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The hodograph is very useful for solving complicated problems in dynamics. By simple geometrical
arguments students can directly obtain the answer to problems that would otherwise be complicated
exercises in algebra. Although beyond the level of undergraduates, we also use the hodograph to
calculate by variational geometrical techniques, the well-known brachistochrone curve, thus
illustrating this approach. ©2003 American Association of Physics Teachers.
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I. INTRODUCTION

In 1847, Hamilton1 invented the hodograph and used it
solve the famous problem that was first attacked with succ
by Newton; namely, to deduce the law of gravitation th
makes the planets revolve in elliptical orbits around the S
Later, Maxwell2 used the hodograph to introduce a sh
variation of Hamilton’s solution. Feynman resurrected t
geometrical technique of the hodograph to present an
ementary way to solve Newton’s problem.3 Sadly the
hodograph has almost entirely disappeared from most m
ern treatments of mechanics with the present emphasis b
on analytical methods for deriving the orbits for the inver
square law. Also, the background of contemporary stude
in Euclidean geometry is not as strong as that of studen
hundred years ago.

What is a hodograph? If the instantaneous velocity vec
of a moving particle are translated to the same initial po
the tip of the velocity vector traces a curve known as
hodograph. What makes the hodograph a useful tool is
fact that although Newton’s law of motion is a second-ord
differential equation for the displacement

d2r

dt2
5F/m, ~1!

it is a first-order differential equation for the velocity

du

dt
5F/m, ~2!

and thus the dynamics are more clearly reflected by
hodographic curve than by the trajectory itself~see Fig. 1!.

The hodograph that corresponds to planetary motion
be shown to be a circle, and this property can be use
prove that the orbit follows from the inverse square force l
~see, for example, Ref. 2!. In this paper, we will use the
hodograph for a much simpler force: the one produced b
uniform field, such as gravity near the Earth’s surface. B
causedu/dt5g5constant, the velocity vector of a partic
~for example, a projectile! that is moving freely in the uni-
form gravitational field traces a vertical line on which
moves at a constant rate. In velocity space, the initial
final states of the projectile can be pictured as a triangle,
side of which is vertical and linearly proportional to the tim
of flight, while the other two sides have magnitudes equa
the initial and final velocities, with these velocities related
each other by energy conservation. This triangle is the m
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tool that will be used in Sec. II to demonstrate the beauty a
power of the hodograph technique. In Sec. III we use
hodograph to solve the brachistochrone problem. Althou
we will use the classical variational technique to solve
problem, the use of the hodograph will make the analysis
easier than the usual analysis, and the cycloidal curve
arise much more naturally.

II. THE HODOGRAPH OF A PROJECTILE

As was outlined in Sec. I, the tip of the velocity of
particle that is moving in a uniform force field traces
straight line parallel to the direction of the field. Without lo
of generality, we will assume that the field is that of unifor
gravity near the Earth’s surface. The equation of moti
du/dt5g, whereu is the velocity of the particle andg is the
constant acceleration of free fall, can easily be integrated
produce the well-known relation between velocities at diff
ent times for uniform acceleration:

u25u11g~ t22t1!. ~3!

We now discuss the physical content hidden in the geome
cal picture formed by the initial and final velocity vecto
~see, for example, the triangle of Fig. 2!. The height of the
triangle (u0 cosu) perpendicular to its vertical side is easi
identified as the constant horizontal velocity~in general, the
velocity component that is perpendicular to the direction
the field!. The vertical side,g(t22t1), of the triangle is pro-
portional to the time of flight. Therefore, the area,1

2g(t2

2t1)u0 cosu, of this triangle is proportional to the horizonta
distance,u0 cosu(t22t1), traveled by the particle during its
flight. This is the main idea that will be further explored
Sec. II A.

A. The maximum range of a projectile

First consider a particle thrown with initial velocityu0

from the edge of a cliff that is a heightH above a plane
valley. We want to determine the shot angleu that will make
the projectile land the farthest from the cliff. According
our previous discussion, we must maximize the area of
triangleABC of Fig. 2 to maximize the horizontal distanc
Note that the two sides of this triangle have fixed mag
tudes; u0 is the initial speed, anduf is the final landing
velocity at the valley, which by conservation of energy
uf5Au0

212gH. This triangle assumes its maximum ar
261jp/ © 2003 American Association of Physics Teachers
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when the two sides are perpendicular to each other. T
from the properties of similar triangles, it is easy to see t
u is equal to the angleĈ, that is,

u5tan21S u0

Au0
212gH

D . ~4!

Equation~4! is valid even for negative values ofH ~such as
when a particle is thrown from the bottom of a well! as long
as the trajectory does not intersect the topography of
ground. The maximum horizontal range achieved whe
projectile is shot at this angle is then easy to calculate.
area of the velocity triangleEABC is g/2 times the horizonta
distance. Thus

Rmax5
2EABC

g
5

u0Au0
212gH

g
. ~5!

For H50 we obtain the well-known valueu0
2/g that corre-

sponds tou545° inclination angle@see Eq.~4!#.

Fig. 1. While the force vector points along the instantaneous cente
curvature of a particle’s trajectory, it is simply tangential to the hodograp
curve. Therefore, the connection between the hodograph and the force l
much more direct.

Fig. 2. This triangle is formed by the initial and final velocities of flight. Th
vertical side of triangleABC is the hodograph of motion, while the area
the triangle is proportional to the horizontal distance traveled. The angleu is
the initial shot angle that has to be optimized.
262 Am. J. Phys., Vol. 71, No. 3, March 2003
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We next investigate a more general projectile problem.
will assume that the particle is shot from a point on t
ground, the topography of which is described by the mo
tonic functiony(x), wherex is the horizontal distance andy
is directed down~see Fig. 3!. Initially the particle is located
at (x50,y50). A trajectory that ends on the ground
(xf ,yf5y(xf)) corresponds to a velocity triangle, the tw
sides of which have magnitudesAB5u0 , and AC
5Au0

212gyf , respectively~see Fig. 4!. If we keep the angle
f between initial and final velocity fixed, then the interse
tion of the curves

f 1~y!5sinf
u0Au0

212gy

g
~6!

of
c

is

Fig. 3. A projectile shot at angleu from the top of a hill, the topography o
which is described by the functiony(x).

Fig. 4. The velocity triangle for a projectile that is shot from the top o
hill.
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(2/g times the area of the velocity triangle!, and

f 2~y!5x~y! ~7!

~the inverse ofy(x) of the ground morphology!, gives the
coordinates of the ground point~if it exists! where the par-
ticle will fall, given the angle between the initial and the fin
velocity of the trajectory. It is easy to see why this is s
Becausef 1(y) equals the horizontal distance traveled by t
particle~as was explained in the previous section!, the inter-
section point of the curvesf 1 and f 2 corresponds to the poin
where the projectile trajectory meets the ground.

We will examine the three possible cases that exhaus
possible downhill ground morphologies for which the initi
point is the highest one:~a! The graph off 2 has only one
intersection point withf 1 regardless of the value off @see
Fig. 5~a!#; ~b! f 2(y) does not increase as fast asf 1(y); con-
sequently, there is no intersection point for sinf.sc @see Fig.
5~b!#; ~c! there are multiple solutions of the equationf 1(y)
5 f 2(y) for a range off, including the extreme casef
590° @see Fig. 5~c!#.

In case~a! we can easily find the maximum horizont
distance, becausef 1(y) and f 2(y) are both monotonically
increasing functions, and there is only one intersection po
the higher the value of sinf, the higher the value ofx at the
intersection point. Therefore, we achieve the longest ra
whenf590°, just as in the simple case analyzed previou
The optimal inclination angleu can be estimated, given th
graphical solution forf590°:

u5tan21S u0

Au0
212gy!

D , ~8!

wherey! is the y coordinate of the graphical solution. W
can simplify the calculations that follow by introducing th
characteristic lengtha:

Fig. 5. The graphical solution of the maximum range for the three case~a,
b, and c! are shown in the corresponding diagrams~a!, ~b!, and~c!. In case
~b!, the solution is not the one that corresponds to the critical sinf5sc

value, but rather, as discussed in the main text, the one with even lo
sinf value (s!). Diagram~d! shows the graphical solution when the pr
jectile is shot from the deepest point. The black lines correspond to
simple case of continuously rising ground, while the gray lines corresp
to more complicated ground morphologies, for example, with cavity form
tions.
263 Am. J. Phys., Vol. 71, No. 3, March 2003
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u0

2

2g
. ~9!

Then, we can express the optimal value ofu that is given in
Eq. ~8! as

tanu5
1

A11y! /a
. ~10!

Also, because the graphical solution assumes thatf 1
(90°)(y)

5 f 2(y) ~where the superscript(90°) refers to the angle be
tween the initial and final velocities!, that is,
u0Au0

212gy!/g5x! ,

A11
y!

a
5

x!

2a
, ~11!

and thus tanu52a/x! , which can be transformed after som
algebra to

tan 2u5x! /y! . ~12!

But x! /y! is the cotangent of the inclination angle of the lin
connecting the initial and final points. This form of the sol
tion gives a straightforward answer to the case where
ground has constant slopeb: the particle should be shot at a
angleu545°2v/2.

In case~b! there is no graphical solution for sinf.sc , and
the solution that corresponds to sinf5sc @where the two
graphsf 1(y) and f 2(y) are tangent to each other# seems to
give the required answer. However, this assumption is
true. The graph off 1(y) for slightly lower values of sinf
intersects the graph off 2(y) at even higherx. The appar-
ently paradoxical fact that the plot off 1(y) goes ‘‘under’’ the
ground@there is a region ofy wheref 1(y), f 2(y)] does not
mean that the trajectory penetrates the ground. Remem
that f 1(y) does not describe an actual trajectory, beca
( f 1(y),y) is the locus of points of different trajectories
where the angle between the initial and final velocities
held fixed, while for an actual trajectory this angle vari
from point to point. As long as the anglef2 ~the angle be-
tween the final velocity and the horizon! is larger than the
inclination of the ground, the intersection of the plots off 1

and f 2 corresponds to arrival at this point from above t
ground, while if the anglef2 is smaller than the inclination
of the ground, the intersection point corresponds to arri
from beneath the ground, and thus, it has no physical me
ing. For example, at the critical value off (sinfc5sc),
where the two curves just touch each other, it is easy to sh
~see Ref. 4! that the slope of the ground is not equal tof2 .
If fc,p/2, then the ground at the intersection point
steeper than the trajectory of the projectile, while, iffc

.p/2, then the trajectory is steeper. Therefore, this graph
solution point cannot be reached with the oblique angle
lution of sinfc5sc , but it can be reached with the corre
sponding obtuse angle solution. In the latter case, e
higher values off will yield even longer range. The longes
range will be obtained at an obtuse anglef5f! @see Fig.
5~b!#, that at the intersection point the slope of the grou
equals the inclination of the final velocity,f2 .

Finally, in case~c!, where there are multiple solutions fo
f590°, the longest rangex! that the projectile can reach i
the first ~the one with the smallesty! value! graphical solu-

er

e
d
-

263Theocharis A. Apostolatos



o
l
ct

it
an

nd

m
s
e

he

io
su

-
t
ia
r
rs
a
n
ll

th

t i
b

u

a

ne.
cu-

by
ch
ill

pe
sion

c-
n
ve

ve
two
ing
area
ther

red
rdi-

in
fe
n
of
ses
to

hat
that
m
tly

ad
um

or-
orre-

ve.
rva-
-
the

or

ith

-
s.

of
d

tion of f 1
(90°)(y)5 f 2(y), because the projectile cannot g

any further than the curvef 1
(90°)(y). Thus, no other graphica

solution can be achieved, because otherwise the proje
would penetrate the ground@see Fig. 5~c!#. Again, the opti-
mal inclination angle can be calculated exactly as in case~a!.

For completeness, we describe the case where the in
point is now the lowest point on the ground. Again, we c
resort to the graphical solution by extending the graphf 1(y)
to y,0. Depending on the ground morphology, we can fi
the maximumx! by trying various values off. For ground
that is constantly uphill, it is obvious that the maximu
range will be accomplished forf590° ~see the black curve
in Fig. 5~d!!. If there are cavity-like formations on th
ground, the maximum horizontal range~deep in the cavity!
can be achieved atf,90° @see the gray curves in Fig. 5~d!#.

B. The safe region around an explosion

We now apply the geometrical method to solve anot
projectile problem. For a given maximum initial velocityu0
of the fragments of an explosion, how far from the explos
should one stand to be safe? The classical way to solve
a problem is by determining, for a givenz value ~vertical
distance above the explosion!, the maximum horizontal dis
tance from the explosion,r, so that the initial and final poin
can be connected by a parabolic projectile orbit with init
velocity u0 . Although, such a solution is neither difficult no
especially lengthy, it is not direct, because, we should fi
optimize the angle for a givenr and then use that angle as
function of r in the orbital equation to yield the safe regio
z(r). What we are really trying to find is the envelope of a
free fall parabolas, emanating from the location where
explosion takes place, with velocityu0 at various angles. The
envelope of all such parabolas with a common initial poin
the locus of all intersection points between coplanar para
las with slightly different initial inclination angles~see Fig.
6!. The argument goes as follows: Imagine three such s
cessive parabolasg, h, andl . The pointsA andB, whereg
andh, andh andl intersect each other, respectively, define

Fig. 6. Three consecutive parabolas (g, h, andl ) that correspond to trajec
tories with the same initial velocity, but with slightly different shot angle
Intersection pointsA andB of g andh, andh and l , respectively, define a
line that leaves all three parabolas at the same half-plane. The locus
such intersection points between neighboring parabolas forms the boun
of the safe region.
264 Am. J. Phys., Vol. 71, No. 3, March 2003
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line that leaves all three parabolas at the same half-pla
The intersection of all such half-planes formed by conse
tive parabolas is the region of points that can be reached
some fragment. Next, we will calculate the locus of all su
intersection points at a given vertical plane, and then we w
obtain the entire safe region by revolving this envelo
around the vertical axis that passes through the explo
point.

Let us draw the velocity triangle for two projectile traje
tories, slightly different with respect to the initial inclinatio
angle. The intersection point of these two parabolas will ha
the same (r,z) coordinates, and thus both triangles will ha
equal velocity sides and equal corresponding areas. But
triangles with the same pair of sides and different open
angles between the corresponding pairs have the same
only if these opening angles are supplementary. On the o
hand, because the values off of the two triangles are infini-
tesimally different~see Fig. 4!, the triangles will be almost
orthogonal. This observation leads naturally to the desi
envelope shape; that is, the locus of the points with coo
nates (r52/g times the area of each triangle,z). Because the
triangles are orthogonal

r5
1

g
u0Au0

222gz, ~13!

and thus the envelope is given by

z5
u0

2

2g
2

g

2u0
2 r25a2

r2

4a
. ~14!

If we identify r with the distance from the vertical axisz,
and use the axial symmetry of the problem, we recognize
Eq. ~14! the analytical description of the parabolic sa
‘‘cup’’ that surrounds the explosion. The extra informatio
we directly obtain with this method is that at each point
the envelope, the corresponding parabolic orbit that pas
from this point has an initial direction that is perpendicular
the tangent of the envelope at that point.

III. CALCULATING THE BRACHISTOCHRONE
CURVE VIA THE HODOGRAPH TECHNIQUE

Next, we use the hodograph to calculate the curve t
connects two points at the same height on which a body
slides freely under a uniform gravitational field goes fro
one point to the other in the shortest time. Instead of direc
trying to find the curve that minimizes the time, we inste
determine the hodograph curve that corresponds to minim
travel time. We first point out that there is a one-to-one c
respondence between a real curve in space and the c
sponding hodograph, because at each point (x,y) of the
curve, the corresponding velocity isA22gy, which is tan-
gential to the curve~see Fig. 7!. Thus, if we determine the
hodograph, we can go back and calculate the actual cur

The body is assumed to start from rest, and by conse
tion of energy, it will end its trip with zero velocity. There
fore, the hodograph will be a closed curve described by
polar graphu(u), where u is the inclination angle of the
instantaneous velocity with respect to the horizontal line. F
u50, the velocity has its maximum valueA22gymin ~if the
curve has a unique minimum!. If we consider an infinitesi-
mal part ds of the curve where the body passes by w
velocity u(u), the Cartesian components of velocity are

all
ary
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u cosu5
dx

dt
, ~15a!

u sinu5
dy

dt
. ~15b!

On the other hand, from conservation of energy

y52
u2

2g
. ~16!

Thus,

dt52
du

g sinu
, ~17!

and

dx52
udu

g
cotu. ~18!

Hence, we are looking for that closed curveu(u) that mini-
mizes * dt, while * dx is held fixed. By introducing a
Lagrange multiplierl, we have to minimize the following
functional:

A@u~u!;l#52E du

g sinu
2lF2E udu

g
cotu2LG ,

~19!

whereL is the horizontal distance between the departure
arrival points, and the integration is calculated along
closed hodograph curve. Assume now that we deform
space curve slightly so that the slope of the curve at a fixey
is notu, butu1eh, wheree is a very small positive number
andh is an arbitrary continuous function of position that
zero at the end points. Minimizing5 the functionalA means
that we are trying to find a functionu(y), or equivalently
u(u),6 such that the above deformation results in a seco

Fig. 7. For each curve that connects the initial and final points, there
distinct hodograph, because at every point of the curve, the velocity o
sliding body is determined; the magnitude of the velocity is derived from
principle of conservation of energy, while its direction is tangential to
curve at that point.
265 Am. J. Phys., Vol. 71, No. 3, March 2003
d
e
e

d-

order variation ofA with respect toe. The constraint of fixed
horizontal distance between the end points is provided b

dA

dl
50. ~20!

The required hodograph curve, then, arises by expandinA
with respect toe and setting the first-order term equal
zero. That is,

E h
du

g sin2 u
~cosu2lu!50. ~21!

To make this expression hold for any functionh, it is clear
that the rest of the integrand must be identically zero. Th
u5(1/l)cosu, with uP@2p/2,p/2#.7 If we introduce this
function in Eq.~20!, we obtain the value ofl:

l5A p

2gL
. ~22!

Thus, the desired hodographic curve is

u~u!5A2gL

p
cosu. ~23!

Equation~23! is the polar equation of a circle, with the origi
at the left-most point of the circle. It is not difficult to find
the shape of the actual curve that leads to such a hodogr
If we had shifted this circular hodograph horizontally by o
radius~by subtracting a horizontal velocity equal to the r
dius of the circle!, we would obtain the characteristi
hodograph of uniform circular motion~a circular hodograph
with the origin at its center!. Thus the motion that minimizes
the travel time is uniform circular motion plus a rectiline
uniform motion with a velocity equal to that of circular mo
tion. This path is a cycloidal curve, that is, the path trac
out by a point on a vertical circular ring that rolls on a ho
zontal surface. The minimum travel time can be calcula
easily once the hodograph is known. We integrate Eq.~17! to
obtain

t tot5A2pL

g
. ~24!

This time could also be calculated by dividing the distanceL
traveled by the circular ring by its rolling velocity, that is, b
the radius r of the circular hodograph (r 51/2l
5AgL/2p).

IV. SUGGESTED PROBLEM

Consider an electron beam consisting of electrons
move with initial velocityu0 . A system of two charged par
allel plates is used to deflect the beam. The uniform elec
field between the two plates isE and the distance betwee
the two plates isd. Use the hodograph technique to find th
angle at which the plates should be placed with respect to
initial electron beam so that the beam deflection is a ma
mum. Consider both cases:~a! the beam passes from on
side of the plates to the other side,~b! the beam is reflected
back to the side that is initially moving.
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21
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the last relation comes from the geometry of Fig. 4. With a little alge
we obtain tanf25A(11y0 /a)/sc2cotfc . Therefore iffc is the oblique
angle that satisfies sinfc5sc , the slope of the projectile trajectory i
smaller than the slope of the ground at the landing point, which is imp
sible~because this would mean that the projectile arrives at this point fr
inside the ground!. Thus, only the corresponding obtuse-angle solution c
lead the projectile to this point. The same reasoning holds for valuesf
such that sinf is slightly less thansc . Both intersection points then can b
reached by the obtuse-angle solution, and the nearest point can be re
by the oblique-angle solution only ifdyground/dx<tanf2.

5The stationary point we calculated here corresponds to a minimum,
cause an infinitely deep well would lead to infinite time travel.

6Because all expressions are written as functions ofu, we try to optimize
the inverse function ofu(u); namely,u(u).

7The end points ofu are u in52p/2, andufin5p/2, because these value
lead to zero velocities when substituted inu5(1/l)cosu, the hodographic
curve.
THE CROCKER CRACKER

Even before the sixty-inch design—dubbed the ‘‘Crocker Cracker’’—was completed, Lawrence
was thinking of one ‘‘ten times greater,’’ a truly huge cyclotron for nuclear physics or, as Isidor
Isaac Rabi of Columbia called it, ‘‘the beam to end all beams.’’ For Lawrence, money, not
technology, was the chief obstacle. In a radio broadcast, he announced he was considering con-
structing a cyclotron ‘‘to weigh 2,000 tons and to produce 100 million-volt particles . . . It would
require more than half a million dollars.’’ With the active encouragement of Loomis and other
big-thinking admirers, it would increase steadily in size and cost over the next year. ‘‘He was
building a cyclotron as big as money would permit him,’’ said Loomis, adding that ‘‘we got up to
210 inches’’ before it was finally cut back to 184 inches. ‘‘The idea would go up and up. He did
very courageous things. Most people would not want to make such big calculations, but he was so
confident.’’

Jennett Conant,Tuxedo Park~Simon & Schuster, New York, NY, 2002!, p. 139.
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