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In a previous report (R ossby, 1937) the author investigated certain 
changes in the mass distribution which accompany the slow lateral diffusion 
of momentum in a straight parallel current in an unlimited ocean of constant 
depth. The principal results of this investigation may be st ated as follows: 

The main stream increases slowly in width (for large times (t) it is pro
portional t o (U ) while the maximum velocity in the axis of the current 
gradually decreases (being proportional to t-~ for large values oft). If no 
frictional losses occur at the bottom the total absolute momentum of the 
current remains constant. The diffusion is accompanied by a slight banking 
to the right of the down stream direction, in such a fashion that the differ
ence in height of the free surface between the right and the left edges of the 
current eventually increases by about eight per cent. Weak counter 
currents develop on both sides of the main stream as a result of the banking. 

This analysis of the disintegration of a current system is supplemented in 
the present article with a study of the mutual adjustment of mass and 
velocity distributions in a current system which is gradually being built up 
by a prescribed wind system acting upon a portion of the ocean surface. 
The problem will be analyzed in several stages, to bring out more clearly 
the mechanics of the adjustment process. Frictional forces resulting from 
lateral mixing will be neglected in the present study but will be included in 
a third article to be published in a lat er issue of this journal. 

We shall consider at first a homogeneous, incompressible ocean of constant 
depth D0 , which is at rest initially. Through wind action a certain amount 
of momentum is communicated to an infinite strip of the width 2a. The 
details of the mechanism of this transfer are not important in the present 
connection. It is sufficient to say that the fluid column between y = + a 
and y = - a is endowed with a certain mean velocity u in the positive 
x-direction. The y-direction is horizontal, normal to the x-direction and 
points t o the left from the x-direction. The momentum relative to the 
surface of the earth per unit length of current is then given by the expression 
2pu0 aD 0 , p being the density of the water . 

*Contribution No. 185. 
(239) 
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This moment um (M) is associated with a Coriolis' force of the magnitude 
f lll and directed 90° to t he right of th e mom ent um. In this expression f 
represents t he Coriolis' parameter. As no balancing pressure gradient 
ex i ts, t he current will move to t he right unt il enough of a pressure gradient 
ha. been established to check fur t her defl ect ion. It is the purpo e of th is 
first prelimin ary calculation to determine t he charactcristi ·s of t he fi nal 
equilibrium state . 

Frict ional forces resul ting from lateral mixing will be neglected outside 
t he main stream. Wit hin the stream they are assumed to maintain a 
laterally constant axial velocity which, however , as a result of the di place
ment of the current to the right must decrease during the adju tment. 
Since, the lateral stresses merely bring about a redistribution, not a change, 
of the absolute momentum, t he permissibility of the aboYe assumptions 
depends upon whether a significant redistribution occurs v.rithin the interval 
required for the adjustment process here considered. T his question will be 
considered lat er. 

The general character of the adjustment process is indicated by the cross 
section in Fig. 84, which is drawn to facilitate the understanding of the 
analysis but does not correspond to any actual numerical solut ion. If one 
assumes that t he velocity distribut ion across the main stream is con tant 
after completed adjustment, it follows t hat the free surface in the fin al 
equilibrium must have a constant slope within the current itself. 

During the adjustment the individual fl uid columns to the left of the 
main current shrink vertically, stretch horizontally. Let y 0 represent the 
initial po ition of a given fluid vertical to the left of the main tream, y its 
final position. The equation of motion fo r the x-direct ion (current axi ) 
takes the form 

(1) 
du 
dt = f v, 

there being no pressure gradient in the x-direction and no fri ctional force. 
In tegration gives 

(2) U = J (y - Yo) = - J (Yo - y), 

indicating t hat each fluid column on completed adjustment ,,-ill moYe up
stream at a speed proport ional to its total displacement to the right. 

If the fin al depth of a certain column i indicated by D, it ini t ia l depth by 
Do, the equat ion of continuity takes t he form 

(3) 

or 

(4) D = D dy0 

0 dy . 



1937-8) J OURNAL OF MARI NE RESEARCH 

After complet ed adjustment gradient motion prevails. Thus 

(5) 0 = - ju - g dD . 
dy 

Combination of (2), (4) and (5) gives 

(6) 

where 

(7) 
1 

"A = - - ;---ngD j V QU o · 
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F igure 84. chematic representation of the ad justmen t of mass distribu tion in a homo-

geneous ocean . See text . 

A similar d ifferent ial equation may be obtained for D, 

d2D D - Do 
dy2 -;._2 

(8) 

and this equation is a special case of a more general equation 

(9) 
a2D + a2D = D - Do 
ax2 ayz -;._2 ' 

valid for arbitrary quasistatic t ransform ations of an originally motionless 
incompressible fluid sheet of the initial depth Do.* This last equation ex
presses the conservation of absolute vorticity. 

* The term quasistatic t ra nsformation is employed here in preference to the term 
adiabatic transformation which is generally used in Mechanics to designate processes 
of this type but which would be ambiguous in meteorology and also to some extent 
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The length A is a fundamental parameter in all quasistatic deformations. 
It is possible to define such a length also for stratified and compressible 
media, such as t he atmosphere. In view of its great significance it seems 
appropriate to introduce a special name for this quantity. I ts magnitude is 
that of the radius of the inertia circle corresponding to the velocity of long 
waves in a channel of the depth Do· It is proposed t o name A the radius of 
def ormation. 

Integration of (6) gives 
y y 

(10) Yo - Y = Ae }; + Be ->;, 

A and B being arbitrary constants of integration. Since the displacement 
y0 - y must vanish at great distances t o the left from the main current 
(large y-values) , it follows that 

(11) 

and thus 

(12) 

A=O 

y 

Yo - y = e. e-};, 

e. being the total displacement to the right, of the left edge of the main 
stream. In this formula the y-coordinate is counted from the final position 
of the left edge of the main stream. 

The depth of the free surface at the left edge of the current (D 1) i given 
by (4) and (12), 

(13) D1 = Do(l - ~). 
By a similar analysis it is possible to compute the rise of the free surface 

along the right edge of the current for an equal displacement e. to the right. 
The result is 

(14) 

The slope of the free surface across the main stream is now giYen by 
1 
2
a (Dr - Dz). Thus, since gradient \vind must prevail in the final equi-

librium, it fo llows that the final mean velocity ur of the main stream must 
be given by 

(15) g 1 gD oe. "A 
Ur= -- (Dr - Dz)= - = - fe.. 

f 2a f"Aa a 

in oceanography (for a definition and discussion of adiabatic transformations see 
for instance, A. Sommerfeld, Atombau und Spektrallinien, 3. Aufiage, Vieweg, 
Braunschweig, 1922). 
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The displacement of the main stream cannot have changed its absolute 
momentum. This constancy is expressed by an equation derived previously 
(Rossby, 1937, p. 19) 

(16) 
f

a+. f + a 
Do (uo - fy) dy = D (u1 - jy) dy, 

-a+• -a 

the y-coordinate on both sides of the equation being counted from the final 
center of the current.* Since Uo, u1, and D 0 are constants, it follows that 

(17) 2aDoito = u1f+a Ddy + 1fa +•D
0
ydy - f f +a Dydy. 

-a -a+• -a 

The first integral on the left side gives the volume, which remains constant 
and equal to 2aD0 • Thus 

f a+. J +a 
2aDo (u 0 - UJ) = JD 0 ydy - f Dydy. 

a+• -a 
(18) 

The appropriate expression for Dis obtained from (13) and (14). It has the 
form 

(19) 
E y 

D - Do = - Do -- . 
I.a 

If this expression is substituted in (18) one finds, after some reductions, 

(20) u., = u 0 - fe (1 + 3aA) · 
• It is of course possible to treat the adjustment of the main stream by the same 

exact method which was used above in treating the environment. For the main 
stream, equation (2) changes into 

(2a) i t = 1to - f (Yo - y) 

and the differential equation (6) into 

(6a) d2y o 1 ( u.o) 
dy2 = ~ Yo - y - f . 

The solution of this differential equation is 

(lOa) 
Uo 2'. -~ 

Yo - y = f + A e X +Be 

the two integrations constants A and B being needed to satisfy the requirement of 
continuity in displacement at the two boundaries. The over-all method used above 
is, however, amply sufficient for our present needs. 
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It is easy to verify that the product E (1 + 3~) represents the total dis

placement to the right of the mass center of the current during t he adjust
ment. If (15) and (20) arc combined it follows that 

(21) 

and , from (15) and (21), 

(22) 
j,/a 

U J = 1b0 ------

J + ·i-;a + a/3i, 

In middle latitudes (f = 10- 4sec.-1) the radius of deformation ha a Yalue 
of 1400 km. for a basin of 2 km . depth. If the current has a width of 200 km. 
(a = 100 km. ) and an initial Yelocity of 50 cm. p. s. it follows that a di -
placement of one third of one kilomet er would be sufficient to e tablish the 
required balancing pressure gradient. The initial velocity would be reduced 
by seven percent as a result of the deflection and the maximum counter 
current Yelocity on both sides of the main stream would be about 3.3 cm. 
p. s. 

By the time the main stream reaches its equilibrium position it ha 
acquired a finite velocity to the right and must therefore continue its dis
placement beyond the equilibrium point until an excessive pre ure 
gradient develops which forces it back. An inertia oscillation around the 
equilibrium position results. It is well known that the period of uch an 
oscillation must be half the pendulum day. The main stream will therefore 
reach the equilibrium position already in a few hours. From the rapidity 
of this adjustment it follows that large unbalanced momenta neYer haw 
time to accumulate. It is probably more correct to assume that the mo
mentum is added quasistatically, in such a fashion that each infinitesimal 
amount of momentum leads to a practically instantaneous adj ustment of 
the mass distribution. Since a normal 'IVind stress of, say, 1 dyne per cm.2 

acting on t op of a 2 km. deep water column produces a mean momentum per 
unit mass of less than 0.5 cm. p. s. per day it would appear that the assump
tion of quasist atic adjustment must be very nearly fulfilled. H mw,·er, as 
long as the addition of momentum takes place at a variable and finite rate, 
a certain fraction of the energy communicated to the s~'stem 'l'lill pre umably 
always appear as an inertia oscillation. The preceding result, that cl1ange 
in the stress distribution on the ocean surface necessarily must lead to 
inertia oscillations, was clearly recognized by Ekman in his ea rly studies of 
drift currents (Ekman, 1905). 

It is evident that while the frictional redistribution of momentum during 
the period of one inertia oscillation may be quite negligible, the total time 
required for the building up , through wind action of a gradient current of 
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the magnitude assumed above is so long that it certainly would be utterly 
impermissible to neglect the diffusion of momentum during this entire period . 

It is next desired to investigate the effect of strat ification on the process 
of mass adjustment. A simple case will be analyzed to bring out the nature 
of the modification which has to be made in the preceding analysis. 

Fig. 85 is a schematic representation of the adjustment process in a two
layer ocean, the upper layer having the density p, the lower the density 
p' . The undisturbed thicknesses of the two layers is D 0 and D 0 ' . I t is now 
assumed that an infinitely long strip of the upper fluid, enclosed between 
the limits Yo = a and Yo = - a, is endowed with a velocity u0 • A deflection 
of the current results and continues until a balancing pressure gradient has 
been established across the main stream. 

The pressure gradients which develop in the upper layer during the 
adjustment must set the lower homogeneous layer in motion. However, if 
the latter is very deep it is possible to demonstrate that its displacements 
and final velocities must be fairly small. It is possible to analyze exactl y 
the adjustment of the lower layer using the method which was applied above 
to the environment of the main stream in the single-l ayer case. This will 
be done later on. As a first approximation, however, it is sufficient to as
sume that the lower layer remains at rest; thus the deep water displace
ments associated with deformations of the internal boundary lead to 
negligibly small axial velocities. This restriction will be removed later. 

If the bottom remains at rest it follows that 

(23) pD + p'D' = constant 

and consequently 

(24) i_ (D + D') = p' - P dD = - p' - P dD' . 
dy p' dy p dy 

It is evident from (23) and (24) that the slope of the internal boundary is 
always proportional and opposite to the slope of the free surface, which is 
given by the left side in (24) . The preceding analysis, including equations 
(2), (3) and (4), remains unchanged. The gradient current equation (5) 
changes into 

(25) 

or, because of (24) , 

(26) 

0 = - Jii. - g i_ (D + D') 
dy 

p' - p dD 
0 = - fii. - g . -- -

' p' dy 
I 

Thus if one reduces the acceleration of gravity in the proportion P ~ P 
' p 

and substitutes for g a value /, defined by 
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Figure 85. Schematic representation of t he adjustmen t of mass distribution in a double 
layer ocean. See t ext . 
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p' - p 
I= g· --

p' 
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all the previously derived results remain valid. The system is in every 
respect identical with a single-layer ocean of the depth D and subject to an 
acceleration of gravity of the value y. The substitution (27) has one very 
important consequence. The radius of deformation, defined in (7), is now 
given by 

(28) A = ~ - rn- - ~ . Ip' - p 
f v yD. - f1f-p'- gD 0 • 

Assuming an upper homogeneous layer with an original depth D0 = 400 m, 
and assuming a density discontinuity of 0.2 percent, it follows that 

"A= 28 km. (f = 10-4sec.-1). 

The radius of deformation is thus reduced to 2_ of its original value. As-
50 

suming the same values for u and a as before, the deflection of the current 
will now be about 2 km. "compared with the previous value of 0.33 km. The 
reduction in the mean speed of the current due to this deflection is greatly 
increased, the final axial velocity ii1 having a value of about 5.3 cm . p. s. 
and the counter currents are correspondingly increased to about 20 cm. p. s. 
The radius of deformation measures that distance from either edge of the 
main stream in which the counter current velocity has fallen off to the 

fraction ~ of its maximum value, and this dist ance is now reduced to ..!.._ of its 
e 50 

previous value. Thus the adjustment of the mass distribution will be accom
panied by the development of strong and narrow counter currents, while 
the corresponding currents in the homogeneous case will be very broad and 
extremely weak. 

The preceding results suggest that the adjustment of the mass distribu
tion in a stratified medium will be accompanied by a more intense develop
ment of inertia oscillations than the corresponding adjustment in a homo
geneous medium. It is actually possible to compute the energy available 
for inertia oscillations by forming the difference between the total energy 
before and after adjustment. Such a calculation is easily made and clearly 
indicates that a much larger fraction of the initial energy goes into the 
oscillating motion in the stratified case than in the homogeneous. 

It is found that the initial energy E 0 , given by the expression 

and the final energy E1 are related through the formula 
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(29a) 

and t hus the fraction of the initial energy available for inertia oscillations 
is given by 

(29b) 

1 + __:: 
E E 

3), 
osci lla lwn = 

1 

o l + ~ + ~ 
a 3), 

This last expression is not qui te correct, a small error resulting from the 
assumption t hat t he velocity of t he main stream is constant laterally also 
in the final equilibrium state . This error is not significant in the single
layer case but may be of some consequence in a stratified medium. A com
parison of the two cases discussed above indicates that in the single-layer 
ocean only 73 of t he initial energy goes into inertia oscillations, whereas 
in the second case the major port ion of the initial energy (893) must 
appear as an inertia oscillation. 

Since most currents are built up through a fairly gradual addition of 
momentum t he numerical values obtained through the uggested applica
t ion of the energy integral are of small significance. Nevertheless, because 
of the variability of t he surface stresses it appears probable that Yigorous 
inert ia oscillations must develop in stratified media and express them
selves as a marked intensification of t he large-scale horizontal turbulence 
which must develop due to the dynamic instability of the shearing zones 
between the current and its surrounding counter currents (Pekeris, 1938) . 
Such intensification would not occur in homogeneous media. This tenta
t ive conclusion agrees well with P arr's suggested relationship bemeen lateral 
mixing and vertical stability (P arr, 1936) . 

The total amount of momentum received from the wind per uni t time i 
distributed over a much deeper column in the case of a single-layer homo
geneous ocean t han in the case of stratified water. Thu the initial un
balanced velocity components will be stronger in stratified than in homo
geneous water and this fact would further favor the development of lateral 
turbulence in stratified water. 

We shall next consider motions set up in the deeper of t he b rn layers a a 
resul t of displacements and mass adj ustments in the upper layer . It is 
assumed that no tangenti al stresses are tran mitted throu o-h the boundary 
between the two strata. Originall y the 10\Yer layer is at re~ and characte;
ized by a constant depth D0

1
• 
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During the adjustment process the internal boundary will be deformed. 
Since continuity of mass must be preserved it follows that 

(30) D'dy' = D 0'dy0 ', 

Yo' and y' being the initial and final positions of a given fluid vertical. 
The equation of motion for the x-direction is given by 

(31) du' = f v' 
dt 

or, after integration, 

(32) u' = f (y' - Yo' ) = - f (yo' - y' ). 

It will now be assumed that wind action or other processes have led t o 
the establishment of a known horizontal pressure gradient in the upper 
layer . The problem is to determine the final velocity u' in the lower layer 
for prescribed values of the gradient current u in the upper layer. 

It is of course possible to assume that an initially unbalanced current 
component exist s in a portion of the upper layer and to solve simultaneously 
the equations which describe the adjustment processes in the two layers. 
In this case the adjustment of the mass distribution is accomplished through 
a transversal circulation which, t o an observer looking downstream, takes 
place in a clock-wise sense (see fig. 85). Such clock-wise circulations have 
been observed in the California current during periods of acceleration and 
estimates of their intensity have been made (Sverdrup, 1938). An exact 
solution of a problem of this type will be presented by Mr. H. Wexler and 
the author in a la ter issue of this journal. For the present we shall restrict 
ourselves to the case of a prescribed pressure distribution, or gradient 
current syst em, in the upper layer. If this new pressure distribution in the 
upper layer is applied quasistatically the solution presented below repre
sents the final equilibrium state. If it is applied suddenly or built up at an 
irregular rat e, inertia oscillations will appear, both above and below, super
imposed upon the equilibrium st ate here computed. 

The depth of the upper layer is D. The height of the free surface is given 
by D + D' and thus 

(33) u = _ E!}_(D + D'). 
f dy' 

The gradient current equation for the lower layer t akes the form 

(34) I g d ( D + 'D' ) ii =- -- p p 
P'.f dy' 

or 

(35) ( 
p' - p ) 

I = - p-,-g . 
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A combination of (30), (32) and (35) gives 

d2u' u' p i i 

dy'2 - ). ' 2 = - P' ). ' 2 ) (36) 

the radius of the deformation ).' now being given by 

(37) ).' = ~ - ;-DI=~ • /p' - p gD I . 
f V I o f 'l/ p' o 

If the superimposed gradient current u vanishes for y' = ± oo the same 
must apply to u' . It t hen follows from (36) t hat u' becomes vanishingly 
small for very large values of).' (great depths of the lower layer). 

The deformation of the internal boundary is easily computed from (30) 
and (32), combined into t he form 

D' - Do' 1 du' 
Do' = - f dy'' (38) 

which is an expression for the conservation of absolute vorticity m the 
lower layer . 

If it is assumed that the upper layer was at rest before the wind stresses 
responsible for the gradient current u were applied, it follows that the 
distortion of the free surface, h = D + D' - Do - Do', must vanish for 
large positive and negat ive values of y. Thus it follows from (33) that u 
must satisfy the requirement 

(33b) f :"" udy' = 0 . 

If the superimposed current is symmetric with respect t o y it further follows 
that one must have 

(33c) { "" iidy' = f 0 

udy' = 0 . Jo - oo 

One must furthermore assume that the deformation of the free surface took 
place in such a fashion that no mass was added or subtracted. It follo"-s 
that one must require that 

(33d) 1: 00

hdy' = 1 : 
00 

(D + D' - D0 - Do') dy' = 0 . 

This last condition is satisfied if u is symmetric and satisfi es the condition 
(33c). 

Fig. 86 represents two velocity distribut ions, u and i 1.' , which sat isfy 
equation (36) . The velocity distribution in t he upper layer, supposedly 
established through wind action, is giw n by 
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(39) - - 1 - + ___ e-fi•' 11 _ [ 2B <1 + 12B) ri2 8B3.IJ4 J 
u,.. 1 + 6B 1 + frl) ' C>-' ri = y' ) 

and the corresponding velocity distribut ion in the lower layer is then 

(40) u.' p 1 
- = 1 --. [1 - 2B·1J2] e-fJ•'. 
Um p 1 + oB 

. ~ u 1 
In plottmg the curves for - and - it was assumed that ~ = - . 

tlm ti,.. 9 

------~'--;-------,,!_· _ _ _ _ \_\·-~· - . 
~-- - .. ., ·-.. , ., -· ., _, 

r ~ : .. _______________ _ • r; , ~ .... "' " l ~---- -

Figure 86. Example of two velocity d istribu t ions satisfy ing equation (36). See text. 

The deformation of the internal boundary is represented in Fig. 87. It 
follows from (38) th at the defl ections of t he in ternal boundary will be anti
symmetric with respect to y'. In the part icular case here investigated the 
equation for the internal boundary is 

(41 ) D' - Do' p ttm 2B [ ] -f! , 
.Uo' =pt· f>-' · 1 + GB 3 - 20ri

2 
·ri· e " 

It is apparent from the solution presented above t hat the internal bound
ary adjusts itself so as t o counteract, in the lower layer, the hori zontal 
pressure gradients transmit ted downward from the upper layer, biit i t ·is 
also cvidmt that this compensation is very incomplete. 

The preceding analysis raises several interesting questions. M ost 
important of these is the following: Will the effect of deformations of the 
free surface be felt t o some extent throughout the ent ire water column also 
in r ase of a continuous vari ation of density with dept h or will the dynami
cally created solenoids in t he in terior completely cancel the effect of the 
surface pressure grad ient? It is evident t hat the usefulness of " dynamic" 
w loeity calculations of non-perm anent current patterns to a very large 
extent depends upon t he answer to t hi s question. 

We shall attempt to answer this question by a st udy of the following 
problem: 
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An ocean basin of uniform depth is at rest initiall y . The density de
creases at a constant rate upward, from the value Pb at the bottom to the 
value Ph at the height h0 above the bottom. Above th is stable layer there 
is a homogeneous layer of t he density p1.. Through wind action, or in some 
other fashion, the free surface i:; deform ed, and a corresponding system of 
gradient currents set up in the homogeneous water. How do the deep 
layers react to t he new pressure gradients transmitted from above? 

We shall assume that the deep water is made up of a very large number 
of layers of infinitesimal thickness, each one li mited above and below by a 
surface of constant density. Thus each particul ar layer is enclosed between 
two isopycnic surfaces, p = constant and p + op = constant . Within each 
layer the density may be considered constant and equal to the mean density 
of the layer (p + Yzop). Each layer is horizontal before the deform ation 
sets in but is warped during the adjustment process. In the final equilibrium 

. ~ ' -· ~ 
· J _, 

Figure 87. D eformation of the internal boundary. See text. 

state horizontal gradient fl ow prevails and the motion is thu parallel to the 
contour lines for that particular layer . 

Now consider a chain of particles in one of these isopycnic layers. In 
the final stage its circulation may be computed from the circulation theorem 
which, in this particular case, takes the form 

(42) C = - j (A - A o), 

Ao being the area enclosed by the projection of the chain on a lenl surface 
before the deformation , A the corresponding area after t he deformation. 
C is positive for cyclonic circulation. 

In the final state horizontal gradient motion prevails. Thu 

(43) c = f i10.c + voy 

ox and oy being the components of the horizontal projections of the line 
elements of the chain. I t fo llows from Stokes' theorem that 

(44) C !!(av an) 
= - - - o.roy 

a.~ ay 
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' a a d . . . w1icrc - . - now represent erivativcs with. respect to x and y along a constant 
ax ay 

density siirf ace. 
The right side of equation (42) can be written in the form 

(45) 

the subscript 0 referring to the initial state. The equation of continuity 

(46) D = Do a (xo, Yo) 
a (x, y) 

Do and D representing the vertical thickness of an individual element before 
and after the deformation. Thus 

(47) f (A - Ao) = 1f f [1 - 0 (.i;o, Yo) ] oxoy = 1f f D 0 
- D o:i:oy 

a (x,y) Do 
and consequently, 

(48) ~ = av _ oi• = f D - Do . 
ax ay Do 

~ is the vertical component of vorticity in the particular isopycnic sheet 

under study. In the equation (48) i_ and ~ represent derivatives with respect 
ax oy 

to x and y along a surface of constant density. 
If z (x, y, p) represents the height of a given isopycnic surface after ad

justment, z0 (p) its init ial height, it follows that 

(49) 

and thus 

(50) 

az 
D = - - Ci" ap ..., 

OZ OZ0 - - -
~ = ov _ ou = _r°P op 

ax oy OZo 

ap 

If one introduces a new measure for the density, defined by 

(51) 

it follows that 

(52) 

(53) 

Pb - P 
r =--- , 

Pb - Ph 

z0 = 0, z = 0, r = 0 for P = Pb 

Zo = h0 , Z = h, r = 1 for P = Ph· 
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The assumption is now introduced that the initial vertical density dis
tribution is linear. Thus 

(54) Z0 = h0 r. 

Substitution in (50) gives 

(55) 

az - ho 
r, - av - au - far 

- ax ay - - -ho- . 

If one finall y introduces tbe symbol /1 for th e vertical departure of each 
isopycnic surface from its initial position, the law for the conservation of 
vorticity reduces to the form 

av au f ab. l, = - - - = .,-- - , /1 = z - h0 r . 
ax ay hoar 

(56) 

The hydrostatic equation must be transformed to include r in ·tead of z 
as the independent variable, since otherwise the law for the con erYation of 
vorticity cannot be effectively uti lized. The pressure at a height z abon 
the bottom is given by 

(57) 

H being the thickness of the superimposed homogeneous layer. 
tion by parts gives 

(58) ! Ph 

p = gp,. (h + H ) - gpz - g P zdp 

or 

(59) p = gph (h + H ) - gpz + 2Kgpb f 1 zdr. 

Integra-

If n represents one of the horizontal coordinates (x or y) and the ,-ariation 
of p along a constant density surface be computed one find 

(60) - = YPh - gp - + 2Kgpb - dr. 
ap a (h + H ) az f 1 a::: 
an an an r an 

The horizontal variation of any function p in t be n-direction and the Yaria
tion of p with n along a constant densih surface are connected throu crh the 
formula ' "' 

(6l) ap = (ap) + ap a::: 
an a11 z a- an 

If p represents the pressure t he aboYc formula. reduces to 
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(62) 

Thus 

(63) 
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(av) an z 

ap (ap) az 
an = an z - gp an 

OPh - (h + H ) + 2Kgpb - dr . a J1az 
an r an 

It follows that gradient current velocities may be computed from 

(64) a J1 az pfv = OP1i - (h + H) + 2Kgpb - dr ax r ax 

a J1 az - pfu = gph- (h + H ) + 2Kgpb -dr. ay r ay 
(65) 
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Disregarding compres ibility, the total percentual variation of density along 
a vertical in the open sea is of the order of magnitude of 0.2 percent. Thus 
it is entirely permissible to simplify the above equations by setting 

(66) Ph = Pb = 1. 
p p 

Since z0 is independent of x and y one finally obtains 

(67) fv a J1 a~ - = -(h + H) + 2K -clr 
g ax r ax 

(68) - - = - (h + H ) + 2K - dr Ju a J1 a~ 
g ay r ay 

and, for the vorticity, 

(69) ·- = ----:; + --..; (h + H ) + 2K --:2 + 2 ~dr. g ( a2 a" ) J1 ( a2 a2 ) 
g ax- ay- r ax ay 

The vertical variation of vorticity is obtained from (69) through differ
entiation. The result is 

(70) :; = -
27 (a~:2 + a~2) ~-

Eliminating ~ between (56) and (70) one obtains 

(71 ) a2~ + 2Kgh. (a2~ + a2~) = o. 
ar2 f2 ax2 ay2 

There must be continuity in velocity and consequently also in vorticity 
at the boundary between the homogeneous and the stable water. It follows 
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that~ is prescribed for the upper boundary (r = 1) . At the bottom 6. = 0. 
Thus there is one solution, and one only, which satisfies the requirements of 
t he original problem and t he fund amental differential equation (71 ). 

In the case of a parallel current system the preceding equations take a very 
simple fo rm. I t fo llows from (68) that 

(72) 

and from (56) that 

(73) 

au= 2Kg at::.. 
or f oy 

au = _ 1_ at::.. 
oy ho or 

If one introduces t he radius of deformation /.. , defined by 

(74) 

it follows that 

(75) 
au az 
or a Y) 

(76) 
au 
OYJ - :~ (y = AYJ , U = ju/.. , Z = ~J . 

Thus U and Z are conjugate functions, sat isfying the equation 

(77) (~ + ~) u = 0, (
02 + ~) z = 0. 

or2 oYJ 2 or2 oYJ2 

The boundary conditions are: 

(78) 

(79) 

Z = 0 for r = 0. 

U prescribed for r = 1. 

The rate at which t he current velocity decreases dow1nrnrd i \Yell illu~ 
t rated by the following case: 

The superimposed velocity in the homogeneous layer is giwn by 

(80) 

This represents a system of parallel currents of alternatinrr direction the 
" wave-length ' ' L being given by "' ' 

(81) L = 211: /.. k = 211:/.. 
k ' L 

T he corresponding velocity distribut ion in the interior is O'iYen bY " . 
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(82) 

and the deformation of the individual density surfaces may be computed 
from 

(83) 
h ekr - l' - kr 

Ll = f ;, Um · ek + e- k sin lcYJ. 

The velocity at the bottom (itb) is given by 

(84) Ub = COS TcY) 

Um cosh Tc 

and the maximum bottom velocity by 

(85) itb max 1 
=--=---

Um cosh Tc 2-n:A 
coshL 

Thus the effect of the superimposed velocity gradients will extend to 
greater depths or, which is the same, be more marked at the same depth for 
a longer "wave-length" L than for a shorter. 

The ratio (85) between the maximum bottom velocity and the maximum 

gradient current velocity has been computed for different values of n = !:_. 
), 

Assuming ho = 1800 m., 2K = 2 10- 3, g = 103 cm. sec.-", f = io-4 sec.- 1, 

one finds 
)... = 60 km . 

The resulting values are given in the line marked IC = 0 in table I. 
ho 

It is evident from these values that the redistribution of mass within a 
single 1800 m. deep layer of uniform stability is insufficient to reduce a 
superimposed horizontal surface pressure gradient to zero at the bottom 
It appears that for a current width of 240 km. (L = 480 km., n = 8) the 
maximum bottom velocity will still be 75% of the maximum gradient 
velocity of the surface layer. If the total density range and the depth of 
the stable layer are doubled the value of )... is doubled. The appropriate 
value of n is reduced to 4, but the maximum bottom velocity is still 40% of 
the maximum surface velocity. There is no reason to expect such high 
velocities near the bottom and thus the question concerning the equaliza
tion of the horizontal pressure gradients at great depths remains open. 

In a further effort to settle this question we shall finally investigate if the 
presence of another, deep homogeneous layer below the st able water plays 
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an important role in the cancellation of surface pressure gradients through 
redistribut ion of mass . I t will be assumed that the deep water has a con
st ant density Pb and an undist urbed dept h K o. T hen, if 6. o represents the 
deformation of t he surface separat ing t he lower homogeneous layer from 
t he st able water above, it follows from the conservation of vorticity in t he 
lower layer and from t he requirement of cont inui ty in t he velocit y distri
bu t ion that 

(88) (:~), = 0 

.r /::,. 0 

IC 
or , 

(89) G.~)r = 0 
~- Z r =O · 
IC 

The solution corresponding to the boundary condit ion (80) and the 
revised boundary condition (89) is 

(90) 

and 

(91) 

1:±._ = h0 coshkr + lcK 0 si~h kr cos h; 
11.m ho cosh k + kK 0 smh le 

~ = i tm ho sinh 7cr + lcK 0 cosh kr sin k·ri. 
ho f f. h0 cosh le + lc!C sinh k 

F or Ko = 0 these equations become ident ical wi th (82) and ( 3) and 
for /C ----t oo the solution reduces t o 

(92) 

(93) 

u ~inh kr k 
- =--- cos T) 
i 1.m sinh k 

6. i t m cosh la . ,_ - = - - - - sm tCT) 
ho f A sinh le · 

The relation between the maximum velocity in the homogeneous bottom 
layer and the maximum velocity in the homogeneous surface l a~·e r i ' no"\\· ob
t ained by setting r = 0 in (90) . The result is 

(94) 
'Li b max l 

1 ( 
kf\.o ) cos 1 k ] + - ta nh k 
h0 

1 

Cos l - l + -- ' 0 I - '-" l 2 'it A ( 2 'it f. F · ' ) . 
L 

. L -tan1 --
ho L 

F or Ko = 0 this formula reduces to t he one derived pre\iously (85) and 
for K o----t oo the ratio becomes zero, i. e. the bottom l a~'er will then be at 
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rest. For an init ial depth of the lower homogeneous layer of 1800 m. and 
for the same value of n as before (n = 8, L = 480 km. ) the maximum 
bottom velocity will sti ll be 50% of the maximum gradient velocity in the 
upper layer . 

TABLE I 

f\o~ 
ho 0 5 1 2 4 8 16 

0 .0000 .0037 .0862 .399 . 755 928 

0 .5 .0000 .0009 .0337 .232 . 605 .855 

1 .0000 .0005 .0277 .162 .499 .809 

2 .0000 .0003 .0119 . 103 .372 . 774 

00 0 0 0 0 0 0 

The preceding analysis indicat es that the effect on the deep water of 
pressure gradients transmitted from above wi ll be considerably reduced 
through redistribution of mass in the interior of the ocean, but with reason
able values for the depth and for the tot al vertical density range there is 
always a considerable residual effect even in the homogeneous bottom layer. 
One must conclude that a changing pressure applied on a horizontal surface 
near the sea surface will be felt also in the bottom water and thus must pro
duce, at least temporarily, sizeable stratospheric currents. 

It is obvious that this conclusion does not apply to cases of steady state 
motion in the ocean, since various frictional forces then have the opportunity 
to dissipate the kinetic energy of the strata pheric currents. However, the 
so-called permanent wind systems which actuate the superficial layers of 
the ocean are changing from day to day and from season to season. I t is 
the author's definite opinion that these changing wind systems must pro
duce deformations of the ocean surface and consequently horizontal pressure 
gradients which, in the light of the preceding analysis, necessarily must set 
also the deepest strata in motion. There is no justification whatsoever for 
the point of view which pictures the ocean stratosphere as completely inert 
apart from the slow thermal circulation produced by the production of 
bottom water through cooling in the Antarct ic. 
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SUMMARY 

The principal purpose of t hi s in vestigation is to study those changes in 
th e internal mass distribut ion which accompany the initial establishment 
of oceanic current systems through wind stresses applied at the sea surface. 
Whenever surface water is set in motion through wind action, horizontal 
pressure gradients are established in t he uppermost layers of the ocean. 
Surrounding and underlying water masses which are not acted upon b~ the 
wind, will be set in motion by these new pressures. If, as a first approxrma
t ion, frictional forces are neglected outside the body of water which is 
directl y influenced by the wind, the displacements and final equilibrium of 
the surrounding masses may be determined from the requirement that each 
individual element of water must retain its absolute vorticity. The final 
equilibrium th us determined is one of dynamic equilibrium, i.e. characterized 
by steady motion. 

The total energy (potent ial and kinetic) of the final equilibrium i nor
mally less than the initial energy (kinetic energy received from the wind). 
The difference goes into inerti a oscillations around the final equilibrium 
state computed from the vorticity theorem mentioned above. 

The specific results may be stated as follows: 

1. If, through wind action, an infinite strip of water in an initially motion
less homogeneous ocean basin is set in motion in the direction of i own axis, 
the entire current fil ament will be deflected to the right of the clown tream 
direction* as a result of the initially unbalanced Coriolis' force a ociated 
with its momentum. The sea surface will rise along the right ed e, fall 
along the left edge, until a transversal pressure gradient (slope) i e tablished 
which exactly balances the Coriolis' force. The rise (drop) of the ea 
surface in the environment of the current may be computed from the re
quirement that each vertical column of water must conserYe it ab olute 
vorticity . 

2. The sum of the potential and kinetic energy in thi equilibrium tate 
is somewhat less than the initial kinetic energy of the system (there is no 
potential energy in the init ial state). The difference in energy goe into an 
inertia oscillation with a period of twelve pendulum hours. A a result of 
this inertia oscillation the defl ection of the current "ill proceed beyond the 
equilibrium position and then reverse direction. H o1'-eYer in a homoge
neous ocean the fraction of energy stored in this inertia oscillation i, small~ 

3. If, through wind action, an infinite strip of water in the upper of two 
homogeneous layers is set in motion in the direction of its O\Y11 axis, a 
similar adjustment process occurs. While the free surface rises alon cr the 
right edge, sinks along the left edge of the current, the internal bour:clar~· 

* On the northern hemisphere. 
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will be deformed in the opposite sense. If t he lower layer is very deep it is 
permissible t o assume that it will be practically motionless also after com
pleted ad justment. The ratio of the deformation of the free surface to t hat 
of the internal boundary then has the same value as the ratio of the differ
ence in density between the two layers to the density of the upper layer . 
In this case t he total deflection of the current system is increased several 
times over the corresponding deflection in a homogeneous ocean. 

4. In such a double-layer ocean with a resting bottom layer the fraction 
of the initial energy which goes into inertia oscillations is many times larger 
than in a homogeneous ocean. 

5. The adju tment to equilibrium of the initially unbalanced current 
filament is in both cases accompanied by the development of counter 
currents in the environment. These counter currents are very weak and 
broad in the case of a homogeneous ocean but narrow and intense in the 
case of a double-layer ocean. 

6. The shear zones between the current and its environment are known 
to be dynamically unstable and should therefore have a tendency to break 
up into large-scale horizontal eddies (lateral turbulence). 

7. Since there is a much greater supply of energy available for vigorous 
inertia oscillations in a double-layer ocean than in a homogeneous ocean, it 
is reasonable to assume that lateral turbulence must be more strongly 
developed in stratified than in homogeneous water ; this conclusion strongly 
supports Parr's suggestion concerning the relation between lateral eddy 
viscosity and vertical stability. 

8. In a stratified ocean the momentum received from the wind will be 
distributed over a shallow vertical column, whereas it will be spread over a 
much deeper column in homogeneous water. F or this reason strong un
balanced current components are more likely to occur in stratified than in 
homogeneous water . This would t end to produce stronger inertia oscil
lations, and hence presumably stronger lateral turbulence, in stratified water 
than in homogeneous, again in agreement with t he suggested relationship 
between lateral t urbulence and vertical stability. 

9. If the lower of the two layers in the ideali zed ocean referred to above 
has .a finite depth, the displacement of the upper unbalanced current towards 
its equilibrium position will be accompanied by a t ransversal displacement 
of the lower layer in the opposite direction. This displacement below will, 
as a result of the Coriolis' acceleration, lead to the development of a gradient 
current in the lower layer in the same direction as the initial current in the 
upper layer. Thus, although the internal boundary between the two layers 
is deformed in such a fashion as to counteract the pressure gradients asso
ciated with the deformations of the free surface, it may be st ated that it is 
normally impossible to superimpose a horizontal pressure gradient at t he 
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ocean surface without having its effect t emporarily transmitted all the way 
to the bottom layer. 

10. T his result is further analyzed in the case of an ocean consisting of an 
upper, homogeneous layer and a lower stable layer with an initially linear 
density distribut ion. It is assumed that a prescribed horizontal pressure 
dist ribution (pert urbation pressure) is established in a geopotential surface 
wit hin t he upper homogeneous layer. Assuming that each infinitesimal 
isopycnic layer in the stable water conserves its absolute vorticity, it is 
possible t o determine t he final equilibrium state. It is found that sizeable 
gradient currents normally must develop also next to the bottom. 

11. T he percentual rate at which a prescribed perturbation pressure at 
the surface is equalized with increasing depth in an ocean basin of normal 
stability depends upon the lateral dimensions of the superimposed perturba
tion. A superimposed gradient current system in the upper homogeneous 
layer with a width of a few kilometers will hardly be felt at the bottom of 
the stratified layer (assumed t o have a depth of 1800 m), but if the super
imposed current has a width of between two and three hundred kilometers 
the horizontal pressure gradient at the bottom will still be about one half 
of the surface pressure gradient. 

12. If there is a deep layer of homogeneous water also below the stable 
layer the gradient currents next to t he bottom will be further reduced, but 
it still appears that sizeable gradient currents must develop in the bottom 
water whenever the horizontal pressure distribution in the homogeneous 
water near the surface changes over reasonably wide areas. 

13. The preceding conclusions regarding the motion of the bottom water 
do not apply t o a perfectly st eady state of motion in the ocean. H oweYer, 
since the large a tmospheric wind systems which drive the ocean circulation 
change from day to day and from season to season it is permis ible to state 
with a reasonable degree of assurance, that it is entirely inappropriate to 
consider the homogeneous bottom water as inert beyond the slow thermal 
circulation maintained by antarctic cooling. 

14. It is in part icular injustifiable to assume a priori that the n locity 
distribut ion within larger non-permanent current patterns (such as the 
larger of those eddies which form intermittently along the edges of the 
permanent current systems) may be computed on the basis that there is no 
motion in the deep water . 
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