8xo,
h(xy) ~ 8y, — y'(x,) 8x,

where ~ has the same meaning as before, and hence

z d ’
3 = J; [Fy - IxF!l'] h(x) dx + Fy'|z=:1 8}’1 + (F - Fy'y)'z=11 le

. ®
- Fy'lz::o 8.VO - (F - Fy'y)|:=zo Sxo,

or more concisely,

3J = " [Fy_.d%cFv'] h(x)dX+Fy'8y j1+(F—Fy'y,)8x =1’

E2) o

=z0

where we define
8xlz=z4 = Sx,, 8y|z=:¢4 = 3)’1 (i = 0’ 1)

This is the basic formula for the general variation of the functional J[y].
If the end points of the admissible curves are constrained to lie on the straight
lines x = xo, x = Xy, as in the simple variable end point problem considered
in Sec. 6, then 8x, = 8x; = 0, while, in the case of the fixed end point
problem, 3x, = 3x, = 0 and 3y, = 8y, = 0.

Next, we return to the more general functional (1), which depends on
n functions y,,..., y,. Since any system of »n functions can be interpreted
as a curve in (n + 1)-dimensional Euclidean space &, .,, we can regard (1)
as defined on some set of curves in &,.,. Paralleling the treatment just
given for n = 1, we now calculate the variation of the functional (1) when
there are no restrictions on the end points of the admissible curves. As
before, we write

h(x) = y¥(x) —px)  (=1,...,m),

where for each i, the function y}*(x) is close to y,(x) in the sense of the distance
(3). Moreover, we let

P0=(x0’y(1)"--ay2)3 P1=(x1,J’%,---,}’§)

denote the end points of the curve y; = yi(x), i = 1,..., n, while the end
points of the curve y; = yx) = y(x) + h(x), i = 1,..., n, are denoted by

P¥ = (xo + 8x0, 3 + 8%, ..., y8 + D),
P¥ = (x1 + 3xy, y1 + yL,..., ya + ),

and once more, we extend the functions y,(x) and y¥(x) linearly onto the
interval [xo, X, + 8x;]. The corresponding variation 38J of the functional
J[y1s- -, yn] is defined as the expression which is linear in 3x,, 8x, and all
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the quantities A, Ay, 3y9, 8y} (i =1,...,n), and which differs from the
increment
AJ = J[yl + h1s~ . -,yn + hn] - J[yh .. 'ayn]

by a quantity of order higher than 1 relative to

S p(y1, Y1) + - + o(Vn, ¥2)- ©
ince
zl+611 ’ ’ i1 ’
AJ = F(x,...,y{+h‘,y¢+h1,...)dx—f F(x,...,y,p,...)dx
zo

z9 +06z9

=fl [F(X,---,J’f +hby;+ h;!) - F(x,---,yhy:,"')]dx
Zo

1'1+61-1 , ,
+ F(x,...,p¢ + hiyyi + hi,...)

1

zy + 06z, , ,
— [ FG e+ by B dx,
Zo

it follows by using Taylor’s theorem and letting the symbol ~ denote
equality except for terms of order higher than 1 relative to the quantity (6)
that

AJ ~ f Z (Fyhi + Fyh)dx + Flo_y, 8%, — Flyos, 8%

( - w) h(x)dx + F|.- EN 3x; + z thilz E

- F|z=:o 8x0 - z Fvih(|:=zo,
i=1

where the terms containing 4; have been integrated by parts. Just as in the
case n = 1, we have

h(xo) ~ 8y — yi(xo) 3o,

h(xy) ~ 3y} — yi(xy) 3xy,

and hence
I < d
=] ) (Fw _ ECFy;) h(x) dx
+ Z Fy, 3yt + (F — Z y,’Fy,) 3x,
i=1 =11 i=1 =1
_ Z Fy, 8y% — (F - Z y{Fyl) 3xo,
i=1 =19 i=1 =10
or more concisely,
5J = f > ( L~ 2 ) h(x) dx
+ Z By, Ty (F— Zy,fF,,l) sel 7, )
r=1z9 i=1 I=1I0

where, as before, we define
8x|r=z, = ij, Syi[1=zj = Sytj (.’ = 0’ 1)
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This is the basic formula for the general variation of the functional
Jy1 -5 Ynl

We now write an even more concise formula for the variation (7), at
the same time introducing some important new ideas, to be discussed in
more detail in the next chapter. Let

pi = Fy (i=1,..,n), ®)
and suppose that the Jacobian

APys - - -5 Pn)

2 = det | Fyyy,

8(.}’1,---,.%) ” w ||
is nonzero.* Then we can solve the equations (8) for y, . . ., y, as functions
of the variables

Xy P15y Yno P1s - o5 Pre ®

Next, we express the function F(x, yi, ..., Y, V5, ..., Vs) appearing in (1)
in terms of a new function H(x, y1,..., Vn, P1, - - -, Pu) related to F by the
formula

H=-F+ Z ViFy; —F+¢Z yips,
= =1

where the y; are regarded as functions of the variables (9). The function
H is called the Hamiltonian (function) corresponding to the functional
J[»1, ..., ya]- In this way, we can make a local transformation (see footnote
2, p. 68) from the ‘““variables” x, y,,..., Ya, Y1, ..., ¥n, FF appearing in (1)
to the new quantities X, yi,..., ¥n, P1,..., Pn, H, called the canonical
variables (corresponding to the functional J[y,, . .., y,]). Interms of the can-
onical variables, we can write (7) in the form

Il n dp n
dJ = Lo ; (Fy, — d—x') h(x)dx + (21: pidy; — H8x)

Remark. Suppose the functional J[y,,..., y,] has an extremum (in a
certain class of admissible curves) for some curve

yw=xx (=1L...,n (10)

=1,
z

=70

joining the points

P0=(x09y?)"')y2), P1=(x1’y%9"'9y%)'
Then, since J[y,, . . ., y»] has an extremum for (10) compared toall admissible
curves, it certainly has an extremum for (10) compared to all curves with
fixed end points P, and P,. Therefore, (10) is an extremal, i.e., a solution
of the Euler equations

d ,
Fy(——-‘TxFyi=0 (l=l,-~~,n)s

* By det ||a,x| is meant the determinant of the matrix |a.|.
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so that the integral in (7) vanishes, and we are left with the formula

57 = [Z Fy 3y + (F - ZyQFy;) sx] -, (11)
i=1 i=1 z=12Z9
or in canonical variables
3J=(zpi8y,—H3x) (12)
i=1 =10

Thus, regardless of the boundary conditions defining our variable end point
problem, the curve for which J[y,..., y,] has an extremum must first be
an extremal and then satisfy the condition that (11) or (12) vanish (see
Problem 1, p. 63).

14. End Points Lying on Two Given Curves or Surfaces

The first two chapters of this book have been devoted mainly to fixed
end point problems, where the boundary conditions require that all admissible
curves have two given end points. The only exception is the simple variable
end point problem considered in Sec. 6, where the end points of the admissible
curves are free to move along two fixed straight lines parallel to the y-axis.
We now consider a more general variable end point problem. To keep
matters simple, we start with the case where there is only one unknown
function. Our problem can be stated as follows: Among all smooth curves
whose end points Py and P, lie on two given curves y = ¢(x) and y = Y(x),
find the curve for which the functional

J] = [ Fxpy) dx

has an extremum. For example, the problem of finding the distance between
two plane curves is of this type, with

F(x,y,y) = V1 + y2

As showr. in the preceding section, the general variation of the functional
J[y]is given by formula (5). IfJ[y] has an extremum for the curve y = y(x),
then, as noted at the end of Sec. 13, this curve must first of all be an
extremal, i.e., a solution of Euler’s equation. Hence, the integral in (5)
vanishes and we have

M = Fy‘|1=zl 8}’1 + (F - Fy’yl)|1=11 8-xl
- Fy'|1’=1‘o Syo - (F - F!I'y’)l.t:.to 8X07

which must vanish if J[y] is to have an extremum for y = y(x).
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Next, we observe that according to Figure 5,

3yo = [9'(x) + 0] 3xo, 3 = [Y'(x1) + ] dx,,

where g, — 0 as 3x, — 0, and g, — 0 as 3x, — 0. Thus, in the present case,
the condition 8J = 0 becomes

8 = (F' + F = Y F)|eosy 8% — (Fy’ + F — y'Fy)|azz, 8% = 0,
(13)

since 3J contains only terms of the first order in 8x, and 8x,. Since the
increments 3x, and 3x, are independent, (13) implies the boundary conditions

(Fyo' + F — y’Fv')|z=zo =0,
(F' + F — y,Fy')|I=1‘1 =0,
or
[F + (CP' - y')Fy']'z=zo = 0,
[F + (4" - yl)Fy']lz=:1 = 05

called the transversality conditions. The curve y = y(x) satisfying these
conditions is said to be a transversal of the curves y = ¢(x) and y = {(x).
Thus, to solve this kind of variable
end point problem, we must first

y solve Euler’s equation
d
F, — aFy, =0, (14)

and then use the transversality
conditions to determine the values
of the two arbitrary constants
FIGURE 5 appearing in the general solution
of (14).
In solving variational problems, we often encounter functionals of the
form

[ reenvT+y7ax. (15)

For such functionals, the transversality conditions have a particularly simple
appearance. In fact, in this case,

_ y __JYF
Fy'—f(x,y)\/l_i_—y,z' 1+y'2

so that the transversality conditions become

, , 1 + y'¢')F
Fr @ - =GR

, , 1 4+ y'Y)F
Faw -mr =42 o
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It follows that

’

y ==
at the left-hand end point, while

|-

’

y

<=

at the right-hand end point, i.e., for functionals of the form (15), trans-
versality reduces to orthogonality.

The same kind of variable end point problem can be posed for functionals
depending on several functions. For example, consider the following
problem: Among all smooth curves whose end points lie on two given surfaces
x = o(y, z) and x = Y(, 2) find the curve for which the functional

Jy, z] = J.II F(x,y,z,y,2)dx
Zo

has an extremum. Setting n = 2 in formula (7) of the preceding section, we
obtain the general variation of the functional J[y, z] By the same argumént
as in the case of one independent function, we find that the required curve
y = ¥(x), z = z(x) must again be an extremal, i.e., satisfy the Euler equations

d d
aFy'—O, FZ_?X

The boundary conditions are now

F, — F, =0.

a ’ ’
[Fy + a_jj(F—yFy’ — ZF)lls=2, = 0,

a ’ ’
[Fo + 5 (F = Y'Fy = ZF)lzmzy = 0,

aL!J ’ ’
[Fy' + 8—y(F - yF!l' ZFE')]|1=J:1 = 05

8 ’ 4
[F + a—f (F=yFy = 2F)lls=2, = 0,

and are again called the transversality conditions.

I5. Broken Extremals. The Weierstrass-Erdmann Conditions

So far, we have only considered functions defined for smooth curves,
and hence we have only permitted smooth solutions of variational problems.
However, it is easy to give examples of variational problems which have no
solutions in the class of smooth curves, but which have solutions if we extend
the class of admissible curves to include piecewise smooth curves. Thus,
consider the functional

I = [ - yydy H-D=0 ) =1
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The greatest lower bound of the values of J[y] for smooth y = y(x) satisfying
the boundary conditions is obviously zero, but it does not achieve this value
for any smooth curve. In fact, the minimum is achieved for the curve

0 for -1 <x<0,

'v=y(x)=xfor 0<x<l,

which has a corner (i.e., a discontinuous first derivative) at the point x = 0.
Such a piecewise smooth extremal with corners is called a broken extremal.

Another problem involving broken extremals has already been encountered
in Example 2, p. 20. There it is required to find the curve joining two points
(x0, o) and (x,, y,) which generates the surface of least area when rotated
about the x-axis. As already noted, if y, and y, are sufficiently small
compared to x; — x,, the solution of the problem is given by the broken
extremal Ax,x;B shown in Fig. 2(b), p. 21. This extremal consists of three
line segments (two vertical and one horizontal) and can be included in the
class of piecewise smooth curves if we set up the problem in parametric form.

Guided by the above considerations, we enlarge the class of admissible
functions, relaxing the requirement that they be smooth everywhere. Thus,
we pose the following problem : Among all functions y(x) which are continuously
differentiable for a < x < b except possibly at some point ¢ (@ < ¢ < b),
and which satisfy the boundary conditions

Wa) = A, yb) =B, 16)

find the function for which the functional

I = [ Fex, 3,5 dx

has a weak extremum. 1t is clear that on each of the intervals [a, ¢] and
[c, b] the function for which J[y] has an extremum must satisfy the Euler
equation
F-2r -0 (17)
v dx v .

Writing J[y] as a sum of two functionals, i.e.,

Iyl = fb F(x,y,y) dx
= f: F(x,y,y") dx + f: F(x,y,y)dx = Ji[y] + J2[y],

we calculate the variations 3J; and 8J, of the two terms separately. The
end points x = a, x = b are fixed, and we require that the two ‘““pieces”
of the function y(x) join continuously at x = ¢, but otherwise the point
x = c can move freely. Using formula (5) to write 8J, and 3J,, and recalling
that y(x) is an extremal, we find that
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8-]1 = Fy’|z=c—0 3)’1 + (F - y’Fy’)|z=c—0 8x1a
8J2 = - Fy’|z=c+08yl - (F - y’Fy’)'z=c+0 le-

[The condition that y(x) be continuous at x = ¢ implies that 8J; and 3J,
involve the same increments 8x, and 8y,.] At an extremum we must have

8\’: 8]1 + 8]2 = 0,
and hence

(Fy’|1=c—0 - Fy’|:=c+0) 8.Vl
+ [(F - y'Fy’)|1=c—-0 - (F - y’Fy’)|1=c+D] le = 0.

Since 3x, and 8y, are arbitrary, the conditions

Fy’lz:c—l) = Fy’|r=c+0y (18)
(F - y'Fy')II=c—-0 = (F - y,Fy')|1=c+0,

called the Weierstrass-Erdmann (corner) conditions, hold at the point ¢
where the extremal has a corner.

In each of the intervals [a, ¢] and [c, b], the extremal y = y(x) must
satisfy Euler’s equation (17), i.e., a second-order differential equation.
Solving these two equations, we obtain four arbitrary constants, which can
then be found from the boundary conditions (16) and the Weierstrass-
Erdmann conditions (18).

The Weierstrass-Erdmann conditions take a particularly simple form if
we use the canonical variables

p=F,, = —F+ y'F,

introduced in Sec. 13. In fact, then the conditions (18) just mean that
the canonical variables are continuous at a point where the extremal has a
corner.

The Weierstrass-Erdmann conditions have the following simple geometric
inferpretation: Let x and y take fixed values, plot the value of y’ along one
coordinate axis, and plot the values of F(x,y, y') along the other. The
result is a curve, called the indicatrix, representing F(x, y, ») as a function of
y'. Then the first of the conditions (18) means that the tangents to the
indicatrix at the points y'(c — 0) and y’(¢ + 0) are parallel, while the second
condition, which can be written in the form

F|z=c+0 - Flz:c—o = Fy'y’]z=c+o - y’yllz=c—0a

means that the two tangents are not only parallel, but in fact coincide.

PROBLEMS

1. Justify the application of Theorem 2, p. 13 to the case of variable end point
problems.
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2. Derive the formula for the general variation of a functional of the form
T
Jlyl = f " F(x, 3, ) dx + G(xo, Yo, X1, y1).
z0
3. Derive the formula for the general variation of a functional of the form

31
JIy] =f F(x,y,y',y") dx.

Zo

4. Find the curves for which the functional

/4
Jlyl = fo (»? — y?) dx,

can have extrema, given that y(0) = 0, while the right-hand end point can
vary along the line x = =/4.

5. Find the curves for which the functional

Iyl = J:l \/1—;)’2 dx, y0)=0

can have extrema if
a) The point (x;, y;) can vary along the liney = x — 5;
b) The point (x,, y1) can vary along the circle (x — 9)% + y2 = 9.
Ans. a)y = +V1i0x — x2; b)y=+V8x — x*

6. Find the curve connecting two given circles in the (vertical) plane along
which a particle falls in the shortest time under the influence of gravity.

7. Find the shortest distance between the surfaces z = ¢(x, y)and z = {(x, y).

8. Write the transversality conditions for the functional in Prob. 2 if the end
points of the admissible curves y = y(x) lie on two given curves y = ¢(x)
and y = J(x).

9. Write the transversality conditions for a functional of the form
zy -
I A = [y, VT H Y7 F
z0

defined for curves whose end points lie on two given surfaces z = ¢(x, y)
and z = {(x, y). Interpret the conditions geometrically.

10. Find the curves for which the functional
&1
Jly, 2] = f 02 + z% + 2yz)dx
o

can have extrema, given that y(0) = z(0) = 0, while the point (x,, y;, z1)
can vary in the plane x = x;.
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11. Show that for functionals of the form
zy —_—
Jyl = f [, )VT + y2 e*ten” vy,
Zo

the transversality conditions reduce to the requirement that the curve y = y(x)
intersect the curves y = ¢(x) and y = J(x) [along which its end points vary]
at an angle of 45°.

12. Find the curves for which the functional
1
I = [ @+ y?ydx
o

can have extrema, given that y(0) = 0, »'(0) = 1, (1) = 1, while y’(1) can
vary arbitrarily.

13. Minimize the functional
1
IO = [ xyrdx, w-D= -1, W) =1
-1
Hint. Although the extremal y = x'® has no derivative at x = 0, it is
easily verified by direct calculation that y = x'/ minimizes J[y].

14. Given an extremal y = y(x), possibly only piecewise smooth, of the
functional

T = [T Fy,yde ) = yo Yo = x,

Zo
suppose that
Fyylx, y(x). 2] # 0

for all finite z. Prove that y(x) is then actually smooth, with a smooth
derivative, in [xo, x1].

Hint. Use Theorem 3 of Sec. 4 and the geometric interpretation of the
Weierstrass-Erdmann conditions given at the end of Sec. 15.

15. Prove that the functional

31
Jyl = f (ay? + byy + cy?)dx, ¥(x0) = yo, ¥(x1) = y1,

Zo

where a # 0, can have no broken extremals.

16. Does the functional
(31
I = [Tyrdx 0 =0, yx) = n
o

have broken extremals?

17. Find the extremals of the functional
4
TD1= [ O = 10+ 1Pdy, X0 =0, y@) =2

which have just one corner.
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18. Find the curve for which the functional
b
I = [ Foopy)dy @ =4, yb) =B

has an extremum if the curve can arrive at (b, B) only after touching a given
curve y = ¢(x).

19. Given a curve y = ¢(x) and two points (a, A), (b, B) lying on opposite
sides of the curve, consider the functional

1= [ Ferydn @ =4 50) = B,

where F(x, y, y) = Fi(x, y, y)) on the side of the curve corresponding to
(a, A), and F(x, y, ') = Fa(x, y, y') on the side of the curve corresponding to
(b, B). Find the curve y = y(x) for which J[y] has an extremum.

20. Using Fermat’s principle (pp. 34, 36), specialize the results of Probs. 18
and 19 to functionals of the form

b R
[ f pVTH 2 ax,
thereby deriving the familiar laws of reflection and refraction for light rays.

21. Find the curves for which the functional
10
JD1= [ yPdy ¥ =0, y10) =0
(o]

can have extrema, given that the admissible curves cannot penetrate the interior
of the circle with equation

(x — 52+ )y2=0.

+3x for

Ans. y =< +V9 = (x — 52 for
FiHx - 10) for

|
o

(=)

>
N NN
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n N N
o

—

|
e
o T 7



4

THE CANONICAL FORM
OF THE EULER EQUATIONS
AND RELATED TOPICS

As already remarked in Sec. 1, many physical laws can be expressed as
variational principles, i.e., in terms of extremal properties of certain func-
tionals. In this chapter, we shall illustrate this situation by using variational
methods to study the classical mechanics of a system consisting of a finite
number of particles. For example, we shall show how the trajectories in
phase space of a mechanical system (which describe how the system evolves
in time) can be found as the extremals of a certain functional. By using the
calculus of variations, we can also find quantities connected with a given
physical system which do not change as the system evolves in time. These
and related ideas will be our chief concern here. First, we return to the
subject of canonical variables (introduced in Sec. 13), and discuss the reduc-
tion of the Euler equations to canonical form. Appendix I (p. 208) is closely
related to the subject matter of this chapter, and contains another, independent
derivation of the canonical equations and the Hamilton-Jacobi equation.

16. The Canonical Form of the Euler Equations

The Euler equations corresponding to the functional

b
J[.ylv"'a.yn] = J; F(x’yls"'9yn’y1"--’y;t)dx (1)
67
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(which depends on 7 functions) form a system of »n second-order differential
equations

d .
Fm—aFy;=0 (G=1,...,n). ?)
This system can be reduced (in various ways) to a system of 2n first-order
differential equations. For example, regarding y3, . . ., y,, as n new functions,
independent of y,, ..., y,, we can write (2) in the form

%:y{, Fy(—dixFy;=O (i=1,...,n), ?3)
where y1, ..., ¥n, V1, . . -, Vu are 2nunknown functions, and x is the independ-
ent variable.! However, we obtain a much more convenient and symmetric
form of the Euler equations if we replace x, yy,..., Ya, V3, . . ., ¥» by another
set of variables, i.e., the canonical variables introduced in the preceding
chapter. The reader will recall that in Sec. 13, we used the equations

b= Fy (i=1,...,n ()
to write yi, ..., y, as functions of the variables?

x,yl’-'-,yn,ply-"’pn' (5)

Then we expressed the function F(x, y,..., Vs, ¥1,...,Vr) appearing in
(1) in terms of a new function H(x, yy,..., Vs, P1,. .., Pn) Telated to F by
the formula

H=-F+ 2 yp, ©)
i=1

where the y; are regarded as functions of the variables (5). The function
H is called the Hamiltonian (corresponding to the functional J[y, ..., y.])-
Finally, we introduced the new variables

x,)’b---,)’n,Pl,---,PmH, (7)

! In other words, here (and elsewhere in this chapter), we regard the y; as new
‘““variables.” To avoid confusion, it would be preferable to write z; instead of y;, but
we shall adhere to the commonly accep'ted notation. Thus, in cases where we are con-
cerned with the derivative of a function y;,, we shall emphasize this fact by writing
dy;/ dx instead of y;.

2 As already noted on p. 58, in making the transition from the variables x, y1, ..., Y,
¥1, - - ., yn to the variables x, y1,..., ¥, P1, - . ., Pn, WE require that the Jacobian
a(pl .. pn)
b Pl o (et |Fyy
a(Yly"'syn) ” y‘yk”

be nonzero. We shall assume that this condition is satisfied. However, it should be
kept in mind that this condition guarantees only the /ocal ‘‘solvability” of the equations
(4) with respect to yi, ..., yn, but it does not guarantee the possibility of representing
Yiy..., ¥ as functions of x, y,,..., Y, P1,..., Pn Which are defined over the whole
region under discussion. Thus, all our considerations have a local character.
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called the canonical variables (corresponding to the functional J[y,, ..., y.]),
which were used on p. 58 to write a concise expression for the general variation
of the functional J[y,, ..., y.], and on p. 63 to give a simple interpretation
of the Weierstrass-Erdmann conditions.

We now show how the Euler equations (3) transform when we go over to
canonical variables. In order to make this change in the Euler equations,
we have to express the partial derivatives F, (i.e., the partial derivatives of F
with respect to y;, evaluated for constant x, 33, . . ., ¥;) in terms of the partial
derivatives H,, (evaluated for constant x, p, . .., p;).* The direct evaluation
of these derivatives would be rather formidable. Therefore, to avoid lengthy
calculations, we write the expression for the differential of the function H.
Then, using the fact that the first differential of a function does not depend
on the choice of independent variables (i.e., is invariant under changes
of the independent variables), we shall obtain the required formulas quite
easily.

By the definition of H, we have

dH = — dF + Z pody + Z yi dp,,
i=1 i=1

so that

IS

aF L ’
dH = — o dx~ Z dy,

Q)i’“n

- 0
2

D

n n ®)
+ > pidy + ‘Zl ¥, dp..
Ordinarily, before using (8) to obtain expressions for the partial derivatives
of H,we would have to express the dy; in terms of x, y,, and p,, However
(and this is the important feature of the canonical variables), because of the
relations

oF
= i=1,...,n,
ay‘ Dy ( )

the terms containing dy; in (8) cancel each other out, and we obtain

aH == Sdx— > Sdy+ 3 vidp. ©®

Thus, to obtain the partial derivatives of H, we need only write down the
appropriate coefficients of the differentials in the right-hand side of (9), i.e.,

oH oF oH oF oH ,

a:—aT, -5;;=—a—y‘, 3_1;{=y"

3 The notation ordinarily used in analysis to denote partial derivatives suffers from
the familiar defect of not specifying just which variables are held fixed.
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In other words, the quantities 0F/dy; and y; are connected with the partial
derivatives of the function H by the formulas

, oH oF oH

= — —_—=— 10
‘ op; oy; a7 (10)

Finally, using (10), we can write the Euler equations (3) in the form
ax = x = o (i=1,...,n). (11

These 2n first-order differential equations form a system which is equivalent
to the system (3) and is called the canonical system of Euler equations (or
simply the canonical Euler equations) for the functional (1).

17. First Integrals of the Euler Equations

It will be recalled that a first integral of a system of differential equations is
a function which has a constant value along each integral curve of the system.
We now look for first integrals of the canonical system (11), and hence of the
original system (3) which is equivalent to (11). First, we consider the case
where the function F defining the functional (1) does not depend on x
explicitly, i.e., is of the form F(y,,..., Y, ¥1,..., V). Then the function

H=-F+ Z Yibi
i=1
also does not depend on x explicitly, and hence

S (el o)

dx ay, dx ' op; dx (12)

i=1
Using the Euler equations in the canonical form (11), we find that (12)
becomes

dH < (6H6H 8H8H)_0

dx — & \oyi op pi oy,
along each extremal.? Thus, if F does not depend on x explicitly, the function

H(y1, ..., Y, D1, - - Pa) is a first integral of the Euler equations.®

* If H depends on x explicitly, the formula
dH oH

dx ox

can be derived by the same argument.
5 Cf. the discussion in Case 2, p. 18 of the integration of Euler’s equation for
functionals which are independent of x.
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Next, we consider an arbitrary function of the form

(I) = (I)(yl,~--’ympls”-;Pn)9

and we examine the conditions under which ® will be a first integral of the
system (11). We drop the assumption that F does not depend on x explicitly,
and instead we consider the general case. Along each integral curve of the
system (11), we have

0y, dx 8pl dx

o® oH od oH
= /, 3 3. T 3. A, = (I), H ]
;mm i oy - DA

= ad>d, a@d.
Z ay; api

where the expression

is called the Poisson bracket of the functions ® and H. Thus, we have
proved the formula

dd

o = [D, H]. (13)

It follows from (13) that a necessary and sufficient condition for a function
D =D(yy,...,Vn P1,-..,Pn) to be a first integral of the system of Euler
equations (11) is that the Poisson bracket [, H] vanish identically.®

18. The Legendre Transformation

We now consider another method of reducing the Euler equations to
canonical form, a method which differs from that presented in Sec. 16.
The idea of this new method is to replace the variational problem under
consideration by another, equivalent problem, such that the Euler equations
for the new problem are the same as the canonical Euler equations for the
original problem.

18.1. We begin by discussing some related topics from the theory of
extrema of functions of n variables. First, we consider the case n = 1.

8 According to the existence theorem for the system (11), there is an integral curve of
the system passing through any given point (x,yi,..., Vs, P1,. .., Pn). Hence, if
[®, H] = 0 along every integral curve, it follows that [®, H] = 0. If ® (as well as H)
depends on x explicitly, it is easily verified that (13) is replaced by

dd o(D

o = o T 1@ HL
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Suppose we are looking for an extremum, say a minimum, of the function
f(&), and suppose f(&) is (strictly) convex, which means that

/"€ >0

wherever f(£) is defined. We introduce a new independent variable

p=r@, (14)

called the tangential coordinate, which is just the slope of the tangent passing
through a given point of the curve v = f(£). Since by hypothesis

E=1® >0,
we can use (14) to express £ in terms of p. In fact, since the function f(£)
is convex, any point of the curve v, = f(&) is uniquely determined by the slope
of its tangent (see Figure 6). Of course, the
¢ same is true for a (strictly) concave function,
i.e., a function such that f"(£) < 0 everywhere.
We now introduce the new function

H(p) = — f(€) + p&, (15
where £ is regarded as the function of p obtained
by solving (14). The transformation from the

€ variable and function pair &, f(E) to the variable

FIGURE 6 and function pair p, H(p), defined by formulas

(14) and (15), is called the Legendre transform-

ation. It is easy to see that since f(£) is convex, so is H(p). [The convex
functions H(p) and f(£) are sometimes said to be conjugate.] In fact,

dH = —f'(E)dE + pd& + Edp

tanx =p

implies that

—=5 (16)

and hence

> 0, amn

since f"(§) > 0. Moreover, if the Legendre transformation is applied to

the pair p, H(p), we get back the pair &, f(£). This follows from (16) and
the relation

—H(p) + pH'(p) = f(©) — pH'(p) + pH'(p) = f(%). (18)

Thus, the Legendre transformation is an involution, i.e., a transformation
which is its own inverse.
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Example. If

=5 @>,
then
f® =p =g,

E — pll(a— 1).

ie.,
It follows that

H pal(a -1) « b « b 1
- _ 2 =_£ a/(a— = na/a- — ,
riad )3 o topp P ( P 1)

and therefore

7
where b is related to a by the formula
1 1
2 + 7= 1.
Next, we show that if
—H(p) + &p (19)
is regarded as a function of two variables, then
f@ = m:lx [—H(p) + Ep] (20)

[In fact, we can use (20) instead of (15) to define the function H(p).] To
prove this result, we note that according to (18), the function (19) reduces
to f(&) when the condition

%[—H(p) +Epl=—H'(p) +E=0,
or
£ = H'(p),

is satisfied. Thus, f(£) is an extremum of the function —H(p) + &p,
regarded as a function of p. Moreover, the extremum is a maximum since

2
53 [ H() + &) = —H'(p) < 0
[cf. (17)]. 1t follows that
rnain f¢) = mtin max [—H(p) + Ep],

i.e., the extremum of f(£) is also an extremum of (19), regarded as a function
of two variables.
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Similar considerations apply to functions of several independent variables.
Let

f(&l" DR} E.m)
be a function of n variables such that
det | fell # 0, (03}
and let
D= J G=1,...,n). (22)

Then, using (22) to write &,,..., &, in terms of p,,...,p,, we form the
function

Hpy,...,pn) =—f+ ; &1

As in the case of one variable, it can be shown that

......

ext S B = et [HGy.p)+ Y pk|

&1.0ns El.eens &n.P1s...

where ext denotes the operation of taking an extremum with respect to the
indicated variables. In other words, the extremum of f(&,,..., &,) is also
an extremum of

—H(py, ..., Pa) + Z P
i=1

regarded as a function of 2n variables.

Remark. 1If instead of (21), we impose the stronger condition that the
matrix

If ez

be positive definite, i.e., that the quadratic form

n
2 S ezt
. k=1

be positive for arbitrary real numbers «,, . . ., «,,” then

S B = max [—H(pl,...,pn)+§l w] @

..... Pn

7 This is the condition for the function f(£,, .. ., &,) to be (strictly) convex.
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It follows from (23) that
—H(ps,- ) + D P < Gy B
i=1

for arbitrary p, ..., p,, i.e.,

i p{&{ < H(plﬁ' '~,pn) + f(E-rl""’ En),

i=1
a result known as Young’s inequality.

18.2. We now apply the considerations of Sec. 18.1 to functionals. Given
a functional

b
J) = [ Fxpy)dx, (24)
we set
= Fy’(x, Y, y,) (25)
and
H(x,y,p) = — F + py". (26)

Here we assume that F,.,. # 0, so that (25) defines ' as a function of x,
y and p. Then we introduce the new functional

ol = [ [=Hw y, p) + py')d, @7

where y and p are regarded as two independent functions, and y’ is the deriva-
tive of y. This functional is obviously the same as the original functional
(24), if we choose p to be given by the expression (25). The Euler equations
for the functional (27) are

i.e., just the canonical equations for the functional (24). If we can show
that the functionals (24) and (27) have their extrema for the same curves,
this will prove that the equation

oOF d oF
Ay 0 (29)
and the equations (28) are equivalent, thereby providing a new derivation of
the canonical equations, independent of the derivation given in Sec. 16.
First, we observe that the transformation from the variables x, y, ' and
the function F to the variables x, y, p and the function H, defined by formulas
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(25) and (26), is an involution, i.e., if we subject H(x, y, p) to a Legendre
transformation, we get back the function F(x, y, y'). In fact, since

db = - Lax —ggdy + ¥ dp,
it follows that
oH
8—1) =D,
and hence
—H+p%;-1=F—py'+py'=F. (30)

[Cf. formula (9) of Sec. 16.]

Next, we note that to prove the equivalence of the variational problems (24)
and (27), it is sufficient to show that J[y] is an extremum of J[y, p] when p
is varied and y is held fixed, symbolically

JDh] = ext JLy, pl, (€2))

since then an extremum of J[y, p] when both p and y are varied will be an
extremum of J[y]. Since Jty, p] does not contain p’, to find an extremum
of J[y, p] it is sufficient to find an extremum of the integrand in (27) at every
point (cf. Case 3, p. 19). Thus we have

0 ,
@[—H+py]—0,

from which it follows that

, _OH
Y =%

But this implies (31), since
oH

according to (30). Thus, we have proved the equivalence of the variational
problems (24) and (27), and of the corresponding Euler equations (28) and
(29). Although we have only considered functionals depending on a single
function, completely analogous considerations apply to the case of functionals
depending on several functions.

Example. Consider the functional
b
f (Py"? + 0y? dx, (32)

where P and Q are functions of x. In this case,

p=2Py, H=Fy?— Q)
and hence
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The corresponding canonical equations are

dp _ dy _»p

& =2 LT
while the usual form of the Euler equation for the functional (32) is

d ,
2yQ — a—;(ZPy) = 0.

19. Canonical Transformations

Next, we look for transformations under which the canonical Euler
equations preserve their canonical form. The reader will recall that in Sec. 8
we proved the invariance of the Euler equation

d
F, — or F,=0
under coordinate transformations of the form
u = u(x,y)), u, u
(x,) v £ 0.
v = v(xa y): Uy Uy

(Such transformations change y’ to dv/du in the original functional.) The
canonical Euler equations also have this invariance property. Furthermore,
because of the symmetry between the variables y; and p; in the canonical
equations, they permit even more general changes of variables, i.e., we can
transform the variables x, y;, p; into new variables x,

Yi = Yi(x7 Y1, .- cs Yns P15 - - 'apn)7
Pl Pi(xaylw--5yn’p1,'-"pn)-
In other words, we can think of letting the p; transform according to their
own formulas, independently of how the variables y; transform. However,
the canonical equations do not preserve their form under all transformations
(33). We now study the conditions which have to be imposed on the
transformations (33) if the Euler equations are to continue to be in canonical
form when written in the new variables, i.e., if the canonical equations are to
transform into new equations
dy, _oH*  dn __oH*, .
dx OP; dx Y,
where H* = H*(x, Y,,..., Y,, P,,..., P,) is some new function. Trans-
formations of the form (33) which preserve the canonical form of the Euler
equations are called canonical transformations.

To find such canonical transformations, we use the fact that the canonical
equations

(33)

dn _oH  dp__o
dx ~ ap, dx ~ oy

(39%)
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are the Euler equations of the functional

b n
J[ybaympl,’pn]:J (Z piy:—H)dx’ (36)
a \i=1

in which the y; and p; are regarded as 2n independent functions. We want
the new variables Y; and P; to satisfy the equations (34) for some function
H*. This suggests that we write the functional which has (34) as its Euler
equations. This functional is

b n
Ty Yo Py Pl = | (Z P,-Yﬁ—H*)dx, (37)
@ \j=1

where Y; and P; are the functions of x, y; and p; defined by (33), and Y|
is the derivative of Y;. Thus, the functionals (36) and (37) represent two
different variational problems involving the same variables y; and p,, and
the requirement that the new system of canonical equations (34) be equivalent
to the old system (35), i.e., that it be possible to obtain (34) from (35) by
making a change of variables (33), is the same as the requirement that the
variational problems corresponding to the functionals (36) and (37) be
equivalent.

In the remarks made on p. 36, it was shown that two variational problems
are equivalent (i.e., have the same extremals) if the integrands of the corre-
sponding functionals differ from each other by a total differential, which in
this case means that

n

Z pidyt - de = z Piin - H* dX + d(D(X,.yl’-"’ynapla""Pn)
i=1 i=1
(38)

for some function ®. Thus, if a given transformation (33) from the variables
X, ¥i, P, to the variables x, Y;, P; is such that there exists a function ® satis-
fying the condition (38), then the transformation (33) is canonical. In this
case, the function @ defined by (38) is called the generating function of the
canonical transformation. The function @ is only specified to within an
additive constant, since, as is well known, a function is only specified by its
total differential to within an additive constant.

To justify the term *“generating function,” we must show how to actually
find the canonical transformation corresponding to a given generating
function ®. This is easily done. Writing (38) in the form

db = > pody, — » P.dY, + (H* — H)dx,
i=1 i=1

we find that?®
od od od

g == ———y = —— *= —
p=gr P=gyp HY=H+o (39)

8 @ is originally a function of x, y, and p.. However, by using (33), we can write ®
as a function of the variables x, y; and Y,.
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Then (39) is precisely the desired canonical transformation. In fact, the
2n + 1 equations (39) establish the connection between the old variables
¥, p; and the new variables Y;, P;, and they also give an expression for the
new Hamiltonian H*. Moreover, it is obvious that (39) satisfies the condition
(38), so that the transformation (38) is indeed canonical. If the generating
function ® does not depend on x explicitly, then H* = H. In this case,
to obtain the new Hamiltonian H*, we need only replace y; and p; in H by
their expressions in terms of Y; and P;.°

In writing (39), we assumed that the generating function is specified as a
function of x, the old variables y; and the new variables Y;:

(I) = (D(X,J’u---,ym Yly'-" Yn.)-

It may be more convenient to express the generating function in terms of
y: and P; instead of y; and Y;. To this end, we rewrite (38) in the form

i=1 i=1 i=1
thereby obtaining a new generating function
®+ > PY, (40)
i=1

which is to be regarded as a function of the variables x, y; and P;. Denoting
(40) by Y(x, ¥1, .. 5 Yn, P1, - - ., P,), we can write the corresponding canon-
ical transformation in the form

¥ oY . v

20. Noether’s Theorem

In Sec. 17 we proved that the system of Euler equations corresponding
to the functional

b
[ FOn vt dx, “2)

where F does not depend on x explicitly, has the first integral

n
H=-F+ Y yF,
i=1
It is clear that the statement *‘ F does not depend on x explicitly ”’ is equivalent
to the statement ““F, and hence the integral (42), remains the same if we
replace x by the new variable

x* = x + ¢, (43)

® A similar remark holds for the function V" in (41).
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where ¢ is an arbitrary constant.” It follows that H is a first integral of
the system of Euler equations corresponding to the functional (42) if and
only if (42) is invariant under the transformation (43).1°

We now show that even in the general case, there is a connection between
the existence of certain first integrals of a system of Euler equations and the
invariance of the corresponding functional under certain transformations
of the variables x, y,,...,¥,. We begin by defining more precisely what
is meant by the invariance of a functional under some set of transformations.
Suppose we are given a functional'!

z
J[yl’ .. -’yn] = J;l F(x,yh .. -’ymyll" . .,y;)dx,
0
which we write in the concise form
IO = [ Fxy, ¥ dx, (44)
Zo

where now y indicates the n-dimensional vector (y,,...,»y,) and )’ the
n-dimensional vector (33, ..., ;). Consider the transformation

x* =q)(x’yl’--',ymyL---’y;l) =(I)(x’yay’)’ (45)
yf = lIJ‘i(xs Yis-+ s Vns yia .. ’y;l) = IFi(x5y: y’)’
where i = 1,...,n. The transformation (45) carries the curve vy, with the

vector equation
y=3x (%% <x<x),

into another curve y*. In fact, replacing y, y’ in (45) by y(x), y'(x), and
eliminating x from the resulting n + 1 equations, we obtain the vector
equation

Y= (< x* <)

for v*, where y* = (3%, ..., y¥.

DEFINITION. The functional (44) is said to be invariant under the
transformation (45) if J[y*] = Jly], i.e., if

<t
L* F(x*,y , dx*) dx* = f (x ¥ 7% )dx

0o

10 The fact that H is a first integral only if (42) is invariant under the transformation
(43) follows from the formula

dH oH

dx

(see footnote 4, p. 70), since oH/dox = 0 only if oF/ox = 0.

11 To avoid confusion in what follows, the reader should note that the subscripts can
play two different roles; when indexing x, they refer to different values, while when indexing
y, they refer to different functions. For example, the y¥* are new functions, while x¥ and
x¥ are the new positions of the end points of the interval [x,, x;].
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Example 1. The functional
I
Jiy] = f ! y'2dx
E()
is invariant under the transformation
x*=x+e, y¥=y, (46)
where ¢ is an arbitrary constant. In fact, given a curve y with equation
=)yx) (x < x<x),

the ““transformed” curve y*, i.e., the curve obtained from vy by shifting it a
distance ¢ along the x-axis, has the equation

YE=y(x* —e) = y*(x*) (xo +e<x*<x; +9),
and then

T ) R S (IO [

Zo +E dx*

= Lo [d—)‘;%—)] dx = J[y].

Example 2. The integral
Jyl = le xy'2dx
zo0

is an example of a functional which is not invariant under the transformation
(46). In fact, carrying out the same calculations as in Example 1, we obtain

= [ [ g [0 e [ 20

zo+r.

—f o+ 9[22 dx = s+ [ [dy(x)] dx # Jly]

Suppose now that we have a family of transformations

x* = O(x,y,)'; ¢,
i =Yix, )59,
depending on a parameter ¢, where the functions ® and ¥, (i = 1,..., n)

are differentiable with respect to e, and the value € = 0 corresponds to the
identity transformation:

(47)

O(x, y,y";0) = x,
Yi(x, », 55 0) = y.

Then we have the following result:

(43)

THEOREM (Noether). If the functional

I = [ ey, y) d “9)
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is invariant under the family of transformations (47) for arbitrary x, and
X, then

Z Fy gy + (F - Z yiFy;) @ = const (50)
=1 i=1
along each extremal of J[y], where

oD(x, y,¥'; ¢

olx, y,y") =
8‘If.(xa; y';€) - Gh
¢i(x,y’y') = '_""_aez—_’_ :
e=0

In other words, every one-parameter family of transformations leaving
Jy] invariant leads to a first integral of its system of Euler equations.

Proof. Suppose ¢ is a small quantity. Then, by Taylor’s theorem,
we have!?

0 "
x* = @x,p,)5¢) = Px,,50) +¢ ﬂ)-c-’g;’y—’s) _, e
’ ’ 8‘{}.1 s ) ,;
ye=Yix, 558 =¥ilx, 50 + E—Q%ye) o T o®
or using (48) and (51),
x* =X + S(P(x’ .V, y’) + 0(€)3 (52)

Ve =n +ellx, p,¥) + ofe).
Assuming that the curve

= y(x) I<i<gn

is an extremal of J[y], we can use formula (11) of Sec. 13 to write an
expression for the variation of J[y] corresponding to the transformation
(52). Since in the present case!?

dx = o, Wy = ey,

the result is

5 = ¢ [2 Fydi + (F—- y;Fy;) (p] o
i1

i=1 z=19

12 As usual, v = o(c) means that /e — 0 as e — 0.

13 Here 3x, 8y, mean the principal linear parts (relative to €) of the increments Ax, Ay,
of x, y,, and not simply Ax, Ay, as in Sec. 13. It is easy to see that this change in inter-
pretation has no effect on the final result, and has the advantage of making it unnecessary
to bother with infinitesimals of higher order.
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Since by hypothesis, J[y] is invariant under (52), 8/ vanishes, i.e.,
[Z Fyi‘l’i + (F_ Z y;Fyi) CP]
i=1 i=1 z=10
= [Z Fudy + (F -2 y(Fy;) <P]
i=1 =17

i=1
The fact that (50) holds along each extremal now follows from the
arbitrariness of x, and x,.

Remark. 1In terms of the canonical variables p; and H, equation (50)
becomes simply

D pi — Hp = const. (53)
i=1

Example 3. Consider the functional
Il = [ FO. ¥ dx, (54)

whose integrand does not depend on x explicitly. Then, by exactly the
same argument as given in Example 1, J[y] is invariant under the one-
parameter family of transformations

x* = x + ¢, y¥ =y. (55)
In this case,

=1 ¢; = 0,
and (53) reduces to just
H = const,

i.e., the Hamiltonian H is constant along each extremal of J[y]. Thus, we
again obtain a result already proved in Sec. 17: For a functional of the
form (54), which does not dépend on x explicitly, the Hamiltonian is a first
integral of the system of Euler equations.

21. The Principle of Least Action

We now apply the general results obtained in the preceding sections to
some mechanical problems. Suppose we are given a system of n particles
(mass points), where no constraints whatsoever are imposed on the system.
Let the ith particle have mass m; and coordinates x;,y;,z, (i = 1,..., n).
Then the kinetic energy of the system is'*

T =2 > m 4+ ). (56)
i=1

14 Here ¢ denotes the time, and the overdot denotes differentiation with respect to r.
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We assume that the system has potential energy U, i.e., that there exists a
function

U= U(t, X15 V15 215« « «5 Xy Vs zn) (57)
such that the force acting on the ith particle has components

oU oU oU
Xo=—g0 Yi=—pn Zi=—pn

Next, we introduce the expression
L=T-1U, (58)

called the Lagrangian (function) of the system of particles. Obviously, L is
a function of the time ¢ and of the positions (x;, y;, z;) and velocities (%, y;, 2;)
of the n particles in the system.

Suppose that at time ¢, the system is in some fixed position. Then the
subsequent evolution of the system in time is described by a curve

x; = xt), yi=xyt), z=z) (i=1,...,n

in a space of 3n dimensions. It can be shown that among all curves passing
through the point corresponding to the initial position of the system, the
curve which actually describes the motion of the given system, under the
influence of the forces acting upon it, satisfies the following condition,
known as the principle of least action:

THEOREM. The motion of a system of n particles during the time
interval [to, t,] is described by those functions x(t), y,(t), z(t), 1 < i < n,
for which the integral

t
"L, (39)
to
called the action, is a minimum.
Proof. We show that the principle of least action implies the usual

equations of motion for a system of n particles. If the functional (59)
has a minimum, then the Euler equations

oL _doL_
ox, dtox;,
oL doL
Ay 0, (60)
oL _doL _
dz;, dt oz,

must be satisfied for i = 1,...,n Bearing in mind that the potential

energy U depends only on ¢, x;, y;, z;, and not on X;, y;, Z;, while T is a
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sum of squares of the velocity components xy, y;, Z; (with coefficients
im;), we can write the equations (60) in the form

oU d

—a—xt i 2; m(X¢ = 0,

U d .

_3_}), @ m;y, = 0, (61)
oU _d : —0

oz, @ T

Finally, since the derivatives
_u _au  _ou
ox; oy; 0z;
are the components of the force acting on the ith particle, the system
(61) reduces to

mx; = X,
mj, = Y,
miz;, = Z,

which are just Newton’s equations of motion for a system of » particles,
subject to no constraints.

Remark 1. The principle of least action remains valid in the case where the
system of particles is subject to constraints, except that then the admissible
curves, for which the functional (59) is considered, have to satisfy the con-
straints. In other words, in this case, application of the principle of least
action leads to a variational problem with subsidiary conditions.

Remark 2. Actually, as we shall see later (Sec. 36.2), the principle of
least action only holds for sufficiently small time intervals [¢o, ¢,], and has
to be modified for continuous mechanical systems.

22. Conservation Laws

We have just seen that the equations of motion of a mechanical system
consisting of n particles, with kinetic energy (56), potential energy (57) and
Lagrangian (58), can be obtained from the principle of least action, i.e., by
minimizing the integral

ty ty
Lw=f(T—wm. (62)
to to
The canonical variables corresponding to the functional (62) turn out to be
oL .
Piz = 3_x, = myX;,
oL .
Py = ﬁ_y‘ = my,
oL ,
DPiz = 6_2, = mz;,
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which are just the components of the momentum of the ith particle.!® In
terms of p;., p;, and p;,, we have

n

H= z ().Ciptz +.}}lpiy + zipiz) - L=2T- (T_ U)= T+ Uy
i=1
so that H is the toral energy of the system.
Using the form of the integrand in (62), we can find various functions which
maintain constant values along each trajectory of the system, thereby
obtaining so-called conservation laws.

1. Conservation of energy. Suppose the given system is conservative,
which means that the Lagrangian L (or more precisely, the potential
energy U) does not depend on time explicitly. Then, as shown in
Sec. 17 (see also Sec. 20, Example 3), H = const along each extremal,
i.e., the total energy of a conservative system does not change during
the motion of the system.

2. Conservation of momentum. First, we recall that according to Noether’s
theorem (Sec. 20), invariance of the functional (49) under the family of
transformations

x* = O(x,y,y';¢) = x,
yt* = lpi(x’ Y, yl; E:)
implies that the corresponding system of Euler equations has the first

integral
Z Fy; = const,
i=1
where
, Wix, v,y ;€
di(x, 3, ¥') = —% s
€ e=0
since in this case,
, oD(x, y,¥'; e
‘P(X,.V,J’)= ( gey )_ _0=0.

Therefore, the invariance of the functional (62) under the transformation
xt=xi+e Y=y, zZf=2z

implies that

IS

n
z — = const,
i=1 9X

S

ie.,

n
Z Piz = const.
i=1

* By analogy with mechanical problems, the variables p, = F,; are often called the
momenta, regardless of the interpretation of the integrand Fappearing in the functional (1).
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Similarly, it follows from the invariance of (62) under displacements
along the y-axis that

n
Z Py, = const,
i=1

and from the invariance of (62) under displacements along the z-axis that

n
Z Di = const.
i=1

The vector P with components

n

Pz=§:1’m Py=zpiy’ Pz=ip£z

i=1 i=1 i=1
is called the rotal momentum of the system. Thus, we have just proved
that the total momentum is conserved during the motion of the system
if the integral (62) is invariant under parallel displacements. [It is clear
from these considerations that the invariance of (62) under displace-
ments along any coordinate axis, e.g., along the x-axis, implies that
the corresponding component of the total momentum is conserved.]

3. Conservation of angular momentum. Suppose the integral (62) is
invariant under rotations about the z-axis, i.e., under coordinate
transformations of the form

xF = x;cose + y;sine,

y¥ = —x;sine + y; cos g,
z¥ = z,.
In this case,
Goe = oxF _
iz — aa e=0 - yi’
iy - aa e=0 is
oz¥
L!Jiz = 8_&'!, o = 0,
€=

and hence Noether’s theorem implies that
Zn (ﬂ'y - a—Lx) = const
go\ox, 7t oy ’
i.e.,
D, (Pueyi — puxi) = const. (63)
i=1

Each term in this sum represents the z-component of the vector product
p; x r;, wherer, = (x;, y;, z;) is the position vector and p; = (Piz, Piy» Piz)
the momentum of the ith particle. The vector p; x r; is called the
angular momentum of the ith particle, about the origin of coordinates,
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and (63) means that the sum of the z-components of the angular
momenta of the separate particles, i.e., the z-component of the total
angular momentum (of the whole system) is a constant. Similar asser-
tions hold for the x and y-components of the total angular momentum,
provided that the integral (62) is invariant under rotations about the x
and y-axes. Thus, we have proved that the total angular momentum
does not change during the motion of the system if (62) is invariant
under all rotations.

Example 1. Consider the motion of a particle which is attracted to a
fixed point, according to some law. In this case, energy is conserved, since
L is time-invariant, and angular momentum is also conserved, since L is
invariant under rotations. However, momentum is not conserved during
the motion of the particle.

Example 2. A particle is attracted to a homogeneous linear mass distri-
bution lying along the z-axis. In this case, the following quantities are
conserved:

1. The energy (since L is independent of time);
2. The z-component of the momentum;
3. The z-component of the angular momentum.

23. The Hamilton-Jacobi Equation. Jacobi’s Theorem'®

Consider the functional

T = [ PGy v b s M) dx (64)
Zo

defined on the curves lying in some region R, and suppose that one and only
one extremal of (64) goes through two arbitrary points 4 and B. The
integral

S=flF(x;yb'--’yn’y’l""’y;)dx (65)
To
evaluated along the extremal joining the points

A =(x0,y(1’,--°’y2)9 B=(xlsy}9"',y7]l.) (66)

is called the geodetic distance between A and B. The quantity S is obviously
a single-valued function of the coordinates of the points 4 and B.

16 In this section, we drop the vector notation introduced in Sec. 20, and revert to the
more explicit notation used earlier. The vector notation will be used again later
(e.g., in Sec. 29).
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Example 1. If the functional J is arc length, S is the distance (in the usual
sense) between the points 4 and B.

Example 2. Consider the propagation of light in an inhomogeneous and
anisotropic medium, where it is assumed that the velocity of light at any
point depends both on the coordinates of the point and on the direction of
propagation, i.e.,

v = U(x7y’ z’ 'x_’y’ z')'
The time it takes light to go from one point to another along some curve
X = X(t), y = y(t)’ z = Z(t)
is given by the integral
th VXE 4 2 + 22
to v

T = dt. (67)

According to Fermat’s principle, light propagates in any medium along the
curve for which the transit time 7 is smallest, i.e., along the extremal of the
functional (67). Thus, for the functional (67), S is the time it takes light
to go from the point A to the point B.

Example 3. Consider a mechanical system with Lagrangian L. According
to Sec. 21, the integral

ty
J; L(t, X1, ,Vx, 215+ o5 Xny ym Zn) dt
0

evaluated along the extremal passing through two given points, i.e., two
configurations of the system, is the ‘““least action” corresponding to the
motion of the system from the first configuration to the second.

Iftheinitial point A is regarded as fixed and thefinal point B = (x, y,, . . ., V)
is regarded as variable,!” then in the region R,

S =8I In) (68)

is a single-valued function of the coordinates of the point B. We now
derive a differential equation satisfied by the function (68). We first
calculate the partial derivatives

os o

oy, i=1,...,n),

by writing down the total differential of the function S, i.e., the principal
linear part of the increment

AS = S(X + dX,}ﬁ + d)’n .. ~’yn + dyn) - S(X,yl’ .. '1yn)'
Since, by definition, AS is the difference

Jy*] = Jy],

17 Since B is now variable, we drop the superscript in the second of the formulas (66).
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where v is the extremal going from A to the point (x, y;,..., y,) and v* is
the extremal going from A to the point (x + dx, y; + dy1,..., Y, + dy,),
we have

ds = 3J,

where the “unvaried” curve is the extremal y and the initial point 4 is held
fixed. (The fact that the ‘““varied” curve y* is also an extremal is not
important here.)

Thus, using formula (12) of Sec. 13 for the general variation of a functional,
we obtain

dS(x, p1s ...y yn) = 8] = D pydy, — H dx, (69)
i=1

where (69) is evaluated at the point B. It follows that

oS _ N

m=—H 5 =D (70)

where 18

P =X Y1, ¥n) = Fylx, yis ooy Yo, Y1(X)s - o5 ya(0)] an
and

H = H[x,y1,- s Yns P1(X, Y15 - s Pads o+ o Pal(X5 Y15 . o5 Y]

are functions of x, y1,...,¥,. Then from (70) we find that S, as a function
of the coordinates of the point B, satisfies the equation

EF)§+H(x,y1,..

oS oS
ox ) =0.

s Vns 5y, (72)
The partial differential equation (72), which is in general nonlinear, is called
the Hamilton-Jacobi equation. There is an intimate connection between the
Hamilton-Jacobi equation and the canonical Euler equations. In fact, the
canonical equations represent the so-called characteristic system associated
with equation (72).1° We shall approach this matter from a somewhat
different point of view, by establishing a connection between solutions of the
Hamilton-Jacobi equation and first integrals of the system of Euler equations:

THEOREM 1. Let

S=S(xiyl,---yymals"-’am) (73)

18 In (71), yi{(x) denotes the derivative dy,/dx calculated at the point B for the
extremal y going from A4 to B.

19 See e.g.,, R. Courant and D. Hilbert, Methods of Mathematical Physics, Vol. II,
Interscience, Inc., New York (1962), Chap. 2, Sec. 8.
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be a solution, depending on m (<n) parameters o,,...,on of the
Hamilton-Jacobi equation (72). Then each derivative

oS .
o
is a first integral of the system of canonical Euler equations

dyy _8H dp _ _@H

dx — op, dx ~ oy,

ie.,

a—ai=const (i=1,...,m)

along each extremal.

Proof. We have to show that
d (0S -
a(%)_o G=1,...,m) (74)

along each extremal. Calculating the left-hand side of (74), we find
that

d (85) %S S dy, 75)

dx \ooy) = ox oy + &4 0y, 0oy dx

Substituting (73) into the Hamilton-Jacobi equation (72), and
differentiating the result with respect to «;, we obtain

%S i oH oS

ox day - & 5}1 Yy aa,' (76)

Then substitution of (76) into (75) gives
d (0S\ _ < 0H 0*S X 92S  dy,
( ) =-2 23

d—)&_' % k=1aayk aai =19k aaiE
A (E’&c _ a_f_’).
K=y Oyi 0oy \dx Opx
Since
dy, ©oH _ _
ax =0 K=l..n

along each extremal, it follows that (74) holds along each extremal,
which proves the theorem.

THEOREM 2 (Jacobi). Let
S=S(x9y19"'3yma1,---’an) (77)

be a complete integral of the Hamilton-Jacobi equation (72), i.e., a general
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solution of (72) depending on n parameters a,, . ..,a,. Moreover, let the
determinant of the n x n matrix

o%s
00 Oy

(78)

be nonzero, and let B,,...,B, be n arbitrary constants. Then the
Sfunctions

yi=yi(x’ab'-~9un9Bb--"(3n) (l= 1’~~°:n) (79)
defined by the relations

0 .
aT“iS(xsyl’---yymal’---,an)=Bl (l=1,--~9n)3 (80)

together with the functions
7 .
pi=a_S(x9yls---,yma~1’~-~9an) (l=l""’n)’ (81)
Vi

where the y, are given by (79), constitute a general solution of the canonical
system

dy_GH  dp_ _oH . _
o = o, i (i=1,...,n). (82)

oy

Proof 1. According to Theorem 1, the n relations (80) correspond
to first integrals of the canonical system (82). To obtain the general
solution of (82), we first use (80) to define the » functions (79) [this is
possible since (78) has a nonvanishing determinant], and then use (81)
to define the n functions p;. To show that the functions y; and p; so
defined actually satisfy the canonical equations (82), we argue as follows:
Differentiating (80) with respect to x, where the y; are regarded as
functions of x [cf. (79)], we obtain

d (65)_ 28 Z oS dy _ Z 228 (ary,c 8H\)

dx \ow;) ~ ox omy 0y, Oa; dx dyp 0o, \dx  opy)

where in the last step we have used (76). Since the determinant of the
matrix (78) is nonzero, it follows that
dy, OH .
= o, (i=1,...,n), (83)
which is just the first set of equations (82).
Next, we differentiate (81) with respect to x, obtaining

dp, d &S %S dy. _ &S no9%S oH
dx (ayi) Z Yy 0y, 2, a

dx  dx = ox oy, 8y, e 0y dx  0x 0y, | &4 Oy 0y, Opr
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where we have used (83). Then, taking account of (81) and differ-
entiating the Hamilton-Jacobi equation (72) with respect to y;, we
find that

9%S  O0H < 0H @S
0x 9y, 0y &4 0Dk OYr 0N
A comparison of the last two equations shows that

dp, oH .
Ec_—a_yi (l—l,...,n),

which is just the second set of equations (82).
Proof 2. Our second proof of Jacobi’s theorem is based on the use
of a canonical transformation. Let (77) be a complete integral of the

Hamilton-Jacobi equation. We make a canonical transformation of
the system (82), choosing the function (77) as the generating function,

oy, . .., %, as the new momenta (cf. footnote 15, p. 86), and f,,..., B,
as the new coordinates. Then, according to formula (41) of Sec. 19,
_aS _ oS . _ oS
Pi= B‘—au,’ H*=H+5

But since the function S satisfies the Hamilton-Jacobi equation, we
have

H=H+8 0
ox
Therefore, in the new variables, the canonical equations become
dai _ dB, _
nx-% =0

from which it follows that o; = const, 8; = const along each extremal.
Thus, we again obtain the same » first integrals

aS
%=Bi

of the system of Euler equations. If we now use these equations to de-
termine the functions (79) of the 2n parameters oy, ..., o, B1,- - -, Bas
and if, as before, we set
=0 S(x o)
pi_ay‘ ,.V1,-~,ym°(1,---, n)s

where the y; are given by (79), we obtain 2»n functions

yi(x, Ayy e vey Upy Bl, LIIEE] Bn)y
pi(xa 01y ooy Xpy Bla LIRS ] Bn)’

which constitute a general solution of the canonical system (82).
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PROBLEMS

1. Use the canonical Euler equations to find the extremals of the functional

fo“ + 2 V1 + y?2dx,
and verify that they agree with those found in Chap. 1, Prob. 22.
Hint. The Hamiltonian is

H(x,y,p) = —VXx* + y* — P,
and the corresponding canonical system
dp _ y dy P

T VR -p & Vit g
has the first integral

p2 - y2 = CZ’
where C is a constant.

2. Consider the action functional
1 (1 i
J[x] = -f (mx? — »x?)dt
2 to

corresponding to a simple harmonic oscillator, i.e., a particle of mass m
acted upon by a restoring force —xx (cf. Sec. 36.2). Write the canonical
system of Euler equations corresponding to J[x], and interpret them. Calcu-
late the Poisson brackets [x, p], [x, H] and [p, H]. Is p a first integral of
the canonical Euler equations?

3. Use the principle of least action to give a variational formulation of the
problem of the plane motion of a particle of mass m attracted to the origin
of coordinates by a force inversely proportional to the square of its distance
from the origin. Write the corresponding equations of motion, the Hamil-
tonian and the canonical system of Euler equations. Calculate the Poisson
brackets [r, p,], [0, pel, [Py, H] and [pe, H], where

_ oL _ oL
pr = 7 Pe = %

Is pe a first integral of the canonical Euler equations?

Hint. The action functional is
t .
JIr, 0] = f ' [% (* + rd2) + '—‘] d,
to r

where k is a constant, and r, 9 are the polar coordinates of the particle.
4. Verify that the change of variables
Yy =p, P =y

is a canonical transformation, and find the corresponding generating function.
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5. Verify that the functional J[r, 0] of Prob. 3 is invariant under rotations,
and use Noether’s theorem (in polar coordinates) to find the corresponding
conservation law. What geometric fact does this law express?

Ans. The line segment joining the particle to the origin sweeps out equal
areas in equal times.

6. Write and solve the Hamiiton-Jacobi equation corresponding to the

functional
z
JU1=.[1yqd&
zo0
and use the result to determine the extremals of J[y].
Ans. The Hamilton-Jacobi equation is

oS 085\?
45*(5)=Q

7. Write and solve the Hamilton-Jacobi equation corresponding to the
functional

I = [ AV dx,

and use the result to find the extremals of J[y].
Ans. The Hamilton-Jacobi equation is

(&) + () -ro.

S =ox+ f Vi) = Edn + B.

with solution

The extremals are

v d
X — Oﬂf ——— = const.
vo VF(r) — o
8. Use the Hamilton-Jacobi equation to find the extremals of the functional
of Prob. 1.
Hint. Try a solution of the form § = $(A4Ax? + 2Bxy + Cy?).

9. What functional leads to the Hamilton-Jacobi equation

0 2 2
) - -
‘x oy

10. Prove that the Hamilton-Jacobi equation can be solved by quadratures
if it can be written in the form

oS\ o oS\ _
(D(X,a—x) + I(y,-a;) =0

11. By a Liouville surface is meant a surface on which the arc-length
functional has the form

Jlyl = f:: Voi(x) + o2V + y?dx.
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Prove that the equations of the geodesics on such a surface are

J.V%Z:) = J‘\/%(‘){: + o

where « and B are constants. Show that surfaces of revolution are Liouville
surfaces.
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THE SECOND VARIATION.
SUFFICIENT CONDITIONS
FOR A WEAK EXTREMUM

Until now, in studying extrema of functionals, we have only considered
a particular necessary condition for a functional to have a weak (relative)
extremum for a given curve v, i.e., the condition that the variation of the
functional vanish for the curve y. In this chapter, we shall derive sufficient
conditions for a functional to have a weak extremum. To find these sufficient
conditions, we must first introduce a new concept, namely, the second
variation of a functional. We then study the properties of the second varia-
tion, and at the same time, we derive some new necessary conditions for an
extremum.

As will soon be apparent, there exist sufficient conditions for an extremum
which resemble the necessary conditions and are easy to apply. These
sufficient conditions differ from the necessary conditions (also derived in
this chapter) in much the same way as the sufficient conditions y’ = 0,
»" > 0 for a function of one variable to have a minimum differ from the
corresponding necessary conditions y’ = 0, y* > 0.

24. Quadratic Functionals. The Second Variation of a Functional

We begin by introducing some general concepts that will be needed later.

A functional B[x, y] depending on two elements x and y, belonging to some
97
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normed linear space £, is said to be bilinear if it is a linear functional of y for
any fixed x and a linear functional of x for any fixed y (cf. p. 8). Thus,

B[x + y, z] = B[x, z] + B[y, 2],
B[axa y] = GB[X, )/],
and
B[x,y + z] = B[x, y] + B[x, z],
B[x, ay] = aB[x, y]

for any x, y, z€ % and any real number «.

If we set y = x in a bilinear functional, we obtain an expression called
a quadratic functional. A quadratic functional A[x] = B[x, x] is said to be
positive definite! if A[x] > O for every nonzero element x.

A bilinear functional defined on a finite-dimensional space is called a
bilinear form. Every bilinear form B[x, y] can be represented as

n

B[x’ y] = bikginkh

i, k=1
where £,,...,&, and 7,,. .., n, are the components of the “vectors” x and y
relative to some basis.? If we set y = x in this expression, we obtain a
quadratic form

Alx] = Blx,y] = > bukk..
k=

i 1

Example 1. The expression

Blx ] = [ X0y dr

is a bilinear functional defined on the space % of all functions which are
continuous in the interval @ < ¢+ < . The corresponding quadratic func-
tional is

b
ﬂﬂ=Jx%ML
Example 2. A more general bilinear functional defined on % is

Blx, ) = [ aixy) s

where «(7) is a fixed function. If «(t) > O for all ¢ in [a, 6], then the corre-
sponding quadratic functional

b
Aﬂ:jamﬂmm
is positive definite.

! Actually, the word ““definite” is redundant here, but will be retained for traditional
reasons. Quadratic functionals A[x] such that A[x] = 0 for all x will simply be called
nonnegative (see p. 103 ff.).

2 See e.g., G. E. Shilov, op. cit., p. 114,
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Example 3. The expression
Al = [ 1020 + BOXOX0) + YOx ) dr

is a quadratic functional defined on the space &, of all functions which are
continuously differentiable in the interval [a, b].

Example 4. The integral
b b
Blx,y] = [ [ K(s, )x(s)y(t) ds db,

where K(s, t) is a fixed function of two variables, is a bilinear functional
defined on ¥. Replacing y(¢) by x(¢), we obtain a quadratic functional.

We now introduce the concept of the second variation (or second differential)
of a functional. Let J[y] be a functional defined on some normed linear
space #. In Chapter 1, we called the functional J[y] differentiable if its
increment

AJ[R] =J[y + h] — J[)]

can be written in the form
AJ[h] = ¢[h] + |A]|,

where ¢[h] is a linear functional and € — 0 as |4 — 0. The quantity ¢[h]
is the principal linear part of the increment AJ[A), and is called the (first)
variation [or (first) differential] of J[y], denoted by 8J[A].

Similarly, we say that the functional J[y] is twice differentiable if its incre-
ment can be written in the form

AJTh] = @,[h] + @q[h] + <[A]?,

where ¢, [#] is a linear functional (in fact, the first variation), ¢,[#] is a quad-
ratic functional, and e — 0 as ||#| — 0. The quadratic functional ¢,[A] is
called the second variation (or second differential) of the functional J[y],
and is denoted by 82/[h].> From now on, it will be tacitly assumed that we
are dealing with functionals which are twice differentiable. The second
variation of such a functional is uniquely defined. This is proved in just
the same way as the uniqueness of the first variation of a differentiable
function (see Theorem 1 of Sec. 3.2).

THEOREM 1. A necessary condition for the functional J[y] to have a
minimum for y = j is that
52[y] > 0 (1)

for y =y and all admissible h. For a maximum, the sign > in (1) is
replaced by <.

3 The comment made in footnote 6, p. 12 applies here as well.
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Proof. By definition, we have
AJ[h) = 8J[h] + 82T[h] + €A%, @
where e > O as ||| = Q. According to Theorem 2 of Sec. 3.2, 8J[#] = 0
for y = y and all admissible 4, and hence (2) becomes
AJTh] = 34J[h] + <||h|2 A3)

Thus, for sufficiently small |4, the sign of AJ[A] will be the same as the
sign of 32/[h]. Now suppose that 32J[h,] < O for some admissible
ho. Then forany « # 0, no matter how small, we have

32T [aho] = 2327 [hy] < O.
Hence, (3) can be made negative for arbitrarily small ||A||. But this is
impossible, since by hypothesis J[y] has a minimum for y = j, i.e.,
AJ[R] = J[) + h] = J[§]1 > 0
for all sufficiently small ||#|. This contradiction proves the theorem.

The condition 32/[h] > 0 is necessary but of course not sufficient for the
functional J[y] to have a minimum for a given function. To obtain a
sufficient condition, we introduce the following concept: We say that a
quadratic functional ¢,[#] defined on some normed linear space % is strongly
positive if there exists a constant k > 0 such that

ealh] > k||h|?
for all h.*

THEOREM 2. A sufficient condition for a functional J[y] to have a mini-
mum for y = p, given that the first variation 3J[h)] vanishes for y = J,
is that its second variation 3%J[h] be strongly positive for y = p.

Proof. For y = p, we have 8J[h] = O for all admissible &, and hence

AJ[h] = 34J[h] + €|h|?,
where ¢ > 0 as |4 — 0. Moreover, for y = j,
82J[h] = kA2,
where k = const > 0. Thus, for sufficiently small e, |e|] < 3k if
|A] < e;,. Tt follows that
AJ[h] = 34 [H] + e|h|? > 3k |h|2 > 0

if ||| < ey, i.e., J[y] has a minimum for y = j, as asserted.

* In a finite-dimensional space, strong positivity of a quadratic form is equivalent to
positive definiteness of the quadratic form. Therefore, a function of a finite number of
variables has a minimum at a point P where its first differential vanishes, if its second
differential is positive at P. In the general case, however, strong positivity is a stronger
condition than positive definiteness.
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25. The Formulafor the Second Variation. Legendre’s Condition

Let F(x, y,z) be a function with continuous partial derivatives up to
order three with respect to all its arguments. (Henceforth, similar smooth-
ness requirements will be assumed to hold whenever needed.) We now
find an expression for the second variation in the case of the simplest varia-
tional problem, i.e., for functionals of the form

b
I = | oy, ) dx, )
defined for curves y = y(x) with fixed end points

Wa) = A4, yb) =B

First, we give the function y(x) an increment A(x) satisfying the boundary
conditions

ha) =0,  h(b) = 0. )

Then, using Taylor’s theorem with remainder, we write the increment of the
functional J[y] as
AJhl = J[y + h] — J[y]
b ’ l b= 2 r ’ il 2 (6)
= f (Fh + Fyh)dx + 5 f (F, b2+ 2F, k' + F,., ') dx,

where, as usual, the overbar indicates that the corresponding derivatives are
evaluated along certain intermediate curves, i.e.,

Foy=F,(x,y +0h,y + 00) (0<6<1),
and similarly for F,, and F,.
If we replace F,,, F,,, and F,, by the derivatives F,,, F,,- and F,., eval-
uated at the point (x, y(x), ¥'(x)), then (6) becomes

b b
AJ[H] = f (Fh + Fy ') dx + % j (F, h% + 2F  hi' + F, h'®dx + ¢, (7)

where € can be written as

b
(e1h? + e.hh’ + e3h'?) dx. 8®)

Because of the continuity of the derivatives F,,, F,,, and F, ., it follows
that ¢, ,, €5 — 0 as | /4], — O, from which it is apparent that ¢ is an infinites-
imal of order higher than 2 relative to |A|?. The first term in the right-
hand side of (7) is 8J[A], and the second term, which is quadratic in A, is

the second variation 32/[#]). Thus, for the functional (4) we have

b
I = % [ (Fph® + 2F o e+ Fyyh) dx. ©)

ol
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We now transform (9) into a more convenient form. Integrating by parts
and taking account of (5), we obtain

[ 2F b dx = ~ | (% Fw,)hz dx.
Therefore, (9) can be written as

521 = | " (PH® + OW?) dx, (10)

where
P=P()=5F 0 = 00 = 3(Fu — 2 F) 1
- X _2 vy’ - X _2( vy’ dx vy ( )

This is the expression for the second variation which will be used below.

The following consequence of formulas (7) and (8) should be noted. If
J[y] has an extremum for the curve y = y(x), and if y = y(x) + A(x) is an
admissible curve, then

AR = [ (Pr® + Qi) dx + | "R + i) dx, (12)

where £,y — 0as ||#]|; = 0. Infact, since J[y] has an extremum for y = y(x),
the linear terms in the right-hand side of (7) vanish, while the quantity (8)
can be written in the form

j" (ER? + h'?) dx

by integrating the term e,hh’ by parts and using the boundary conditions (5).
Formula (12) will be used later, when we derive sufficient conditions for a
weak extremum (see Sec. 27).

It was proved in Sec. 24 that a necessary condition for a functional J[y] to
have a minimum is that its second variation 327[A] be nonnegative. In the
case of a functional of the form (4), we can use formula (10) to establish a
necessary condition for the second variation to be nonnegative. The argu-
ment goes as follows: Consider the quadratic functional (10) for functions
h(x) satisfying the condition A(@) = 0. With this condition, the function
h(x) will be small in the interval [a, &] if its derivative A'(x) is small in [q, b].
However, the converse is not true, i.e., we can construct a function A(x)
which is itself small but has a large derivative A'(x) in [a, b]. This implies
that the term Ph’'2 plays the dominant role in the quadratic functional (10),
in the sense that Ph’2 can be much larger than the second term QA? but it
cannot be much smaller than QA? (it is assumed that P # 0). Therefore,
it might be expected that the coefficient P(x) determines whether the func-
tional (10) takes values with just one sign or values with both signs. We now
make this qualitative argument precise:
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LEMMA. A necessary condition for the quadratic functional
b
827 [h] = J (Ph'® + QK?) dx, (13)

defined for all functions h(x) € 2,(a, b) such that h(a) = h(b) = 0, to be
nonnegative is that
P(x)=0 (@ < x<b). (14)
Proof. Suppose (14) does not hold, i.e., suppose (without loss of
generality) that P(x,) = —2B (8 > 0) at some point X, in [a, b)]. Then,
since P(x) is continuous, there exists an « > 0 such that a < x, — «,
Xo + « < b, and
P(xp) < — B (Xo — & < x < X0 + ).

We now construct a function h(x) € 2,(a, b) such that the functional (13)
is negative. In fact, let

sinzn(x——x") for xo—a < x < xo + a
h(x) = o (15)
0 otherwise.
Then we have
b o+ 2 —
[ (P2 + Qh?) dx = f °T pT sin2 2R (X~ Xo) 5 (16)
Ja Tp—a o o
X o — 2
+f°+ Qsin“-’-t—pi——x—")dx<—2g—n+2Ma,
20 -0 o o

where
M = max |Q(x)|.
b

agzr<

For sufficiently small «, the right-hand side of (16) becomes negative,
and hence (13) is negative for the corresponding function A(x) defined
by(15). This proves the lemma.

Using the lemma and the necessary condition for a minimum proved in
Sec. 24, we immediately obtain

THEOREM (Legendre). A necessary condition for the functional

I = [ Feoyy)ds @y =4, ) =B

to have a minimum for the curve y = y(x) is that the inequality
Fy‘y’ 2 0
(Legendre’s condition) be satisfied at every point of the curve.

Legendre attempted (unsuccessfully) to show that a sufficient condition
for J[y] to have a (weak) minimum for the curve y = y(x) is that the strict
inequality

Fy'y’ >0 (17)
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(the strengthened Legendre condition) be satisfied at every point of the curve.
His approach was to first write the second variation (10) in the form

2] = | "[PH? + 2whi' + (Q + w)k?] dx, (18)
where w(x) is an arbitrary differentiable function, using the fact that
— v d 2 — v L2 4
O—La(wh)dx—fa (Wh* + 2whh') dx, (19)

since h(a) = h(b) = 0. Next, he observed that the condition (17) would
indeed be sufficient if it were possible to find a function w(x) for which the
integrand in (18) is a perfect square. However, this is not always possible,
as was first shown by Legendre himself, since then w(x) would have to
satisfy the equation

P(Q + W) = w2, (20)

and although this equation is ‘““locally solvable,” it may not have a solution
in a sufficiently large interval.®
Actually, the following argument shows that the requirement that

Fyy[x, (), y'(x)] > 0 (02))

be satisfied at every point of an extremal y = y(x) cannot be a sufficient
condition for the extremal to be a minimum of the functional J[y]. The
condition (21), like the condition
F-LF =0

characterizing the extremal is of a ““local” character, i.e., it does not pertain
to the curve as a whole, but only to individual points of the curve. Therefore,
if the condition (21) holds for any two curves AB and BC, it also holds for
the curve AC formed by joining AB and BC. On the other hand, the fact
that a functional has an extremum for each part 4B and BC of some curve
AC does not imply that it has an extremum for the whole curve AC. For
example, a great circle arc on a given sphere is the shortest curve joining
its end points if the arc consists of less than half a circle, but it is not the
shortest curve (even in the class of neighboring curves) if the arc consists of
more than half a circle. However, every great circle arc on a given sphere
is an extremal of the functional which represents arc length on the sphere,
and in fact it is easily verified that for this functional, (21) holds at every
point of the great circle arc. Therefore, (21) cannot be a sufficient condition

5 For example, if P = —1, Q = 1, we obtain the equation w’' + 1 + w? = 0, so that
w(x) = tan(c — x). If b — a > =, there is no solution in the whole interval [a, b],
since then tan (¢ — x) must become infinite somewhere in [a, b].
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for an extremum, nor, for that matter, can any set of purely local conditions
be sufficient.

Although the condition (20) does not guarantee a minimum, the idea of
completing the square of the integrand in formula (18) for the second varia-
tion, with the aim of finding sufficient conditions for an extremum, turns
out to be very fruitful. In fact, the differential equation (20), which comes
to the fore when trying to implement this idea, leads to new necessary
conditions for an extremum (which are no longer local!). We shall discuss
these matters further in the next two sections.

26. Analysis of the Quadratic Functional Jb (Ph’® + Qh®) dx

As shown in the preceding section, to pursue our study of the ““simplest”
variational problem, i.e., that of finding the extrema of the functional

I = [ Fex p, ) dx, 22
where
ya) =4, b = B,
we have to analyze the quadratic functional®

f " (P + OF?)dx, (23)

defined on the set of functions A(x) satisfying the conditions
h(a) = 0, h(b) = 0. (24)

Here, the functions P and Q are related to the function F appearing in the
integrand of (22) by the formulas

1 1 d
P = 5 Fy’y” Q= ) (Fyy T dx Fyy‘)' (25)

For the time being, we ignore the fact that (23) is a second variation, satisfying
the relations (25), and instead, we treat the analysis of (23) as an independent
problem, in its own right.

In the last section, we saw that the condition

Px)=20 (a<x<b)

is necessary but not sufficient for the quadratic functional (23) to be >0
for all admissible /(x). In this section, it will be assumed that the strength-
ened inequality

P(x) >0 (a< x<b

8 Similarly, the study of extrema of functions of several variables (in particular, the
derivation of sufficient conditions for an extremunt) involves the analysis of a quadratic
form (the second differential).
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holds. We then proceed to find conditions which are both necessary and
sufficient for the functional (23) to be >0 for all admissible h(x) # 0, i.e.,
to be positive definite. We begin by writing the Euler equation

d ’
— - (PK) + Qh =0 (26)

corresponding to the functional (23).” This is a linear differential equation
of the second order, which is satisfied, together with the boundary conditions
(24), or more generally, the boundary conditions

h(a) =0, h(c) =0, (a < ¢ < D),

by the function #(x) = 0. However, in general, (26) can have other, non-
trivial solutions satisfying the same boundary conditions. In this connection,
we introduce the following important concept:

DEFINITION. The point a (#a) is said to be conjugate to the point a if
the equation (26) has a solution which vanishes for x = a and x = a but
is not identically zero.

Remark. If h(x) is a solution of (26) which is not identically zero and
satisfies the conditions A(a) = h(c) = 0, then Ch(x) is also such a solution,
where C = const # 0. Therefore, for definiteness, we can impose some kind
of normalization on A(x), and in fact we shall usually assume that the con-
stant C has been chosen to make /4'(a) = 1.8

The following theorem effectively realizes Legendre’s idea, mentioned on
p. 104.

THEOREM 1. If
P(x) >0 (a < x<b),

and if the interval [a, b] contains no points conjugate to a, then the quad-
ratic functional

b
f (PH'? + OK?) dx @7
is positive definite for all h(x) such that h(a) = h(b) = 0.

7 It must not be thought that this is done in order to find the minimum of the functional
(23). In fact, because of the homogene€ity of (23), its minimum is either 0 if the func-
tional is positive definite, or —co otherwise. In the latter case, it is obvious that the
minimum cannot be found from the Euler equation. The importance of the Euler
equation (26) in our analysis of the quadratic functional (23) will become apparent in
Theorem 1. The reader should also not be confused by our use of the same symbol
h(x) to denote both admissible functions, in the domain of the functional (23), and
solutions of equation (26). This notation is convenient, but whereas admissible func-
tions must satisfy A(a) = A(b) = 0, the condition /i(b) = 0 will usually be explicitly
precluded for nontrivial solutions of (26).

81If h(x) # 0 and A(a) = 0, then A’(a) must be nonzero, because of the uniqueness
theorem for the linear differential equation (26). See e.g., E. A. Coddington, An
Introduction to Ordinary Differential Equations, Prentice-Hall, Inc., Englewood Cliffs,
New Jersey (1961), pp. 105, 260.



SEC. 26 SUFFICIENT CONDITIONS FOR A WEAK EXTREMUM |07

Proof. The fact that the functional (27) is positive definite will be
proved if we can reduce it to the form

[} Peosc- -y i,

where ¢(- - -) is some expression which cannot be identically zero unless
h(x) = 0. To achieve this, we add a quantity of the form d(wh?) to the
integrand of (27), where w(x) is a differentiable function. This will
not change the value of the functional (27), since A(a) = h(b) = 0 implies
that

[  d(wh?) dx = 0

[cf. equation (19)].
We now select a function w(x) such that the expression

PH? + Qh? + d_ci(whz) = Ph'® + 2whi’ + (Q + wOh*  (28)

is a perfect square. This will be the case if w(x) is chosen to be a
solution of the equation

P(Q + w') = w? 29)

[cf. equation (20)]. In fact, if (29) holds, we can write (28) in the form
. W

P(h +3 h)

Thus, if (29) has a solution defined on the whole interval [q, b], the quad-
ratic functional (27) can be transformed into

2

b wo\2
[ P(h' + —h) dx, (30)
a P
and is therefore nonnegative.

Moreover, if (30) vanishes for some function A(x), then obviously

B (x) + %h(x) =0, (31)

since P(x) > O for a = x = b. Therefore the boundary condition
h(a) = 0 implies A(x) = O, because of the uniqueness theorem for
the first-order differential equation (31). It follows that the functional
(30) is actually positive definite.

Thus, the proof of the theorem reduces to showing that the absence of
points in [a, b] which are conjugate to a guarantees that (29) has a solution
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defined on the whole interval [a, b]. Equation (29) is a Riccati
equation, which can be reduced to a linear differential equation of the
second order by making a change of variables. In fact, setting

’

u
w=-Lp, (32)

where u is a new unknown function, we obtain the equation
4wy + Qu=0 (33)
dx -

which is just the Euler equation (26) of the functional (27). If there are
no points conjugate to a in [a, b], then (33) has a solution which does not
vanish anywhere in [a, b],° and then there exists a solution of (29),
given by (32), which is defined on the whole interval [a, b]. This com-
pletes the proof of the theorem.

Remark. The reduction of the quadratic functional (27) to the form (30)
is the continuous analog of the reduction of a quadratic form to a sum of
squares. The absence of points conjugate to a in the interval [a, b] is the
-analog of the familiar criterion for a quadratic form to be positive definite.
This connection will be discussed further in Sec. 30.

Next, we show that the absence of points conjugate to a in the interval
[a, b] is not only sufficient but also necessary for the functional (27) to be
positive definite.

LEMMA. If the function h = h(x) satisfies the equation
— L Py + 0h=0
dx N

and the boundary conditions

h(a) = h(b) = 0, (34)
then

b
j (Ph? + QK dx = 0.
Proof. The lemma is an immediate consequence of the formula
— i d 4 — b 2 2
o= [— Ly + Qh]hdx_fa (PR + QI?) dx,
which is obtained by integrating by parts and using (34).

° If the interval [a, b] contains no points conjugate to a, then, since the solution of the
differential equation (26) depends continuously on the initial conditions, the interval
[a, b] contains no points conjugate to a — ¢, for some sufficiently small e. Therefore,
the solution which satisfies the initial conditions A(a — €) = 0, A'(@a — €) = 1 does not
vanish anywhere in the interval [a, b]. Implicit in this argument is the assumption that
P does not vanish in [a, b].
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THEOREM 2. [f the quadratic functional

[ en + o) dx, (35)
where
P(x) >0 (a< x<b),

is positive definite for all h(x) such that h(a) = h(b) = O, then the interval
[a, b] contains no points conjugate to a.

Proof. The idea of the proof is the following: We construct a family
of positive definite functionals, depending on a parameter ¢, which for
t =1 gives the functional (35) and for ¢ = 0 gives the very simple
quadratic functional

f: h'? dx,

for which there can certainly be no points in [aq, 8] conjugate to a.
Then we prove that as the parameter ¢ is varied continuously from 0
to 1, no conjugate points can appear in the interval [a, b].

Thus, consider the functional

[ "[H(PH? + Q) + (1 — D)) dx, (36)

which is obviously positive definite for all +, 0 < 7 < 1, since (35)
is positive definite by hypothesis. The Euler equation corresponding to
(36) is

d ’
— d—x{[rP + (1 =} + tOh = 0. 37

Let h(x, 1) be the solution of (37) such that h(a,t) = 0, h(a, ) = 1 for
allt,0 < ¢ < 1. This solution is a continuous function of the parameter
t, which for t = 1 reduces to the solution A(x) of equation (26) satisfying
the boundary conditions /(@) = 0, h’(a) = 1, and for ¢ = 0 reduces to the
solution of the equation #” = 0 satisfying the same boundary conditions,
i.e., the function h = x — a. We note that if h(x,, t;) = 0 at some
point (x,, o), then A (x,, t,) # 0. In fact, for any fixed ¢, A(x, t) satisfies
(37), and if the equations /(x, t,) = 0, h(xo, 1) = O were satisfied simul-
taneously, we would have A(x, t;) = 0 for all x, a < x < b, because of
the uniqueness theorem for linear differential equations. But this is
impossible, since /,(a,t) = 1 forallt,0 < ¢ < 1.

Suppose now that the interval [a, b] contains a point @ conjugate
to a, i.e., suppose that A(x, 1) vanishes at some point x = 4 in [a, b].
Then @ # b, since otherwise, according to the lemma,

" (P> + Q) dx = 0

for a function /i(x) # O satisfying the conditions h(a) = h(b) = 0,
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which would contradict the assumption that the functional (35) is positive
definite. Therefore, the proof of the theorem reduces to showing that
[a, b] contains no interior point @ conjugate to a.

FIGURE 7

To prove this, we consider the set of all points (x, ¢), a < x < b,
satisfying the condition Ah(x, t) = 0.1° This set, if it is nonempty,
represents a curve in the xz-plane, since at each point where A(x, t) = 0,
the derivative h,(x, ¢) is different from zero, and hence, according to the
implicit function theorem, the equation A(x, t) = 0 defines a continuous
function x = x(¢) in the neighborhood of each such point.!! By
hypothesis, the point (@, 1) lies on this curve. Thus, starting from the
point (&, 1), the curve (see Figure 7)

A. Cannot terminate inside the rectangle a < x < b, 0 < ¢t < 1,
since this would contradict the continuous dependence of the
solution A(x, t) on the parameter ¢;

B. Cannot intersect the segment x = b, 0 < ¢ < 1, since then, by
exactly the same argument as in the lemma [but applied to equation
(37), the boundary conditions h(a, t) = h(b, t) = 0 and the func-
tional (36)], this would contradict the assumption that the functional
is positive definite for all ¢;

C. Cannot intersect the segment a < x < b, t = 1, since then for
some ¢ we would have h(x, ) = 0, h(x, {) = 0 simultaneously;

D. Cannot intersect the segment a < x < b, ¢t =0, since for
t = 0, equation (37) reduces to " = 0, whose solutionh = x — a
would only vanish for x = a;

E. Cannot approach the segment x = a, 0 < ¢ < 1, since then for
some ¢t we would have #h.(a, t) = 0 [why?], contrary to hypothesis.

10 Recall that h(a,t) = Oforall r,0 <t < 1.
11 See e.g., D. V. Widder, op. cit., p. 56. See also footnote 8, p. 47.
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It follows that no such curve can exist, and hence the proof is
complete.

If we replace the condition that the functional (35) be positive definite
by the condition that it be nonnegative for all admissible A(x), we obtain
the following result:

THEOREM 2'. [If the quadratic functional

[ en + o) ax (38)

where
P(x) >0 (@< x<b

is nonnegative for all h(x) such that h(a) = h(b) = 0, then the interval
[a, b] contains no interior points conjugate to a.*?

Proof. If the functional (38) is nonnegative, the functional (36) is
positive definite for all ¢ except possibly t = 1. Thus, the proof of
Theorem 2 remains valid, except for the use of the lemma to prove that
a = b is impossible. Therefore, with the hypotheses of Theorem 2’,
the possibility that @ = b is not excluded.

Combining Theorems | and 2, we finally obtain
THEOREM 3. The quadratic functional
b
j (Ph? + QK?)dx,

where
P(x) >0 (a < x<b),

is positive definite for all h(x) such that h(a) = h(b) = 0 if and only if
the interval [a, b] contains no points conjugate to a.

27. Jacobi’s Necessary Condition. More on Conjugate Points

We now apply the results obtained in the preceding section to the simplest
variational problem, i.e., to the functional

[ PGy, v ax (39)
with the boundary conditions
ya) =4, yb) =B
2 In other words, the solution of the equation
~ )y + Qh =0

satisfying the initial conditions #(a) = 0, #'(a) = 1 does not vanish at any interior point
of the interval [a, b].
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It will be recalled from Sec. 25 that the second variation of the functional
(39) [in the neighborhood of some extremal y = y(x)] is given by

["eh + o) dx (40)
where
1 | d
P = EFy’y” 0 =§(Fyy - ‘TxFyy’)' (41)
DEFINITION 1. The Euler equation
d , _
-7 (Ph) + Qh =0 42)

of the quadratic functional (40) is called the Jacobi equation of the original
Sfunctional (39).

DEFINITION 2. The point @ is said to be conjugate to the point a with
respect to the functional (39) if it is conjugate to a with respect to the
quadratic functional (40) which is the second variation of (39), i.e., if it
is conjugate to a in the sense of the definition on p. 106.

THEOREM (Jacobi’s necessary condition). If the extremal y = y(x)
corresponds to a minimum of the junctional

b
Ja F(x,y,y) dx,

and if
F,, >0

along this extremal, then the open interval (a, b) contains no points con-
jugate to a.*®

Proof. In Sec. 24 it was proved that nonnegativity of the second
variation is a necessary condition for a minimum. Moreover, according
to Theorem 2’ of Sec. 26, if the quadratic functional (40) is nonnegative,
the interval (a, b) can contain no points conjugate to a. The theorem
follows at once from these two facts taken together.

We have just defined the Jacobi equation of the functional (39) as the Euler
equation of the quadratic functional (40), which represents the second
variation of (39). We can also derive Jacobi’s equation by the following
argument: Given that y = y(x) is an extremal, let us examine the conditions
which have to be imposed on /(x) if the varied curve y = y*(x) = p(x) + h(x)
is to be an extremal also. Substituting y(x) + /(x) into Euler’s equation

F(x,y +hy + 1) - % F,(x,y + by + ) =0,

13 Of course, the theorem remains true if we replace the word “ minimum” by
*“maximum” and the condition F,.,» > 0 by F,.,- < 0.



SEC. 27 SUFFICIENT CONDITIONS FOR A WEAK EXTREMUM 113

using Taylor’s formula, and bearing in mind that y(x) is already a solution
of Euler’s equation, we find that

Fuh + Folt = & (B + Fyyh') = olh)

where o(h) denotes an infinitesimal of order higher than 1 relative to 4 and
its derivative. Neglecting o(h) and combining terms, we obtain the linear
differential equation

d d ,
(Fyy _Zwa’)h —Zx(Fy'y’h) = 0;

this is just Jacobi’s equation, which we previously wrote in the form (42),
using the notation (41). In other words, Jacobi’s equation, except for infini-
tesimals of order higher than 1, is the differential equation satisfied by the
difference between two neighboring (i.e., ‘“‘infinitely close”) extremals. An
equation which is satisfied to within terms of the first order by the
difference between two neighboring solutions of a given differential equation
is called the variational equation (of the original differential equation).
Thus, we have just proved that Jacobi’s equation is the variational equation of
Euler’s equation.

Remark. These considerations are easily extended to the case of an
arbitrary differential equation

F(x,3,),...,y") =0 (43)

of order n. Let y(x) and y(x) + 8y(x) be two neighboring solutions of (43).
Replacing y(x) by y(x) + 8y(x) in (43), using Taylor’s formula, and bearing
in mind that y(x) satisfies (43), we obtain

3y + () + - + Fo®)® +¢ =0,

where  denotes a remainder term, which is an infinitesimal of order higher
than 1 relative to 8y and its derivatives. Retaining only terms of the first
order, we obtain the linear differential equation

Fysy + Fy'(Sy)’ + -+ Fy(n)(Sy)(ﬂ) — 0,

satisfied by the variation 3y; as before, this equation is called the variational
equation of the original equation (43). For initial conditions which are
sufficiently close to zero, this equation defines a function which is the
principal linear part of the difference between two neighboring solutions of
(43) with neighboring initial conditions.

We now return to the concept of a conjugate point. It will be recalled
that in Sec. 26 the point 4 was said to be conjugate to the point a if #(@) = 0,
where A(x) is a solution of Jacobi’s equation satisfying the initial conditions
h(a) =0, h'(@) = 1. As just shown, the difference z(x) = y*(x) — y(x)
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corresponding to two neighboring extremals y = y(x) and y = y*(x) drawn
from the same initial point must satisfy the condition

- L2y + 0z = o),

where o(z) is an infinitesimal of order higher than 1 relative to z and its
derivative. Hence, to within such an infinitesimal, y*(x) — y(x) is a nonzero
solution of Jacobi’s equation. This leads to another definition of a con-
jugate point:1*

DEFINITION 3. Given an extremal y = y(x), the point M = (4, y(d))
is said to be conjugate to the point M = (a, y(a)) if at M the difference
y¥(x) — y(x), where y = y*(x) is any neighboring extremal drawn from
the same initial point M, is an infinitesimal of order higher than 1 relative
to | y*(x) — ¥
Still another definition of a conjugate point is possible:

DEFINITION 4. Given an extremal y = y(x), the point M = (d, ¥(d))
is said to be conjugate to the point M = (a, ¥(a)) if M is the limit as
[¥*(x) — ¥(x)|,— O of the points of intersection of y = y(x) and the
neighboring extremals y = y*(x) drawn from the same initial point M.

It is clear that if the point M is conjugate to the point M in the sense of
Definition 4 (i.e., if the extremals intersect in the way described), then  is
also conjugate to M in the sense of Definition 3. We now verify that the
converse is true, thereby establishing the equivalence of Definitions 3 and 4.
Thus, let y = y(x) be the extremal under consideration, satisfying the initial
condition

Wa) = 4,
and let y*(x) be the extremal drawn from the same initial point M = (a, A),
satisfying the condition
yi'@) — y'(a = o
Then y¥(x) can be represented in the form
yi(x) = y(x) + ah(x) + ¢,

where h(x) is a solution of the appropriate Jacobi equation, satisfying the
conditions
h(a) = 0, h(a) =1,

and ¢ is a quantity of order higher than I relative to .
Now let

ha) =0, B= /g

14 In stating this definition, we enlarge the meaning of a conjugate point to apply
to points lying on an extremal and not just their abscissas. In all these considerations,
it is tacitly assumed that P = 1F,.,. has constant sign along the given extremal y = y(x).
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It is clear that A'(@) # O, since h(x) # 0. Using Taylor’s formula, we can
easily verify that for sufficiently small e, the expression

Yi(x) = y(x) = ah(x) + ¢

takes values with different signs at the points @ — $ and 4 + . Since
B—0 as « — 0, this means that A1 = (@, (@)) is the limit as « — 0 of the
points of intersection of the extremals y = y*(x) and the extremal y = y(x).

Example. Consider the geodesics on a sphere, i.e., the great circle arcs.
Each such arc is an extremal of the functional which gives arc length on the
sphere. The conjugate of any point M on the sphere is the diametrically
opposite point M. In fact, given an extremal, all extremals with the same
initial point M (and not just the neighboring extremals) intersect the given
extremal at M. This property stems from the fact that a sphere has con-
stant curvature, and is no longer true if the sphere is replaced by a ““neigh-
boring” ellipsoid (for example).

We conclude this section by summarizing the necessary conditions for an
extremum found so far: If the functional

[ Fara,  y@=4, s6)=5

has a weak extremum for the curve y = y(x), then
1. The curve y = y(x) is an extremal, i.e., satisfies Euler’s equation

d

Fy—d—x

F,
(see Sec. 4);

2. Along the curve y = y(x), F,- = 0 for a minimum and F,.,- < 0 for
a maximum (see Sec. 25);

3. The interval (a, b) contains no points conjugate to a (see Sec. 27).

28. Sufficient Conditions for a Weak Extremum

In this section, we formulate a set of conditions which is sufficient for a
functional of the form

I = [ Feopy)ds, @) =4, y®) =B “4)

to have a weak extremum for the curve y = y(x). It should be noted that
the sufficient conditions to be given below closely resemble the necessary
conditions given at the end of the preceding section. The necessary con-
ditions were considered separately, since each of them is necessary by itself.
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However, the sufficient conditions have to be considered as a set, since the
presence of an extremum is assured only if all the conditions are satisfied
simultaneously.

THEOREM. Suppose that for some admissible curve y = y(x), the
Sfunctional (44) satisfies the following conditions:

1. The curve y = y(x) is an extremal, i.e., satisfies Euler’s equation
4
dx

Fy— - F, =0;

2. Along the curve y = y(x),
P(x) = 3F,[x, y(x), y'(x)] > 0
(the strengthened Legendre condition);

3. The interval [a, b] contains no points conjugate to the point a (the
strengthened Jacobi condition).*®

Then the functional (44) has a weak minimum for y = y(x).

Proof. If the interval [a, b] contains no points conjugate to a, and if
P(x) > 0 in [a, b], then because of the continuity of the solution of
Jacobi’s equation and of the function P(x), we can find a larger interval
[a, b + €] which also contains no points conjugate to a, and such that
P(x) > 0in [a, b + c]. Consider the quadratic functional

[* w2 + omtydx — o [ h2dx (45)
with the Euler equation
— % [(P —a2)h'] + Qh = 0. (46)

Since P(x) is positive in [a, b + €] and hence has a positive (greatest)
lower bound on this interval, and since the solution of (46) satisfying the
initial conditions h(a) = 0, A'(0) = 1 depends continuously on the
parameter « for all sufficiently small «, we have

l. P(x) — a2 > 0,a < x < b;

2. The solution of (46) satisfying the boundary conditions h(a) = 0,
h'(a) = 1 does not vanish fora < x < b.

As shown in Theorem | of Sec. 26, these two conditions imply that the
quadratic functional (45) is positive definite for all sufficiently small «.
In other words, there exists a positive number ¢ > 0 such that

[ "(PH® + QR dx > ¢ | " 12 dx. 47)

15 The ordinary Jacobi condition states that the open interval (a, b) contains no points
conjugate to a. Cf. Jacobi’s necessary condition, p. 112.
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It is now an easy consequence of (47) that a minimum is actually
achieved for the given extremal. In fact, if y = y(x) is the extremal
and y = y(x) + h(x) is a sufficiently close neighboring curve, then,
according to formula (12) of Sec. 25,

Ty + ) = J) = [ (PHe + Qi dx + [ G 4 ) dx,  (48)

where £(x), n(x) — 0 uniformly for @ < x < b as ||h|, — 0. Moreover,
using the Schwarz inequality, we have

z 2 z b
hﬁ(x)=(f h’dx) s@-a[ hdx<x-a)| Kdx

ie.,
2 .
9 |* 2 ax,

f: h?dx < >

which implies that

b — 2 b
‘f R + nh'?) dx’ <e (1 + “’T“))f B2 dx (49)
if |E(x)] <& |n(x)| <= Since € > 0 can be chosen to be arbitrarily
small, it follows from (47) and (49) that

Jy + hl —J] = Jb (Ph'® + Qh®) dx + f" (Eh% + nh'?)dx > 0

for all sufficiently small |A||,. Therefore, the extremal y = y(x)
actually corresponds to a weak minimum of the functional (44), in some
sufficiently small neighborhood of y = y(x). This proves the theorem,
thereby establishing sufficient conditions for a weak extremum in the
case of the *“‘simplest” variational problem.

29. Generalization to n Unknown Functions

The concept of a conjugate point and the related Jacobi conditions can
be generalized to the case where the functional under consideration depends
on n functions y,(x),..., yu(x). In this section we carry over to such
functionals the definitions and results given earlier for functionals depend-
ing on a single function. To keep the notation simple, we write

I = [ Py, ) dx (50)

as before, where now y denotes the n-dimensional vector (y,, ..., y,) and )’
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the n-dimensional vector (3,..., y,) [cf. Sec. 20]. By the scalar product
(», 2) of two vectors

y=(yl:"',yn)s z=(zl,...,z,,)
we mean, as usual, the quantity

O 2) =y1z1 + -+ + YuZn

Whenever the transition from the case of a single function to the case of n
functions is straightforward, we shall omit details.

29.1. The second variation. The Legendre condition. If the increment

AJ[h] of the functional (50), corresponding to the change from y to y + h,'®
can be written in the form

AJ[h] = i[h] + o] + €|h|?,

where ¢,[#] is a linear functional, ¢,[#] is a quadratic functional, and € — 0
as ||h| — 0, then ¢,[A] is called the second variation of the original functional
(50) and is denoted by 32/[h].17 In the case of fixed end points, where

h(a) = h(b) =0 i=1,...,n),
or more concisely,
h(a) = h(b) = 0,
we easily find, applying Taylor’s formula, that the second variation of (50)
is given by

b n
52J[h] = % [ [ > Fyychi +2
e Lik=1

i

z Fy.ykhih;c + 2 Fyiy;‘h;{h;c] dx. (51)
k= k=

1 i 1

Introducing the matrices
Fyy = “F!lt!lk ”’ Fyy = ”Fymic ”’ Fyy = ”Fyiyk ”, (52)

we can write (51) in the compact form
1 b ’ ’ ’
82"[}7] = i L [(Fyyha h) + 2(Fyy'ha h) + (Fy'y’h ’ h )] dx’ (53)

where each term in the integrand is the scalar product of the vector h or #
and the vector obtained by applying one of the matrices (52) to 4 or A'.
Then, integrating by parts, we can reduce (53) to the form

[C 1@, iy + (oh, ) dx, (54)

16 The letter & denotes the vector (hy,...., k), and || means

2 max (|| + K@} = 2 Il

=102

17 Obviously, ¢,[#] is the (first) variation of the functional (50).
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where P = P(x) and Q = Q(x) are the matrices

1 1 d
P=1Pul =5 Frys @ = 10ul =3 (Fu = £ F):

In deriving (54), we assume that F,,. is a symmetric matrix,'8 i.e., that
Fykyfi = Fg,l,y,_ foralli, k =1,...,n (F, and F,, are automatically sym-
metric, because of the tacitly assumed smoothness of F). Just as in the case
of one unknown function, it is easily verified that the term (Ph’, /') makes
the ““main contribution” to the quadratic functional (54). More precisely,
we have the following result:

THEOREM 1. A necessary condition for the quadratic functional (54) to
be nonnegative for all h(x) such that h(a) = h(b) = 0 is that the matrix P
be nonnegative definite.'®

29.2. Investigation of the quadratic functional (54). As in Sec. 26, we can
investigate the functional (54) without reference to the original functional
(50), assuming, however, that P and Q are symmetric matrices. As before
(see Sec. 26), we begin by writing the system of Euler equations

d n , n
—Ezp,kh,JrZQikh,:o *k=1,...,n), (55)
i=1 i=1

corresponding to the functional (54). The equations (55) can be written

more concisely as d
— 2 (PH) + Oh =0, (56)

in terms of the matrices P and Q.

DEFINITION 1. Let
Y = (hn, hlz, SRR hln)a
h® = (hay, haz, - - -5 h2n), (57)

h™ = (hnl, hn2s ey hrm)

be a set of n solutions of the system (55), where the i’th solution satisfies

the initial conditions®®
hal@) =0 (k=1,...,n) (58)

hifa) =1,  ha@=0  (k+#0). (59)

* Without this assumption, which is unnecessarily restrictive, equations (54) and (55)
become more complicated, but it can be shown that Theorems 1 and 2 remain valid
(H. Niemeyer, private communication).

¥ This is the appropriate multidimensional generalization of the Legendre condition
(14), p. 103. The matrix P = P(x) is said to be nonnegative definite (positive definite)
if the quadratic form

and

2 Pulh(x)h(x)  (a < x <b)
i, k=1
is nonnegative (positive) for all x in [a, b] and arbitrary hy(x), . . ., ha(x).
2 Thus, the vectors h’(a) are the rows of the zero matrix of order n, and the vectors
h®’(a) are the rows of the unit matrix of order n.
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Then the point a (#a) is said to be conjugate to the point a if the deter-
minant

hy1(x) hya(x) - -+ hya(x)

ha1(x) hoo(x) - - - hog
(%) h2a(x) ) (60)

hnl(x) hnz(x) te hnn(x)
vanishes for x = a.

THEOREM 2. If P is a positive definite symmetric matrix, and if the inter-
val [a, b] contains no points conjugate to a, then the quadratic functional
(54) is positive definite for all h(x) such that h(a) = h(b) = 0.

Proof. The proof of this theorem follows the same plan as the proof
of Theorem 1 of Sec. 26. Let W be an arbitrary differentiable sym-
metric matrix. Then

bd b ' b 4
0= [ T W mdx= [ Whhdx+2[ Whi)dx

for every vector h satisfying the boundary conditions (58). Therefore,
we can add the expression

(W’'h, h) + 2(Wh, ')
to the integrand of (54), obtaining

j "PK, K'Y + 2Wh, ') + (Oh, ) + (W'h, h)] dx, (61)

without changing the value of (54).

We now try to select a matrix W such that the integrand of (61) is a
perfect square. This will be the case if W is chosen to be a solution of
the equation®!

Q + W' = WPW, (62)

which we call the matrix Riccati equation (cf. p. 108). In fact, if we
use (62), the integrand of (61) becomes

(PH', i) + 2AWh, K) + (WP~Wh, h). (63)

Since P is a positive definite symmetric matrix, the square root P'/2
exists, is itself positive definite and symmetric, and has the inverse
P-12_ Therefore, we can write (63) as the ““perfect square”

(PY2h' + P~Y2Wh, PY2h" + P~Y2Wh).

[Recall that if T is a symmetric matrix, (Ty, z) = (y, Tz) for any
vectors y and z.] Repeating the argument given in the case of a scalar
function 4 (see p. 107), we can show that
PY2h' 4 P=V2Wh
* It can be shown that this is compatible with W being symmetric, even when Fyy-
fails to be symmetric and (62) is replaced by a more general equation (H. Niemeyer,
private communication).
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cannot vanish for all x in [a, b] unless & = 0. It follows that if the
matrix Riccati equation (62) has a solution W defined on the whole
interval [a, b), then, with this choice of W, the functional (61), and hence
the functional (54), is positive definite.

Thus, the proof of the theorem reduces to showing that the absence
of points in [a, b] which are conjugate to a guarantees that (62) has a
solution defined on the whole interval [a, b]. Making the substitution

W= —PU'U-? (64)

in (62), where U is a new unknown matrix [cf. (32)], we obtain the
equation

- %(PU’) + QU =0, (65)

which is just the matrix form of equation (56). The solution of (65)
satisfying the initial conditions

U©oy=9, U©)=I,

where 0 is the zero matrix and 7 the unit matrix of order », is precisely
the set of solutions (57) of the system (55) which satisfy the initial
conditions (58) and (59) [cf. footnote 19, p. 119]. If [a, b] contains
no points conjugate to a, we can show that (65) has a solution U(x)
whose determinant does not vanish anywhere in [a, b],2 and then
there exists a solution of (62), given by (64), which is defined on the
whole interval [a, b]. In other words, we can actually find a matrix W
which converts the integrand of the functional (61) into a perfect square,
in the way described. This completes the proof of the theorem.

Next we show, as in Sec. 26, that the absence of points conjugate to a
in the interval [a, &] is not only sufficient but also necessary for the functional
(53) to be positive definite.

LemmA. If
h(x) = (hi(x), . . ., ha(x))

satisfies the system (55) and the boundary conditions

h(a) = h(b) = 0, (66)
then

f" [(PH, i) + (Qh, b)) dx = .

22 The fact that det P does not vanish in [a, b] is tacitly assumed, but this is guaranteed
by the positive definiteness of P (cf. footnote 9, p 108).
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Proof. The lemma is an immediate consequence of the formula
’ d 4 — b ’ ’
0= f (‘ zx Ph) + Qh’h) dx = f [(PK', ) + (Qh, b)) dx,

which is obtained by integrating by parts and using (66).

THEOREM 3. If the quadratic functional
b
[ 1w, wy + (on, m) ax, (67)

where P is a positive definite symmetric matrix, is positive definite for
all h(x) such that h(a) = h(b) = 0, then the interval [a, b] contains no
points conjugate to a.

Proof. The proof of this theorem follows the same plan as the proof
of the corresponding theorem for the case of one unknown function
(Theorem 2 of Sec. 26). We consider the positive definite quadratic
functional

f: {t[(PH', 1") + (Qh, )] + (1 — 0)(H', ')} dx. (68)

The system of Euler equations corresponding to (68) is
-4 [0 > Puki+ (= 0l + 0> Qubi =0 (k= 1,0.om (@)
i=1 i=1

[cf. (37)], which for ¢t = 1 reduces to the system (55), and for t = 0
reduces to the system

=0 (k=1,...,n).

Suppose the interval [a, b] contains a point & conjugate to a, i.e., suppose
the determinant (60) vanishes for x = 4. Then there exists a linear
combination A(x) of the solutions (57) which is not identically zero such
that h(@) = 0. Moreover, there exists a nontrivial solution A(x, t) of
the system (69) which depends continuously on ¢ and reduces to A(x)
fort = 1. Itisclear that @ # b, since otherwise, according to the lemma,
the positive definite functional (67) would vanish for A(x) # 0, which
is impossible. The fact that 4 cannot be an interior point of [a, ] is
proved by the same kind of argument as used in Theorem 2 of Sec. 26,
for the case of a scalar function A(x). Further details are left to the
reader.

Suppose now that we only require that the functional (67) be nonnegative.
Then, by the same argument as used to prove Theorem 2’ of Sec. 26, we have

THEOREM 3'. If the quadratic functional

[ @,y + (on, m ax,
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where P is a positive definite symmetric matrix, is nonnegative for all h(x)
such that h(a) = h(b) = 0, then the interval [a, b] contains no interior
points conjugate to a.

Finally, combining Theorems 2 and 3, we obtain

THEOREM 4. The quadratic functional
b
[ 1w, iy + (0, W) dx,

where P is a positive definite symmetric matrix, is positive definite for all
h(x) such that h(a) = h(b) = 0 if and only if the interval [a, b] contains
no point conjugate to a.

29.3. Jacobi’s necessary condition. More on conjugate points. We now
apply the results just obtained to the original functional

T = [ Feoyy)dy  w@)= Mo yb)= M,  (10)

where M, and M, are two fixed points, recalling that the second variation of
(70) is given by

[ i,y + o, max, )
where
1 1 d
P=§Fy'y" 0 =§(Fyy _aFw')' (72)

DEFINITION 2. The system of Fuler equations

d 3 , &
—ﬂzpikh“l'Zthhx:O k=1,...,n),
i=1 i=1

or more concisely

= d% (PH) + Qh =0, (73)

of the quadratic functional (71) is called the Jacobi system of the original
Sfunctional (70).23

DEFINITION 3. The point @ is said to be conjugate to the point a with
respect to the functional (70) if it is conjugate to a with respect to the
quadratic functional (71) which is the second variation of the functional
(70), i.e., if it is conjugate to a in the sense of Definition 1, p. 119.

Since nonnegativity of the second variation is a necessary condition for
the functional (70) to have a minimum (see Theorem 1 of Sec. 24), Theorem 3’
immediately implies

2 Equations (70)-(73) closely resemble equations (39)-(42) of Sec. 27, except that
h, k' are now vectors, and P, Q are now matrices.
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THEOREM 5 (Jacobi’s necessary condition). If the extremal

Y1 =21(%), ..., Yo = ya(x)

corresponds to a minimum of the functional (70), and if the matrix

Fy'y’[x’ y(x), yl(x)]

is positive definite along this extremal, then the open interval (a, b) contains
no points conjugate to a.

So far, we have said that the point & is conjugate to a if the determinant
formed from n linearly independent solutions of the Jacobi system, satisfying
certain initial conditions, vanishes for x = 4. As in the case n = 1, this
basic definition is equivalent to two others, which involve only extremals of

the functional (70), and not solutions of the Jacobi system:
DEFINITION 4. Suppose n neighboring extremals
J’1=J’i1(x),---,J’n=J’tn(x) (I= 1’-'-”1)

start from the same n-dimensional point, with directions which are close
together but linearly independent. Then the point d is said to be conjugate
to the point a if the value of the determinant

yu(x) yio(x) o0 y1a(x)
Ya1(x)  yaax) - Yaau(X)
ynl(x) .}’nz(x) e ynn(x)

for x = d is an infinitesimal whose order is higher than that of its values
fora < x < a.

In the next definition, we enlarge the meaning of a conjugate point to
apply to points lying on extremals (cf. footnote 14, p. 114).
DEFINITION 5. Given an extremal vy with equations

Y1 = yl(x)’ L] J’n = yn(.\'),
the point

M = (d’ yl(d)’ ] yn(d))
is said to be conjugate to the point

M = (a’ }h(a), cey yn(a))

if Y has a sequence of neighboring extremals drawn from the same initial
point M, such that each neighboring extremal intersects y and the points
of intersection have M as their limit.

The equivalence of all these definitions of a conjugate point is proved by
using considerations similar to those given for the case of a single unknown
function (see Sec. 27).
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29.4. Sufficient conditions for a weak extremum. Theorem 2 and an
argument like that used to prove the corresponding theorem of Sec. 28
(for the scalar case) imply

THEOREM 6. Suppose that for some admissible curve v with equations
Y1 = yl(x)a sV = y,,,(x),
the functional (70) satisfies the following conditions:

1. The curve vy is an extremal, i.e., satisfies the system of Euler equations

d

Fy‘—-a

Fy"=0 (l=1,,n);

2. Along vy the matrix
P(x) = }Fyy[x, p(x), y'(x)]
is positive definite;
3. The interval [a, b] contains no points conjugate to the point a.

Then the functional (70) has a weak minimum for the curve ¥.

30. Connection between Jacobi’s Condition and the Theory of
Quadratic Forms®

According to Theorem 3 of Sec. 26, the quadratic functional

[ eh= + on ax, (74)

where
P(x)>0 (anﬁb),

is positive definite for all A(x) such that h(a) = A(b) = O if and only if the
interval [a, b] contains no points conjugate to a.2® The functional (74)
is the infinite-dimensional analog of a quadratic form. Therefore, to obtain
conditions for (74) to be positive definite, it is natural to start from the
conditions for a quadratic form defined on an n-dimensional space to be
positive definite, and then take the limit as n — co.

This may be done as follows: By introducing the points

A = Xgy X155 Xpn, Xp41 = b’

we divide the interval [a, b] into n + 1 equal parts of length

=b—a

Ax:xi+l—xl n+l

(i=0,1,...,n).

** Like Sec. 29, this section is written in a somewhat more concise style thanthe rest of
the book, and can be omitted without loss of continuity.
28 This is the strengthened Jacobi condition (see p. 116).
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Then we consider the quadratic form
< hivy — hy)\2
P,(L) + Q.h?] Ax (15)
‘Zo [ Ax ’

where P;, Q; and h; are the values of the functions P(x), Q(x) and h(x) at
the point x = x;. This quadratic form is a ‘““finite-dimensional approxi-
mation” to the functional (74). Grouping similar terms and bearing in

mind that
hy = h(a) = 0, h,., = h(b) =0,
we can write (75) as
S Py + P\po 5Py .
> [(Q,Ax § fm )h, —ohs h,_lh,] (76)

In other words, the quadratic functional (74) can be approximated by a
quadratic form in n variables A,, . . ., h,, with the n x n matrix

a, b, 0 0 0 0
by, ay b, 0 0 0
0 b, a 0 0
2 d3 , 7
0 0 0 bn—2 an_1 bn—l
0 0 O 0 b,., a,
where
P_,+P .
a = 0/Ax + le L= 1,...,n) (78)
and
P .
b(——A—; G=1,...,n=1). (79)

A symmetric matrix like (77), all of whose elements vanish except those
appearing on the principal diagonal and on the two adjoining diagonals,
is called a Jacobi matrix, and a quadratic form with such a matrix is called
a Jacobi form. For any Jacobi matrix, there is a recurrence relation between
the descending principal minors, i.e., between the determinants

a, b, O
b, a; b,
0 b, a
D, = 2 ag
0O 0 O
0

0
0
0

bi_p
0

0
0
0

ai_,

bi-l

0
0
0

by,

a

, (80)



SEC. 30 SUFFICIENT CONDITIONS FOR A WEAK EXTREMUM |27

where i = 1,...,n. In fact, expanding D; with respect to the elements of
the last row, we obtain the recursion relation

D; = a;D;_, — b}_,D;_,, (81

which allows us to determine the minors Dy, ..., D, in terms of the first two
minors D, and D,. Moreover, if we set D, = 1, D_, = 0, then (81) is
valid forall i = 1, ..., n, and uniquely determines D,, ..., D,.

According to a familiar result, sometimes called the Sylvester criterion,
a quadratic form

Z ayEii (@ = aw)

i 1

is positive definite if and only if the descending principal minors

Ay Qi Qi3
a;; Q2

a1, v g1 @zp @asl, ..., det ”aik"

Qg Qg
a3y Qzz AQasg

of the matrix |a;| are all positive.2®6 Applied to the present problem,
this criterion states that the Jacobi form (76), with matrix (77), is positive
definite if and only if all the quantities defined by (81) are positive, where
i=1,...,nand Dy =1, D_, = 0.

We now use this result to obtain a criterion for the quadratic functional
(74) to be positive definite. Thus, we examine what happens to the recur-
rence relation (81) as n— oo. Substituting for the coefficients a; and b,
from (78) and (79), we can write (81) in the form

: 2
D, = (Q,Ax+£";+j) o1 — P,

i—-1 P —
Ax Bxy? D,_, (i=1,...,n. (82
It is obviously impossible to pass directly to the limit n — oo (i.e., Ax — 0)
in (82), since then the coefficients of D;_, and D;_, become infinite. To
avoid this difficulty, we make the “‘change of variables’’ 27

P,---PZ .
Dt=-1—(AT):+# (I=1,...,n),

V4
D0=A—;=l, (83)
D_1=Zo=0.

2 See e.g., G. E. Shilov, op. cit., Theorem 27, p. 131.
¥ Substituting the expressions (78) and (79) into (80), we find by direct calculation
that D, is of order (Ax)~*, and hence that Z| is of order Ax.
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In terms of the variables Z;, the recurrence relation (82) becomes

Pl"'Pizi+1_ Pi_1+Pg)P1“‘Pi—lzi
Pt = (e g @
_ P2y Py---P_,Z_,
(Bdx?  (Ax)'7?

)

i.e.,
0Z(Ax)? + P Z, + PZ,—PZ;,, — P,_,Z,_, =0
or
1 Zi+1—Zi_ Zi—Zi—l _ .
0.z, — Ax (Pi—Ax Pg_l————Ax ) =0 (@(=1,....,n. (84

Passing to the limit Ax — 0 in (84), we obtain the differential equation
d , B
—E(PZ)+ 0Z =0, (85)

which is just the Jacobi equation!

The condition that the quantities D; satisfying the relation (82) be positive
is equivalent to the condition that the quantities Z; satisfying the difference
equation (84) be positive, since the factor

Pl. . 'Pi
(Ax)Hl

is always positive [because of the condition P(x) > 0]. Thus, we have proved
that the quadratic form (76) is positive definite if and only if all but the first
of the n + 2 quantities Zy,Z,, ..., 7Z, ., satisfying the difference equation
(84) are positive.®

If we consider the polygonal line II, with vertices

(ay ZO), (xb Zl), ) (b9 Zn+1)
recall that a = xo, b = x,,,), the condition that Z, = 0 and Z; > 0 for
i=1,...,n+ 1 means that Il, does not intersect the interval [a, b] except

at the end point a. As Ax— 0, the difference equation (84) goes into

the Jacobi differential equation (85), and the polygonal line II, goes into a

nontrivial solution of (85) which satisfies the initial condition
2@) =Zo=0, Z'(a@= lim 2=Z0_ jjm &% _

Az—0 Ax az—0 AXx

1

and does not vanish for a < x < b. In other words, as n — oo, tkie Jacobi
form (76) goes into the quadratic functional (74), and the condition that (76)

% Note that Z, = 0, Z, = Ax > 0, according to (83). Note also that these two
equations, together with the n equations (84), form a system of n + 2 independent
linear equations in n + 2 unknowns, and that such a system always has a unique
solution.
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be positive definite goes into precisely the condition for (74) to be positive
definite given in Theorem 3 of Sec. 26, i.e., the condition that [a, b] contain
no points conjugate to a. The legitimacy of this passage to the limit can
be made completely rigorous, but we omit the details.

PROBLEMS

1. Calculate the second variation of each of the following functionals:
&) I = [ F(x, ) dx;
b) J0 = " Foo 3, ™) dx;
c) J[u]l = fJn F(x, y, u, u;, u,) dx dy.
2. Show that the second variation of a linear functional is zero. State and

prove a converse result.

3. Prove that a quadratic functional is twice differentiable, and find its first
and second variations.

4. Calculate the second variation of the functional
e,
where J[y] is a twice differentiable functional.
Ans. 82e1[y] — [(8])2 + 82.]]6’][”.

5. Give an example showing that in Theorem 2 of Sec. 24, we cannot replace
the condition that 32/ [4] be strongly positive by the condition that 382/[h] > 0.

6. Derive the analog of Legendre’s necessary condition for functionals of the
form

Ju] = J-fﬂ F(x, y, u, u;, u,) dx dy,

where u vanishes on the boundary of R.
Ans. The matrix
I Fuz"x F“I'-‘y

\ Fuyux Fuyuy !

should be nonnegative definite (cf. p. 119).
7. For which values of a and b is the quadratic functional
[S e - breoyax

nonnegative for all f(x) such that f(0) = f(a) = 0?7 Deduce an inequality
from the answer.

8. Show that the extremals of any functional of the form

f: F(x, y)dx

have no conjugate points.
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9. Prove that if a family of extremals drawn from a given point 4 has an
envelope E, then the point where a given extremal touches E is a conjugate
point of A.

10. Investigate the extremals of the functional

I = [T x5O = Ly = 4,
where 0 < a, 0 < 4 < 1. Show that two extremals go through every pair
of points (0, 1) and (a, A). Which of these two extremals corresponds to
a weak minimum?

Hint. The line x = 0 is an envelope of the family of extremals.

11. Prove that the extremal y = y;x/x; corresponds to a weak minimum of

both functionals
J‘zl ‘1{ J*:l ix
o Yy 0 y/z’

where y(0) = 0, y(x1) = y1, x; > 0, y; > 0.

12. What is the restriction on a if the functional
L (y? = y?) dx, ¥0) =0, y@a)=0

is to satisfy the strengthened Jacobi condition? Use two approaches, one
based on Jacobi’s equation (42) and the other based on Definition 4 (p. 114)
of a conjugate point.

13. Is the strengthened Jacobi condition satisfied by the functional
I =[T07 4+ dy KO =0, y@=0

for arbitrary a?
Ans. Yes.

14. Let y = y(x, o, B) be a general solution of Euler’s equation, depending on
two parameters « and B. Prove that if the ratio

ay/ oo

oylop
is the same at two points, the points are conjugate.

15. Consider the catenary

(x + b)
y = ccosh >

c
where b and c are constants. Show that any point on the catenary except
the vertex (— b, ¢) has one and only one conjugate, and show that the tangents
to any pair of conjugate points intersect on the x-axis.
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FIELDS.
SUFFICIENT CONDITIONS
FOR A STRONG EXTREMUM

In our study of sufficient conditions for a weak extremum, we introduced
the important concept of a conjugate point. The simplest and most natural
way to introduce this concept is based on the use of families of neighboring
extremals (see Sec. 27). Then the conjugate of a point M lying on an extremal
v is defined as the limit of the points of intersection of y with the neighboring
extremals drawn from M.

The utility of studying families of extremals rather than individual extremals
is particularly apparent when we turn our attention to the problem of finding
sufficient conditions for a strong extremum. The study of such families of
extremals is intimately connected with the important concept of a field,
which we introduce in the next section. Since the concept of a field is
useful in many problems, we first give a general definition of a field, which is
not directly related to variational problems.

31. Consistent Boundary Conditions. General Definition
of a Field

Consider a system of second-order differential equations

y;’=.f;(x’y19‘"’yﬂ’y’l""’y;l) (i=1""’n)’ (l)

solved explicitly for the second derivatives. In order to single out a definite
131
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solution of this system, we have to specify 2n conditions, e.g., boundary
conditions of the form

q

Yi=wn, ..y (=1...,n @

for two values of x, say x; and x,. Boundary conditions of this kind are
commonly encountered in variational problems. If we require that the
boundary conditions (2) hold only at one point, they determine a solution
of the system (1) which depends on » parameters.

We now introduce the following definitions:

DEFINITION 1. The boundary conditions

Vi=UP0, ) G=1,...,n), 3
prescribed for x = x,, and the boundary conditions
.}’;=4’§2)(J’1,-~,J’n) (I= 1’“""), (4)

prescribed for x = x,, are said to be (mutually) consistent if every solution
of the system (1) satisfying the boundary conditions (3) at x = x, also
satisfies the boundary conditions (4) at x = x,, and conversely.*

DEFINITION 2. Suppose the boundary conditions

yil="pi(x,y1,--"yn) (l= 1,...,") (5)

(where the {; are continuously differentiable functions) are prescribed for
every x in the interval [a, b], and suppose they are consistent for every
pair of points xi, x, in [a, b). Then the family of mutually consistent
boundary conditions (5) is called a field (of directions) for the given
system (1).

As is clear from (5), boundary conditions prescribed for every value of x
define a system of first-order differential equations. The requirement that
the boundary conditions be consistent for different values of x means that
the solutions of the system (5) must also satisfy the system (1), i.e., that (1)
is implied by (5).

Because of the existence and uniqueness theorem for systems of differential
equations,? one and only one integral curve of the system (5) passes through

! Thus, one might say that the boundary conditions at x, can be replaced by the bound-
ary conditions at x; which are consistent with those at x;. In a boundary value
problem, the boundary conditions represent the influence of the external medium.
But in every concrete problem, we are at liberty to decide what is taken to be the external
medium and what is taken to be the system under consideration. For example, in
studying a vibrating string, subject to certain boundary conditions at its end points,
we can focus our attention on a part of the string, instead of the whole string, regarding
the rest of the string as part of the external medium and replacing the effect of the
**discarded” part of the string by suitable boundary conditions at the end points of the
‘“retained’” part of the string.

2 See e.g., E. A. Coddington, op. cit., Chap. 6.
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each point (x, y,, ..., y,) of the region R where the functions ¢i(x, yi, ..., y,)
are defined. According to what has just been said, each of these curves is
at the same time a solution of the system (1). Thus, specifying a field (5)
of the system (1) in some region R defines an n-parameter family of solutions
of (1), such that one and only one curve from the family passes through each
point of R. The curves of the family will be called trajectories of the field.?

The following theorem gives conditions which must be satisfied by the
functions $i(x, ¥1, ..., V), < n, if the system (5) is to be a field
for the system (1):

THEOREM. The first-order system
Vi =X, Y1, o5 Vn) (a<x<b;l<i<n ©)

is a field for the second-order system
Yi=f5 1y Yuy Yoy oo s Vi) Q)

if and only if the functions (X, y,, ..., y,) satisfy the following system
of partial differential equations, called the Hamilton-Jacobi system* for
the original system (7).

Z aq}l =fi(X,}’1,'~-,J’m¢1""”‘p")‘ (8)

Thus, every solution of the Hamilton-Jacobi system (8) gives a field for
the original system (7)

Proof. Differentiating (6) with respect to x, we obtain

— a¢l Z a"r’: dyk

8y,c dx’

= 84" TS
£,

Thus, the system (7) is a consequence of the system (6) if and only if
(8) holds.

i.e.,

Example 1. Consider a single linear differential equation
' =p(x)y. )

3 A field is usually defined not as a family of boundary conditions which are compatible
at every two points, but as a set of integral curves of the system (1) which satisfy the
conditions (5) at every point, i.e., as a general solution of the system (5). However,
it seems to us that our definition has certain advantages, in particular, when applying
the concept of a field to variational problems involving multiple integrals.

* For an explanation of the connection between the system (8) and the Hamilton-
Jacobi equation defined in Chapter 4, see the remark on p. 143.
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The corresponding Hamilton-Jacobi system reduces to a single equation

2w 2y = p0oy,
i.e.,
2
43— (10)

The set of solutions of (10) depends on an arbitrary function, and according
to the theorem, each of these solutions is a field for equation (9).
The simplest solutions of (10) are those that are linear in y:

Y(x, y) = ox)y. (11)
Substituting (11) into (10), we obtain
«'(x)y + «3(x)y = p(x).

Thus, «(x) satisfies the Riccati equation

o'(x) + oa%(x) = p(x). (12)
Solving (12) and setting

Y = ax)y,

we obtain a field (which is linear in y) for the differential equation (9).

Example 2. 1In the same way, we can find the simplest field for a system
of linear differential equations

Y" = P(x)Y, (13)

where Y = (yy,...,»,) and P(x) = |pu(x)| is a matrix. The system of
Hamilton-Jacobi equations corresponding to (13) is

34’1 2 aqﬁ = anl Pu(X) Vi (i=1,...,n. (14)

Let us look for a solution of (14) which is linear in 7Y, i.e.,

B0 P a3 = 3 ule (1s)

or in vector notation,
Y = 4Y.

Substituting (15) into (14), we obtain
z w(X) e + Z aye(X) Z ai(X)y; = Z PudX) Vs
k=1 k=1 j=1 k=1

or in matrix form

[%C A(x)] Y + A%(X)Y = P(x)Y,"
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where A = |lay |- Thus, if the matrix 4(x) satisfies the equation
d 2 —
A + A%(x) = P(),

which it is natural to call a matrix Riccati equation (cf. p. 120), the functions
(15) define a field for the system (13), and this field is linear in y.

It is worth noting, although this observation will not be needed later,
that the concept of a field is intimately related to the solution of boundary
value problems for systems of second-order differential equations by the
so-called “sweep method.” We illustrate this method by considering the
very simple case where the system consists of a single linear differential
equation

Y'(x) = p(x)¥(x) + f(x), (16)
with the boundary conditions
y'(a) = coya) + db, 7
Y'(b) = c1y(b) + d,. (18)
We begin by constructing the first-order differential equation
Y'(x) = a(x)y(x) + B(x) (19)

and requiring that all its solutions satisfy the boundary condition (17) and
the original equation (16). Obviously, to meet the first requirement, we
must set

a(@) = co, Pla) = do. (20)
To meet the second requirement, we differentiate (19), obtaining
Y'(x) = o' (x)¥(x) + a(x)y'(x) + B'(x).
Substituting (19) for y’(x) in the right-hand side, we find that
Y'(x) = [o'(x) + o*(x)]¥(x) + B'(x) + a(x)B(x),
from which it is clear that (19) implies (16) if
X(x) + o(x) = pl), an
F'(x) + a(x)B(x) = f(x).

Now let a(x) and B(x) be a solution of the system (21), satisfying the
initial conditions (20). Once we have found «(x) and (x), we can write a
“boundary condition”

Y (x0) = a(x0)¥(x0) + B(x0)

for every point x, in [a, b]. This process of shifting the boundary condition
originally prescribed for x = a over to every other point in the interval
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[a, b] is called the “forward sweep.” In particular, setting x = b, we obtain
the equation

Y'(6) = «(b)y(b) + B(b)s

which, together with the boundary condition (18), forms a system determining
y(b) and y'(b). If these values are uniquely determined, our original boundary
value problem has a unique solution, i.e., the solution of equation (19) which for
x = b takes the value y(b) just found. This second stage in the solution of
the boundary value problem is called the ““backward sweep.”” These consider-
ations apply to the case of a single equation, but a similar method can be
used to deal with systems of second-order differential equations.

The use of the sweep method to solve the boundary value problem con-
sisting of the differential equation (16) and the boundary conditions (17)
and (18) has decided advantages over the more traditional method. [In the
latter method, we first find a general solution of equation (16) and then choose
the values of the arbitrary constants appearing in this solution in such a way
that the boundary conditions (17) and (18) are satisfied.] These advantages
are particularly marked in cases where one must resort to some kind of
approximate numerical method in order to solve the problem.®

The connection between the sweep method and the concept (introduced
earlier) of the field of a system of second-order differential equations is now
entirely clear. In fact, in the simple case just considered, the forward sweep
is nothing but the construction of a field linear in y for equation (16). More-
over, (21) is just the system of ordinary differential equations to which the
Hamilton-Jacobi system reduces in the case where we are looking for a field
linear in y of a single second-order differential equation.®

We might have constructed a field starting from the right-hand end point
of the interval [a, b], rather than from the left-hand end point. Thus, our
boundary value problem actually involves two fields for equation (16),
one of which is determined by shifting the boundary condition (17) from a
to b, and the other by shifting the boundary condition (18) from 4 to a. The
solution of the boundary value problem consisting of the differential equation
(16) and the boundary conditions (17) and (18) is a curve which is a common
trajectory of these two fields. Thus, in the sweep method, we construct
one field (the forward sweep) and then choose one of its trajectories which is
simultaneously a trajectory of a second field (the backward sweep).

51 S. Berezin and N. P. Zhidkov, Metons1 Bouiuucneuwuii, Tom Il (Computational
Methods, Vol. II), Gos. I1zd. Fiz.-Mat. Lit., Moscow (1959), Chap. 9, Sec. 9.

S In Example 1, we considered the even simpler homogeneous differential equation
y” = p(x)y, and correspondingly, we looked for a field of the homogeneous form
y’ = a(x)y. This led to the Riccati equation (12) for the function a(x), identical with
the first of the equations (21).
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32. The Field of a Functional

32.1. Wenow apply the considerations of the preceding section to variational
problems. The Euler equations

d .
Fy,—aFy;=O i=1,...,n),
corresponding to the functional
b
[ Feyn i s dx, (22)

form a system of n second-order differential equations. In order to single
out a definite solution of this system, we have to specify 2n supplementary
conditions, which are usually given in the form of boundary conditions, i.e.,
relations connecting the values of y; and y; at the end points of the interval
[a, b] (there are n such relations at each end point). In many cases, of
course, the boundary conditions are determined by the very functional under
consideration. For example, consider the variable end point problem for
the functional

b
fa F(x’yl""’yﬂ’y,17'"’y;l)dx+g(1)(a’yl""’yn)+g(2)(b9y1,""yﬂ)’
(23)

differing from (22) by two functions g’ and g® of the coordinates of the
end points of the path along which the functional is considered. Calculating
the variation of the functional (23), we obtain

jz(w— JM&+ZFM

. (24)
+ Z ghh(a) + > g2hyb).
i=1 i=1

Setting (24) equal to zero, and assuming that the curve y; = yi(x), | < i < n,
is an extremal, we find that

> Fyh
i=1
Since hy(a) and hy(b) are arbitrary, (25) implies that
(Fy = 8))eea=0 (i=1,...,n) (26)

z=b n

D gh(a) + Z gh(b) = 0. (25)

=a =

and

Il
o

@ @7

II
S
~—~

(Fu = 8D)z=s
If g = g2 = 0, (25) implies
Fy;|x=a = Fyill-‘:b = 0’
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i.e., the natural boundary conditions for a variable end point problem like
the one considered in Sec. 6 [cf. Chap. 1, formula (29)].”

Next, we examine in more detail the boundary conditions corresponding
to one end point, say x = a. For simplicity, we write g instead of g¥,
and adopt the vector notation

y=(y19'-',yn)! y'=(y/1,,y;),

etc., in arguments of functions (cf. Sec. 29). As usual, we introduce the
“momenta” (see footnote 15, p. 86)

Pi(xs.}’»)”) = Fyz(x,yy}") (l= 1,---’ n), (28)
and then write the boundary conditions (26) in the form

%, 3 Y )ema = gu(X Ma=a  (=1,...,n) (29)
The relations (28) determine yi(a), . . ., yn(a) as functions of y,(a), . . ., y.(a):®
y;(a) = ¢t(y)|:=a (l = 1"":")' (30)

Boundary conditions that can be derived in this way merit a special name:
DEFINITION 1. Given a functional

b
fa F(x, ,)) dx,
with momenta (28), the boundary conditions (30), prescribed for x = a,
are said to be self-adjoint if there exists a function g(x, y) such that
Xy, dDi=a = g Ve G =1,...,n). (31
THEOREM 1. The boundary conditions (30) are self-adjoint if and only
if they satisfy the conditions
apl[x’ e "‘,’(y)] — apk[x’ Vs 4’()})] . —
T W e o ey GET L GO
called the self-adjointness conditions.

7 It should also be noted that the boundary conditions corresponding to fixed end points
can be regarded as a limiting case of the boundary conditions (26) and (27), although the
latter involve the additional functions gV and g'®. Forexample, in the case of the functional

b
[} Fex 3, vy dx = kixt@) - 4P,

the boundary condition at the left-hand end point is

[Fy (x,5,)) —2k(y — Az =0
or
F- (x,0,Y)

2k 2=a’

If we now let k — oo, we obtain in the limit the boundary condition y(a) = A. Similar
considerations apply to the case of several functions y,,. .., ¥n.

8 The conditions (30) can be thought of as assigning a direction to every point of the
hyperplane x = a. [Cf. formula (2).]

ya)= A+
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Proof. If the boundary conditions (30) are self-adjoint, then (31)
holds, and hence

opilx, y, YOI _ °8(x, ) _ 3pelx, y, $(¥)]
o Y1 P a7z

which is just (32). Conversely, if the boundary conditions (30) are such
that the functions p[x, y, $(»)] satisfy (32), then, for x = q, the p, are
the partial derivatives with respect to y; of some function g(y),® so that
the boundary conditions (30) are self-adjoint in the sense of Definition 1.

Remark. 1t is immediately clear that for n = 1, i.e., in the case of varia-
tional problems involving a single unknown function, any boundary con-
dition is self-adjoint, and in fact, the self-adjointness conditions (32) disappear
forn = 1.

32.2. In the preceding section, we introduced the concept of a field for a
system of second-order differential equations. We now define the field of
a functional:

DEFINITION 2. Given a functional

[} P v,y ax, (33)

with the system of Euler equations

d .
Fyi—thFy('=0 (’='1a-~"n)’ (34)

we say that the boundary conditions

Y=y  G=1,...,n), (35)
prescribed for x = x,, and the boundary conditions
i=9*» G=1,...,n), (36)

prescribed for x = x,, are (mutually) consistent with respect to the
functional (33) if they are consistent with respect to the system (34), i.e.,
if every extremal satisfying the boundary conditions (35) at x = x,
also satisfies the boundary conditions (36) at x = x,, and conversely.

DEFINITION 3. The family of boundary conditions

Yi=dlx,y)  G=1...,n), (37

9 See e.g., D. V. Widder, op. cit., Theorem 11, p. 251, and T. M. Apostol, Advanced
Calculus, Addison-Wesley Publishing Co., Inc., Reading, Mass. (1957), Theorem
10-48, p. 296. (We tacitly assume the required regularity of the functions p; and of
their domain of definition.)
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prescribed for every x in the interval [a, b), is said to be a field of the
Sfunctional (33) if

1. The conditions (37) are self-adjoint for every x in [a, b];

2. The conditions (37) are consistent for every pair of points Xy, X5 in

[a, b].

In other words, by a field of the functional (33) is meant a field for the
corresponding system of Euler equations (34) which satisfies the self-
adjointness conditions at every point x. The equations (37) represent a
system of first-order differential equations. Its general solution (the family
of trajectories of the field) is an n-parameter family of extremals such that
one and only one extremal passes through each point (x, y,, ..., y,) of the
region where the field is defined.®

We now give an effective criterion for a given family of boundary con-
ditions to be the field of a functional:

THEOREM 2.1' A necessary and sufficient condition for the family of
boundary conditions (37) to be a field of the functional (33) is that the
self-adjointness conditions

api[-x7 Vs q’(x3 y)] . apk[xv s q’('xa y)]
a7 B 2% (38)

and the consistency conditions

apilx, y, Y(x, )] _  9H[x, y, d(x, y)]
ox B oy (39)

be satisfied at every point x in [a, b, where
pix, 3, ') = Fi(x, 9, ¥, (40)

and H is the Hamiltonian corresponding to the functional (33):

H(x’y:y’) = _F(x: ,V, .V’) + Z pi(x’ y’}")y; (41)
i=1

Proof. We have already shown in Theorem 1 that the conditions (38)
are necessary and sufficient for the boundary conditions

y; = L1'-’1'(-xa y) (l = lv' . "n) (42)

10 In the calculus of variations, by a field (of extremals) of a functional is usually
meant an n-parameter family of extremals satisfying certain conditions, rather than a
family of boundary conditions of the type just described. However, as already remarked
(see footnote 3, p. 133), it seems to us that our somewhat different approach to the con-
cept of a field has certain advantages.

11 This theorem is the analog of the theorem of Sec. 31, and the system of partial
differential equations (39) is the analog of the Hamilton-Jacobi system (see p. 133).
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to be self-adjoint at every point x in [a, b]. Therefore, it only remains to
show that if (38) holds at every point x in [a, b], then the conditions (39)
are necessary and sufficient for the boundary conditions (42) to be con-
sistent for @ < x < b. To prove this, we set

yx' = ¢i(x, y)’ y’ = 4)()6, y)

in (40) and (41), and substitute the right-hand sides of the resulting
equations into (39). Performing the indicated differentiations and
dropping arguments (to keep the notation concise), we obtain

n n 84}
mz Z Yk dx F!/( + Z Fyk 5__}11:

k=1 43
S g @
K=1 oy K=1 vk oy,
Using the self-adjointness conditions
O _ oFy
a7 OV
we can write (43) in the form
3 8&11;,; S 8F!/(
= . 44
Fu = Fae+ 2 P + 2, 00 (44)
Since
aF, n 8
ay]; = Fyy, + 721 vivi 5
(44) becomes
o | 8
F, =F; + Z Fyu e + Z y.yh( 5 Z ai ) 45)
Along the trajectories of the field, we have
dyk — 0,
—E‘ — Yk
so that
%y _ oYy & 0y,
Pl I
Therefore, (45) reduces to
z dy d%y
Fyt = Fyix + kZ1 Fygyk d)«k + Z Fy;yk dxzk
along the trajectories of the field, or
d
Fu — 2= Fui =0, (46)
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where 1 </ < n. This means that the trajectories of the field of
directions (42) are extremals, i.e., (42) is a field of the functional

[} Feey, ) dx, @)

and hence the conditions (39) are sufficient. Since the calculations
leading from (39) to (46) are reversible, the conditions (39) are also
necessary, and the theorem is proved.

THEOREM 3. The expression

api(x9 ) y’) apk(x1 Vs y’)
- 48
Oy i (“48)

has a constant value along each extremal.
Proof. Using (46), we find that

4 () B R
dx \oy, oy Vs oy, :

COROLLARY. Suppose the boundary conditions
Vi=dxy) (@<x<bl<i<n (49)

are consistent, i.e., suppose the solutions of the system (49) are extremals
of the functional (47). Then, to prove that the conditions (49) define a
field of the functional (47), it is only necessary to verify that they are self-
adjoint at a single (arbitrary) point in [a, b).

According to Definition 1, the boundary conditions (49) are self-adjoint
if there exists a function g(x, y) such that

pi[x3 Y, q’(x’ y)] = gug(x’ y) (l = 1’ LS ] n) (50)

for a < x < b. We now ask the following question: What condition has
to be imposed on the function g(x, y) in order for the boundary conditions
(49), defined by the relations (50), to be not only self-adjoint, but also
consistent, at every point of [q, b}, i.e., for the boundary conditions (49)
to be a field of the functional (47)? The answer is given by

THEOREM 4. The boundary conditions (49) defined by the relations (50)
are consistent if and only if the function g(x, y) satisfies the Hamilton-
Jacobi equation*?

og 29 %)_
ax+H(xayl,---’ymayly-'-aayn —0 (51)

12 Cf. equation (72), p. 90.
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Proof. 1t follows from (50) that the Hamilton-Jacobi equation (51)
can be written in the form

0,
£= —H(X,J’n---,.Vme,---,Pn)a (52)

where p, = pi[x, y, Y(x, »)]. Differentiating (52) with respect to y,,
we obtain

g _ _OH[X, 1. Yu (X P)s - X, )]
ox 0y; 0y

ie.,

% — _aH[x9y19 <o Vs l'pl(x, y)’ ) "pn(xa .V)]1
ox a2

which is just the set of consistency conditions (39).

Remark. The connection between the Hamilton-Jacobi system intro-
duced in Sec. 31 and the Hamilton-Jacobi equation introduced in Sec. 23 is
now apparent. As we saw in Sec. 31, in the case of an arbitrary system of
n second-order differential equations, a field is a system of n first-order
differential equations of the form (49), where the functions ¢(x, y) satisfy
the Hamilton-Jacobi system (8). When we deal with the field of a functional,
the system (8) turns into the consistency conditions (39), and in this case,
we impose the additional requirement that the boundary conditions defining
the field be self-adjoint at every point. This means that the field of a
functional is not really determined by n functions ¢;(x, y), but rather by
a single function g(x, y) from which the functions ¢(x, y) are derived by using
the relations (50). Inother words, the function g(x, y) is a kind of potential
for the field of a functional. Since the field of a functional is determined by
a single function, instead of by n functions, it is entirely natural that the set
of n consistency conditions for such a field should reduce to a single equation,
i.e., that the Hamilton-Jacobi system should be replaced by the Hamilton-
Jacobi equation.

32.3. Once more, we consider a functional

[} Py, ) dx (53)

whose extremals are curves in the (n + 1)-dimensional space of points
(x,y) = (x,Y1,---,¥n). Let R be a simply connected region in this space,
and let ¢ = (co, ¢4, - - -, ¢,) be a point lying outside R.
DEfFINITION 4. Let (x,y) be an arbitrary point of R, and suppose that
one and only one extremal of the functional (53) leaves ¢ and passes
through (x, y), thereby defining a direction

yi=dxy)  (=1...,n) (54)
at every point of R.  Then the field of directions (54) is called a central field.
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THEOREM 5. Every central field (54) is a field of the functional (53),
i.e., satisfies the consistency and self-adjointness conditions.

Proof. Consider the function

, v
gx.y) = [ Fx ) dx, (55)

where the integral is taken along the extremal of (53) joining the point
¢ to the point (x, ). We define a field of directions in R by setting
Fy(x,3,) =px,3,¥) =g,(x» (=1...,n. (50

The theorem will be proved if it can be shown that this field coincides with
the original field (54), since then the original field will satisfy the consis-
tency conditions [since its trajectories are extremals] and also the self-
adjointness conditions [this follows from Theorem 1 applied to the field
defined by (56)]. But (55) is just the function S(x, y4, . . ., ¥,) of Sec. 23,
and hence

8u(x, ) = pix, y, 2),

where z denotes the slope of the extremal joining ¢ to (x, y), evaluated
at (x, »).!® This shows that the field of directions (56) actually coincides
with the original field (54).

DEFINITION 5. Given an extremal vy of the functional (53), suppose there
exists a simply connected (open) region R containing v such that

1. A field of the functional (53) covers R, i.e., is defined at every point
of R;
2. One of the trajectories of the field is y.
Then we say that can be imbedded in a field [of the functional (53)].
THEOREM 6. Let v be an extremal of the functional (53), with equation
y=xx) (asx<b),
in vector form. Moreover, suppose that
det [ Fyy |

is nonvanishing in [a, bl, and that no points conjugate to (a, y(a)) lie on y.
Then vy can be imbedded in a field.

Proof. By hypothesis, the following two conditions are satisfied for
sufficiently small € > 0:

1. The extremal y can be extended onto the whole interval [a — &, b];

2. The interval [@ — ¢, b] contains no points conjugate to a (cf. foot-
note 20, p. 121).

13 See the second of the formulas (70) and footnote 18, p. 90.
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Now consider the family of extremals leaving the point (a — ¢, y(a — €)).
Since there are no points conjugate to a — ¢ in the interval [a — ¢, b], it
follows that for a < x < b no two extremals in this family which are
sufficiently close to the original extremal y can intersect. Thus, in some
region R containing v, the extremals sufficiently close to y define a central
field in which y is imbedded. The proof is now completed by using
Theorem 5.

33. Hilbert’s Invariant Integral

As before, let R be a simply connected region in the (n + 1)-dimensional
space of points (x, ) = (x, y1,..., Y.), and let

y=uxy (=1...,n) (57)
define a field of the functional
b
L F(x,y,))dx (58)

in R. It was proved in the preceding section (see Theorem 2) that the field
of directions (57) is a field of the functional (58) if and only if the functions
¢i(x, ) satisfy the self-adjointness conditions

Fpi[x’ ,V, LP(X’ y)] — é’pk[x’ y’ “IJ(X’ y)]

€Y oy (59)
and the consistency conditions
eHIx, y, w(x, M) _ _aplx, p, 4(x, ] (60)

187 cx
Taken together, the conditions (59) and (60) imply that the quantity
_H[X9 y’ lb(x’ J’)] dx + Z pl[x’ y’ ‘L(X’ y)] dyl
i=1
is the exact differential of some function (see footnote 9, p. 139)

g(X,J’) = g(X, yl’ R ] yn)'

As is familiar from elementary analysis,** this function, which is determined
to within an additive constant, can be written as a line integral

glx,») = [F( —Hdx + Z 22 dyl), (61)

evaluated along the curve 1" going from some fixed point M, = (x,, ¥(x,)) to
the variable point M = (x, y). Since the integrand of (61) is an exact

14 See e.g., D. V. Widder, op. cit., Theorem 12, p. 251.
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differential, the choice of the curve I" does not matter; in fact, the value of the
integral depends only on the points M,, M,, and not on the curve I. The
right-hand side of (61) is known as Hilbert’s invariant integral.

Using the equations (57) defining the field, and explicitly introducing
the integrand F of the functional (58), we can write the integral in (61) as

Jo ({F 3 400 91 = 3w DR 3, 4 ) e
n 6
+ 2 Rl 3, 40 )l dy)

This expression is Hilbert’s invariant integral, in the form corresponding
to the field defined by the functions ¢;(x, y). If the curve I'" along which the
integral (62) is evaluated is one of the trajectories of the field, then

= (X, y) dx

along I', and hence (62) reduces to

[ FGopyyax
evaluated along this trajectory.

Remark. 1If v is an extremal which is a trajectory of the field, Hilbert’s
invariant integral can be used to write the value of the functional for this
extremal as an integral evaluated along any curve joining the end points of v.
This important fact will be used in the next section.

34. The Weierstrass E-Function. Sufficient Conditions for a
Strong Extremum

DEFINITION. By the Weierstrass E-function of the functional®

I =[Fony)dy, y@=4, =B @)

we mean the following function of 3n + 1 variables:

E(x,p.2,w) = FGy,w) = F(xap,2) = 9 (% = 2)Fyx 3, 2). (64)

In other words, E(x, y, z, w) is the difference between the value of the

15 Here y(a) = A means y,(a) = A,,...,y.(a) = A,, and similarly for y(b) = B,
i.e., we are dealing with the fixed end point problem.
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function F (regarded as a function of its last n arguments) at the point w and
the first two terms of its Taylor’s series expansion about the point z. Thus,
E(x, y, z, w) can also be written as the remainder of a Taylor’s series:

1

E(X,y, Z, W) = z
i,

(W, - zl)(wk - zk)Fyill'k[x, Y, Z + 6(W - Z)]
' 0<6<1).

M=

For n = 1, the Weierstrass E-function has a simple geometric interpretation,
since if we regard F(x, y, z) as a function of z,

F(x’y’ W) - F(x’.y’ Z) - (W - Z)Fy'(x3y’ Z)

is just the vertical distance from the curve I' representing F(x, y, z) to the
tangent to I" drawn through a fixed point of I".

Our goal in this section is to derive sufficient conditions for the functional
(63) to have a strong extremum. It will be recalled from Secs. 28 and 29
that the following set of conditions is sufficient for the functional (63) to have
a weak minimum?® for the admissible curve vy:

Condition 1. The curve vy is an extremal;

Condition 2. The matrix | F,;

is positive definite along v;

Condition 3. The interval [a, b] contains no points conjugate to a.

Every strong extremum is simultaneously a weak extremum, but the
converse is in general false (see p. 13). Therefore, in looking for sufficient
conditions for a strong extremum, it is natural to assume from the outset
that the three conditions just listed are satisfied. We then try to supplement
them in such a way as to obtain a set of conditions guaranteeing a strong
extremum as well as a weak extremum. To find such supplementary con-
ditions, we first recall that Conditions 2 and 3 imply that the given extremal y
can be imbedded in a field

Vi=d(xy)  (=1...,n) (65)

of the functional (63) [see Theorem 6 of Sec. 32].17 Let vy have the equations

Yy = yi(x) (’ = 1’"'a n)a

and let v* be an arbitrary curve with the same end points as vy, lying in the
(n + 1)-dimensional region R containing vy and covered by the field (see

16 To be explicit, we consider only conditions for a minimum. To obtain conditions
for a maximum, we need only reverse the directions of all inequalities.

7 The only part of Condition 2 that is used here is the fact that det || Fy;y;| is non-
vanishing (in fact, positive) in [a, b].
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Definition 5 of Sec. 32). Then, according to equation (62) and the remark
at the end of Sec. 33, we have

J P = [ (P = Surinnplds + 3 R d) do)
()

where for simplicity we omit the arguments of the functions ¢ and ¢;. The
right-hand side of (66) is just Hilbert’s invariant integral, in the form corre-
sponding to the field (65). As usual, we are interested in the increment

AJ = J F(x,y,y)dx — j F(x,y,y") dx.
v* v
Using (66), we find that
A = [ F(x, ) dx
v *
_ fy . ({F(x, ¥, ) — > WF(x, y, ¢)}dx + > Fyu(x, ,4) dyi)
i=1 i=1
= J;* (F(X’ y7 y’) - F(x, y, dr‘) - Z (y: - d.)i)Fy,'(x, y, q))) dx,
i=1
or in terms of the Weierstrass E-function.!®

AJ = fy* E(x, y, ¥, ") dx. (67)

We are now in a position to state sufficient conditions for a strong
extremum.

THEOREM 1. Let y be an extremal, and let

yvi=dx,y)  (=1,...,n) (68)
be a field of the functional

b
IOl = | Fxy.y)dx,  y@) =4,  y) =B (69)
Suppose that at every point (x,y) = (X, 1, ..., ¥.) of some (open) region
containing y and covered by the field (68),'° the condition
E(x,y,¢,w) 20 (70)
is satisfied for every finite vector w = (wy,...,w,). Then J[y] has a

strong minimum for the extremal v.

18 More explicitly,
b
AJ = [ E(x,y*, 4, y*) dx,

where y, = y*(x) are the equations of the curve v*.
19 By hypothesis, such a region R exists.
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Proof. To say that the functional J[y] has a strong minimum for the
extremal y means that AJ is nonnegative for any admissible curve y*
which is sufficiently close to v in the norm of the space €(a, b). But the
condition (70) guarantees that the increment AJ, given by (67), is non-
negative for allsuchcurves. Notethat we do not impose any restrictions
at all on the slope of the curve v*, i.e., v* need not be close to v in the
norm of the space 2,(a, b). In fact, v* need not even belongto &, (a, b).2°

Remark 1. As already noted, the hypothesis that the extremal y can be
imbedded in a field can be replaced by Conditions 2 and 3.

Remark 2. Since the Weierstrass E-function can be written in the form

1
E(X,y,‘l), W) = i

1

> 0 = U)0vk = Yy L7, & + 00w = )]
o O<b<

(see p. 147), we can replace (70) by the condition that at every point of some
region R containing vy, the matrix [|F,,,(x, y, z)| be nonnegative definite
for every finite z.

We conclude this section by indicating the following necessary condition
for a strong extremum:

THEOREM 2 (Weierstrass’ necessary condition). If the functional

b
J0) = [ Feey ), y@ =4, yb) =B
has a strong minimum for the extremal v, then
E(x,y,y,w) 20 (71
along ¥ for every finite w.

The idea of the proof is the following: If (71) is not satisfied, there exists
a point £ in [a, ] and a vector ¢ such that

E[E, ¥(©), y'(8), q] <0, (72)

where y = y(x) is the equation of the extremal y. It can then be shown that
a suitable modification of y leads to an admissible curve y* close to v in
the norm of the space %(a, b) such that

AJ=L‘F(x9y»yl)dx_J;F(X’y’y’)dx<0’ (73)

which contradicts the hypothesis the J[y] has a strong minimum for y.
However, the construction of y* must be carried out carefully, since all we
know is that (72) holds for a suitable g (see Probs. 9 and 10).

20 In problems involving strong extrema of the functional (69), we allow broken
extremals, i.e., the admissible curves need only be piecewise smooth (and satisfy the
boundary conditions).
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PROBLEMS

1. Find the curve joining the points (—1, —1) and (1, 1) which minimizes
the functional

1
Jly]l = f_l (x2y% + 12y?) dx.
What is the nature of the minimum?
1
Hint. AT =Jly + k] — J[y] = f GPH? + 120 dx > 0.

Ans. J[y] has a strong minimum for y = x3.

2. Find the curve joining the points (1, 3) and (2, 5) which minimizes the func-
tional

2
T = [[ya + xy) dx.
What is the nature of the minimum?
Hint. Again calculate AJ.

3. Prove that the segment of the x-axis joining x = 0 to x = = corresponds to
a weak minimum but not a strong minimum of the functional

Il = [y - yHde, x0) =0, ¥ =0
Hint. Calculate J[y] for
1 .
= —=sin nx.
Y=V n "
4. Prove that the extrema of the functional
b —
f n(x, »)V1 + y?dx
are always strong minima if n(x, y) = 0 for all x and y.
5. Investigate the extrema of the following functionals:
2
DI = [ v+ 2dx,  y=D=1, =1

B I = [ @ -yt gy, w0 = —1, ) = 0;
9 I = [[ e+ 1M d, KD =1, YO =8

1
DI = L0+ 5%+ edx, O =3, 1) =t
Ans. b) A strong maximum fory = sin 2x — 1; d) A strong minimum for
y = e
6. Prove that y = bx/a is a weak minimum but not a strong minimum of the
functional

JIyl = fo y3dx,

where y(0) = 0, y(a) = b,a > 0,b > 0.
Hint. Examine the corresponding Weierstrass E-function.
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7. Show that the extremals which give weak minima in Chap. 5, Prob. 10
do not give strong minima.

8. Show that the extremal y = 0 of the functional

Jlyl = fol (ay? — 4byy™ + 2bxy™*) dx,
where

»0 =0, y1)=0, a>0, b>0,
satisfies both the strengthened Legendre condition and Weierstrass’ necessary
condition. Also verify that y = 0 can be imbedded in a field of the func-

tional J[y]. Does y = 0 correspond to a strong minimum of J[y]?
Hint. Choose

Iix for 0 <x<h,
Y = yolx) =
kl;J.r for h<x<1
1 _ h = = .
Then, given any & > 0 however small, there isan 2 > 0 such that J[y,] < 0.

Ans. No.

9. Complete the proof of Weierstrass’ necessary condition, begun on p. 149.

Hint. By continuity of the E-function, we can always arrange for the point
£ to be an interior point of [a, b]. Choose h > 0 such that £ — A > a, and
construct the function

y(x) + (x —a)Q for a< x<E&—h,
y=yu(x) =<(x —E)g+yE for E-—h<x<E
y(x) for E<x<b

where y = y(x) is the equation of the extremal v, and Q is the vector deter-
mined by the condition

WE—h) +(E —a-hQO = —gh+ yQE).
Then let A(h) = J[y,] — J[y]. Prove that A’(0) = E[&, y(£), y'(€),q] < O,
which, together with A(0) = 0, implies that J[y,] — J[¥] < O for small
enough A.

10. Give another proof of Weierstrass’ necessary condition, based on the
direct use of Hilbert’s invariant integral.

Hint. Let M, be the point (§, ¥(£)). From a point M, on vy sufficiently
close to M, construct a central field of the functional. Let R be the region
covered by this field, and let ®(M) be the value of Hilbert’s invariant integral
evaluated along any curve in R joining M, to the variable point M in R.
Draw two surfaces o, and o; of the one-parameter family ®(M) = const,
the first intersecting y in a point M, lying between M, and M,, the second
intersecting y in the point M,;. Moreover, from M, draw the straight line
with direction ¢, and let this line intersect o, in a point M5. Finally, let v*
be obtained from y by replacing the part of y from M, to M, by the curve
MoMzM,, where M M3 is the extremal from M, to Mz and M;M, is the
straight line segment from Mj; to M,;. Again using Hilbert’s invariant
integral, prove that v* satisfies the inequality (72).
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VARIATIONAL PROBLEMS
INVOLVING
MULTIPLE INTEGRALS

In this chapter, we discuss a variety of topics pertaining to functionals
which depend on functions of two or more variables. Such functionals
arise, for example, in mechanical problems involving systems with infinitely
many degrees of freedom (strings, membranes, etc.). In our treatment of
systems consisting of a finite number of particles (see Chapter 4), we derived
the principle of least action and a general method for obtaining conservation
laws (Noether’s theorem). These methods will now be applied to systems
with infinitely many degrees of freedom.

35. Variation of a Functional Defined on a Fixed Region

Consider the functional

Ju] = f . JR F(xy,. ooy Xny Uy Upyyo ooy Ug) dXy - - - dXy, 9}
depending on n independent variables xi, ..., x,, an unknown function u
of these variables, and the partial derivatives u,,,..., u, of u. (As usual,

it is assumed that the integrand F has continuous first and second derivatives
with respect to all its arguments.) We now calculate the variation of (1),
assuming that the region R stays fixed, while the function u(xy,..., x,)
goes into

U¥(Xq, o X)) = U(Xy, .oy X)) F WXy, X)) o, 2)
152
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where the dots denote terms of order higher than 1 relative to €. By the
variation 3J of the functional (1), corresponding to the transformation (2),
we mean the principal linear part (in €) of the difference

Ju*] — J[ul.

For simplicity, we write u(x), ¢(x) instead of u(xy,..., x,), P(xq, ..., Xn),
dx instead of dx; - - - dx,, etc. Then, using Taylor’s theorem, we find that

Ju*] —Ju]l = fR {F[x, u(x) + ed(x), uz, (X) + ey, (%), . . oy U (X) + €y, (x)
— Flx, u(x), u,l(x), co U (X)) dx

f (F + Z "n‘l’n) dx + -

where the dots again denote terms of order higher than 1 relative to e. It
follows that

3 =c¢ ‘[R (Fu + 2F¢) dx 3)

is the variation of the functional (1).
Next, we try to represent the variation of the functional (1) as an integral
of an expression of the form

G()Y(x) + div (--),
i.e., we try to transform the expression (3) in such a way that the derivatives
¥, only appear in a combination of terms which can be written as a diver-
gence. To achieve this, we replace

Fu, e (%)
by

“11

TR 3] = = )

in (3), obtaining
5 > 0 d > L IF, ) dx. (4
J=ef (F- 2 Ru)idx v e[ > T R@Id @

This expression for the variation 3/ has the important feature that its second
term is the integral of a divergence, and hence can be reduced to an integral
over the boundary I of the region R. In fact, let do be the area of a variable
element of I', regarded as an (n — 1)-dimensional surface. Then the
n-dimensional version of Green’s theorem states that

fZMume=meww, 5)

where
G = (F

Ugys +

o Fu,)
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is the n-dimensional vector whose components are the derivatives F,_,

v = (¥1,...,v,) is the unit outward normal to I', and (G, v) denotes the
scalar product of G and v. Using (5), we can write (4) in the form

S =¢ fn (Fu - izl % Fuq)t};(x) dx + ¢ jr Ux)G, v) da, ©)

where the integral over R no longer involves the derivatives of {(x).

In order for the functional (1) to have an extremum, we must require
that 8J = 0 for all admissible {(x), in particular, that 8J = 0 for all admissible
¢(x) which vanish on the boundary I'.  For such functions, (6) reduces to

8J=f( Z )(x)dx

and then, because of the arbitrariness of (x) inside R, 8J = 0 implies that

Fo= 3 g Py = 0 Q)

for all xe R. This is the Euler equation of the functional (1), and is the
n-dimensional generalization of formula (24) of Sec. 5.1

Remark. In deriving (7), we assumed that the region of integration R
appearing in the functional (1) is fixed. Generalization of (7) to the case
where the region of integration is variable will be made in Sec. 36.

36. Variational Derivation of the Equations of Motion of
Continuous Mechanical Systems

As we saw in Sec. 21, the equations of motion of a mechanical system
consisting of n particles can be derived from the principle of least action,
which states that the actual trajectory of the system in phase space mini-
mizes the action functional

[fa-va, ®)

where T is the kinetic energy and U the potential energy of the system of
particles. We now use this principle, together with our basic formula for
the first variation, to derive the equations of motion and the appropriate
boundary conditions for some simple mechanical systems with infinitely
many degrees of freedom, namely, the vibrating string, membrane and plate.

1 As we shall see in the next section, boundary conditions for the equation (7) can be
obtained by removing the restriction that ¢(x) = 0 on I', and then setting 8J = 0 after
substitution of (7) into (4) or (6).
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36.1. The vibrating string. Consider the transverse motion of a string
(i.e., a homogeneous flexible cord) of length / and linear mass density p.
Suppose the ends of the string (at x = 0 and x = /) are fastened elastically,
which means that if either end is displaced from its equilibrium position,
a restoring force proportional to the displacement appears. This can be
achieved, for example, by fastening the ends of the string to two rings which
are constrained to move along two parallel rods,
while the rings themselves are held in their initial
positions by two ideal springs,? as shown in Fig. 8.
Let the equilibrium position of the string lie
along the x-axis, and let u(x, t) denote the dis-
placement of the string at the point x and time
t from its equilibrium position. Then, at time 7,
the kinetic energy of the element of string
which initially lies between x, and x, + Axis x=0 x=1
clearly

¥ pui(x,, t) Ax. ©) FIGURE 8

Integrating (9) from O to /, we find that the kinetic energy of the whole string
at time ¢ equals

— 1 ! 2( ..
T=5p fo ui(x, 1) dx. (10)

To find the potential energy of the string, we use the following argument:
The potential energy of the string in the position described by the function
u(x, t), where t is fixed, is just the work required to move the string from
its equilibrium position ¥ = 0 into the given position u(x, t). Let T denote
the tension in the spring, and consider the element of string indicated by AB
in Figure 9, which initially occupies the position DE along the x-axis, i.e.,
theinterval [x,, x, + Ax].2 Tocalculate theamount of work needed to move
DE to AB, we first move DE to the position AC. This requires no work at
all, since the force (the tension in the string) is perpendicular to the dis-
placement.* Next, we stretch the string from the position AC to the position
AC’, where the length of AC’ equals the length of AB. This obviously
requires an amount of work equal to <3, where 8 is the length of CC’.  Finally,
we rotate AC’ about the point A4 into the final position AB. Like the first
step, this requires no work at all, since at each stage of the rotation the
force is perpendicular to the displacement. Thus, the total amount of work

2 The springs are ideal in the sense that they have zero length when not stretched.

3 Since we only consider the case of small vibrations, the string can be assumed to have
constant length and constant tension. In the present approximation, we can also assume
that AB is a straight line segment.

4 It should be emphasized that since the string is assumed to be absolutely flexible,
all the work is expended in stretching the string, and none in bending it.
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required to move DE to AB is just the product of t and the increase in
length of the element of string, i.e., the quantity

—_ 2
WV ({AX)? + (Au) — tAx = %T(%) Ax + - = %‘ruf(xo, HAx + -+,

Ax
(11)

where the dots indicate terms of order higher than those written (Au/Ax « 1
for all ¢, since the vibrations are small).

u a B
T o)
p \[>)( _‘\\J

’

: c'c
I I
[ i
! |
D: £,
Xo Xo+Ax X
FIGURE 9

Integrating (11) from O to /, we find that the potential energy of the whole
string is
|
Uy=37 fo u3(x, 1) dx, (12)
except for the work expended in displacing the elastically fastened ends of
the string from their eguilibrium positions. This work equals

1 !
Us = 5 %0, 1) + 5 %(1, 1), (13)

where %, and », are positive constants (the elastic moduli of the springs).
[In fact, the force f; acting on the end point P, (see Figure 8) is proportional
to the displacement & of P, from its equilibrium position x = 0, u = 0, i.e.,

|.f1| = XIE’ (14)

where x; > 0 is a constant; integration of (14) shows that the work required
to move P; from (0, 0) to (0, u(0, t)), its position at time ¢, is given by

~u(0, t) 1
|7 mEdE = 5 %0, 1),
0 2

and similarly for the other end point P,.] Then, adding (12)and (13), wefind
that the total potential energy of the string in the position described by
the function u(x, t) is

-
U=U, + Uy = 1TJ W(x, 1) dx + 2 %120, 1) + Sxg(l, 1), (15)
2 Jo 2 2
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Finally, using (10)and (15), we write the action (8) for the vibrating string,
obtaining the functional

| R
T =5 [ [ [eur(x, 1) — mid(x, ) dx dr
° 16)
1o, 1o, (
_ixljtou(o,t)dt—il{zj;ou([,t)dt.

According to the principle of least action, 8/ must vanish for the function
u(x, t) which describes the actual motion of the string. Thus, we now
calculate the variation 8J of the functional (16). Suppose we go from the
function u(x, t) to the *“‘varied” function

u¥(x, t) = u(x, t) + E\L(x, H+ -

Then, using formula (4) and the fact that the variation of a sum equals the
sums of the variations of the separate terms, we find that

37 = of [* [ = outx, 1) + i, 040, 1) o
— % J;ll u(0, £) $(O, t) dt — J:‘ u(l, Hyb(l, 1) d,}

te f: J; % [—uy(x, 1) Y(x, )] dx dt

(17)

t, 10
te fto Jo a_t [Pu:(X, t)(‘])(x’ t)] dx dt.
If we assume that the admissible functions {(x, #) are such that

U(x,00) =0, 9(x,t) =0 (0<x<]),

i.e., that u(x, t) is not varied at the initial and final times, then the last term
in (17) vanishes and the next to the last term reduces to

e [ tul0, 00000, 1) — =usll, 4, 0)] .
to
It follows that the variation (17) can be written in the form
37 =< [ N = ot + TUn(x, DI, 1) dx dr
to YO
— [ b0, 1) = 0, OO, 1) (18)
to
— [ bttty 0 + 50, 0100 0

According to the principle of least action, the expression (18) must vanish
for the function u(x, t) corresponding to the actual motion of the string.
Suppose first that §(x, #) vanishes at the end of the string,?® i.e., that

0(0,1) =0, $(l,t)=0 (to <t < 1) (19)

5 If 8J vanishes for all admissible ¢(x, ¢), it certainly vanishes for all admissible J(x, 7)
satisfying the extra condition (19).
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Then (18) reduces to just
t, o
S =c¢ f f [— puu(x, ) + Tug(x, )] Wx, 1) dx dt. (20)
to JO

Setting (20) equal to zero, and using the arbitrariness of the interval [¢o, ¢,]
and of the function {(x,t) for 0 < x < [, t, < t < t; (cf. the lemma of
Sec. 5), we find that

(%, 1) = aPuy(x, 1) (a2 - g) @1)

for 0 < x </ and all ¢+ This result, called the equation of the vibrating
string, is the Euler equation of the functional

.
%f L [tf(x, 1) — Tul(x, t)] dx dt.
0

Next, we remove the restriction (19). Since u(x, ) must satisfy (21), the
first term in (18) vanishes, and we have

=] " b0, £) — (0, IO, 1) dt
+ " gl ) + sl WA, 1) d) 22)

This expression must also vanish for the function u(x, t) corresponding to the
actual motion of the string. Since [¢o, #,] is arbitrary and {(0, #), $(/, t) are
arbitrary admissible functions, equating (22) to zero leads to the relations

»,u(0, t) — tu,(0,¢) = 0 (23)
and
wou(l, t) + wu,(l,t) =0 (24)

for all 2. Thus, finally, the function u(x, t) which describes the oscillations
of the string must satisfy (21) and the boundary conditions

(0, 1) + u,(0, 1) = 0 (a - J%) (25)
and
put. ) + w0 =0 (B =), 29)

which connect the displacement from equilibrium and the direction of the
tangent at each end of the string.

Next, suppose the ends of the string are free, which means that the springs
shown in Fig. 8 are absent and the rings fastening the string to the lines
x =0, x = [ can move up and down freely. Then x; = »x, = 0, and the
boundary conditions (23), (24) become

uz(O’ t) =0, uz(ly t) = 0.
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Thus, at a free end point, the tangent to the string always preserves the same
slope (zero) as it had in the equilibrium position.

The case where the ends of the string are fixed, corresponding to the
boundary conditions

w(0,8) =0, u(l,1) =0, 27)

can be regarded as a limit of the case of elastically fastened ends. In fact,
let the stiffness of the springs binding the ends of the string to their initial
positions increase without limit, i.e., let ¥, — o0, ®x, — co. Then, dividing
(23) by %, and (24) by x,, and taking this limit, we obtain the conditions (27).

36.2. Least action vs. stationary action. The principle of least action is
widely used not only in mechanics, but also in other branches of physics,
e.g., in electrodynamics and field theory. However, as already noted (see
Remark 2, p. 85), in a certain sense the principle is not quite true. For
example, consider a simple harmonic oscillator, i.e., a particle of mass m
oscillating about an equilibrium position under the action of an elastic
restoring force (cf. Chap. 4, Prob. 2). The equation of motion of the par-
ticle is

mx + xx = 0, (28)
with solution

x = Csin (ot + 0), (29)

ﬁ
w = —
m

and the values of the constants C, 0 are determined from the initial conditions.
Moreover, the particle has kinetic energy

where

T = tmx>
and potential energy
U = Ixx?
so that the action is
t
L1 ms? — w2y dt. (30)

2 )i

Equation (28) is the Euler equation of the functional (30), but in general
we cannot assert that its solution (29) actually minimizes (30). In fact,
consider the solution

sin w?, (31

El—

X =

which passes through the point x =0, t = 0 and satisfies the condition
%(0) = 1. The point (rt/w, 0) is conjugate to the point (0, 0), since every
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extremal satisfying condition x(0) = 0 intersects the extremal (31) at (rt/w, 0)
[see p. 114]. Since

Fu=m>0
for the functional (30), the extremal (31) satisfies the sufficient conditions
for a minimum (in fact, a strong minimum), provided that

T
(O]

However, if we consider time intervals greater than =/w, we can no longer
guarantee that the extremal (31) minimizes the functional (30).
Next, consider a system of n coupled oscillators, with kinetic energy

T=

i,

M=

QXX (32)

1

(a quadratic form in the velocities X;) and potential energy

U =

i,

s

by xix) (33)

=1

=

(a quadratic form in the coordinates x;). The quadratic form (32) is positive
definite (since it is a kinetic energy); therefore, (32) and (33) can be simul-
taneously reduced to sums of squares by a suitable linear transformation®

Xo= > cuge  (i=1,...,n), (34)
k=1

i.e., substitution of (34) into (32) and (33) gives

r-3# U=
i=1 i=1

Then the equations of motion of the system of oscillators are given by the
Euler equations

d(oT ou .
d_t(a_q,) +3—qi—qi+7\,-qi—0 (i=1,...,n), (35)
corresponding to the action functional

n

D (G — hgD)dl.

to j=1

ty

6 See e.g., G. E. Shilov, op. cit., Secs. 72 and 73. The coordinates g, are often called
normal coordinates, and the corresponding frequencies w; are called natural frequencies.
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Suppose all the 2; are positive, which means that we are considering
oscillations of the system about a position of stable equilibrium. Then
the solution of the system (35) has the form

q; = Ci sin wi(t + e,) (l = 1, ey n), (36)
where
Wy = \/Tb

and the values of the constants C;, 0, are determined from the initial con-
ditions. An argument like that made for the simple harmonic oscillator
(n = 1) shows that a trajectory of the system [i.e., a curve given by (36)
in a space of n + 1 dimensions] whose projection on the time axis is of length
no greater than =/w, where
®w = max o,
1gign

contains no conjugate points and satisfies the sufficient conditions for a
minimum. However, just as before, we cannot guarantee that a trajectory
whose projection on the time axis is of length greater than w/w actually
minimizes the action.

Finally, consider a vibrating string of length / with fixed ends.” As shown
above, the function u(x, t) describing the oscillations of the string satisfies
the equation

uy(x, t) = a%u,,(x, t)
and the boundary conditions
u(0,t) = 0, u(l,t) = 0.
It follows that®

u(x, 1) = i C(x) sin wi(t + 6,),

where

o, = X, (37)
and Cy(x), 9, are determined from the initial conditions. Thus, in a certain
sense, a vibrating string can be regarded as a system of infinitely many
coupled oscillators, with natural frequencies (37). However, the numbers
(37) have no finite upper bound, and hence the analogy with the case of n
coupled oscillators leads us to believe that for a vibrating string, there is no

7 Unlike the analysis of a system of n oscillators, the elementary argument that
follows is meant to be heuristic rather than rigorous.

8 See e.g., G. P. Tolstov, Fourier Series, translated by R. A. Silverman, Prentice-Hall,
Inc., Englewood Cliffs, N. J. (1962), p. 271.
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time inierval short enough to guarantee that u(x, f) actually minimizes
the action functional. Similar arguments can be carried out for other
systems with infinitely many degrees of freedom.

Guided by the above considerations, we shall henceforth replace the
principle of /east action by the principle of stationary action. In other words,
the actual trajectory of a given mechanical system will not be required to
minimize the action but only to cause its first variation to vanish.

36.3. The vibrating membrane. Consider the transverse motion of a
membrane (i.e., a homogeneous flexible sheet) of surface mass density p.
Let u(x, y, t) denote the displacement from equilibrium of the point (x, y) of
the membrane, at time ¢. The kinetic energy of the membrane at time ¢ is
given by

= 1 2,
T =50 uieyn)dxdy, (38)

where R is the region of the xy-plane occupied by the membrane at rest.
The potential energy of the membrane in the position described by the
function u(x, y, t), where ¢ is fixed, is just the work required to move the
membrane from its equilibrium position # = 0 into the given position
u(x, y, t). This work is the sum of the work U, expended in deforming the
membrane and the work U, expended in moving the boundary of the mem-
brane, which we assume to be elastically fastened to its equilibrium position.

To calculate U,, let T denote the tension in the membrane, and consider the
elementA A4 of the membrane initially occupying the region x, < x < x, + Ax,
Yo € ¥ € Yo +Ay. Then, just as in the case of the string, the work needed
to deform AA equals the product of = and the increase in the area of A4
under deformation, i.e.,

VBX? + (Au)? VY + (Bu)E — =AxAy
R o

1
= zr[uﬁ(xo, Yo, 1) + u2(xo0, Yo, 1)]AxAy + -+,

where the dots indicate terms of order higher than those written. Integrating
(39) over R, we find that the work required to deform the whole membrane is

Uy = 37 [ [ 60o 2,00 + i, y, Dl dxd. (“40)

To calculate U,, we generalize the argument used to derive (14). If T’
is the boundary of the region R, and s is arc length measured along I' from
some fixed point on I', then

U, = % [ moyts, s, @1)
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where u(s, ¢) is the displacement of the membrane from equilibrium at the
point s and time ¢, and x(s) is the linear density of the elastic modulus of
the forces retaining the boundary of the membrane.® Combining (38), (40)
and (41), we find that the action functional for the vibrating membrane is

t
J[u] =fz., (T — U, — Uy)dt
= 3 [ ] s, 0 = <1, 71 + w3, 0D dxdyd @)

—% [ . [ %66 uts, 1y ds a.

Suppose we go from the function u(x, y, t) to the “varied” function

u*(x, y, 1) = u(x, y, 1) + ed(x, y, 1) + - -
Then, using formula (4) of Sec. 35 and dropping arguments of functions, we
find that the variation 8J of the functional (42) is

M= ‘ [ (et + ~luee + )l dix dy d
_ ef;j s ds dt — ex J: I [z% (wd) + a%(uyq;)] dxdyadt
j j () dx dy dt. 43)

Just as in the case of the vibrating string, we assume that the function
u(x, y, t) is not varied at the initial and final times, i.e., that

U(x, ¥, to) = Y(x, y, 1) = 0. (44
Because of (44), the last integral in (43) vanishes. Moreover, using Green’s
theorem in two dimensions (see p. 23), we have

ff [a% () + 5?- (u,,t,b)] dxdy = fr (b dy — uy dx)
h f [ cos & * § ds sin (2 + 3) - %‘sin{)-gpdscos (g + 3)]
N 8n ¢ s,

where 0/0n denotes differentiation with respect to n, the outward normal to
I, and 9 is the angle between n and the x-axis. Thus, we can finally write
(43) in the form

S =¢ j f [— oty + sz + u,,)]Y dx dy dt

—-sfto L (xu+ r%)tpdsdt.

® More precisely, let the parametric equations of I" be

(45)

x = x(s), y = ¥9), So < § < 510
Then u(s, t) means u[x(s), y(s), t], and *‘the point s>’ means the point (x(s), y(s)).



164 VARIATIONAL PROBLEMS INVOLVING MULTIPLE INTEGRALS CHAP. 7
We first assume that
(s, 1) =0 e, (46)

where ¢ is arbitrary, i.e., that ¥ does not vary on the boundary of the mem-
brane. Then (45) reduces to just

tl
8 = f J f [—ouy + T(zz + uyy)] dx dy dt. 47
to R

Setting (47) equal to zero, and using the arbitrariness of the interval [z, t,]
and of the function ¢ = Y(x, y, t) inside R x [to, #,], we find that

(%, 3, 1) = @[uzelX, ¥, 1) + 1y (%, 3, D] (a2 - g) (48)

for (x, y) € R and all ¢, a result known as the equation of the vibrating mem-
brane.’® Equation (48) can also be written as

utt(xs y’ t) = azvzu(x’ ya t)a
in terms of the Laplacian (operator)
0? 0?
2 = —— — "
Vi = ox2 + 3y2 (49)

Next, we remove the restriction (46). Since u(x, y, t) must satisfy (48),
the first term in (45) vanishes, and we are left with

- —¢ f j [x(s)u(s )+ ouls, ’)] U(s, 1) ds dt. (50)

Then, since Y(s, ¢) is an arbitrary admissible function, equating (50) to zero
leads to the formula!!

w(s)uls, 1) + = %—’) 0 (seD) (51)
This is the boundary condition satisfied by a vibrating membrane when its
boundary is elastically fastened to its equilibrium position. In particular,
if the boundary of the membrane is free, x(s) = 0 and (51) becomes

ou(s, t)
Tn =0 (S € F), (52)
while if the boundary of the membrane is fixed, x(s) = co and (51) becomes

u(s,t) =0 (sel). (53)

10 By R x [to, t;] is meant the Cartesian product of R and [to, t,], i.e., the set of all
points (x, y, t) where (x, ¥) € R and 1 € [t,, 1;].
11 The boundary conditions (51), (52) and (53) hold for all +.
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36.4. The vibrating plate. Finally, we use the principle of stationary
action to derive the equation of motion and the boundary conditions for the
transverse vibrations of a plate (i.e., a homogeneous two-dimensional elastic
body) with surface mass density p. As in the case of the vibrating membrane,
let u(x, y, t) denote the displacement from equilibrium of the point (x, y) of
the plate, at time z. Then the kinetic energy of the plate at time ¢ is given by

= 1 2
T=5e[[ utxy0)dxdy, (54

where R is the region of the xy-plane occupied by the plate at rest [cf. (38)].

The potential energy of deformation of the plate, which we denote by U,
depends on how the plate is bent, and hence involves the second derivatives
Uy, Uz, and u,,. Unlike the case of the membrane, it is assumed that no
work is done in stretching the plate, so that U, does not involve u, and u,.
Moreover, we require U; to be a quadratic functional in u,., u,, and u,,,'?
which does not depend on the orientation of the coordinate system. Then,
since the matrix

Uzz u:y.

Uys Uyy

has just two invariants under rotations, i.e., its trace and its determinant,*®
it follows that

v, = L (A + w,)? + Blugtty, — u2)] dx dy, (59

where A4 and B are constants. Equation (55) is usually written in the form

Uy = e [[ T + 1) = 21 = paa, — ) dxdy,  (56)

where ¢ is a constant depending on the choice of units, and p is an absolute
constant (Poissor’s ratio) characterizing the material from which the plate is
made. For simplicity, we set ¢ = 1.

In addition to the potential energy of deformation U,, the total potential
energy of the plate may also contain a contribution U, due to bending
moments with density m(s, 1), prescribed on the boundary I' of R, and a
contribution Uz due to external forces acting on R with surface density
f(x,y,t) and on I' with linear density p(s, ). This would give

U, = jr m(s, 1) 6“(;

;l’) ds, (57)

12 This guarantees that the equation of motion of the plate is linear.
13 See e.g., G. E. Shilov, op. cit., p. 106.



166 VARIATIONAL PROBLEMS INVOLVING MULTIPLE INTEGRALS CHAP. 7

where d/on denotes differentiation with respect to n, the outward normal
to I', and**

= f L S0, », Du(x, y, ) dxdy + fr p(s, t) ds. (58)

Combining (54), (56), (57) and (58), we find that the action functional for
the vibrating plate is

tl
J[u) =£ (T — Uy — U, — Uy) dt
1 rtap
= 5 [ [T, T = e + 1)+ 200 = W)ty — ) ~ 2l dxdy s

—J;O f (pu +m )ds dt. (59

Unlike the corresponding expressions for the vibrating string and the
vibrating membrane, (59) contains second derivatives of the unknown
function u. The variation of (59) corresponding to the transition from
u(x, y, t) to

u*(x, ¥, 1) = u(x, y, t) + ed(x, y, ) + - -

turns out to be (see Problems 4 and 5, p. 190)
ty .
8 = e:fto HR(—pu,, — Veu — f)ydxdydt

, & (60)
+ ef::fr [(P -+ (M — m)%] dsdt.

Here,
M= - [(J-Vzu + (1 - P-)(urzxﬁ + 2uyXpyn + uyy.)’%)] (61)
and

0 0
P = n Viu + (1 —p) ] [UzzXnXs + Uzy(XnYs + XsYn) + UyyYnys), (62)

where d/on denotes differentiation in the direction of the outward normal
to I', with direction cosines x,, y., and 0/ds denotes differentiation in the
direction of the tangent to I', with direction cosines x;, y,. Moreover,
o0tu o*u otu
4, _ U2(VU2)) — 2~

Viu = V3(VZ) 8x4+28x28y2+8y

according to (49).
We first assume that

(s, 1) = 0, 84’3; D_0 (seD), (63)

14+ An identical term might also have been included in the expression for the potential
energy of the vibrating membrane.
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where ¢ is arbitrary, i.e., that 4 and its normal derivative do not vary on the
boundary of the plate. Then (60) reduces to just

8 =¢ ft : f L (—puy — Viu — f)) dxdy dt. (64)

Setting (64) equal to zero, and using the arbitrariness of the interval [z, ]
and of the function ¢ = {(x, y, t) inside R x [to, #,], we obtain the equation
for forced vibrations of the plate:*®

pun(x, ¥, 1) + Viu(x, y, 1) + f(x,y, 1) = 0. (65)

If we set f = 0, so that there are no external forces acting on the plate, (65)
reduces to the equation for free vibrations of the plate

puu(x, y, t) + Viu(x, »t)=0.

Finally, if we set u,, = 0 in (65) and assume that f = f(x, y) is independent
of time, we obtain an equation for the equilibrium position of the plate
under the action of external forces:

V4u(x: y) + f(x, y) =0.

This equation could have been obtained directly from the condition for the
potential energy of the plate to have a minimum (see Remark 2 below).

Next, we remove the restriction (63). Since u(x, y, t) must satisfy (65),
the first term in (60) vanishes, and we are left with

M=ef :‘ I [(P — )+ (M —m) %’] ds dt. (66)

Then, since the functions ¢, &)/on and the interval [t,, t,] are arbitrary,
equating (66) to zero leads to the natural boundary conditions

P(s,t) — p(s,t) =0, M(s,t) — m(s,t) =0 (sel). (67)

If the boundary of the plate is c/lamped, the conditions (67) are replaced by

the “imposed” boundary conditions

_ ou(s, t)
u(s, t) = 0, = 0 el
If the plate is supported, i.e., if the boundary of the plate is held fixed while
the tangent plane at the boundary can vary, we obtain the boundary con-
ditions
u(s,t) =0, M(s,t) — m(s,t) =0 (seD).

15 When domains of arguments are not specified, it is understood that ¢ is arbitrary
and (x,y) € R.
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Remark 1. 1t should be noted that the Euler equation (65) does not involve
the coefficient p. This is explained by the fact that the expression

Upgllyy — U2, (68)
is the divergence of the vector
(uzuyy, - uzuzy)’

and hence has no effect on (65). However, (68) does have a decisive effect
on the boundary conditions, via the functions M(s, ¢) and P(s, ?).

Remark 2. For a mechanical system to be in equilibrium, its kinetic
energy T must vanish and its potential energy U must be independent of
time. Under these conditions, the principle of stationary action reduces to
the assertion that 3U = 0. Thus, the equilibrium position of the system
corresponds to a stationary value of U. Moreover, it can be shown that this
stationary value must be a minimum if the equilibrium is to be stable and
hence physically realizable. In elasticity theory, this principle of minimum
potential energy is often replaced by Castigliano’s principle, which states
that the equilibrium position of an elastic body corresponds to a minimum
of the work of deformation.®

37. Variation of a Functional Defined on a Variable Region

37.1. Statement of the problem. In Sec. 35, we derived a formula for the
variation of the functional

Jid = [ [ PG Xty u) s dxe (69)

allowing only the function « (and hence its derivatives) to vary, while leaving
the independent variables (and hence the region of integration R) unchanged.
We now find the variation of the functional (69) in the general case where the
independent variables x,, ..., x, are varied, as well as the function v and its
derivatives. For simplicity, we use vector notation, writing x = (xy, ..., X,),
dx = dx, - - dx, and

gradu = Vu = (u,,, ..., u,,).

With this notation, (69) becomes
Il = | F(x, u, Vu) dx. (70)
R
16 For a detailed treatment of Castigliano’s principle and a proof of its equivalence

to the principle of minimum potential energy, see e.g., R. Courant and D. Hilbert,
Methods of Mathematical Physics, Vol. I, Interscience, Inc., New York (1953), pp.268-272.
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Now consider the family of transformations!?

x¥ = Oyx, u, Vu;e),

u* = ¥(x, u, Vu;e), 71

depending on a parameter ¢, where the functions ®; (i=1,...,n) and ¥
are differentiable with respect to &, and the value € = 0 corresponds to the
identity transformation:

DOi(x, u, Vu; 0) = x;,

Y(x, u, Vu; 0) = u. (72)

The transformation (71) carries the surface o, with the equation

u = u(x) (xeR),

into another surface o*. In fact, replacing «, Vu in (71) by u(x), Vu(x),
and eliminating x from the resulting n 4+ 1 equations, we obtain the equation

u* = u*(x*) (x* € R*)

for o*, where x* = (x¥,..., x¥), and R* is a new n-dimensional region.
Thus, the transformation (71) carries the functional J [u(x)] into

TLrGem)] = [, FGer, e, Oy dxv,

where

VEu* = (utx, ..., ulx).

Our goal in this section is to calculate the variation of the functional (70)
corresponding to the transformation from x, u(x) to x*, u*(x*), i.e., the
principal linear part (relative to €) of the difference

J[u*(x*)] = J[u(x)]. (73)

37.2. Calculation of 3x; and du. As in the proof of Noether’s theorem for
one-dimensional regions (see p. 82), suppose € is a small quantity. Then,
by Taylor’s theorem, we have

oD,(x, u, Vu; €)

xF = O(x, u, Vu;e) = O(x, u, Vu;0) + ¢ e + o(e),
=0
u* = W(x,u, Vu;¢) = W(x, u, Vu; 0) + ¢ w + o(g),
=0
or using (72),
x¥ = x; + egix, u, Vu) + o(e), (74)

u* =u + ed(x, u, Vu) + o(e),

7 These formulas, with n independent variables and 1 unknown function, should be
contrasted with the formulas (45) of Sec. 20, with n unknown functions and 1 independent
variable.
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where
oi(x, 1, Vat) = w
8 T (75)
0 .
Y(x, u, Vu) = ﬂﬁ_’s"__vu_’_@
17 cco

For a given surface o, with equation u = u(x), (74) leads to the increments
Ax; = x} — x; = epi(x) + o(e) (76)

and

Au = u*(x*) — u(x) = ef(x) + o(e), 7
where we explicitly indicate the arguments x and x* at which the functions
u and u* are evaluated, and ¢,(x), $(x) denote the functions (75) with u, Vu
replaced by u(x), Vu(x). Formula (77) gives an expression for the change in
u-coordinate as we go from the point (x, u(x)) on the surface o to its image
(x*, u*(x*)) under the transformation (74). The variations 3x; and du
corresponding to (74) are defined as the principal linear parts (relative to €)
of the increments (76) and (77), i.e.,

3x = e(),  Su = ed(x). (78)
We must also consider the increment

Au = u*(x) — u(x),

i.e., the change in u-coordinate as we go from the point (x, u(x)) to the
point (x, u*(x)) on the surface o* with the same x-coordinate, where o* is the
image of the surface ¢ under the transformation (74). Imitating (77) and

(78), we introduce a new function {(x) and a corresponding variation Su:

Au = u*(x) — u(x) = e{(x) + oe),
Su = ().

To find the relation between ¢ and {, or equivalently, between du and Su,
we write

Au = u*(x*) — u(x) = [u*(x*) — u*(x)] + [*(x) — u(x)]
L ou*

o (x¥* — x) + du + o(e)

)

i M

ou* =
P dx; + Su + o(e).

Since du*/dx, and ou/ox, differ only by a quantity of order ¢, (79) becomes

i Ou —
A ~ —
u ‘; o, 8x, + Su,

where the symbol ~ denotes equality except for terms of order higher than 1
relative to . But Au ~ 3u, since du is the principal part of Au, and hence

Su = Su + Z u,, 8x;. (80)
i=1
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Moreover, since

Su=-¢el, Su=cel, 3x; = eqy,
(80) also implies

=9+ é; U i (81)

Example. Let u be a function of a single independent variable x, and let
(71) be the transformation

x* = xcose — u(x)sine = x — eu(x) + o(e),

u*(x*) = xsine + u(x) cose = ex + u(x) + o(e), 82

i.e., a counterclockwise rotation of the xu-plane about the small angle &« = ¢.
As shown in Figure 10, (82) carries the point (x,u(x)) on the curve y with
equation ¥ = u(x) into the point (x*, u*(x*))

on its image y* with equation u* = u*(x*). Y )
It follows from (82) that !
* » |
Sx = —eu(x), du=ex  (83) OO
[N
and E ) : 7(x)
o) = —ux), W =x. @) | 3 L
In fact, the expressions (83) can be read < E E
directly off the figure, as the components of L .
the vector joining the point (x, u(x)) to the o
point (x*, u*(x*)). Moreover, FIGURE 10

u*(x) = u*[x* + eu(x)] + o(e) = u*(x*) + eu(x)u*'(x*) + o(e),
and since u*'(x*) and «'(x) differ only by a quantity of order ¢, we have
u*(x) = w*(x*) + eu(x)u'(x) + o(e).
On the other hand, according to the second of the formulas (82),
u*(x*) = ex + u(x) + o(e).
It follows that

Au = u*(x) — u(x) = e[x + &'(X)u(x)] + o(e)
and
Su = e[x + u(x)'(%)],
Yx) = x + u(x)'(x).
Using (83) and (84), we can write (85) as

(85)

Su = Su + u' 3x,
q" = ¢ + u'e,
in complete agreement with (80) and (81).
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37.3. Calculation of 3u,. We now derive an expression for the quantity

ou*(x*) 8u(x)
Auy = =~ ~ ox,
or more precisely, its principal part 8u,, which will be required later when

we calculate the increment (73). First, we note that according to (74),'®

8xk

8<pk
3xi ~ 8y + == (86)

Bxi

where 3, is the Kronecker delta, equal to 1 if i = k and 0 otherwise. It
follows that

E
=%

d LoD LoD ;.
’a?i‘,%?x‘ xf%ars(s"‘“ax.)

Oo O

© Ox; Ox

=%
Y

+ €

M:

0
= 5k

=%

k

i.e.,
o 0 i g, 0
aw o " © & x oxt &
Next we write
ou*(x*)  Ou(x)
3x* axi
ofu*(x*) — u(X*)] Olu(x*) — u(x)] ( 0 ) *
ox} ox; + ox¥  ox, u(x*),

and analyze each of the three terms in the right-hand side separately. Using
(87) and the fact that

Au,, =

WH(x*) — u(x*) ~ ef(x*),

we have
Ofu*(x*) — u(x*)] _ ou*(x*) — u(x*)] 34*()6*) 8‘TJ(X)' (88)
ox¥ ox; 0x; 0x;
Moreover, it is easily verified that
o[u(x*) — u(x)] 0 < du(x) 0 (x)
— " 3_"»;21 7x, (x¥ _xk)~Ea_Z ou(x)  (89)
and
2 d S O Cu(x)
(i o ~ o~ a0 ~ = 225 00

18 In expressions like d¢,/0x,, u is regarded as a function, i.e., the value of « is not held
fixed, as might be inferred from the somewhat ambiguous notation for partial derivatives.
Actually, o¢,/0x; means

% ilx, u(x), Vu(x)].
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Adding equations (88), (89) and (90), we obtain

Ay, = 20T 2ux) E(aq: > Cu <pk). 1)

ox¥ ox; ox; + &= Ox; Ox,

Finally, recalling that
Auz‘ ~ 8“1‘, g‘ = EKIJ, 8xk = EQy,
we can write (91) as
Sty = Busy + D, Uz, 3Xi (92)
k=1
37.4. Calculation of 3/. We are now in a position to calculate the varia-
tion of a functional defined on a variable domain.

THEOREM 1. The variation of the functional
Jlu] = f F(x, u, Vu) dx (93)
R

corresponding to the transformation'®

x¥ = Oyx, u, Vu; ) ~ x; + epi(x, u, Vu),
u* = Y(x,u, Vu;e) ~ u + ed(x, u, Vu)

(i =1,...,n) is given by the formula

4)

o =¢ JR (Fu — zn: % Fun)q_} dx + ¢ fn zn: % (Fu,@ + Fo,) dx, (95)
i=1 Yt i=1 YA
where
‘I’ =¢ - =zl Uz, Pse

Proof. Here, 8J means the principal linear part (relative to €) of
the increment
AJ = J[u*(x*)] — J[u(x)], (96)

where u*(x*) is the image of u(x) under the transformation (94). By
definition, (96) equals
AT = [, F(e*,w¥, Vour) dxt — [ F(x, u, Vi) dx
JR YR

o(x¥, ..., x¥)
(X1, ...y Xn)

)

- [F(x*, ¥, Vo) — F(x,u, Vu)] dx,
R

where
oxf, ..., x¥)
o(xy, ..., Xxy,)

19 As usual, the symbol ~ denotes equality except for terms of order higher than 1
relative to €.
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is the Jacobian of the transformation from the variables x,, ..., x, to
the variables x¥, ..., x¥. According to (86), this Jacobian is

09, 3@2 5<pn
I+ e, ®ox, © 3x,
3@1 003 &Pn
8x2 I+e x5 8x2
5@1 0ps OPn
axn € 5}; PR 1 +'E n

acPn ﬂacPi
“(rreg®)(1regE)~rae S

and hence we can write (97) as
n a . ]
* * *q,% —_ .
AJ ~ L [F(x , u*, V*u )(l + s:=§1 ‘;) F(x, u, Vu)| dx (98)

Using Taylor’s theorem to expand the integrand of (98), and retaining
only terms of order 1 relative to €, we find that

8 = f [Z F, 8 + F,3u + Z e, Sty + eFigi)‘:] dx.  (99)
i=1

Then, since 3x; = ep;, substitution of (80) and (92) into (99) gives

= [Z F, 8x + F,3u + F, Z ty, 8%, + Z wry Gu)s, (100)

2 Fuan, 5 + F Z (b‘x,)z,] dx.

i, k=

As in the case of a fixed domain R, we try to represent the integrand
of (100) as an expression of the form?2°

G(x) du + div (- --)
(cf. p. 153). This can be achieved by noting that

n a n n
Z P (Fdx) = Z F, dx; + Z F(8x)),,
i=1 t i=1 i=1

F.

Uzg uz‘ ) 8)( k
1

n
+ Z Fu,, 8x, +
i=1

N

i,
and

i F,, (Su)., = Z 3% (F.,, Su) — i (a—i Fu,,) du.

i=1 i=1

20 Then, because of the n-dimensional version of Green’s theorem [see formula (5)],
the second term of (101) can be transformed into a surface integral.
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(The last formula resembles an integration by parts.) Thus, finally,
we have

SJ = f (Fu -> ai ) Su dx + (F,,, Su + F8x)dx, (101)
R i=1

Rll

which is the same as formula (95), since du = &J, 8x, = ep. This
proves the theorem.

Remark 1. In the special case where the function u and its derivatives
are varied, but not the independent variables x;, we have

(Pi=0’ J}:‘L_Zuz,@f:q)s
i=1
and (95) becomes
n 9 .0
8 =< [ (Fo= 2 Fua)U0 dx 4 [ 50 (P 4000 d,

which is identical with formula (4) of Sec. 35.

Remark 2. The formula for the variation of the functional J[u] is ordinarily
used in the case where ¥ = u(x) is an extremal surface of J[u], i.e., satisfies
the Euler equation

3 ik, -
&1 ox Fu
Then (95) reduces to
0
= — (F, Fo)d.
M=e > g Fud + Feydx

in the general case, and to

S8J = sj Zax (F.,J) dx

in the case where the independent variables x; are not varied.

Remark 3. Consider the functional

_ Ou,y 6um
T, ] = | F(x, ol b0 ) dx,  (102)
involving m unknown functions u,, . .., #, and their derivatives
Ouy . Ci
7, i=1,..,n;j=1,...,m). (103)

Introducing the vector u = (uy, ..., u,) and interpreting Vu as the tensor
with components (103), we can still write (102) in the form

Ju] = jR F(x, u, Vu) dx.
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Then, if (94) is replaced by the transformation

x¥ = ®(x, u, Vu;e) ~ x; + eqx, u, Vu) (i=1,...,n), (104)
uf =Wix,u, Vuse) ~ u; + ei(x,u, Vuy  (j=1,...,m),
the formula (95) generalizes to
noo5 _
3] =¢ " — dx
f z ( 7 1=Z ox; (au]) )
0
- man (105)
+ ¢ — U, + Fo,\ dx,
fn,; ox; J; 8(%) s ®
ox;,
where
2 Ou; .
¢ 431 axj.cpi (.]=1’-~~,m)-
i=1 YN

Remark 4. Let (104) be replaced by the more general transformation
xF = O(x,u, Vu;e) ~ x; + i g0 (x, u, Vu) (i=1,...,n),
k=1
uf =Vix,u Vu;e) ~ u; + i e$(x, u, Vu) G=1,...,m),
k=1
depending on r parameters ¢y, ..., &, where € means the vector (g, .. .,¢,)

and the symbol ~ denotes equality except for quantities of order higher than
1 relative to ¢,,...,¢,. Then, formula (105) generalizes further to

where

T = o — Z gzi (ic) k=1,....r.

37.5. Noether’s theorem. Using formula (95) for the variation of a
functional, we can deduce an important theorem due to Noether, concerning
‘“invariant variational problems.” This theorem has already been proved
in Sec. 20 for the case of a single independent variable. Suppose we have a
functional

Hﬂ=LF@mva (106)
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and a transformation

xi* = (Di(X, u, Vu),

u* =Y(x, u, Vu) (107)

(i =1, ..., n) carrying the surface ¢ with equation u = u(x) into the surface
c* with equation u* = u*(x*), in the way described on p. 169.
DEFINITION.?2!  The functional (106) is said to be invariant under the
transformation (107) if J[6*] = J[o]), i.e., if
f . FOe*, u*, V) dx* = f F(x, u, Vu) dx.
R R

Example. The functional

= 1 [+ (&)

is invariant under the rotation

x*¥ = xcose — ysing,
y* = xsine + ycose, (108)
u* = u,

where € is an arbitrary constant. In fact, since the inverse of the trans-
formation (108) is

x = x*cose + y*sine,
y = —x*sine + y* cosce,
u = u*,

it follows that, given a surface ¢ with equation u = u(x, y), the ““transformed
surface ¢* has the equation

u* = u(x* cose + y*sine, —x*sine + y* cos e) = u*(x*, y*).

Consequently, we have
*
(8u ) ] dx* dy*

ou*
J[o*] = Jf [(6x*) oy*
2 2
—ff [( coss—%sins) +(a—usina+?—ucose)]dx*dy*
oy ox oy

-ILIE + GG = JL[GE) + (5)] e
THEOREM 2 (Noether). If the functional

Jlu] = fk F(x, u, Vu) dx (109)

21 Cf. the analogous definition on p. 80 and the subsequent examples.
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is invariant under the family of transformations

x;k = (Di(x’ u, Vu’ 5) ~ Xy + E<Pt(x, u, Vu),

w* = W(x, u, Vu;e) ~ u + f(x, u, Vu) (110)
(i =1,...,n) for an arbitrary region R, then
>0
,;ETx, (F,J + Fp) =0 (111)

on each extremal surface of J[u), where
¢ = "’) - Z Uz, Py
i=1

Proof. According to formula (95),

0
8= ; a5, (Fud + Fo) dx,
if u = u(x) is an extremal surface. Since J[u] is invariant under (110),
3J = 0, and since R is arbitrary, this implies (111), as asserted.

Remark 1. If we drop the requirement that u = u(x) be an extremal
surface of J[u], then, using (95) again, we find that (111) is replaced by

& 0 - & 0 T
(Fu - t; 8_)q Fu”)q} * 4; 5;1 (Fu“q} + Fe) = 0.

Remark 2. If there are m unknown functions u, ..., u,, we introduce
the vector u = (4, ..., u,) and continue to write (109), as in Remark 3,
p. 175. Then invariance of J[u] under the family of transformations

x} = O(x, u, Vu;e) ~ x; + epix, u, Vu) (i=1,...,n),
uf =V¥(x,u, Vu;e) ~ u; + edyx, u, Vu) G=1,...,m

implies that

o0 < oF
1:216_&(121 Uj

(z2)
& uy

b, =, — .
g; = ¢ 5=13xtcP"

4 + Fqn) =0, (112)

where

When n = 1, (112) reduces to

d [ < +
E‘(,ZlF";% + FCP) =0

or

ZFW% + (F — z u;Fug)cp = const (113)
j=1
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along each extremal. This is precisely the version of Noether’s theorem
proved in Sec. 20. In other words, the left-hand side of (113) is a first
integral of the system of Euler equations

F, -2

’—aFu'=0 (J=l,...,m).

il

Remark 3. Invariance of the functional (109) under the r-parameter family
of transformations (see Remark 4, p. 176)

xF = O(x, u, Vus ) ~ x; + Z e p(x, u, Vu) i=1,...,n),
=1

uf =W¥(x, u, Vu; e) ~ u; + Z &P (x, u, Vu) G=1...,m
k=1

implies the existence of r linearly independent relations

Zﬁ(): aFA J;§k>+F<pgk>)=o k=1...,rn, (114

where

n
I = o — 9uy of
i i 4 ox,

Remark 4. Suppose the functional J[u] is invariant under a family of
transformations depending on r arbitrary functions instead of r arbitrary
parameters. Then, according to another theorem of Noether (which will
not be proved here), there are r identities connecting the left-hand sides of
the Euler equations corresponding to J[u]. For example, consider the
simplest variational problem in parametric form, involving a functional

2! .
Tyl = [ 0y, % ) d, (115)

where @ is a positive-homogeneous function of degree 1 in x(¢) and y(¢)
(see Sec. 10). Then, as already noted on p. 39, J[x, y] does not change if
we introduce a new parameter t by setting ¢+ = #(r), where dt/dv > 0, and
in fact, the left-hand sides of the Euler equations

d d
(D’—Et-d)‘:O’ d)y—E(Dy=0
corresponding to (115) are connected by the identity

. d . d _
x(cb, - Eq’*) + y(cb - ?1?‘1’”) —0.
Another interesting example of a family of transformations depending

on an arbitrary function, i.e., the gauge transformations of electrodynamics,
will be given in Sec. 39.
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38. Applications to Field Theory

38.1. The principle of stationary action for fields. In Sec. 36, we discussed
the application of the principle of stationary action to vibrating systems with
infinitely many degrees of freedom. These systems were characterized by
a function u(x, t) or u(x, y, t) giving the transverse displacement of the system
from its equilibrium position. More generally, consider a physical system
(not necessarily mechanical) characterized by one function

u(t, Xy, ...y Xp) (116)
or by a set of functions
uj(t’xly--‘sxn) (j=1,---’m)’
depending on the time ¢ and the space coordinates x, ..., x,.22 Such a

system is called a field [not to be confused with the concept of a field (of
directions) treated in Chap. 6], and the functions u; are called the field
functions. As usual, we can simplify the notation by interpreting (116) as
a vector function u = (uy,..., u,) in the case where m > 1. It is also
convenient to write

t= X9, X = (X0, X15...5%n), dx =dxodx,---dx,.

Then the field function (116) becomes simply u(x).
In the case of the simple vibrating systems studied in Sec. 36, the equations
of motion for the system were derived by first calculating the action functional

L” (T — U)d,

where T is the kinetic energy and U the potential energy of the system, and
then invoking the principle of stationary action. Similarly, many other
physical fields can be derived from a suitably defined action functional.
By analogy with the vibrating string and the vibrating membrane, we write
the action in the form?23

T[u, Vu] = f” dxo [+ [ L, Vuydxy -+ dx, = [ G Vwydx, (117)

22 We deliberately write the argument ¢ first, since it will soon be denoted by xo.
In physical problems, n can only take the values 1, 2 or 3. However, the choice of m
is not restricted, corresponding to the possibility of scalar fields, vector fields, tensor
fields, etc.

23 The aptness of this way of writing the action will be apparent from the examples.
In the treatment of vibrating systems given in Sec. 36, we did not explicitly introduce
the functions L = T — U and #. Of course, in some cases, e.g., the vibrating plate,
# must involve higher-order derivatives.
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o 0 17
R is some n-dimensional region, and € is the ““cylindrical space-time region”’
R x [a, b], i.e., the Cartesian product of R and the interval [a, b] (see footnote
10, p. 164). The functions L(u, Vu) and Z(u, Vu) are called the Lagrangian
and Lagrangian density of the field, respectively. Applying the principle of

stationary action to (117), we require that 8/ = 0. This leads to the Euler
equations

where V is the operator

3
0 .
6% Za_ (@u,) =0 (=1...,m), (118)
ox;

which are the desired field equations.

Example 1. For the vibrating string with free ends (x; = »x, = 0), we
have m = n = 1, and

= %(Putz - Puz) = Z(Puzo ‘rufl)

[cf. formula (16)].

Example 2. For the vibrating membrane with a free boundary [x(s) = 0]
we have m = 1, n = 2, and

L = Yloui — ~(uz + u))] = 3oui, — ~(uf, + u3,)]

[cf. formula (42)].

Example 3. Consider the Klein-Gordon equation

@ — M?u(x) =0, (119)

describing the scalar field corresponding to uncharged particles of mass M
with spin zero (e.g., x°-mesons). Here, [Jdenotes the D’ Alembertian (operator)

0? 0? 0? 0?
O=-mtmtomgtog
It is easy to see that (119) is the Euler equation corresponding to the Lagran-
gian density

L =3, —u, —ud, — uZ, — MP). (120)

1 2

38.2. Conservation laws for fields. Noether’s theorem (derived in Sec.
37.5) affords a general method of deriving conservation laws for fields, i.e.,
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for constructing combinations of field functions, called field invariants,
which do not change in time. Thus, suppose the integral

f L(u, Vu) dx
Q
is invariant under an r-parameter family of transformations2*

x¥ = Ox,u Vuse) ~x + D ag®  (=0,1,2,3),
k=1 (121)
uf = §;(x, u, Vuse) ~ u; + Z e G=1...,m),
k=1

where € = (gy,...,&). Then, according to Remark 3, p. 179, we have r
relations of the form

diV ](k) = S %(k) —
b 0x ?
where
1 =5 L e S =10 (122)
=1 g %4
a(ax:)
and

n
I = o — ou; o,
7 & ox

These equations have the following interesting consequence: Suppose the
cylinder Q = R x [a, b], where R is the three-dimensional sphere defined by

x4+ x4+ x% <2

Let I be the boundary of (), and let v be the unit outward normal to I'.
Then, integrating each of the relations (122) over I' and using Green’s
theorem [formula (5) of Sec. 35], we obtain

f div I® dx =f I®Nds =0 (k=1,...,r). (123)
Q r

The surface integral in (123) is the sum of an integral over the lateral surface
of the cylinder I" and an integral over the two end surfaces cut off by the
planes x, = a, xo = b. As c¢— oo, the integral over the lateral surfaces
goes to zero (by the usual argument requiring that the field fall off at infinity
“sufficiently rapidly”’), and we are left with the integral over the end surfaces.

2¢ From now on, we set n = 3.
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On these surfaces, the scalar product (I, v) reduces to I§*, where the plus
sign refers to the ““top” surface and the minus sign to the ‘“bottom” surface.
Therefore, taking the limit as ¢ — oo in (123), we find that

_flt()k) (@, X1, X2, X3) dx; dx; dx;
(124)

= Jl},"’ (B, xy, x4, X3) dx; dx, dx, k=1,...,n,

where I§? denotes the x,-component of the vector I*), and the integrations
extend over all of three-dimensional space, as will always be assumed if no
region of integration is indicated. Since a and b are arbitrary, it follows
from (124) that the quantities

fl(k) dxl dX2 dx;;

=J<Z af "’+-5”<p‘k’>dx1dx2dxa k=1,...,r) (125
)

i=1pf%j
a(6350)

are independent of time. The r quantities (125) are the required field invari-
ants, whose existence is implied by the invariance of the action functional
under the r-parameter family of transformations (121).

Remark. Of course, all the functions in (125) are supposed to be evaluated
on an extremal surface of the action functional, corresponding to a solution
u(x) of the field equations (118).

38.3. Conservation of energy and momentum. The action functional of
any physical field is invariant under parallel displacements, i.e., under the
family of transformations

x;k=xl+el (i=0’1,2’3)’

uf =y (G=1...,m), (126)

where the g are arbitrary. In this case, we have

3xi = &, 8u,~ = 0,

which implies

L)
- u ou
(k) — k) — i — )
CPi)— iks ‘l’:‘)—'—'E Sy = — ’
i=1

where 3§, is the Kronecker delta. According to (125), the corresponding
field invariants are

J(z af ouy z’s(,k) dx, dx,dx;  (k =0, 1,2, 3),
j=1 ]

( ) <'3x,c
0Xxo
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It is convenient to introduce the second-rank tensor

e 0 o
To = 2, WD ) L (127)
(axi

called the energy-momentum tensor. In terms of T, the field invariants are

P, = f Tow dxy dxgdxs (k= 0, 1,2, 3).

The vector
P = (P09P19P2’P8)

is called the energy-momentum vector, and in fact, it can be shown that P, is
the energy and P,, P,, P; the momentum components of the field. Thus,
since P is a field invariant, we have just proved that the energy and momen-
tum of the field are conserved.

384. Conservation of angular momentum. According to the special
theory of relativity, the action functional of any physical field is invariant
under orthochronous Lorentz transformations, i.e., under transformations of
four-dimensional space-time which leave the quadratic form

—x2+ x} + x2 + x32

invariant and preserve the time direction.?® For simplicity, we consider
the case where u(x) is a scalar field (m = 1). Then the action functional
must be invariant under the family of (infinitesimal) transformations

xt~x + D guEx,
i ; u€uXy (128)

uwt = u,
where

8oo = —1, 811 = 822 = &3z = 1
and

€1 = & (k #1) (129)

are the parameters determining the given transformation.?® Since the
twelve parameters ¢, (k # /) are connected by the relations (129), only six
of them are independent, and we choose the independent parameters to be
those for which k < /.

25 The determinant of the matrix corresponding to a Lorentz transformation equals
+ 1, where the plus sign corresponds to the so-called proper Lorentz transformations.
See e.g., V. . Smirnov, Linear Algebra and Group Theory, translated by R. A. Silverman,
McGraw-Hill Book Co., Inc., New York (1961), Chap. 7.

26 The parameters €1, €13, €23 are angles of rotation, while eo,, €92, €03 are certain
expressions involving the velocity of light and the velocity of one physical reference
frame with respect to the other.
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Corresponding to the transformations (128), we have

Ox; = Z SueaXy = Z Z guei Xy

%1 (Fkk=
Z Z guew Xy + z z gueit SuxcX,
I<k k= k>1 k=

= Z Z eel(8u St — Gix SuXi),
i<k k=0

where 3, is the Kronecker delta, and
i u s
& 0x;
It follows that
P =gy SikXy — ik OuXies
- S, ou ou ou
g = iZo 5;‘ (8 SuXie — 8u Buex)) = d—x—, 8rkXk — a—‘xk guXi,

where the pair of indices k, / plays the same role as the single index k in (121)
and ranges over the six combinations

0,1; 0,2; 0,3; 1,2; 1,3; 2,3.
According to (125), the corresponding field invariants are

0L [,
(a(au) axlgkk k Ox,cg”xl

ax;

(130)
+ L[ gu dux, — 8 Silxk]> dx, dxy dxs (k < D).

It is convenient to introduce the third-rank tensor

0¥ [o 0

My = a(@. [8)1:, 8xkXk — 5?};811"1] + Llgu duxi — g Suxi] (k< D),
6x,)

My, = — My, (k> D), (131)

called the angular momentum tensor. By definition, M, is antisymmetric
in the indices k and /. Using the expression (127) for the energy-momentum
tensor (specialized to the case of scalar fields), we can write (131) as

Mia = X Ty — guXi T
In terms of M,,, the field invariants are

fMo,c, dx, dx, dx; k <,

a fact summarized by saying that the angular momentum of the field is
conserved.
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Example. Using the quantities g,;, we can write the Lagrangian density
(120) corresponding to the Klein-Gordon equation in the form

-7 %i (8x,) M2

This leads to the energy-momentum tensor

ou du
Ty —8it 3 ox, 8xk gsik (132)
and the angular momentum tensor
ou ou ou
My = gu 71— ox (guxt 2%, — 8krXk x ) + L(gux, 8 — GrwXk Oy)-

The energy density correspondmg to (132) is

Too -2 Z (8x,) t3 M2

while the momentum density has the components

ou ou
% = Zxs Fx, (k=1,2,3).

38.5. The electromagnetic field. To illustrate the methods developed
above, we now derive the equations of the electromagnetic field from a
suitable Lagrangian density. The electromagnetic field is described by two
three-dimensional vectors, the electric field vector E = (E,, E,, E3) and the
magnetic field vector H = (H,, H,, H;). In the absence of electric charges,
E and H are related by the familiar Maxwell equations

oH o
curl £ = N curl H = o (133)
div H=0, div E =

where

_ 0E, 0E, 0K,
dvE =+ o T o,
cur15=(%_%%_%%_%),

0Xg Ox3 0Xj ox, 0x, 0Xxg

and similarly for div H, curl H. It is convenient to express E and H in
terms of a four-dimensional electromagnetic potential {A;} = (Ao, A1, A2, A3),%"
by setting

0A

= grad 4, — Txy H = curl A, (134)

27 Since the symbol A4 is reserved for the three-dimensional vector (A4;, A2, 43), we
denote the four-dimensional vector (4o, A1, A2, A3) by {4;}. A is sometimes called the
vector potential and A, the scalar potential.
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where
A = (Al’ AZ’ A3)
and
_ (84y 24, 24,
grad Ao = (722 520 71

The potential {A4;} is not uniquely determined by the vectors E and H.
In fact, £ and H do not change if we make a gauge transformation, i.e., if
we replace {4;} by a new potential {4;} with components

M»—Mw+m” (=0,1,23),

where x = (xo, x1, X2, X3) and f(x) is an arbitrary function. To avoid this
lack of uniqueness, an extra condition can be imposed on {4;}. The
condition usually chosen is

04

—%+divA—§a: =0 (135)
2%, = j=0gﬁ ax,

and is known as the Lorentz condition.
Next, we prove that the Maxwell equations (133) reduce to a single equa-

tion determining the electromagnetic potential {4,}. First, we introduce the
antisymmetric tensor H,;, whose matrix

0 —-E —-E, —E;

E1 0 H3 - H2

E2 - Hs 0 Hl

E; H, —H, 0
is formed from the components of E and H. It is easily verified that the
formula relating H;; to the potential {A4,} is
04; 04,

By = 2% o,

(136)

In terms of the tensor H;;, we can write the Maxwell equations (133) in the
form

& oH ,
285 =0 (j=0123, (137)
i=0 1
0H, 0Hy _ 0H; _
e T ox, T o 0 (138)
where in (138),
0, 1,2,
. . 1729 3,
hhk=4530
3,0, 1.

-
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Substituting (136) into (137) and (138), and using the Lorentz condition (135),
we find that (138) is an identity, while (137) reduces to

04;=0 (j=0,1,2,3), (139)
where [] is the D’Alembertian

02 0? 0? 0?
D=ttt

Finally, we show that (139) is a consequence of the principle of stationary
action,?® if we choose the Lagrangian density of the electromagnetic field
to be

1 2 2
¥ = &= (E* - H). (140)

Replacing E and H in (140) by their expressions (134) in terms of the electro-
magnetic potential { 4,}, we obtain

? =0 [(grad Ay — 2_;,0)2 ~ (curl A)2]- (141)

We shall only verify that the Euler equations

0¥ 8, ¥ .
@—1083/,) =0 (j=0,1,2,3 (14
(5

corresponding to (141) can be reduced to the form (139) for the component
Ao, since the calculations for A,, A,, A; are completely analogous. It
follows from (141) that

o _ ot
04, (8Ao) -
ol £20
0x,
oL _ L (s o)
(6A0) T 4m\ox;  ox,
P]
0x,
0¥ 1 (8Ao _ Q_/_{_z)
(8A0) T4 \ox,  ox,)
o &0
0Xq
or L (o 2
(6A0) T 4n\ox; 04,
ol &0
0X3

28 Provided A satisfies the Lorentz condition.
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Thus, for j = 0, (142) becomes

a,;_f i A4
8A0_4=03(§f1_°)
8x,
1 [024, 24, @24, 0 (04, ©0A, 0As
R = [T axg‘a—x:,(a%a*a)]”

(143)
According to the Lorentz condition (135),

04y | 0Ay | oAy _ oAy

8xl E ax:; - 8x0,
and hence (143) reduces to

PA, A, 024 02A,
T oxZ + ox2 + ox2 + oxz 040 = 0,

which is just (139), for j = 0.

Remark 1. In deriving (139) from (141), we made use of the Lorentz
condition (135). Instead, we could have introduced an additional term
into the Lagrangian density by writing

_ 94\? . . 94,2
@z = g—n{(grad Ay — 8—%) — (curl A)? — (dlv A - 8_xo) } (144)

which reduces to (141) if the Lorentz condition is satisfied. The Euler
equations corresponding to (144) reduce to (139) for arbitrary {A,}.

Remark 2. The Lagrangian density of the electromagnetic field, and hence
its action functional, is invariant under parallel displacements, Lorentz
transformations and gauge transformations. According to Sec. 38.3, the
invariance under parallel displacements implies conservation of energy and
momentum of the field, while, according to Sec. 38.4, the invariance under
Lorentz transformations implies conservation of angular momentum of the
field. Moreover, according to Remark 4, p. 179, the invariance under gauge
transformations (which depend on one arbitrary function) implies the exis-
tence of a relation between the left-hand sides of the corresponding Euler
equations (139). Therefore, these equations do not uniquely determine
the electromagnetic potential {4;}. In fact, to determine {A4;} uniquely,
we need an extra equation, which is usually chosen to be the Lorentz condition
(135).2¢

29 The Maxwell equations are actually invariant under a 15-parameter family (group)
of transformations. In addition to the 10 conservation laws already mentioned (energy,
momentum and angular momentum), this invariance leads to 5 more conservation laws,
which, however, do not have direct physical meaning. For a detailed treatment of this
problem, see E. Bessel-Hagen, Uber die Erhaltungssdtze der Elektrodynamik, Math. Ann.,
84, 258 (1921).
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PROBLEMS

1. Find the Euler equation of the functional

Ju] = ff Zu?,dxl... dx,.
Ri{z1
2. Find the Euler equation of the functional
Tl = [[[ VT+ @+ & + & dedydz.

3. Write the appropriate generalization of the Euler equation for the
functional

T = [ [ PGy, sty e, iy, ) dx .
4. Starting from Green’s theorem

H (———) dx dy _f (Pdx + Qdy),

prove that

[l - [Ls55oco (o205
oSt - [[ oS0 - [ (o3 159 o
ffq)axaydx‘iy—_ffq"ax dxdy — 3 .[r(¢%t_ g—i)dx

+3) (o5 - 45) @

5. Let J[u] be the functional
3%
ffn [_(uu + uyy)2 + 2(1 - l-")(uzzuyy - ll?y)] dx dy dr.

Using the result of the preceding problem, prove that if we go fromutou + e,
then

!1 'l 84‘
= _V4 oy
8 =¢ fm f L( wdxdydt + ¢ ft . fr [P(u)¢ + M) au] ds dt,
where M(u) and P(u) are given by formulas (61) and (62).

Hint. Express oy/ox, 0/oy in terms of o¢/on, dy/os, and use integration
by parts to get rid of o¢/os.

6. Show that when n = 1, formula (105) of Sec. 37.4 reduces to formula (7)
of Sec. 13.

7. Given the functional
0
Tlo] = f [ Saxdy,

compute J[c*] if o* is obtained from o by the transformation (108).
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8. Derive the Euler equations corresponding to the Lagrangian density
3 3 3 3
6u 2 2.2 aAg 2 2
Z = 1;).:‘ (6_x‘ - eAg) + M3 + ‘Z) j;)etej (6_x,) + M::Z; g A7,
where the field variables are u, A,, A,, A2, As, and the factor & equals 1
ifi=0and —1ifi=1,2,3.

9. Show that the Lagrangian density . of the preceding problem is Lorentz-
invariant if « transforms like a scalar and if Ay, A4,, A2, As transform like the
components of a vector under Lorentz transformations. Use this fact to
derive various conservation laws for the field described by Z.



3

DIRECT METHODS
IN THE
CALCULUS OF VARIATIONS

So far, the basic approach used to solve a given variational problem
(and indeed, to prove the existence of a solution) has been to reduce the prob-
lem to one involving a differential equation (or perhaps a system of differen-
tial equations). However, this approach is not always effective, and is
greatly complicated by the fact that what is needed to solve a given varia-
tional problem is not a solution of the corresponding differential equation
in a small neighborhood of some point (as is usually the case in the theory of
differential equations), but rather a solution in some fixed region R, which
satisfies prescribed boundary conditions on the boundary of R. The
difficulties inherent in this approach (especially when several independent
variables are involved, so that the differential equation is a partial differential
equation) have led to a search for variational methods of a different kind,
known as direct methods, which do not entail the reduction of variational
problems to problems involving differential equations.

Once they have been developed, direct_variational methods can be used to
solve differential equations, and this technique, the inverse of the one we
have used until now, plays an important role in the modern theory of the
subject. The basic idea is the following: Suppose it can be shown that a
given differential equation is the Euler equation of some functional, and
suppose it has been proved somehow that this functional has an extremum
for a sufficiently smooth admissible function. Then, this very fact proves
that the differential equation has a solution satisfying the boundary con-

ditions corresponding to the given variational problem. Moreover, as we
192
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shall show below (Sec. 41), variational methods can be used not only to
prove the existence of a solution of the original differential equation, but also
to calculate a solution to any desired accuracy.

39. Minimizing Sequences

There are many different techniques lumped together under the heading
of “direct methods.” However, the direct methods considered here are all
based on the same general idea, which goes as follows:

Consider the problem of finding the minimum of a functional J[y] defined
on a space .# of admissible functions y. For the problem to make sense,
it must be assumed that there are functions in .# for which J[y] < + o0,
and moreover that!?

infJ[y] = p > —oo, (1)
y
where the greatest lower bound is taken over all admissible y. Then, by

the definition of p, there exists an infinite sequence of functions {y,} =
Y1, Y2, - - -, called a minimizing sequence, such that

lim J[y,] = p.

If the sequence {y,} has a limit function p, and if it is legitimate to write

JIP) = lim J(p, @
ie.,
J[lim y,] = lim J[y,],
then

J] = w
and p is the solution of the variational problem. Moreover, the functions

of the minimizing sequence {y,} can be regarded as approximate solutions
of our problem.

Thus, to solve a given variational problem by the direct method, we must

1. Construct a minimizing sequence {y,};

2. Prove that {y,} has a limit function j;

3. Prove the legitimacy of taking the limit (2).

Remark 1. Two direct methods, the Ritz method and the method of finite
differences, each involving the construction of a minimizing sequence, will

be discussed in the next section. We reiterate that a minimizing sequence
can always be constructed if (1) holds.

! By inf is meant the greatest lower bound or infimum.
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Remark 2. Even if a minimizing sequence {y,} exists for a given varia-
tional problem, it may not have a limit function y. For example, consider
the functional

Il = [ x»72d
1= ]_ x¥*%dx

where
y=n=-1, =1 ©))
Obviously, J[y] takes only positive values and
inf J[y] = 0.
We can choose ’
yal) = BB (= 1,2,.00) @

as the minimizing sequence, since

J‘l nx?dx < 1 J"l dx 2
-1 (tan-Tn)2(1 + n2x®2 ~(tan-m)2 )11+ n®x2  ntan-'n

and hence J[y,] - 0asn— co. Butasn— oo, the sequence (4) has no limit
in the class of continuous functions satisfying the boundary conditions (3).

Even if the minimizing sequence {y,} has a limit  in the sense of the
%-norm (i.e., y,— y as n— oo, without any assumptions about the convergence
of the derivatives of y,), it is still no trivial matter to justify taking the limit
(2), since in general, the functionals considered in the calculus of variations
are not continuous in the ¥-norm. However, (2) still holds if continuity
of J[y] is replaced by a weaker condition:

THEOREM. If{y,} is a minimizing sequence of the functional J[y), with
limit function p, and if J|y] is lower semicontinuous at ,? then

JIF1 = lim J(p].
Proof. On the one hand,
JIpl = lim J(y.) = infJ[y], ®)
while, on the other hand, given any € > 0,
Jyal = J0] > —e, (6)
if n is sufficiently large. Letting » — oo in (6), we obtain

J[7] < lim J[y,] + &,

or
JI < lim Jly.), @)

2 See Remark 1, p. 7.
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since ¢ is arbitrary. Comparing (5) and (7), we find that
Jipl = lim J(y.l,
as asserted.

40. The Ritz Method and the Method of Finite Differences®

40.1. First, we describe the Ritz method, one of the most widely used direct
variational methods. Suppose we are looking for the minimum of a func-
tional J[y] defined on some space .# of admissible functions, which for
simplicity we take to be a normed linear space. Let

P, P25 .- ®

be an infinite sequence of functions in .#, and let ., be the n-dimensional
linear subspace of .# spanned by the first n of the functions (8), i.e., the set
of all linear combinations of the form

al‘Pl + -+ AnPns (9)

where ay, ..., o, are arbitrary real numbers. Then, on each subspace #,,
the functional J[y] leads to a function

J[OCICPI + -+ ocnCPn] (10)

of the n variables a4, . . ., «,.

Next, we choose «y, ..., «, in such a way as to minimize (10), denoting
the minimum by p., and the element of .#,, which yields the minimum by y,.
(In principle, this is a much simpler problem than finding the minimum of the
functional J[y] itself.) Clearly, ., cannot increase with n, i.e.,

B> pe >

since any linear combination of ¢, ..., ¢, is automatically a linear combi-
nation @y, ..., @n, ¢n+1. Correspondingly, each subspace of the sequence

My, My ...

is contained in the next. We now give conditions which guarantee that the
sequence {y,} is a minimizing sequence.

DEFINITION. The sequence (8) is said to be complete (in M) if given
any y € # and any € > 0, there is a linear combination v, of the form (9)
such that ||n, — y|| < e (where n depends on ¢).

3 Here we merely outline these two methods, without worrying about questions of
convergence, and taking for granted the existence of an exact solution of the given
variational problem.
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THEOREM. If the functional J[y] is continuous,* and if the sequence (8)
is complete, then

lim p, =y,
where
w = infJ[y].
v

Proof. Given any € > 0, let y* be such that
Jy*l <up +e

(Such a y* exists for any € > 0, by the definition of w.) Since J[y] is
continuous,

V] = J*l <, 1

provided that |y — y*| < 8 = 8(c). Letu, be a linear combination of
the form (9) such that |v, — »*| < 8. (Such an v, exists for suffi-
ciently large n, since {¢,} is complete.) Moreover, let y, be the linear
combination of the form (9) for which (10) achieves its minimum.
Then, using (11), we find that

< Iyl U] <p + 2
Since ¢ is arbitrary, it follows that
lim J[y,) = lim p, =y,
as asserted. " T

Remark 1. The geometric idea of the proof is the following: If {¢,} is
complete, then any element in the infinite-dimensional space .# can be
approximated arbitrarily closely by an element in the finite-dimensional
space 4, (for large enough n). We can summarize this fact by writing

lim A, = 4.

n— o

Let y be the element in .# for which J[§] = u, and let , € 4, be a sequence
of functions converging to . Then {$,} is a minimizing sequence, since
J[»] is continuous. Although this minimizing sequence cannot be con-
structed without prior knowledge of p, we can show that our explicitly
constructed sequence {y,} takes values J[y,] arbitrarily close to J[7,]. and
hence is itself a minimizing sequence.

Remark 2. The speed of convergence of the Ritz method for a given
variational problem obviously depends both on the problem itself and on

4 I.e., continuous in the norm of .#. For example, functionals of the form

b
I = [ F(x, 5, ) dx

are continuous in the norm of the space Z,(a, b).
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the choice of the functions ¢,. However, it should be pointed out that
in many cases, linear combinations involving only a very small number of
functions ¢, are enough to give a quite satisfactory approximation to the
exact solution.

Remark 3. More generally, the spaces .# and .#, need not be normed
linear spaces themselves, but only suitable sets of admissible functions
belonging to an underlying normed linear space % (see Remark 3, p. 8).
For example, the admissible functions may satisfy boundary conditions like

Wa)=A4, yb)=B

(see Sec. 40.2), or a subsidiary condition like

J.: yi(x)dx =1

(see Sec. 41). This case can be handled by appropriate modifications of
the present method.

40.2. We now describe another method involving a sequence of finite-
dimensional approximations to the space .#. This is the method of finite
differences, which has already been encountered in Sec. 7. There, in con-
nection with the derivation of Euler’s equation, we noted that the problem
of finding an extremum of the functional®

I = [ Feoyy)dx, @) =4, y6) = B, 12

can be approximated by the problem of finding an extremum of a function
of n variables, obtained as follows: We divide the interval [a, 6] into n + 1
equal subintervals by introducing the points

Xo =04, Xi1,...,Xn, Xpy1 =b7 xi+l_xi=Ax’
and we replace the function y(x) by the polygonal line with vertices

(X0, Y0), (X1, Y1), - - -y (Xn, Yn)s (Xns15 Y1)

where now y; = ¥(x;). Then (12) can be approximated by the sum
_ < oy, Yiv1 — )i
J(J’n---,}’n) _‘=Zo F[xuyu AX ]AX, (13)

which is a function of » variables. (Recall that y, = 4 and y,,, = B are
fixed.) If for each n, we find the polygonal line minimizing (13), we obtain
a sequence of approximate solutions to the original variational problem.

5 Here, .# will be a linear space only if A = B = 0 (cf. Remark 3).
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41. The Sturm-Liouville Problem

In this section, we illustrate the application of direct variational methods
to differential equations (cf. the remarks on p. 192), by studying the follow-
ing boundary value problem, known as the Sturm-Liouville problem: Let
P = P(x) > 0and Q = Q(x) be two given functions, where Q is continuous
and P is continuously differentiable, and consider the differential equation

—Py) + Qy=w» (14
(known as the Sturm-Liouville equation), subject to the boundary conditions
@) =0, yb) =0. 15)

It is required to find the eigenfunctions and eigenvalues of the given boundary
value problem, i.e., the nontrivial solutions® of (14), (15) and the correspond-
ing values of the parameter A.

THEOREM. The Sturm-Liouville problem (14), (15) has an infinite
sequence of eigenvalues NV, \?, ..., and to each eigenvalue \™ there
corresponds an eigenfunction y™ which is unique to within a constant
factor.

The proof of this theorem will be carried out in stages, and at the same
time we shall derive a method for approximating the eigenvalues A™ and
eigenfunctions y™.

41.1. We begin by observing that (14) is the Euler equation corresponding
to the problem of finding an extremum of the quadratic functional

I = [ @y + 0 dx, (16)

subject to the boundary conditions (15) and the subsidiary condition”

fbyzdx= 1. a7

Thus, if y(x) is a solution of this variational problem, it is also a solution
of the differential equation (14), satisfying the boundary conditions (15).
Moreover, y(x) is not identically zero, because of the condition (17).

Next, we apply the Ritz method (see Sec. 40.1) to the functional (16), first

S In other words, the solutions which are not identically zero. For any value of 2,
(14) and (15) are trivially satisfied by the function y(x) = 0.
7 Use the theorem on p. 43, changing A to —A.
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verifying that it is bounded from below, as required [cf. formula (1)]. Since
P(x) > 0, this fact follows from the inequality

b b b
f Py + Qyz)dx>f 0y*dx > Mj ydx = M,

where
M= min Q(x).

ag<r<b

For simplicity, we assume that a = 0, b = =, and we choose {sin nx} as the
complete sequence of functions {¢,(x)} used in the Ritz method. This
sequence also has the desirable feature of being orthogonal, i.e.,

f" sinkxsin lxdx =0 (k # ).

0

If a linear combination
> o sin kx (18)
k=1

is to be admissible, it must satisfy the conditions (15) and (17). The condition
(15) is automatically satisfied by our choice of the functions sin nx, but (17)
leads to the requirement

f:( kﬁ: oy Sin kx)zdx = g z o = 1. (19)
=1

Moreover, for a linear combination (18), the functional J[y] reduces to

n n, ‘2 n 2

s, = [ [P(x)( S o sin kx) + Q(x)( S o sin kx) ] dx,

k=1 k=1
(20)
which is a function of the n variables «, ..., «, (in fact, a quadratic form
in these variables.

Thus, in terms of the variables «, ..., «,, our problem is to minimize
Jo(ety, - . ., o,) on the surface 6, of the n-dimensional sphere with equation (19).
Since c, is a compact set and J,(«,, . . ., &) is continuous on 6, J,(oy, . . ., a,)
has a minimum A" at some point «f?, ..., aP of 6,.8 Let

n
yP(x) = Z ol sin kx
k=1
be the linear combination (18) achieving the minimum A,  If this procedure
is carried out for n = 1, 2, ..., we obtain a sequence of numbers

AP, A0, L, @n
and a corresponding sequence of functions

Y1), ¥2(x), . .. (22)

8 See e.g., T. M. Apostol, op. cit., Theorem 4-20, p. 73.
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Noting that o, is the subset of 6, ,, obtained by setting o, ,; = 0, while

Jn(ah ceey d") = Jn+l(a1, e oy Opy 0),
we see that
AP < AP, (23)

since increasing the domain of definition of a function can only decrease its
minimum. It follows from (23) and the fact that J[y] is bounded from below
that the limit

AV = lim AL 24)

n— oo

exists.

41.2. Now that we have proved the convergence of the sequence of
numbers (21), representing the minima of the functional

[ @2+ o ax

on the sets of functions of the form
n
Z oy sin kx
k=1

satisfying the condition (19), it is natural to try to prove the convergence
of the sequence of functions (22) for which these minima are achieved. We
first prove a weaker result:

LEMMA 1. The sequence {y\’(x)} contains a uniformly convergent
subsequence.

Proof. For simplicity, we temporarily write y,(x) instead of yi(x).
The sequence

N = [T (PyE + Qi dx
is convergent and hence bounded, i.e.,
[[ @+ opax<m
for all n, where M is some constant. Therefore
f:Py;zdx <M+ U: Qyﬁdx‘ <M+ max |O(x)| = M.,

agzrg

and since P(x) > 0,

n M
' 1 —
[y dx <« 2 7 = M (25)
agzr<b
Using (25), the condition
yn(O) = 0,

and Schwarz’s inequality, we find that

z 2 °T z
[r@a| < [ yeeyaz [ az < M,
0 Jo 0

| ya(x)|? =
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so that {y,(x)} is uniformly bounded.® Moreover, again using Schwarz’s
inequality, we have

z, 2 z, z
9 = 3l? = | [ o an| < ["yzaxe | [ dx| < Milxa - 5,
z3 z1 1
so that{y,(x)}is equicontinuous.’® Thus, according to Arzela’s theorem,!!
we can select a uniformly convergent subsequence {y, (x)} from the
sequence {y,(x)} and Lemma 1 is proved.

We now set
yP(x) = lim y, (x). (26)

Our object is to show that y¥(x) satisfies the Sturm-Liouville equation (14)
with A = A, However, we are still not in a position to take the limit as
m — oo of the integral

[ @y + 02 ax,

since as yet we know nothing about the convergence of the derivatives y;_.
Therefore, the fact that for each m, the function y,, minimizes the functional
J[y] for y in the n,-dimensional space spanned by the linear combinations

Nm
z o, sin kx
k=1

[subject to the condition (19) with n = n,,] still does not imply that the limit
function »¥(x) minimizes J[y] for y in the full space of admissible functions.
To avoid this difficulty, we argue as follows:

LeEMMA 2. Let y(x) be continuous in [0, ], and let

[[1=@ry + Qilydx =0 27)

9 A family of functions V' defined on [a, 4] is said to be uniformly bounded if there is
a constant M such that
b < M
forally eV and all a < x < b.
10 A family of functions V' defined on [a, b] is said to be equicontinuous if given any
e > 0, there is a 8 > 0 such that

[d(x2) — (x| < e
for all €'V, provided that |x; — x;| < 3.

11 Arzela’s theorem states that every uniformly bounded and equicontinuous sequence
of functions contains a uniformly convergent subsequence (converging to a continuous
limit function). Seee.g., R. Courant and D. Hilbert, op. cit., vol. 1, p. 59.
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for every function h(x) € 2,(0, w),'2 satisfying the boundary conditions
h0) = h(x) = 0, h©0) = h'(x) = 0. (28)
Then y(x) also belongs to 2,0, &), and
—(Py) + 0y =0.
Proof. 1f we integrate (27) by parts and use (28), we find that

fo" [—(PKY + Qihlydx = — f Ph'y dx — f"P'h'ydx + j 0.hy dx

- [ v+ [Pyac+ [ (j Qlydt)di]dx—

It follows from Lemma 3, p. 10 that
T z g
—Py+ [ Pyde+ | (f 0w dt) dE = ¢y + cx,  (29)
1] 0 V]

where ¢, and ¢, are constants. Since the right-hand side and the
second and third terms in the left-hand side of (29) are obviously
differentiable, (Py)’ exists, and in fact, differentiating (29) term by term,
we find that

—(By) + Py + [ O di = e (30)

Since the function P is continuously differentiable and does not vanish,
y' exists and is continuous. Thus, (30) reduces to

—Py + [ owdt = e &)

Since the right-hand side and the second term in the left-hand side of (31)
are differentiable, it follows that (Py’)" exists, and in fact

—Py) + Oy =0,
as asserted. Moreover, by the same argument as before, y” exists and is
continuous.

41.3. We can now show that the function y(x) defined by (26), whose
existence follows from Lemma 1, satisfies the Sturm-Liouville equation

_(Py(l)’)’ + Qy(l) — )\(l)y(l)’ (32)
where AV is the limit (24). According to the theory of Lagrange multipliers
(cf. footnote 7, p. 43), at the point («{, ..., «¥) where the quadratic form

(20) achieves its minimum subject to the subsidiary condition (19), we have

a72{],,(0(1,.. oz)—k“’f (Zahsmkx }dx=0 r=1,...,n).

12 |e., for every h(x) with continuous first and second derivatives in [0, «t].
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This leads to the n equations

fo" {P(X)[ é: £(sin kx)’] (sin rx)’

+ [Q(x) — 7\‘,})][ Z o sin kx] sinrxpdx =0 r=1,...,n).
k=1

(33)

Multiplying each of the equations (33) by an arbitrary constant C{® and
summing over r from 1 to n, we obtain
J.: [Py:lh;l + (Q - ;\gll))ynhn] dx = 09 (34)

where

hi(x) = > C™ sin rx. (39)

r=1

An integration by parts transforms (34) into

[ 1=@ny + (@ = $hlyndx = 0. (36)

If A(x) is an arbitrary function in 2,(0, =) satisfying the boundary conditions
(28), we can choose the coefficients C{™ in such a way that

h, = h, h, = n, hy, = h"

(see Prob. 8). Here, the symbol = denotes convergence in the mean, i.e.,
h, = h stands for

lim fo ha(x) — h(x)|2dx = 0

Since yP -> yV uniformly in [0, =],*3 it follows from (36) that

lim [" [~ (Phi,) + (Q = 2o, 12 dx

m—-oo JO

= |, (=@ry + (@ = xhy»dx = 0

(see Prob. 9). The fact that y is an element of 2,(0, ©) and satisfies the
Sturm-Liouville equation (32) is now an immediate consequence of Lemma 2,
with @, = @ — AV,

So far, the function yV(x) has been defined as the limit of a subsequence
{¥\2(x)} of the original sequence {y{’(x)}. We now show that the sequence

13 We now restore the superscript on yb.
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{¥P(x)} itself converges to y¥(x). To prove this, we use the fact that for a
given A, the solution of the Sturm-Liouville equation

—(Py) + Qy =W (37
satisfying the boundary conditions
¥0) =0, y(m=0 (3%)
and the normalization condition
[ reyax =1 (39)

is unique except for sign. Let »¥(x) be a solution of (37) corresponding
to A =A%, and suppose yV(x,) # 0 at some point xo in [0, ]. Then
choose the sign so that y*(x,) > 0. Similarly, let »/*(x) be a solution
of (37) corresponding to A = AY, and choose the signs so that y{V(x,) > 0
for all n. If y(x) does not converge to y(x), we can select another
subsequence from {y{(x)} converging to another solution j(x) of (37),
where again A = AP, Because of the uniqueness (except for sign) of
solutions of (37), subject to (38) and (39), this means that

FPx) = —yP(x),
and hence j'V(x,) < 0, which is impossible, since y(x,) > 0 for all n.
Therefore, yP(x) — y¥(x) [in fact, uniformly], provided we choose each
YP(x) with the proper sign.

41.4. We have just proved that the Sturm-Liouville problem has the eigen-
function y*(x), corresponding to the eigenvalue A'Y. The “next” eigen-
function y®(x) and the corresponding eigenvalue A‘®? can be found by
minimizing the quadratic functional

I = [ (By? + 0y dx 40)

subject to the same conditions (38) and (39) as before, plus an extra orthog-
onality condition

f: YP(x) p(x) dx = 0. 41)
In fact, substituting

y(x) = kil o Sin kx (42)
into (40), we again obtain the quadratic form J,(«,, ..., «,) given by (20),
but this time we study J, (e, . . ., «,) on the set of functions of the form (42)

which not only lie on the n-dimensional sphere ¢, with equation (19), thereby
satisfying the normalization condition (39), but are also orthogonal to the
function

n
YOx) = > o sin kx,
k=1
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i.e., satisfy the condition

S [} sin kex ( S o sin lx) -3 Z s = 0. (43)
k=1 =1 k=

This is the equation of an (n — 1)-dimensional hyperplane, passing through
the origin of coordinates in n dimensions. Its intersection with the sphere
(19)is an (n — 1)-dimensional sphere ¢,_,. By the same argument as before
(cf. footnote 8), J,(«y, ..., ®,) has a minimum A on &,_,. It is not hard
to see that

[cf. (23)], and hence the limit

2) __ 3 2
A2 = lim A2

n— o
exists, since J[y] is bounded from below. Moreover, it is obvious that

A <A, (44)
Now let

Y2 = D of? sin kx
k=1
be the linear combination (42) achieving the minimum A, where, of course,
the point (¢, ..., «{?) lies on the sphere &,_,. As before, we can show
that the sequence {y{?(x)} converges uniformly to a limit function y®(x)
which satisfies the Sturm-Liouville equation (37) [with A = A®], the boun-
dary conditions (38), the normalization condition (39), and the orthogonality
condition (41). In other words, y®(x) is the eigenfunction of the Sturm-
Liouville problem corresponding to the eigenvalue A®. Since orthogonal
functions cannot be linearly dependent, and since only one eigenfunction
corresponds to each eigenvalue (except for a constant factor), we have the
strict inequality
AD < 2D,

instead of (44). Finally, we note that by repeating the above argument,
with obvious modifications, we can obtain further eigenvalues A®, A, .. .,
and corresponding eigenfunctions y®(x), y*¥(x),....

For further material on the use of direct methods in the calculus of varia-
tions, we refer the reader to the abundant literature on the subject.’*

14 See e.g., N. Krylov, Les méthodes de solution approchée des problémes de la physique
mathématique, Mémorial des Sciences Mathématiques, fascicule 49, Gauthier-Villars
et Cie., Paris (1931); S. G. Mikhlin, INpsambeie Metoabl B MaTtemaTnueckoit ®dusnke
(Direct Methods in Mathematical Physics), Gos. 1zd. Tekh.-Teor. Lit., Moscow (1950);
S. G. Miknlin, Bapuaunonueie Metoapl B Martematuueckoit Pusuke (Variational
Methods in Mathematical Physics), Gos. Izd. Tekh.-Teor. Lit., Moscow (1957); L. V.
Kantorovich «nd V. I. Krylov, Approximate Methods of Higher Analysis, translated
by C. D. Ben-ter, Interscience Publishers, Inc., New York (1958).
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PROBLEMS

1. Let the functional J[y] be such that J[y] > — oo for some admissible
function, and let
supJ[yl = p < + o,

where sup denotes the least upper bound or supremum. By analogy with the
treatment given in Sec. 39, define a maximizing sequence, and then state and
prove the corresponding version of the theorem on p. 194.

2. Use the Ritz method to find an approximate solution of the problem of
minimizing the functional

Il = [[07 -y - 2)dx 2O =xD) =0,

and compare the answer with the exact solution.
Hint. Choose the sequence {¢.(x)} (see p. 195) to be
x(1 —x), x*(1 — x), x*(1 — Xx),...

3. Use the Ritz method to find an approximate solution of the extremum
problem associated with the functional

Tl = [}y + 10007 - 20x0) dx, (1) = Y(D) = 0.

Hint. Choose the sequence {p.(x)} to be
(x — 12, x(x—1)2 x*(x—1)3...

4. Use the Ritz method to find an approximate solution of the problem of
minimizing the functional

2
I = [ 0747+ 20)dx, K0 =y =0,
and compare the answer with the exact solution.

5. Use the Ritz method to find an approximate solution of the equation

u  %u 1
ox? + ay? —
inside the square

R: —a < x < a, —a

n
~<
n
»

where « vanishes on the boundary of R.
Hint. Study the functional

Tlu] = ”ﬂ [(Z_Z)z + (%)2 - Zu] dx dy,

and choose the two-dimensional generalization of the sequence {@,(x)} to be

(x2 — a®(? - b%), (x® + y¥)(x? — a>)(y* — b?),....
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6. Write the Sturm-Liouville equation associated with the quadratic functional
b
Jlyl = 'f (cry® + cy?) dx,
a
where ¢ and ¢; > 0 are constants, subject to the boundary conditions

ya =0, yb)=0.
Find the corresponding eigenvalues and eigenfunctions.

7. Formulate a variational problem leading to the Sturm-Liouville equation
(14) subject to the boundary conditions

Y@ =0, y(®) =0,
instead of the boundary conditions (15).

Hint. Recall the natural boundary conditions (29) of Sec. 6.

8. Prove that any function h(x) € 2,0, n) satisfying the boundary conditions
(28) can be approximated in the mean by a linear combination

ha(x) = D C™ sin rx,
r=1

where at the same time h,(x) approximates h’(x) and h,(x) approximates
k”(x) [in the mean]. Show that the coefficients C{™ need not depend on n
and can be written simply as C..

Hint. Form the Fourier sine series of #”(x) and integrate it twice term by
term.

9. Show that if f,(x) — f(x) in the mean and g,(x) — g(x) uniformly in some
interval [a, 4], then

[} #idgnt) ax — [ gty

Hint. Use Schwarz’s inequality.



Appendix I

PROPAGATION OF DISTURBANCES
AND THE
CANONICAL EQUATIONS

In this appendix, we consider the propagation of ‘“disturbances” in a
medium which is regarded as being both inhomogeneous and anisotropic.
Thus, in general, the velocity of propagation of a disturbance at a given point
of the medium will depend both on the position of the point and on the
direction of propagation of the disturbance. We also make the following
two assumptions about the process under consideration:

1. Each point can be in only one of two states, excitation or rest, i.e., no
concept of the intensity of the disturbance is introduced.

2. If a disturbance arrives at the point P at the time ¢, then starting from
the time ¢, the point P itself serves as a source of further disturbances
propagating in the medium.

In the analysis given here, our aim is to show that a study of processes
of excitation of the kind described, together with purely geometric considera-
tions, can be used to derive such basic concepts of the calculus of variations
as the canonical equations, the Hamiltonian function, the Hamilton-Jacobi
equation, etc. The treatment given here does not rely upon the derivations
of these concepts given in the main body of the book (see Secs. 16, 23), and in
fact can be used to replace the previous derivations. The reader acquainted

! The authors would like to acknowledge discussions with M. L. Tsetlyn on the
material presented here.
208
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with optics will recognize that we are essentially constructing a mathe-
matical model of the familiar Huygens’ principle.?

1. Statement of the problem. Let the medium in which the disturbance
propagates fill a space Z, which for simplicity we take to be n-dimensional
Euclidean space. Thus, every point x € Z is specified by a set of n real
numbers x%, ..., x". Choosing a fixed point x, € Z, we consider the set of
all smooth curves

x = x(s) m

passing through x,. The set of vectors tangent to the curve (1) at the point

Xo, 1.€., the set of vectors
x' = Qc’
ds
forms an n-dimensional linear space, which we call the tangent space to & at
X, and denote by 7 (x,). Note that the end points of the vectors in any
tangent space .7 (x) are points of 2 itself.?

Since the medium is inhomogeneous and anisotropic, the velocity of
propagation of disturbances in Z depends on position and direction, i.e.,
on x and x'. Let f(x, x") denote the reciprocal of this velocity. Then, if
x(s) and x(s + ds) are two neighboring points lying on some curve x = x(s),
the time dr which it takes the disturbance to go from the point x(s) to the
point x(s + ds) can be written in the form

dx
dt = f(x, %) ds,
and the time it takes the disturbance to propagate along some infinite path
joining the points x, = x(s,) and x, = x(s;) equals

"S1 dx
[0 f(x5) o 2
Suppose the point x, is “excited,” and consider all possible paths joining
X, and x;. Then, because of the ““off or on” character of the excitation,
the only path which plays any role in the propagation process is the one along
which the disturbance propagates in the smallest time, say . (Disturbances
arriving at x, via some other path which is traversed in a time >t will arrive

2See e.g., B. B. Baker and E. T. Copson, The Mathematical Theory of Huygens
Principle, Oxford University Press, New York (1939).

3 1In the case considered, the tangent space .7 (x) is particularly simple, and in fact,
is just an n-dimensional Euclidean space with origin at x. More generally, Z can be an
n-dimensional differentiable manifold, and then the end points of vectors in .7 (x) need
no longer lie in 2. However, the analysis given below can easily be extended to this
case, by exploiting the *‘local flatness™ of Z'.
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at x, ‘“too late” to have any further effect on the propagation process,
since x, will already be found in a state of excitation.) In other words,

T = min f:lf(x, Z—:) ds,

where the minimum is taken with respect to all curves x = x(s) joining the
points x, and x,. Thus, the propagation of disturbances in the medium
obeys the familiar Fermat principle (p. 34), i.e., among all paths joining x,
and x,, the disturbance always propagates along the path which it traverses
in the least time. We shall refer to such paths as the trajectories of the

disturbance.
Next, we state a physically plausible set of properties for the function

Sx, x'):
1. The propagation time along any curve is positive, and hence
f(x,x) >0 if x"#0. 3)

2. The propagation time along any curve y joining x, and x,, given by
the integral (2), depends only on y and not on how ¥y is parameterized.
It follows by the argument given in Chap. 2, Sec. 10 that f(x, x) is
positive-homogeneous of degree 1 in x":

Sf(x, Ax") = M(x, x’) forevery A > 0. ()
In particular, (4) implies that
fx, x" + %) = f(x, x') + f(x, X), %)
if ¥ = Ax’, where A > 0.

3. The time it takes a disturbance to traverse a curve y connecting x, to x,
is the same as the time it takes a disturbance to traverse y in the opposite
direction from x, to x,, and hence

f(x, =x) = f(x, x'). (6)

4. If the medium is homogeneous, so that f'is a function of direction only,
then the disturbance propagates in straight lines (see Prob. 1). In
particular, no disturbance emanating from a given point x, can arrive
at another point x; more quickly by taking a path consisting of two
straight line segments than by going along the straight line segment
joining x, and x,. This implies the convexity condition

S+ %) < f(X) + f(%)

(see Prob. 2). If f depends on x in a sufficiently smooth way (e.g., if
the derivatives 9f/ox!, ..., 9f/ox™ exist), the same argument shows that
the convexity condition

fle, x" + X) < f(x, x') + f(x, X) @)



APPENDIX I PROPAGATION OF DISTURBANCES 21|

holds for sufficiently small x’, X', but then (7) holds for all x’, ¥ because
of the homogeneity property (4).

S. Actually, we strengthen the condition (7) somewhat, by requiring that
[ satisfy the strict convexity condition, consisting of (7) plus the stipula-
tion that (5) holds only if X' = Ax’, where A > 0.

Now suppose we have a disturbance which at time ¢ = 0 occupies some
region of excitation R in Z°, and propagates further as time evolves. The
boundary of R will be called the wave front. Let

S(x,t) =0

be the equation of the wave front at the time 7. Then our problem can
be stated as follows: Find the equation satisfied by the function S(x, t)
describing the wave front, and find the equations of the trajectories of the
disturbance.

2. Introduction of a norm in .7 (x). Our next step is to use the function
f(x, x) to introduce a norm in the n-dimensional tangent space 7 (x). This
can be done by defining the norm of the vector x’ = 0 to be zero and setting

X'l = f(x, x) ®

for all vectors x’ # 0in 7 (x). Thefact that | x’| actually meets all the require-
ments for a norm (see p. 6) is an immediate consequence of (3), (4), (6)
and (7). The set of all vectors in .7 (x) such that

S x) =[x =« )

is called a sphere of radius o in J (x), with center at the point x. The sphere
(9) is just the boundary of the closed region of .7 (x) [and hence of Z'] which
is excited during the time o by a disturbance originally concentrated at the
point x. In this language, our problem can be rephrased as follows:
Suppose a tangent space 7 (x), equipped with the norm (8) satisfying the strict
convexity condition, is defined at each point x of an n-dimensional space Z .
Find the equations describing the propagation of disturbances in &', if during
the time dt the disturbance originally at x ““spreads out and fills’ the sphere

f(x,dx) = dt.

3. The conjugate space T (x). Let ¢[x'] be a linear functional (see p. 8),
defined on the tangent space .7 (x). Then there is a unique vector

P = (pla . "pn)’
such that
¢[x'] = (p, x)
for all x' € 7 (x), where by (p, x") is meant the scalar product

D PxY 4 e 4 ppx™
i=1
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(see Prob. 3).* Conversely, any scalar product (p, x') obviously defines a
linear functional on 7 (x). The set of all linear functionals on Z (x), or
equivalently the set of all vectors p, is itself an n-dimensional linear space,
called the conjugate space of 7 (x) and denoted by 7 (x). We define the
norm of a vector p € 7 (x) by the formula®

(p, x)
Eil (10)

Ilpl = sup
x

where the least upper bound is taken over all vectors x' # 0 in 7 (x) [see
Prob. 4]. In the present context, we write H(x, p) instead of ||p|, i.e.,

Hex,p) = sup £ a

It can be shown that the transition from the function f(x, x’) to the function
H(x, p) defined by (11) is just the parametric form of the Legendre transfor-
mation discussed in Sec. 18.

4. The propagation process. Suppose the wave front at the time ¢ is the
surface o, with equation

S(x,t) = 0. (12)

We now examine in more detail the mechanism governing the evolution of o,
in time. By hypothesis, each point of o, serves as a source of new distur-
bances, which during the time d¢ excite the region bounded by the sphere

f(x, dx) = dr. (13)

Since the function f(x, x") determining the propagation process is assumed to
be differentiable and strictly convex (in the sense explained above), there is a
unique hyperplane tangent to each point of the sphere (13), and this hyper-
plane has only one point in common with the sphere, i.e., its point of tangency.
If we construct a family of spheres (13), one for each point x € s,, then the
wave front o, .4 at the time ¢ + dt, with equation

S(x,t + dt) =0, (14)

is just the envelope E of this family of spheres. In fact, E is the “interface”
separating the points of Z which can be reached from o, in times <dt from
the points which can only be reached from o, in times >dt. This construction
has two important implications:

* The reader familiar with tensor analysis will note that here we make a distinction
between contravariant vectors like x’, with components x'" indexed by superscripts,
and covariant vectors like p, with components p, indexed by subscripts. See e.g.,
G. E. Shilov, op. cit., Sec. 39.

5 By sup is meant the least upper bound or supremum.
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1. Given a point x € o;, there is a unique point x + dx € 6,,4 Which is
excited after the time df by a disturbance initially at x. In fact, x + dx
is the point of o;,4 lying on the (unique) hyperplane tangent to both
(13) and 6;.4;. To see this, we observe that it takes a time >df for a
disturbance starting from x to reach any other point of o;, 4.6 Thus,
there is a unique direction of propagation defined at each point x e 5,
and it is clear that a disturbance leaving x in this direction will arrive at
the surface o, , 4, more quickly than a disturbance leaving x in any other
direction, as required by Fermat’s principle.

2. Conversely, given a point x + dx € 6,,4, there is a unique point
x € 65, which at the time ¢ was the source of the disturbance reaching
x + dx at the time ¢ + dt. In fact, x is just the center of the (unique)
sphere of radius df which shares a tangent hyperplane with o, 4.

5. The Hamilton-Jacobi equation. As was just shown, every hyperplane
tangent to the surface ;4 with equation (14) must also be tangent to some
sphere of radius d¢ whose center lies on the surface o, with equation (12).
This fact can be used to derive a differential equation satisfied by the function
S(x, t). First, we observe that every hyperplane in the tangent space 7 (x)
can be written in the form

n

Z pix'’ = const,

where p = (ps, . . ., py) is a vector in the conjugate space 7 (x). Let x + dx
be an arbitrary point of o, 4, whose “source” is the point x € 5, Then
the hyperplane in .7 (x) tangent to o;,4, at x + dx has the equation

Z - (15)

where c is a constant. If the hyperplane (15) is also tangent to the sphere
(13), as required, then ¢ equals the norm of the vector

Q’I

8S oS
multiplied by the radius of the sphere, i.e.,
¢ = H(x,VS)dt
Therefore, (15) becomes
= S
Z 75 9% = H(x, VS) dt. (16)

6 Physically, this means that if the surface o, is changed only in a small neighborhood
of the point x, the surface o, .4 is also changed only in a small neighborhood of x + dx.
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But

2 0S oS

2 -é?dx‘ + T dt =0, (17)
because of the meaning of x and x + dx. Comparing (16) and (17), we
finally obtain

%—f + H(x, VS) = 0. (18)
This equation describes the way the wave front evolves in time, and is just
the familiar Hamilton-Jacobi equation, already considered in Sec. 23.

We now show the relation between the trajectories of the disturbance and
the general solution of (18). It will be recalled that as a wave front evolves
in time, each of its points goes into a succession of uniquely defined points
lying on neighboring wave fronts, thereby ‘“sweeping out™ a trajectory vy
which automatically minimizes the functional (2). Thus, if we specify a
one-parameter family of wave fronts

S(x,t) =0, (19)

where the parameter is the time ¢, every point x, on some “initial” surface
S(x, to) generates a trajectory. Choosing the point x, arbitrarily, we find
that the one-parameter family of surfaces (19) determines an (n — 1)-
parameter family of trajectories, such that one and only one trajectory of the
family passes through each point x e Z. More generally, let

S(X, ts ST -’an)

be a complete integral of the Hamilton-Jacobi equation depending on n
parameters oy,...,a, This complete integral determines an (n + 1)-
parameter family of surfaces’

S(X, [ ST o(n) = 0’ (20)

which in turn determines a (2n — 1)-parameter family of trajectories. Then
the fact that the trajectories of the disturbances are the extremals of the
functional (2) leads to a geometric interpretation of Jacobi’s theorem (p. 91),
concerning the construction of a general solution of the system of Euler
equations of a functional from a complete integral of the corresponding
Hamilton-Jacobi equation.®

7 Since S(x, t + to,0,...,%,) = 0 is also an integral surface of the Hamilton-Jacobi
equation for arbitrary ¢,, the family of surfaces (20) actually depends on n + 1 parameters.

8 It should be noted that we are considering a parametric problem, so that there
is dependence between the Euler equations (see Sec. 10 and Remark 4 of Sec. 37). As
a result, the general solution of the 2n equations obtained here contains only 2n — 1
arbitrary constants.
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6. The canonical equations. To derive the differential equations satisfied
by the trajectories of the disturbance, we might use Fermat’s principle,
minimizing the functional (2) and solving the corresponding Euler equations.
However, we prefer to use our geometric model of the propagation process.
If we introduce the time ¢ as the parameter along each trajectory, it follows
from

f(x, dx) =
and the homogeneity of f(x, dx) in the argument dx that
dx
f(=%) =1 @

i.e., the norm of the vector dx/dt is identically equal to 1. Using (16), we
find that at each point x, the vector dx/dt (tangent to the trajectory along
which the disturbance propagates) is related to the covariant vector p
(determining the hyperplane tangent to the wave front) by the formula

> n%y = Henp)

According to (21) and the definition (11) of the norm of vectors in A (x),
we see that

if p is any other vector in 3: (x). Thus, the expression

< H(x, p)

&|&-

regarded as a function of p, achieves its maximum when p is the vector
determining the hyperplane tangent to the wave front. Therefore, along
the trajectories, the conditions

0 [« dx .
a_Pi[lelE_H(x’p)] =0 (l_la-'-9n)
must hold, i.e.,

dx* 0H(x, p) .

T o i=1,...,n). (22)

We have just obtained a system of » ordinary differential equations of the

first order satisfied by the trajectories. Since these equations involve 2n
unknown functions x1, ..., x" and py, ..., p,, we still need » more equations
to completely describe the trajectories. To find the missing equations,
we use the fact that the surfaces representing the wave fronts at different times
are not arbitrary, but satisfy the Hamilton-Jacobi equation (18), while the
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values p; at each point of a trajectory are the components 05 /9x! determining
the hyperplane tangent to the wave front. In other words,

0
b= pi(’) = 5}7 S[Xl(t), ceey xn(t)’ t]
along each trajectory, and hence

d;, doS @80S & 2§ dxt
= = 2. 3R dr

rrinlr ¥ 23)

k=1

We now introduce the following notation: If the function H(x, p), where

py = 0S/0x,, is regarded as a function of x!,..., x" and ¢, we indicate its
partial derivative with respect to x' by

oH

axi t=const
whereas if H(x, p) is regarded as a function of the 2n variables x!,..., x"
and p,, ..., p,, we indicate its partial derivative with respect to x' by

oH

axi p=const

Then, using the Hamilton-Jacobi equation (18), we can write (23) in the form

dp,  OH - 028 dx*
dr T 0x |- const & oxF oxt dt (24)
Along the trajectories, we have
oH oH - 0H Opx
ox' t=const ox' p=const ,Z:l 3P;c I =const axi ( )
and
oS dx* oH
Pe=5® I T, (26)
Substituting (25) and (26) into (24), we obtain # differential equations
dp;  0H _
E T W p =const (l - 1’. ,n)

Combining these equations with (22), we obtain a system of 2n differential
equations

dx' _ 9H(x, p)
dt op; 27
dp, _ OH(x, p)’
dt ox!
where i = 1,..., n. The integral curves of (27) are the trajectories along

which the disturbance propagates, i.e., the extremals of the functional (2).
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The system (27) is of course the canonical system of Euler equations for the
variational problem associated with (2) [cf. Sec. 16], and represents the so-
called characteristic system associated with the Hamilton-Jacobi equation
(18) [cf. p. 90].

PROBLEMS
1. Prove that if f(x, x") depends on direction only, then the disturbance
propagates through the medium along straight lines.

2. Prove that if f(x, x’) = f(x) is independent of x, then f(x") is precisely
the time required to traverse the vector x’.

3. Prove that every linear functional ¢[x] defined on an n-dimensional

Euclidean space of points x = (x1, ..., x") is of the form
elx] = pixt + -+ + pux",
where p = (py, . . ., pn) is uniquely determined by ¢.

4. Verify that formula (10) actually defines a norm for the elements p of the
conjugate space .7 (x).

5. Why is the strict convexity condition (p.211) needed in constructing
wave fronts for the disturbance?



Appendix I I

VARIATIONAL METHODS
IN PROBLEMS OF
OPTIMAL CONTROL

In this appendix, we sketch some results obtained by L. S. Pontryagin
and his students, in their investigations of the theory of optimal control
processes.* The connection between this subject and classical variational
theory will also be discussed.

1. Statement of the problem. In many cases, finding the optimal ““ operating
regime” for a physical system (with a suitable optimality criterion) leads
to the following mathematical problem: Suppose the state of the physical
system is characterized by n real numbers x?,..., x", forming a vector
x = (x',...,x") in the n-dimensional “phase space” % of the system,
and suppose the state varies with time in the way described by the system
of differential equations

%=f"(x‘,...,x",u1,...,u") (i=1,...n). M

Here, the k real numbers u!, ..., ¥* form a vector u = (4%, .. ., u*) belonging
to some fixed “control region” (), which we take to be a subset of

! See L. S. Pontryagin, Optimal control processes, Usp. Mat. Nauk, 14, no. 1, 3 (1959);
V. G. Boltyanski, R. V. Gamkrelidze and L. S. Pontryagin, The theory of optimal
processes, 1, The maximum principle, 1zv. Akad. Nauk SSSR, Ser. Mat., 24, 3 (1960);
L. S. Pontryagin, V. G. Boltyanski, R. V. Gamkrelidze and E. F. Mishchenko, The
Mathematical Theory of Optimal Processes, translated and edited by K. N. Trirogoff and
L. W. Neustadt, Interscience Publishers, New York (1962). The more general case
where ) is a topological space is considered in the first two references.

218
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k-dimensional Euclidean space, and the f*(x, u) are n continuous functions
defined for all x e Z and all u € Q.

Now suppose we specify a vector function u(t), t, < t < t,, called the
control function, with values in Q. Then, substituting u = u(f) in (1), we
obtain the system of differential equations

=P, @, ) (=L Q)

For every initial value x, = x(#,), this system has a definite solution, called
a trajectory. The aggregate

U = {u(®), to, 11, Xo}» 3)

consisting of a control function u(¢), an interval [to, #,] and an initial value
xo = x(to), will be called a control process. Thus, to every control process,
there corresponds a trajectory, i.e., a solution of (2).
Next, let
foixt,. ., xmul,. ., ub)

be a function which is defined, together with its partial derivatives

of° .
8Lx‘ (i=1...,n),

forall xe Z and ue Q. To every control process U, we assign the number
tl

JW = [ £ox, w d, @
to

i.e.,, J[U] is a functional defined on the set of control processes. Then,
the control process (3) is said to be optimal if the inequality

JIU] < J[U¥]

holds for any other control process U* carrying the given point x, into the
point x,, i.e., such that the corresponding trajectory x*(¢) satisfies the con-
dition x*(¢t¥) = x,. By the optimal trajectory, we mean the trajectory
corresponding to the optimal control process. Our aim is to find necessary
conditions characterizing optimal control processes and optimal trajectories.

It should be pointed out that in calling a control process optimal, it is
assumed that some class of admissible control processes has been specified in
advance. Here, we assume that the components u!(¢),..., u*(t) of any
admissible control process take values in €, and are bounded and piecewise
continuous (with left-hand and right-hand limits at every point of dis-
continuity).

An important special case of the problem of optimal control is the situation
where the functional (4) reduces to the integral

t
i,
to
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representing the time it takes to go from the point x, to the point x;.
In this case, optimality means taking the least time to go from x, to x;.

2. Relation to the calculus of variations. The problem of optimal control
is intimately related to certain traditional problems of the calculus of
variations. In fact, the integral

| " ro(x, ) d

can be regarded as a functional depending on n + k functions x1,..., x",
ut, ..., u* i.e., as a functional defined on some class of curvesinn + k + 1
dimensions. Since the functions x!, ..., x", u!, ..., u* are connected by the
equations (1), we are dealing with the problem of finding a minimum subject
to nonholonomic constraints (see p. 48). Since the boundary conditions are
equivalent to the requirement that the desired optimal trajectory x(¢) begin
at the point x, and end at the point x,, the end points of the admissible curves
in our (n + k + 1)-dimensional space have to lie on two (k + 1)-dimensional
hyperplanes, determined by giving the coordinates x?, .. ., x™ the fixed values
x§, ..., xtand xi,..., x%.

Thus, we see that the problem of optimal control is a variant of the problem
of finding a minimum subject to subsidiary conditions. The problem of
optimal control has the special feature that we specify in advance a definite
class of admissible control processes, where the functions u'(?),.. ., u(t)
are required to take values in a given fixed region €2, but in general are not
required to be continuous.

We can easily show that the simplest n-dimensional variational problem,
where the integrand does not depend on 1 explicitly,? is a special case of the
problem of optimal control. To this end, suppose that among the curves
passing through two fixed points

(x5, ..., xP), (x1....,xD),
it is required to find the curve for which the functional
s n dx E)
gof(x""’x’dt""’dt dt (5)

has a minimum. To paraphrase this problem as a problem of optimal
control, we need only write (5) in the form

tl
fl foxt, .., xm ot L., ub) dt
0

and take the system (1) to be simply
dx' i P
=Y G=1,...,n).

2 This condition is not really a restriction, since any functional can be transformed
into this form, e.g., by going over to the parametric form of the problem.
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3. Necessary conditions for optimality. To find necessary conditions for
a given control process and the corresponding trajectory to be optimal, we
supplement the system of equations
dx! _ )
7’; =fi,u G=1,...,n)
with the extra equation
= 1w
d’ b b
where f°(x, u) is the integrand of the functional (4) which is to be minimized.
At the same time, we supplement the initial conditions

x(ty) = x} (i=1,...,n 6)
with the extra condition
x°(ty) = 0. ™
For convenience, we introduce the (» + 1)-dimensional vector function
x(2) = (x°(¢), x(1)) = (x°(t), x'(¢), . .., x™(t)).
It is clear that if U is an admissible control process and if x = x(¢) is the
solution of the system?

(il_);i=f"(x,u) (=0,1,....n), ®

corresponding to U and the initial conditions (6) and (7), then
t
JW = [ fox, u)di = x(t,).
to

Thus, the problem of optimal control can be stated as follows: Find the
admissible control process U for which the solution x(¢) of the system (8),
satisfying the initial conditions (6) and (7), has the smallest possible value of
x0(t,).

Next, in addition to the variables x°, x!, ..., x", we introduce new variables
Yo, $1, - - -, P, satisfying the following system of differential equations, known
as the conjugate* of the system (8):

c_i%z_goéf%ﬁ;_i)% (=0,1,...,n). ©)

3 Note that the functions f% and hence the functions Il and H defined below, do not
involve x°(t).

4 This system has the following geometric interpretation: In the space of vectors
(Yo, s, - - ., ¥n) conjugate to the space of vectors (x° x!,..., x") [see p. 211], consider
the hyperplane

n
z Y9x, = ¢ = const
o =0

passing through the initial point (0, x3, ..., x3). Then the system (9) describes the
““transport” of this hyperplane along the trajectories corresponding to solutions of the
system (8). In other words, if the ¢, satisfy (9) and the x' satisfy (9) for 7, < ¢t < 1, then

n
Z UeX* = ¢ (to <t < ty).
«=0

For more details, see the second of the references cited on p. 218.
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Let
q’(t) = (%(t), ‘4!/1([), s l';)n(t)),

and consider the following function of the variables x*, . .., x", ¢, 41, . . ., s
Uy .o ooy Ul

W, x,u) = D dof(x, w). (10)
=0
In terms of I, we can write the equations (8) and (9) in the form
dxt _oll
dt oy
‘ (1)
dy, _ _ ol
dr — Xt

wherei = 0,1,..., n. The equations (11) remind us of the canonical system
of Euler equations [see formula (11), p. 70]. However, they have a different
meaning, since the canonical equations form a closed system, in which the
number of equations equals the number of unknown functions, whereas (11)
involves not only x and ¢ but also the unknown function «, and hence (10)
becomes a closed system only when u is specified. In fact, in order to write
equations for the optimal control problem resembling the canonical equations,
we would have to use the function

H (P, ) = sup I, x, w), (12
instead of the function II(¢, x, u).5

4. The maximum principle. We can now state the following theorem,
whose proof can be found in the references cited on p. 218:

THEOREM (The maximum principle). Let U = {u(t), to, t,, Xo} be an
admissible control process, and let x(t) be the corresponding integral curve
of the system (8) passing through the point (0, x§, . . ., x3) for t = 0, and
satisfying the conditions

x(t) = x1,.. ., x™t) = xt

for t = t,. Then if the control process U is optimal, there exists a con-
tinuous vector function Y(t) = ($o(2), $1(2), . . ., $a(t)) such that

1. The function Y(t) satisfies the system (9) for x = x(t), u = u(t);

5 The transition from II to 5 is analogous to the Legendre transformation, considered
in Sec. 18.
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2. For all t in [to, t;], the function (10) achieves its maximum for
u = u(t), i.e.,

(), x(2), u(0)] = A[P(2), x(1)], (13)
where the function S is defined by (12);

3. The relations

bo(t) <0, H[Y(tr), u(t))] = 0 (14)

hold at the time t,. Actually, if $(¢), x(t) and u(t) satisfy the system
(8), (9) and the condition (13), the functions Yo(t) and 5 [$(t), x(t)]
turn out to be constants, and hence in (14) we can replace t, by any
value of t in [to, t,].

Remark 1. The maximum principle can often be used as a prescription for
constructing the optimal trajectory, in the following way: For every fixed
Y and x, we find the value of u for which the expression

n
2. Yaf*(x, W)
a=0
takes its maximum. If this determines u as a single-valued function

u = u(Y, x) (15)

of Y and x, then, substituting (15) into the equations (8) and (9), we obtain
a closed system of 2(n + 1) equations involving 2(n + 1) unknown functions.
These are just the equations which have to be satisfied by the optimal
trajectory.

Remark 2. For the simple n-dimensional variational problem discussed
on p. 220, the system (8), (9), or the equivalent system (11), together with the
maximum principle, reduces to the usual system of Euler equations. To see
this, consider the functional

f"fO(xl,..., Xnd, Lt dt (16)
to
[cf. (5)], where

. dx .

H—E (I—l,...,n). (17)

In this case, the function (10) is

(W, x, ) = Yo f°0x, u) + D dat®, (18)
a=1
and the system (11) becomes
ax® ., axt
T—Af(x’u)’ Ft_—u’
_d'_~pt_)_0 %__4, afo(xau)
da dr — T ox
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where i = 1,...,n. Maximizing [1(, x, u), we find that
ol  9f%x, u) _
i Yo T =0,

i.e.,

b= — o?fi(,g-z;_“) G=1,...,n).

Since d{o/dt = 0, we have ¢, = const, and hence

o AL A

dt ou' ox!
d_.xi = u‘
e~
This is just the system of Euler equations corresponding to the functional

(16), reduced to a system of first-order differential equations by introducing
the derivatives dx'/dt = u' as new functions (cf. p. 68).

Remark 3. In Appendix 1, we have already encountered the fact that every
propagation process can be described in two ways, either in terms of the
trajectories along which the disturbance propagates (the “rays” in optics),
or in terms of the motion of the wave front. The first approach leads to the
canonical Euler equations (or, as in the example just considered, to the
usual form of the Euler equations), i.e., a system of ordinary differential
equations. The second approach leads to the Hamilton-Jacobi equation,
i.e., a partial differential equation. Our maximum principle involves the
study of trajectories, and in this sense is analogous to the method of canonical
equations. The “wave front approach” to problems of optimal control
has been developed by R. Bellman.®

5. Relation to Weierstrass’ necessary condition. We again consider the
simple functional (16), (17), where the function I1({), x, u) is given by (18).
Using (17), we can also write the functional (16) in the form

!l
j £, L X XYL xM) dt. (19)
to

The Weierstrass E-function for such a functional is”

E(x, X', 2) =[x, 2) — f°(x, X') — Z (z = x)f 3 (x, x). (20)

6 See the relevant references cited in the Bibliography, p. 227.

7See p. 146. Note that E is a function of three rather than four arguments, since (19
is independent of ¢.
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Using (18) and (20), we find that
’ = i’ 8 ’
M, x, 2) = T, x, x) = > (2= x*) g TP, x, X))
i=1

= /26 2) = o6 X) + D e = X = D (= X P+ )

= Yo f2x, 2) — YofO(x, X') — D (2 — X"Wof P = YoE(x, X', 2).  (21)
i=1
If the function Il achieves its maximum for values of u = x’ which are
interior points of the region (), then

onn _
out
at these points. Then, since ¢, < 0, it follows from (21) that the condition
(13) is equivalent to the condition

E(x,x',z) = 0. (22)
This is Weierstrass’ necessary condition, with which we are already familiar

(see p. 149). Thus, the maximum principle leads to another, independent
derivation of (22). It can be shown that the formula

Yo = T, x,2) = T, %, ¥) = > (2 = x) 2 TI(, x, x)

i=1
remains true for variational problems subject to constraints, i.e., for more
general problems of optimal control.

We have just proved the equivalence of the maximum principle and
Weierstrass’ necessary condition (22) in the case where the set Q of admissible
values of the control function u(¢) is open, i.e., where every point of ( is an
interior point. In the case where the optimal control process involves values
of u(t) lying on the boundary of the region €, the condition (22) is in general
no longer valid. However, it can be shown that in such cases, the maximum
principle continues to apply.

PROBLEMS

1. State the maximum principle (p. 222) for the problem of *‘fastest motion”
or “time optimal problem,”” where the functional (4) reduces to simply

JU] = f;l d.

Ans. In this case, we write
n

P, X, u) = 2 buf™(x, 1)

=1
instead of (10), and in the system (11), / need only range from 1 to n. The
function J# in the maximum principle is now replaced by

H®, x) = sup P(Q, x, u) = (Y, x) — do.



226 PROBLEMS OF OPTIMAL CONTROL APPENDIX II

Finally, the relations (14) are replaced by

HIY(#1), x(11)] = —¢o = 0,
which actually holds for any ¢ in [¢o, #1].
2. Consider the differential equation

d?x

dr?
where the control function u obeys the condition |¢| < 1. Introducing the
“phase coordinates” x! and x2, we can write (a) as a system

dx! 2
a5 =X TR (b)
What trajectory corresponds to the fastest motion from a given initial point
Xo to the final point x; = (0,0)?

= u, (@)

Hint. The auxiliary variables ¢; and ¢, obey the equations

gy _ dys _
=% W

By the maximum principle (modified in accordance with Prob. 1),
u(t) = sgn 4(r) = sgn (c2 — cur),

where ¢, and ¢, are constants, sgn x = x/|x| and u«(f) can only change sign
once. Integrate the system (b) for u = +1, and draw the corresponding
families of parabolas in the (x!, x2) plane, analyzing the various possibilities
(corresponding to different initial positions xo).

3. Study the same “‘time-optimal problem” for the equation

d?x
g tx=u lu] < 1.

Hint. The appropriate system is now

dxl__x2 d_x2__x1+"
a7 dt )

4. Study the same ‘‘time-optimal problem’ for the system

dx! 2 dx?

—— = x% + ut = = —x! + u?

dt ’ dt + 5

where there are rwo control functions u?, 1.2 obeying the conditions |u}| < 1,

|u?| < 1.

Comment. For a detailed discussion of Probs. 2-4, see Chap. 1, Sec5
of the book cited on p. 218.

5. Verify the relations (14) for the simple variational problem (16) discussed
in Remark 2, p. 223.

Hint. Use Euler’s theorem on positive-homogeneous functions (Chap. 2,
Prob. 6).
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for physical fields, 180
Admissible curves, 8
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Approximation in the mean, 207
Arc length, 7, 8, 19, 39
Arzeld’s theorem, 201

B

Backward sweep, 136
Baker, B. B., 209

Bellman, R., 224

Benster, C. D., 205
Berezin, I. S, 136
Bernoulli, James, 3
Bernoulli, John, 3
Bernstein, S. N., 16
Bernstein’s theorem, 16, 33
Bessel-Hagen, E., 189
Bilinear form, 98
Boltyanski, V. G., 218
Brachistochrone, 3, 14, 16, 26
Broken extremal, 21, 62

C

Canonical Euler equations, 70 ff.
first integrals of, 70-71
relation to propagation of disturbances,
215-217
Canonical transformation, 77-79, 94
generating function of, 78, 94
Canonical variables, 58, 63, 67, 68

228

Cartesian product, 164
Castigliano’s principle, 168
Catenary, 21
Catenoid, 21
Cauchy sequence, 31
Cauchy’s problem, 15
Coddington, E. A., 106, 132
Complete sequence, 195
Conjugate points, 106 ff.
various definitions of, 106, 112, 114,
120, 123, 124
Conjugate system of differential equa-
tions, 221
Conservation of angular momentum, 87,
185, 189
Conservation of energy, 86, 184, 189
Conservation laws, 85-88
for physical fields, 181-186
Conservation of momentum, 86, 184, 189
Consistent boundary conditions, 132,
139-145
Constraints (see Subsidiary tonditions):
holonomic, 48
nonholonomoic, 48
Contravariant vectors, 212
Control function, 219
Control process, 219
admissible, 219
optimal, 218, 219
Control region, 218
Convergence in the mean, 203, 207
Convex set, 31
Convexity condition, 210
strict, 211, 217
Copson, E. T., 209
Coupled oscillators, 160
Courant, R., 90, 168, 201
Covariant vectors, 212
Cycloid, 3, 26



D

D’Alembertian (operator), 181, 188
Descending principal minors, 126
Direct variational methods, 192-207

E

Elastic moduli, 156
Electric field vector, 186
Electromagnetic field, 186189
Lagrangian density of, 188, 189
Electromagnetic potential, 186
Energy-momentum tensor, 184, 185, 186
Energy-momentum vector, 184
Equations of motion:
of continuous mechanical systems,
165-168
of a system of particles, 85
Equicontinuous family of functions, 201
Euclidean space, n-dimensional, 4, 8,
209
Euler, L., 2, 3,4
Euler’s equation(s), 15 ff.
canonical (see Canonical Euler equa-
tions)
first integrals of, 70, 80, 82, 83, 94
for functionals involving higher-order
derivatives, 42
for functionals involving multiple in-
tegrals, 25, 154
in n unknown functions, 35
integral curves of, 15
invariance of, 29-31, 77
Weierstrass’ form of, 51
Euler’s theorem, 51, 226
Extremals, 15 ff.
imbedding of, in a field, 144
piecewise smooth, 18, 62
smooth, 18

F

Fastest motion, problem of, 225

Fermat’s principle, 34, 36-37, 66, 89,
210, 213

Field functions, 180

Field invariants, 182-185
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Field (of directions), 131 ff.
central, 143-144
definition of, 132
of a functional, 137-145
relation to Hamilton-Jacobi system,
133
trajectories of, 133, 140
Field theory, 180-189
Finite differences, method of, 4, 27, 31,
193, 197
Forward sweep, 136
Function of infinitely many variables, 4
Function of »n variables, 4
maximum of, 12
minimum of, 12
(relative) extremum of, 12
unconstrained extremum of, 50
Function spaces, 4-8 ff.
€ (a,b), 6
@ (a,b), 31
D, (ab), 6
D,(ab),7
Functional derivative (see Variational de-
rivative)
Functionals involving multiple integrals,
152-191
variation of:
on a fixed region, 23, 152-154
on a variable region, 168—-179
Functional(s) :
bilinear, 98
calculus of, 2
continuous,7
examples of, 8-9
differentiable, 11, 99
equivalent, 36
fields of, 137—-145
general variation of, 54—66
increment of, 11
principal linear part of, 11-12
invariant under transformations, 80-83,
177
involving functions of several variables
(see Functionals involving multi-
ple integrals)
involving higher-order derivatives,
40-42
involving n unknown functions, 34-38
linear, 8
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Functional(s) (Cont.)
lower semicontinuous, 7, 194
nonlocal, 3
quadratic, 98 ff.
analysis of, 105-111
nonnegative, 98
positive definite, 98
strongly positive, 100
(relative) extremum of, 12
necessary condition for, 13
second variation of, 97, 101-102, 118
strong extremum of, 13, 15
sufficient conditions for, 131-151
twice differentiable, 99
upper semicontinuous, 7
variation (differential) of, 8, 11-12, 99
uniqueness of, 12
weak extremum of, 13, 15
sufficient conditions for, 97-130
Fundamental quadratic form(s), 24, 37
Fundamental sequence (see Cauchy se-
quence)
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Gamkrelidze, R. V., 218

Gauge transformation(s), 179, 187, 189

Geodesics, 34, 37-38, 39

Geodetic distance, 88

Green’s theorem:
four-dimensional, 182
n-dimensional, 153, 174
two-dimensional, 23, 163, 190

H

Hamiltonian (function), 56, 68, 208
Hamilton-Jacobi equation, 67, 90-93 ff.
characteristic system of, 90, 217
complete integral of, 91, 214
relation to propagation of disturbances,
213-217
Hamilton-Jacobi system, 133, 134, 136,
140, 143
relation to Hamilton-Jacobi equation,
143
Hilbert’s invariant integral, 145-146, 148,
151
Hilbert, D., 90, 168, 201
Huygens’ principle, 209

I

Indicatrix, 63
Involution, 72
Isoperimetric problem, 3, 39, 42—-46, 48

J

Jacobi form, 126
Jacobi matrix, 126
Jacobi system, 123, 124
Jacobi’s equation, 112-114, 128, 130
as variational equation of Euler’s equa-
tion, 113
Jacobi’s (necessary) condition, 112, 116,
124
relation to theory of quadratic forms,
125-129
strengthened, 116, 125, 130
Jacobi’s theorem, 91-93, 214

K

Kantorovich, L. V., 205
Klein-Gordon equation, 181, 186
Kreysig, E., 24

Kronecker delta, 172, 183, 185
Krylov, N., 205

Krylov, V. 1., 205

L

Lagrangian density, 181
Lagrangian (function), 84, 181
Lagrange multipliers, 43, 45-46, 49, 202
Laplacian (operator), 164
Least action, principle of, 83-85, 154
Least action vs. stationary action, 159-
162
Legendre transformation, 72, 212, 222
Legendre’s condition, 103, 119, 129
strengthened, 104, 116, 151
L’Hospital, G.F. A., 3
Linear space, 5
normed, S, 6
Liouville surface, 95-96
Localization property, 3
Lorentz condition, 187, 188, 189
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orthochronous, 184
proper, 184

M

Magnetic field vector, 186

Maximizing sequence, 206

Maximum principle, 222-224

Maxwell equations, 186, 187, 189

Mean curvature, 24

Mikhlin, S. G., 205

Minimal surfaces, 24, 33

Minimizing sequence, 193-196

Minimum potential energy, principle of,
168

Mishchenko, E. F., 218

Momenta, 86, 138

N

Natural boundary conditions, 26
Natural frequencies, 160
Neustadt, L. W., 218
Newton, 1., 3
Niemeyer, H., 119, 120
Noether’s theorem, 79-83 ff.

in several dimensions, 177-179
Nonnegative definite matrix, 119
Norm, 5, 6
Normal coordinates, 160
Normed linear space, 5, 6

o

Optimal control, problems of, 218-226
relation to calculus of variations, 220

P

Phase space, 218

Piecewise smooth curves, 61

Poisson bracket(s), 71, 94

Poisson’s ratio, 165

Pontryagin, L. S., 218

Positive definite matrix, 74, 119

Positive-homogeneous function, 39, 51

Propagation of disturbances, 208-217,
224

Propagation time, properties of, 210
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Q

Quadratic form, 98

R

Rectifiable curve, 1
length of, 1

Riccati equation, 108, 134, 136
matrix version of, 120, 135

Ritz method, 193, 195, 196, 198, 199,
206

S

Scalar potential, 186

Scalar product, 118, 211

Self-adjoint boundary conditions, 138-

142, 144, 145
Shilov, G. E., 5, 31, 98, 127, 160, 165,
212
Side conditions (see Subsidiary condi-
tions)
Silverman, R. A., 5, 161, 184
Simple harmonic oscillator, 94, 159
Smirnov, V. 1., 184
Smooth function, 18
Stationary action, principle of, 162
Sturm-Liouville equation, 198 ff.
Sturm-Liouville problem, 198-205
eigenfunctions and eigenvalues of, 198,
204, 205
Subsidiary conditions, 43
finite, 46
Surface of revolution of minimum area,
20-21
Sweep method, 135
Sylvester criterion, 127
System of particles:
conservation laws for, 85-88
kinetic energy of, 83
Lagrangian (function) of, 84
Newton’s equations for, 85
potential energy of, 84
total angular momentum of, 84
total energy of, 86
total momentum of, 87
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INDEX

Tangent space, 209
conjugate space of, 212, 217
norm in, 212, 217
introduction of norm in, 211
Tangential coordinate, 72
Time optimal problem, 225, 226
Tolstov, G. P., 161
Trajectories:
of a disturbance, 210
equations of, 211
of a field, 133, 140
of a system of differential equations,
219
optimal, 219
Transversal, 60
Transversality conditions, 60, 61, 64, 65
Trirogoff, K. N., 218
Tsetlyn, M. L., 208

U

Uniformly bounded family of functions,
201

\Y%

Variable end point problems, 25-27,
59-61
mixed case, 26
Variational derivative, 27-29
Variational equation, 113
Variational principles, 3, 67
Variational problems:
examples of, 2-3
in parametric form, 38-40
invariant, 80, 176
involving higher-order derivatives,
40-42
involving multiple integrals, 22-24,
152-191
involving » unknown functions, 34-38
simplest, 8, 14-22
definition, 14
with subsidiary conditions, 42—-50

Vector potential, 186
Vibrating membrane, 162-164
action functional for, 163

equation of, 164
kinetic energy of, 162
Lagrangian density of, 181
potential energy of, 162

Vibrating plate, 165-168
action functional for, 166
clamped, 167
equation for forced vibrations of, 167
equation for free vibrations of, 167
kinetic energy of, 165
potential energy of, 165-166
supported, 167

Vibrating string, 155-159
action functional for, 157
equation of, 158
kinetic energy of, 155
Lagrangian density of, 181
potential energy of, 156

w

Wave front(s), 211, 212, 214, 215, 216,
224

Weierstrass E-function, 146—-149, 151, 224

Weierstrass-Erdmann (corner) condi-
tions, 63, 65, 69

Weierstrass’ necessary condition, 149,
151, 224, 225

Widder, D. V., 23, 24, 37, 43, 110, 139,
145

Y

Young’s inequality, 75

Z

Zero element, 5
Zhidkov, N. P., 136
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