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The hodograph is very useful for solving complicated problems in dynamics. By simple geometrical
arguments students can directly obtain the answer to problems that would otherwise be complicated
exercises in algebra. Although beyond the level of undergraduates, we also use the hodograph to
calculate by variational geometrical techniques, the well-known brachistochrone curve, thus
illustrating this approach. ©003 American Association of Physics Teachers.
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[. INTRODUCTION tool that will be used in Sec. Il to demonstrate the beauty and
power of the hodograph technique. In Sec. Ill we use the
In 1847, Hamiltor invented the hodograph and used it to hodograph to solve the brachistochrone problem. Although
solve the famous problem that was first attacked with succesge will use the classical variational technique to solve the
by Newton; namely, to deduce the law of gravitation thatproblem, the use of the hodograph will make the analysis far
makes the planets revolve in elliptical orbits around the Suneasier than the usual analysis, and the cycloidal curve will
Later, Maxwelf used the hodograph to introduce a shortarise much more naturally.
variation of Hamilton’s solution. Feynman resurrected the
geometrical technique of the hodograph to present an el-
ementary way to solve Newton's problémSadly the I“' THE HODOGRAPH OF A PROJECTILE
hodograph has almost entirely disappeared from most mod- s \was outlined in Sec. I, the tip of the velocity of a
ern treatments of mechanics with the present emphasis beingticie that is moving in a uniform force field traces a
on analytical methods for deriving the orbits for the inversegyajght line parallel to the direction of the field. Without loss
square law. Also, the background of contemporary studentg generality, we will assume that the field is that of uniform
in Euclidean geometry is not as strong as that of students gayity near the Earth’s surface. The equation of motion,

hundred years ago. du/dt=g, whereu is the velocity of the particle anglis the

i ? i i . . .
What 1S a hodqgraph. If the instantaneous veI(_)c_|t_y VECIOra o nstant acceleration of free fall, can easily be integrated to
of a moving particle are translated to the same initial point

the tip of th locit tor t K the’produce the well-known relation between velocities at differ-
€ Up of the Velocily veclor traces a curve kKnown as € n imeg for uniform acceleration:

hodograph. What makes the hodograph a useful tool is the

fact that although Newton’s law of motion is a second-order  U,=uU;+g(t,—t;). 3
differential equation for the displacement We now discuss the physical content hidden in the geometri-
d?r cal picture formed by the initial and final velocity vectors
g2 ~F/m, (1) (see, for example, the triangle of Fig). Zhe height of the
triangle (g cos#) perpendicular to its vertical side is easily
it is a first-order differential equation for the velocity identified as the constant horizontal velodiy general, the
u velocity component that is perpendicular to the direction of
T F/m, (2)  the field. The vertical sideg(t,—t;), of the triangle is pro-

portional to the time of flight. Therefore, the aregy(t,
and thus the dynamics are more clearly reflected by the-t;)ugcosé, of this triangle is proportional to the horizontal
hodographic curve than by the trajectory itseée Fig. 1 distance,u, cosé(t,—t;), traveled by the particle during its
The hodograph that corresponds to planetary motion caflight. This is the main idea that will be further explored in
be shown to be a circle, and this property can be used tgec. Il A.
prove that the orbit follows from the inverse square force law
(see, for example, Ref.)2In this paper, we will use the A. The maximum range of a projectile
hodograph for a much simpler force: the one produced by a _. . . N .
uniform field, such as gravity near the Earth's surface. Be- ISt consider a particle thrown with initial velocity,
causedu/dt=g=constant, the velocity vector of a particle ffom the edge of a cliff that is a heigi above a plane
(for example, a projectilethat is moving freely in the uni- Valley. We want to determine the shot angléhat will make
form gravitational field traces a vertical line on which it the projectile land the farthest from the cliff. According to
moves at a constant rate. In velocity space, the initial an@Ur Previous discussion, we must maximize the area of the
final states of the projectile can be pictured as a triangle, ongfiangle ABC of Fig. 2 to maximize the horizontal distance.
side of which is vertical and linearly proportional to the time Note that the two sides of this triangle have fixed magni-
of flight, while the other two sides have magnitudes equal tdudes; Uq is the initial speed, andl is the final landing
the initial and final velocities, with these velocities related tovelocity at the valley, which by conservation of energy is
each other by energy conservation. This triangle is the main;= \/u02+ 2gH. This triangle assumes its maximum area
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Fig. 1. While the force vector points along the instantaneous center of oot s0/%0
curvature of a particle’s trajectory, it is simply tangential to the hodographic LI S fa:' .
curve. Therefore, the connection between the hodograph and the force law is I At (x) i
much more direct. o w  EgT TR Y AR
N - : = - ..-.' > o ° o%
when the two sides are perpendicular to each other. Then, y" TNl L, L .
from the properties of similar triangles, it is easy to see that " Ste st oy
¢ is equal to the angl€, that is, Fig. 3. A projectile shot at anglé from the top of a hill, the topography of
u which is described by the functioy(x).
_ 0
f=tan | ——]. (4)
\/u02+ 2g9H

We next investigate a more general projectile problem. We
will assume that the particle is shot from a point on the
round, the topography of which is described by the mono-
onic functiony(x), wherex is the horizontal distance and
is directed dowr(see Fig. 3 Initially the particle is located
at (x=0y=0). A trajectory that ends on the ground at

Equation(4) is valid even for negative values 6f (such as
when a particle is thrown from the bottom of a wedk long

as the trajectory does not intersect the topography of th
ground. The maximum horizontal range achieved when

area of the velocity trianglé€,gc is 9/2 times the horizontal

distance. Thus (X¢,¥i=Yy(X;)) corresponds to a velocity triangle, the two
. sides of which have magnitude®&AB=u,, and AC
_2&c_ UoVUpt2gH 5 - JuZ+2gy;, respectivelysee Fig. 4 If we keep the angle
maxt g g ' ¢ between initial and final velocity fixed, then the intersec-

. ion of th rv
For H=0 we obtain the well-known valuej/g that corre- tion of the curves

sponds tod=45° inclination anglgsee Eq.(4)]. _ Ugyugt2gy
f1(Y):S|n¢T (6)
B

=gx/2

area

C

Fig. 2. This triangle is formed by the initial and final velocities of flight. The
vertical side of triangleABC is the hodograph of motion, while the area of
the triangle is proportional to the horizontal distance traveled. The aigle Fig. 4. The velocity triangle for a projectile that is shot from the top of a
the initial shot angle that has to be optimized. hill.
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a= E (9)
Z 3 Then, we can express the optimal valuegdhat is given in
o o Eq. (8) as
tan6d ! (10
anf= ——.
Vi+y,/la
Also, because the graphical solution assumes tf4P(y)
= = =f,(y) (wWhere the superscripf®”) refers to the angle be-
:é- é tween the initial and final velocitigs that s,
Uo U5 +29Y./g=X. ,

Yy X
A1+ 2= 2_*, (12)
Fig. 5. The graphical solution of the maximum range for the three dases @ @

b, and ¢ are shown in the corresponding diagrafak (b), and(c). Incase  gnd thus ta@=2a/X, , which can be transformed after some
(b), the solution is not the one that corresponds to the criticalpsis, algebra to

value, but rather, as discussed in the main text, the one with even lower

sin ¢ value (s,). Diagram(d) shows the graphical solution when the pro- tan20=x,1y,. (12
jectile is shot from the deepest point. The black lines correspond to the

simple case of continuously rising ground, while the gray lines correspondBut X, /y, is the cotangent of the inclination angle of the line

to more complicated ground morphologies, for example, with cavity forma—connecting the initial and final points. This form of the solu-
tions. tion gives a straightforward answer to the case where the
ground has constant slope the particle should be shot at an
angle 0=45°— w/2.
In case(b) there is no graphical solution for sifr>s;, and
the solution that corresponds to grs. [where the two
fo(y)=x(y) (7) graphsfy(y) andf,(y) are tangent to each otfjeseems to
give the required answer. However, this assumption is not
(the inverse ofy(x) of the ground morphology gives the true. The graph of (y) for slightly lower values of sirp
coordinates of the ground poilif it exists) where the par- intersects the graph df,(y) at even highex. The appar-
ticle will fall, given the angle between the initial and the final ently paradoxical fact that the plot f(y) goes “under” the
velocity of the trajectory. It is easy to see why this is S0.ground[there is a region of wheref(y)<f,(y)] does not
Becausef;(y) equals the horizontal distance traveled by theémean that the trajectory penetrates the ground. Remember
particle (as was explained in the previous secjidhe inter-  that f,(y) does not describe an actual trajectory, because
section point of the curvely andf; corresponds to the point (¢ (yy y) is the locus of points of different trajectories,
where the projectile trajectory meets the ground. where the angle between the initial and final velocities is

We will examine the three possible cases that exhaust aflg|q fixed, while for an actual trajectory this angle varies
possible downhill ground morphologies for which the initial ., point to point. As long as the angté, (the angle be-

point is the highest one@ The graph off; has only one  een the final velocity and the horizois larger than the
intersection point withf, regardless of the value ab [see  jnclination of the ground, the intersection of the plotsfef

Fig. 5@)J; (b) f2(y) does not increase as fast@gy); con-  and f, corresponds to arrival at this point from above the
sequently, there is no intersection point for girs; [see Fig.  ground, while if the angleb, is smaller than the inclination
5(b)]; (c) there are multiple solutions of the equatibi(y)  of the ground, the intersection point corresponds to arrival
=f,(y) for a range of¢, including the extreme cas¢  from beneath the ground, and thus, it has no physical mean-
=90° [see Fig. o). ing. For example, at the critical value @b (sin¢.=<),

In case(a) we can easily find the maximum horizontal where the two curves just touch each other, it is easy to show
distance, becausg,(y) and f,(y) are both monotonically (see Ref. #that the slope of the ground is not equaldg.
increasing functions, and there is only one intersection pointf ¢.<wl2, then the ground at the intersection point is
the higher the value of sig, the higher the value of at the  steeper than the trajectory of the projectile, while,dif
intersection point. Therefore, we achieve the longest range. /2. then the trajectory is steeper. Therefore, this graphical
when¢=90°, just as in the simple case analyzed previouslyso|ution point cannot be reached with the oblique angle so-
The optimal inclination angl® can be estimated, given the | tion of sing=s., but it can be reached with the corre-

(2/g times the area of the velocity triangleand

graphical solution for=90°: sponding obtuse angle solution. In the latter case, even
higher values ofp will yield even longer range. The longest
o=tan? Uo ®) range will be obtained at an obtuse angle- ¢, [see Fig.
\/m ' 5(b)], that at the intersection point the slope of the ground

equals the inclination of the final velocity,.
wherey, is they coordinate of the graphical solution. We  Finally, in case(c), where there are multiple solutions for

can simplify the calculations that follow by introducing the ¢=90°, the longest range, that the projectile can reach is
characteristic lengtla: the first(the one with the smallest, value graphical solu-
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line that leaves all three parabolas at the same half-plane.
The intersection of all such half-planes formed by consecu-
tive parabolas is the region of points that can be reached by
some fragment. Next, we will calculate the locus of all such
intersection points at a given vertical plane, and then we will
obtain the entire safe region by revolving this envelope

i A around the vertical axis that passes through the explosion
n point.

B Let us draw the velocity triangle for two projectile trajec-
tories, slightly different with respect to the initial inclination
angle. The intersection point of these two parabolas will have
the same §,z) coordinates, and thus both triangles will have
equal velocity sides and equal corresponding areas. But two
triangles with the same pair of sides and different opening
angles between the corresponding pairs have the same area
» only if these opening angles are supplementary. On the other
hand, because the values ®bf the two triangles are infini-

Fig. 6. Three consecutive parabolag f, andl) that correspond to trajec- . . . - -
tories with the same initial velocity, but with slightly different shot angles. tesimally different(see Fig. 4 the triangles will be almost

Intersection point#\ andB of g andh, andh andl, respectively, define a orthogonal. This Obse_rvation leads ”atura”Y to the dESire_d
line that leaves all three parabolas at the same half-plane. The locus of dinvelope shape; that is, the locus of the points with coordi-
such intersection points between neighboring parabolas forms the boundaryates p = 2/g times the area of each trianglg, Because the

of the safe region. triangles are orthogonal

1
tion of f°)(y)=f,(y), because the projectile cannot go p=gtovto 292 13
any further than the curvé®(y). Thus, no other graphical and thus the envelope is given by
solution can be achieved, because otherwise the projectile 2 )
would penetrate the grouridee Fig. &)]. Again, the opti- S Y 9 2, P (14)
mal inclination angle can be calculated exactly as in ¢ase 29 2u§p da’

For completeness, we describe the case where the initia# . . , . . )
point is now the lowest point on the ground. Again, we can!l We identify p with the distance from the vertical axis

resort to the graphical solution by extending the grég(y) Z‘;d Ejls:)! t{‘heeagir‘]"‘;%g‘a'r%tggé’rfigggnprgflfhrg' ‘F’)Vaerarlggﬁgnisz;;”
to y=0. Depending on the ground morphology, we can flnd“cup” that surrounds the explosion. The extra information

:Eetmaxmur?x*tlby tryr:_r;lg Xa_rloui v.alues;hof;ts. tl;or groqnd we directly obtain with this method is that at each point of
at 15 constantly uphifl, it 1S obvious that theé Maximum e enyelope, the corresponding parabolic orbit that passes
range will be accomplished fah=90° (see the black curves .5y this point has an initial direction that is perpendicular to

in Fig. 5(d)). If there are cavity-like formations on the he tangent of the envelope at that point.
ground, the maximum horizontal rangéeep in the cavity

can be achieved at<<90° [see the gray curves in Fig(d].
I1l. CALCULATING THE BRACHISTOCHRONE
B. The safe region around an explosion CURVE VIA THE HODOGRAPH TECHNIQUE

We now apply the geometrical method to solve another Next, we use the hodograph to calculate the curve that
projectile problem. For a given maximum initial velociy ~ connects two points at the same height on which a body that
of the fragments of an explosion, how far from the explosionslides freely under a uniform gravitational field goes from
should one stand to be safe? The classical way to solve su¢tne point to the other in the shortest time. Instead of directly
a problem is by determining, for a givenvalue (vertical ~ trying to find the curve that minimizes the time, we instead
distance above the explosiprthe maximum horizontal dis- determine the hodograph curve that corresponds to minimum
tance from the explosiom, so that the initial and final point travel time. We first point out that there is a one-to-one cor-
can be connected by a parabolic projectile orbit with initialf@spondence between a real curve in space and the corre-
velocity uy. Although, such a solution is neither difficult nor sponding hodograph, because at each poiny)( of the
especially lengthy, it is not direct, because, we should firscurve, the corresponding velocity ié — 29y, which is tan-
optimize the angle for a givep and then use that angle as a gential to the curvésee Fig. 7. Thus, if we determine the
function of p in the orbital equation to yield the safe region hodograph, we can go back and calculate the actual curve.
z(p). What we are really trying to find is the envelope of all  The body is assumed to start from rest, and by conserva-
free fall parabolas, emanating from the location where thdion of energy, it will end its trip with zero velocity. There-
explosion takes place, with velocity, at various angles. The fore, the hodograph will be a closed curve described by the
envelope of all such parabolas with a common initial point isPolar graphu(¢), where 6 is the inclination angle of the
the locus of all intersection points between coplanar parabdhstantaneous velocity with respect to the horizontal line. For
las with slightly different initial inclination angletsee Fig.  #=0, the velocity has its maximum valué— 2gym (if the
6). The argument goes as follows: Imagine three such sucsurve has a uniqgue minimymif we consider an infinitesi-
cessive parabolag, h, andl. The pointsA andB, whereg mal partds of the curve where the body passes by with
andh, andh andl intersect each other, respectively, define avelocity u(#), the Cartesian components of velocity are
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(6)

T~

Fig. 7. For each curve that connects the initial and final points, there is a
distinct hodograph, because at every point of the curve, the velocity of the
sliding body is determined; the magnitude of the velocity is derived from the
principle of conservation of energy, while its direction is tangential to the

curve at that point.

dx
u cosf= a0 (15a
- dy
usinf= . (150
On the other hand, from conservation of energy
u2
Y="12g" (16)
Thus,
du
dt=— m, (17)
and
udu
dx=— ?cote. (18

Hence, we are looking for that closed cunvgd) that mini-
mizes [ dt, while [dx is held fixed. By introducing a
Lagrange multipliern, we have to minimize the following
functional:

o du udu
A[e(u),x]——fgsina—x —chotb’—L ,
(19

whereL is the horizontal distance between the departure an
arrival points, and the integration is calculated along the
closed hodograph curve. Assume now that we deform th
space curve slightly so that the slope of the curve at a fixed b
is not g, but 6+ €7, wheree is a very small positive number,

and » is an arbitrary continuous function of position that is

zero at the end points. MinimiziAghe functionalA means
that we are trying to find a functiod(y), or equivalently

order variation ofA with respect tce. The constraint of fixed
horizontal distance between the end points is provided by

dA
dn
The required hodograph curve, then, arises by expandling

with respect toe and setting the first-order term equal to
zero. That is,

=0. (20)

du
J nm(cosﬁ—kuh& (21

To make this expression hold for any functienit is clear
that the rest of the integrand must be identically zero. Thus,
u=(1/\)cos6, with e[ —m/2,7/2].” If we introduce this
function in Eq.(20), we obtain the value of:

N = w
- Vagl

(22)
Thus, the desired hodographic curve is
[2gL
u(o)= 70050. (23

Equation(23) is the polar equation of a circle, with the origin
at the left-most point of the circle. It is not difficult to find
the shape of the actual curve that leads to such a hodograph.
If we had shifted this circular hodograph horizontally by one
radius (by subtracting a horizontal velocity equal to the ra-
dius of the circle, we would obtain the characteristic
hodograph of uniform circular motio¢a circular hodograph
with the origin at its centgr Thus the motion that minimizes
the travel time is uniform circular motion plus a rectilinear
uniform motion with a velocity equal to that of circular mo-
tion. This path is a cycloidal curve, that is, the path traced
out by a point on a vertical circular ring that rolls on a hori-
zontal surface. The minimum travel time can be calculated
easily once the hodograph is known. We integrate(Ed). to
obtain

27l
tiot= T

This time could also be calculated by dividing the distabce
traveled by the circular ring by its rolling velocity, that is, by
the radius r of the circular hodograph r&1/2\

=+gL/2m).

IV. SUGGESTED PROBLEM

(24)

Consider an electron beam consisting of electrons that
move with initial velocityuy. A system of two charged par-
allel plates is used to deflect the beam. The uniform electric
field between the two plates & and the distance between
the two plates igl. Use the hodograph technique to find the
gngle at which the plates should be placed with respect to the
initial electron beam so that the beam deflection is a maxi-
um. Consider both case&) the beam passes from one
ide of the plates to the other sidb) the beam is reflected
ack to the side that is initially moving.
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the slope of the ground at the intersection point is equal to the inverse offBecause all expressions are written as functions,ofve try to optimize

the slope of fq, because[dygmund/dx]o:[dledy]al:[dfl/dy]al the inverse function ofi(8); namely, 6(u).
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THE CROCKER CRACKER

Even before the sixty-inch design—dubbed the “Crocker Cracker”—was completed, Lawrence
was thinking of one “ten times greater,” a truly huge cyclotron for nuclear physics or, as Igidor
Isaac Rabi of Columbia called it, “the beam to end all beams.” For Lawrence, money, not
technology, was the chief obstacle. In a radio broadcast, he announced he was considering con-
structing a cyclotron “to weigh 2,000 tons and to produce 100 million-volt padicle It would
require more than half a million dollars.” With the active encouragement of Loomis and qther
big-thinking admirers, it would increase steadily in size and cost over the next year. “He| was
building a cyclotron as big as money would permit him,” said Loomis, adding that “we got up to
210 inches” before it was finally cut back to 184 inches. “The idea would go up and up. He did
very courageous things. Most people would not want to make such big calculations, but he was so
confident.”

Jennett Conanffuxedo ParkSimon & Schuster, New York, NY, 2002p. 139.
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