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ABSTRACT 

It is proposed that certain formally deterministic fluid systems which possess many 
scales of motion are observationally indistinguishable from indeterministic systems; 
specifically, that two states of the system differing initially by a small “observational 
error” will evolve into two states differing as greatly as randomly chosen states of the 
system within a finite time interval, which cannot be lengthened by reducing the 
amplitude of the initial error. The hypothesis is investigated with a simple mathe- 
matical model. An equation whose dependent variables are ensemble averages of the 
‘‘error energy” in separate scales of motion is derived from the vorticity equation which 
governs two-dimensional incompressible flow. Solutions of the equation are determined 
by numerical integration, for cases where the horizontal extent and total energy of the 
system are comparable to those of the earth’s atomsphere. 

It is found that each scale of motion possesses an intrinsic finite range of predictabi- 
lity, provided that the total energy of the system does not fall off too rapidly with 
decreasing wave length. With the chosen values of the constants, “cumulus-scale” 
motions can be predicted about one hour, “synoptic-scale” motions a few days, and the 
largest scales a few weeks in advance. The applicability of the model to real physical 
systems, including the earth’s atmosphere, is considered. 

Introduction 

The laws which govern the behavior of a 
fluid system-the principles of continuity of 
mass, momentum, and energy-are often stated 
in a form which relates the present rate of 
change of the state of the system to the present 
state of the system and its environment. Taken 
a t  face value, the laws expressed in this manner 
would imply that an isolated fluid system is 
deterministic; i.e., that the exact present state 
of the system completely determines the exact 
state at any future time. It would follows as a 
corollary that if we knew the exact present state 
of an isolated system, and if in addition we 
knew the equations of fluid dynamics in their 
exact form and possessed an exact method for 
solving them, we could predict the entire future 
of the system without error. 

This is not to imply that fluid dynamicists 
generally believe that real fluid systems are 
deterministic. It is a fundamental principle of 
quantum mechanics, for example, that real 
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systems are indeterministic, and presumably 
few fluid dynamicists would question the va- 
lidity of quantum mechanical principles merely 
because they do not customarily make use of 
them. More likely, they would simply take it 
for granted that their equations need to be 
idealized to some extent, in view of the complex- 
ity of most real fluid systems, and that proper- 
ties of the exact equations which are not perti- 
nent to the problem under study need not be 
retained. In  many familiar problems the ques- 
tion of determinism or indeterminism is of minor 
importance, and deterministic equations will 
yield acceptable results. It is often convenient 
to look upon an idealized equation as the exact 
equation for a model of a real system. A model 
may of course be deterministic by definition. 

It is in problems of prediction that the ques- 
tion of determinism would seem to be of greatest 
importance. A familiar problem in this category 
is tho practical problem of weather forecasting. 
Here also the uncertainty demanded by Heisen- 
berg’s Principle appears not to be very signifi- 
cant, because of the much greater uncertainty 
resulting from our failure to observe the state 
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of the atmosphere and formulate the governing 
equations with anything approaching perfection. 

Without intending to pass judgment upon 
Heisenberg’s Principle of Uncertainty, we shall 
assume in this study, as a working hypothesis, 
that the systems with which we are dealing are 
deterministic, and also that the exact equations 
governing the systems are known. We shall ack- 
nowledge that the state of a system cannot be 
observed without error, but we shall assume, 
again as a working hypothesis, that there is no 
limit to how small the error may be made. We 
shall then produce evidence favoring the con- 
clusion that the observable behaviour of certain 
deterministic systems is indistinguishable from 
that of indeterministic systems. 

In  order to study the errors in prediction 
which result entirely from an inadequate know- 
ledge of the initial state of a system, we shall 
consider arbitrary pairs of solutions of the 
governing equations. When we so choose, we 
may at some initial time regard one solution 
as an exact state of the system, and the other 
solution as an estimate of the same state based 
upon observations. In  general we shall refer to 
the difference between two solutions of a pair 
as an error; however, we need not restrict our 
attention to those instances in which the initial 
error resembles an error which one would be 
likely to make in observing a real system. 

If a t  some initial time an error is in some 
sense small, i t  may subsequently follow one of 
several courses. We shall classify the systems 
under consideration into three categories, ac- 
cording to the general behavior of initially 
small errors. 

1. At all future times the error remains com- 
parable to or smeller than the initial error. The 
error may be kept arbitrarily small by making 
the initial error sufficiently small. 

2. The error eventually becomes much larger 
than the initial error. At any particular future 
time the error may be made arbitrarily small 
by making the initial error sufficiently small, 
but, no matter how small the initial error (if not 
zero), the error becomes large in the sufficiently 
distant future. 

3. The error eventually becomes much larger 
than the initial error. For any particular future 
time there is a limit below which the error cannot 
be reduced, no matter how small the initial er- 
ror (if not zero) is made. 

Among real fluid systems whose behavior 

approximates that of ideal systems in the first 
category is the flow of a liquid in a rotating 
annulus, as observed in laboratory experiments 
(cf. Fowlis & Hide, 1965), when the controllable 
parameters are such that the wave patterns 
either progress without changing their shape 
or alter their shape in a periodic manner. 
Systems which have often been assumed to fall 
in the second category include the earth’s at- 
mosphere, and also the flow in a rotating annulus 
when the wave patterns vary nonperiodically. 
It is those systems in the third category which 
are observationally indistinguishable from inde- 
terministic systems. We shall present evidence 
that certain fluid systems possessing many sca- 
les of motion fall in this category, and we shall 
consider the possibility that this category in- 
cludes the earth’s atmosphere. 

Let us understand by the range of predictabil- 
ity the time interval within which the errors in 
prediction do not exceed some prechosen magni- 
tude, which for practical purposes should be 
considerably greater than the magnitude of 
typical errors of observation but less than the 
magnitude of the difference between randomly 
chosen states of the system. Systems in the first 
category then have an infinite range of predict- 
ability. Systems in the second category have 
a finite range, but this range may be incre- 
ased indefinitely by reducing the observa- 
tional errors. Systems in the third category, 
however, have an intrinsic finite range of predict- 
ability, which cannot be lengthened by better- 
ing the observations. 

Since the earth’s atmosphere has perhaps been 
subjected more than any other fluid system to 
man’s attempts to predict it, it  is not surprising 
that many studies of the range of predictability 
have dealt specifically with the atmosphere, 
and that among those studies not confined to 
the atmosphere many have yet appeared in 
meteorological journals. We shall briefly recount 
some of the principal results so far obtained. 

First of all, whether or not a system can 
be predicted a t  infinite range depends upon 
whether the general behavior of the system is 
periodic or nonperiodic, as shown by the writer 
(1963a, 1963b). This result is not restricted to 
fluid systems. Application of the result to a 
particular system usually requires that one 
observe the behavior of the system, unless one 
can somehow determine whether or not the 
general solution of the governing equations is 
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periodic. In  the case of the atmosphere, whose 
variations are a superposition of periodic and 
nonperiodic oscillations, the periodic oscilla- 
tions-principally the annual and diurnal varia- 
tions and their overtones-are predictable at 
essentially infinite range, but the range of pre- 
dictability of the remaining oscillations is finite. 

Studies aimed at  quantitatively determining 
the range of predictability of the atmosphere 
have for the most part been based upon idealized 
systems of dynamic equations. Pairs of solutions 
originating from nearly identical initial condi- 
tions are obtained by numerical integration, 
whereupon the growth rate of differences be- 
tween solutions may be determined. 

Among the more realistic systems of equations 
which have subsequently been used in predict- 
ability studies are those of Smagorinsky (1963), 
Mintz (1964), and Leith (1965). Each of these 
systems governs a model atmosphere whose 
instantaneous state is represented by the values 
of the atmospheric variables at  a grid of a 
thousand points or more, and each system, in- 
cidentally, is deterministic. The results of predi- 
ctability studies based upon these models have 
been described by Charney et al. (1966). The 
different models do not agree with one another, 
but Charney et al. conclude that a reasonable 
estimate of the time required for small errors 
to double, in the root mean square sense, is five 
days. With present-day accuracy in observing 
the state of the atmosphere, the range of pre- 
dictability would then be about two weeks. We 
might add that any system where small errors 
continue to double in a fixed length of time 
until they become large belongs in the second 
category mentioned above. 

If small errors generally require about five 
days to double, it should be possible to increase 
the range of predictability by five days simply 
by reducing the initial field of errors to half its 
size (although the task of effecting this reduc- 
tion could be enormous). In actuality, for rea- 
sons to follow, such a reduction may well in- 
crease the range of predictability by a much 
smaller amount. 

A grid of a few thousand points covering the 
surface of the globe cannot resolve features 
having diameters of a few hundred kilometers 
or less. Studies of predictability based upon 
model atmospheres have thus had the common 
shortcoming of including only the larger scales 
of motion explicitly as features of the state of 
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the atmosphere, although they have acknow- 
ledged the presence of smaller scales. In  a 
typical model atmosphere, it is assumed that 
only the statistical properties of the smaller- 
scale motions influence the larger scales, and 
that at any instant these statistical properties 
are determined by the larger-scale motions upon 
which the smaller scales are superposed. Usually 
the particular statistical properties involved are 
not even stated, and their effects are introduced 
through coefficients of turbulent viscosity and 
conductivity. Effectively a system consisting of 
only the larger scales is assumed to be deter- 
ministic. 

In  such a model the only errors in the small- 
scale statistics are those resulting from an inade- 
quate knowledge of the large-scale motions 
which determine them. That additional errors 
in the small-scale statistics ought to appear in 
more realistic models is indicated by the follow- 
ing idealized example. 

Suppose that a region having a diameter of a 
few thousand kilometers contains about 108 “ed- 
dies”, which might perhaps be associated with 
individual cumulus clouds. Although the statis- 
tical properties of a typical eddy may very 
well be determined by the large-scale motion 
in the region, each individual eddy possesses a 
life history, consisting of its generation, growth 
to maturity, and eventual decay. At any instant 
the separate eddies are at  different stages of 
their respective life histories, and therefore 
possess considerably different amounts of kinetic 
energy. If, for example, the mean value and the 
standard deviation of the kinetic energy of an 
eddy per unit mass are respectively 20,000 
and 10,000 ergs per gram, and if the separate 
eddies are at independent stages of their life 
histories, the best estimate of the average eddy 
kinetic energy over the region is 20,000 ergs per 
gram, but this estimate has an expected error 
of 10 ergs per gram. Similar considerations 
apply to other statistical properties of the ed- 
dies, including those properties which directly 
influence the larger scales of motion. 

It thus appears that even though large-scale 
motions may determine expected values of 
small-scale statistics, there remain uncertainties 
in these statistics, and hence in their influence 
upon the larger scales. The direct effect of errors 
in one scale upon errors in a scale a thousand 
times larger is apparently very small, but not 
zero. The situation is quite different with regard 
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to the direct effect of errors in one scale upon 
errors in a scale only about twice as large. Here 
so few eddies of the smaller scale can be super- 
posed upon a single eddy of the larger scale that 
the uncertainties in individual smaller-scale ed- 
dies are likely not to cancel. Errors in eddies 
with a diameter of one kilometer may thus have 
an important direct effect in producing errors 
in eddies with diameters of about two kilometers. 

The latter in turn may have an important 
direct effect upon errors in eddies with dia- 
meters of three or four kilometers, which in their 
turn may influence the errors in still larger scales. 
Ultimately the errors in the smallest scales of 
motion may lead to errors in the largest, not 
directly, but by a continual progression from 
scale to slightly larger scale. 

Although the five-day doubling time sug- 
gested by the model atmospheres may be rea- 
sonable for errors confined to the larger scales, 
it  does not appear a t  all reasonable for errors 
in the smaller scales. Consider, for example, 
two states of the atmospere which differ slightly 
in the structure of a single thunderstorm, and 
not a t  all otherwise. In  view of the rapidity with 
which thunderstorms themselves develop, it 
seems likely that the errors in this instance will 
double in a matter of minutes rather than days. 

An error in observing a thunderstorm, after 
doubling perhaps every fifteen minutes until it 
becomes large, may subsequently lead to an 
error in a larger scale of motion, which may then 
proceed to double every five days. I f  this is 
the case, cutting the original error in half would 
increase the range of predictability of the larger 
scale not by five days but by only fifteen minu- 
tes. Considerations of this sort lead us to spe- 
culate that reducing the error in estimating the 
initial state of the atmosphere to half its size 
need not increase the range of predictability by 
five days, and that there may be some systems 
where a reduction of the initial error will not 
increase the range of predictability a t  all. 

Somewhat similar views have recently been 
expressed by Robinson (1967), who notes that a 
fluid element of a given size ultimately loses 
its identity as an element, as a result of diffusion 
by smaller-scale motions. He then adopts the 
premise that the dynamic equations do not allow 
one to predict the motions of a given scale over 
a longer time interval than fluid elemenh of 
this scale maintain their identities. On this basis 
he deduces predictability times for various scales 

of motion in the atmosphere, ranging from a few 
days for synoptic-scale motions to about an hour 
for cumulus-scale motions. 

If we wish to investigate the growth of uncer- 
tainties in the very small scales, and the subse- 
quent progression of these uncertainties to very 
large scales, we need in principle do no more 
than modify the existing models of the atmo- 
sphere by greatly increasing the number of grid 
points. The many small eddies at various stages 
of their life histories will then be recognized 
individually as features of the atmosphere. How- 
ever, since the area of the earth is about 5 x 108 
kma, the vast number of grid points needed to 
resolve systems even of thunderstorm size, to- 
gether with the need for advancing the compu- 
tation in very small time increments when the 
grid points are closely spaced, makes any such 
procedure wholly unfeasible with present-day 
computing machines. 

Moreover, unless we are interested in the 
individual small-scale eddies for their own aake, 
such a procedure would be wasteful even if it 
were feasible. If we are concerned not with the 
details of small-scale errors but merely with their 
statistical properties, and their effect in pro- 
ducing errors of larger scale, we can profit from 
the assumption that systems of nearly the same 
scale have nearly the same statistical properties. 
To put this assumption to use, we may work 
with new systems of equations whose dependent 
variables are statistics. 

Although statistical properties may some- 
times be conveniently defined in terms of aver- 
ages over specified intervals of space or time, 
the mathematical work may generally be simpli- 
fied by introducing the notion of an ensemble, 
i.e., a collection of states of the system being 
studied. The desired statistics may then be 
defined in terms of averages over all members 
of the ensemble. The ensemble may often be 
required to satisfy certain conditions of regu- 
larity; for example, it  may be assumed that any 
two states of a system which are alike except for 
a translation in space occur in the ensemble 
with equal probabilities. New equations whose 
variables are ensemble statistics may be derived 
by averaging the original equations. 

This procedure was used by Thompson 
(1957) in his statistical study of the growth rate 
of small initial errors. As a measure of the differ- 
ence between two fields of motion, Thompson 
chose the total kinetic energy of the hypothe- 
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tical field obtained by subtracting one field of 
motion from the other-a quantity which we 
shall call the error kinetic energy. He then derived 
from the original governing equations expres- 
sions for the initial first and second time deriva- 
tives of the ensemble-average error kinetic 
energy. He concluded that with the existing 
observational network, small errors in observing 
the earth’s atmosphere would tend to double in 
about two days, but that the growth rate could 
be considerably reduced by increasing the den- 
sity of observations. 

By introducing assumptions which are some- 
what more drastic than Thompson’s, it is pos- 
sible to obtain expressions for the time deriva- 
tives of error kinetic energy which are valid 
for all times, rather than only initially. Also, 
since the problem in which we are interested 
involves the possible progression of errors from 
one scale of motion to another, it is desirable 
to modify Thompson’s procedure by obtaining 
expressions for the time derivatives of the error 
kinetic energies of separate scales of motion. An 
essential feature of these expressions is that they 
contain ensemble averages not only of proper- 
ties of differences between solutions but also of 
properties of the solutions themselves. The 
latter averages may be chosen a t  will, as for 
example on the basis of observations of real 
systems resembling the systems being studied. 

In  the following sections we shall deal with 
ensembles of pairs of states of a simple fluid 
system. With the aid of certain simplifying as- 
sumptions we shall develop a system of equa- 
tions whose dependent variables are ensemble- 
average error kinetic energies of different scales 
of motion. We shall then obtain solutions of 
these eqations by numerical integration, for 
different choices of initial errors, and different 
choices of basic statistical properties of the 
system under study. From a study of these 
solutions we shall draw certain conclusions re- 
garding the predictability of the system. Finally 
we shall consider the extent to which these 
conclusions also apply to real fluid systems, in- 
cluding the earth’s atmosphere. 

Formulation of the equations 

In  this section we shall apply our proposed 
procedure to an ensemble of fields of two- 
dimensional incompressible flow in an infinite 
plane. Any such field is completely specified by 
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a stream function y(x, y, t ) ,  where x and y 
are rectangular Cartesian coordinates and t is 
time. We shall let the flow be governed by the 
voticity equation 

(1) a(v*y)/at  = - J ( y ,  V * y ) ,  

where V* =a*/ax* -4a8/aya and J denotes a Ja- 
cobian with respect to x and y. 

I f  y and cy + E  denote two separate fields of 
flow, their difference E is governed by the equa- 
tion 

a(V*E)/at = - J(v ,  V’E) -J(E, V*y) -J(E, 0%). (2) 

I f  furthermore the “error” E can be regarded as 
small compared to ly, it will be governed approxi- 
mately by the linearized equation 

a(V*e)/at = - J ( y ,  Vae)  - J ( E ,  V*y) (3) 

for such time as it remains small. We shall make 
no further explicit use of (2), recognizing, how- 
ever, that (3) is not wholly appropriate when E 

is large. 
We shall consider an ensemble m0 of stream- 

function fields y(z,  y, t ) .  Corresponding to each 
y in m0, we shall also consider an ensemble m, of error fields ~ ( x ,  y, t ) .  From these ensem- 
bles we shall form a grand ensemble m whose 
members are all pairs ( y ,  E )  for which y is a 
member of mo and E is a member of the cor- 
responding m,. 

We shall require that at some initial time to 
the separate ensembles m, be identical with 
one another, i.e., that y and E be statistically 
independent within the ensemble m. We shall 
demand furthermore that a t  time to  the ensemble mo be homogeneous, i.e., that for any distances 
E and 7 the field y(x + E ,  y + q ,  to )  shall occur in mo with the same probability as the field 
y(z,  y, to ) .  We shall likewise demand that each 
ensemble m, be homogeneous at time to. 

It follows immediately that 1.n is homogene- 
ous at time to. It follows also from (1) and (3) 
that mo and m will remain homogeneous as t 
increases. In  particular, if a bar denotes an 
average over all members of 722, the means 
y (x ,  y, t )  and E(Z ,  y, t )  will be functions of t alone, 
and may without loss of generality be assumed 
to vanish, while the covariances y ( x ,  y, t )  

y ( z  + E ,  Y + 7, t )  and E ( Z ,  Y, t )  E ( Z  + 5, y + 7, t )  will 
be functions only of 5, 7, and t .  It does not 
follow, however, that the separate ensembles 

-- 
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m, will remain homogeneous as t increase, nor 
that they will remain identical with one another. 

A quantity of fundamental importance is the 
ensemble-average kinetic energy per unit mass, 

E =  4 V y .  Vy, (4) 

which we shall simply call the energy. According 
to ( l ) ,  E will not vary with time. The ensemble- 
average error kinetic energy 

P = gvE . VE (5) 

could be used as a measure of the difference 
between two fields, but it will be more conve- 
nient to use the quantity 

G = 8 VE’ . Vd, (6) 

E‘ being the departure of E from its average 
value over the ensemble m, (not m). With (3) 
as a governing equation, G will be time-variable. 
In  the remainder of this work we shall use the 
expression error energy to denote G rather than 
F .  When t exceeds to only slightly, G is hardly 
distinguishable from F ,  but, if  there is no pre- 
dictability a t  sufficiently long range, cf - E  as 
t + 00, while F -2E .  Since y is a constant as far 
as averaging over the ensemble m, is concerned, 
the governing equation for E’ is 

a(v%’)/at = - J ( y ,  VZE’) - J ( E ’ ,  VZy), (7)  

identical in form with (3). 
Since statistics over m do not differ from one 

location to another, while it is to be anticipated 
that different scales of motion in the field of E‘ 

will tend to grow a t  different rates, it will be 
advantageous to transform equation (7)  into 
spectral form. For this purpose, we choose a 
distance D, which is to be extremely large 
compared to the dimensions of the largest im- 
portant scale of motion in the fields of v and E‘. 

We then assume that y and E’ vary periodically 
in the directions of the coordinate axes, with a 
fundamental wave length 2 n D .  We may then 
let 

v = Z S K  exp ( i K . r ) ,  (8) 

E‘ = 2 eK exp (iK r ) ,  (9) 
K 

where r and K are two-dimensional vectors with 
components (2, y) and (K=,  K,) respectively, 

and the sums run over all vectors for which the 
products DK, and DKy are integers. The re- 
quirement that v and E‘ be real demands that 
S-K and e-K be the complex conjugates of SK 

The condition of homogeneity now demands 
that SK and eKvanish, while SKSL and eK eL vanish 
unless H + L  = O .  The energy and error energy 
thus become 

and eg. 

- - ~ ~ 

E = g 2 (10) 

G = 4 K2eKe-K (11) 

K 

- 

where Ka = K . K. 

obtain the spectral form of (7),  
Upon substituting (8)  and (9) into (7)  we 

deK/dt=CAKLSK-LeL, (12) 
L 

where 

AKL= K-’[(K - L)’ - L2] (K x L) (13) 

Here K x L denotes the scalar K,L, -KyLz, 
which would be regarded as one component of 
K x L if H and L were three-dimensional vectors. 

Having established (7)  and subsequently (12), 
we shall discard ( l ) ,  although we shall still re- 
quire that the time derivative of ly be quadratic. 
We shall then have no governing equation for 
y,  and we shall assume instead that the ensemble m, is stationary, i.e., that the statistical pro- 
perties of y do not vary with time, and may be 
prespecified. Statistical properties of E’,  on the 
other hand, will be governed by equations to 
be derived from (12). 

We now seek a closed system of equations in 
which the dependent variables include the 
quantities eKe-K. From (12), ince A-K,-L =A,,, 
it follows that 
- 

d(eKe-K)/dt= CAKL(Sg-LeLe-K+SL-Ke-Le , )  
L 

(14) 

The right hand side of (14) contains joint 
statistics of E’ and y .  As already noted, we can- 
not assume in general that y and &‘ are statisti- 
cally independent, except at time to. For exam- 
ple, if we assumed that SKeLe, =s~_eLeM for all 
K,L,M, we would find, since SK=O, that 
SKeLeM = 0 for all K, L, M, whence, according to 
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equation (14), eKe-K would not vary with time. 
We must therefore retain such statistics as 
sK-LeLe-K as additional dependent variables. 

Again from (12), we find that 

d (SK-L eL e- K)/dt = (d SK-,/dt) eLe- 

+ ~ A K , s K - L s M - , ~ L ~ - M  
M 

(15) 

Additional joint statistics thus appear. 
Although we have seen that linear functions 

of y and quadratic functions of E’ cannot be 
statistically independent, we shall now introduce 
the less restrictive assumption that quadratic 
functions of y and quadratic functions of E’ 

remain independent, i.e., that 
~~ 

SK SL eM eN = SKSL eM eN (16) 

for all K, L, M, N. This relation cannot be rigor- 
ously defended on the basis of equation (12). 
It must therefore be regarded as simply a 
working approximation. 
, Equation (16) could be derived from the 
quasi-normal approximation, which has some- 
times been used in theoretical studies of turbul- 
ence to express fourth-degree statistics in terms 
of quadratic statistics, and which has not yield- 
ed very realistic results. It is nevertheless 
much less restrictive than the quasi-normal ap- 
proximation, and need not possess its objec- 
tionable properties, since nothing is said about 
fourth-degree functions of y alone, or E‘ alone. 
The assumption that quadratic properties of y 
and quadratic properties of E are independent 
is unrealistic when E becomes large; hence our 
use of E’ instead of E .  In  view of the homogeneity 
of the ensembles, it follows further that 

____ _ _ -  
SKSLeMeN= 8KLdMNSKS-K eMe-M (17) 

Because dSK_,/dt is assumed to be quadratic, 
and because d&-,/dt is assumed to vanish, the 
first term on the right of (15) vanishes. Applying 
equation (17) to the remaining terms, we find 
that 

d(SK-LeLe-K)/dt - =Sx-LSL-x - 
__ - 

x ( A K L ~ L ~ - L + A L K ~ K ~ - K )  (18) 

Tellus XXI (1969), 3 

Since SK-LSK-L is a known quantity, which does 
not vary with time, equations (14) and (18) 
form a closed system of first-order linear equa- 
tions. 

Moreover, the quantities SK-LeKe-L are easily 
eliminated. Differentiating (14) and substituting 
from (18), we find that 

__ - 
x (A~LeLe-L+AKLALxexe-K). 

(19) 
Although equation (19) is simpler than (12) in 

that the coefficients are independent of time, 
the number of dependent variables is no less, 
and the process of solving it in its present form 
would involve an equally prohibitive amount of 
computation. The principal simplifications to be 
gained by using an equation in which the de- 
pendent variables are statistics comes from the 
further assumptions that SKS-, and eKe-K vary 
in a smooth manner with K, so that relatively 
few values of K need be considered explicitly. 
In  order to  incorporate these assumptions we 
assume that the distance D is so large, and 
hence that the values of L over which the sum- 
mation in (19) is performed are so closely spaced, 
that the summation may be replaced by an 
integral. We introduce functions X’(K) and 
Z’(K) such that 

~- 

X ( K )  dKzdK, ,  (20) 

(21) Z ’ ( K )  dKzdK,. 

Comparing (20) and (21) with (10) and ( l l ) ,  and 
noting that there are Da terms in the summa- 
tions in (10) and (11) for each unit increase 
of K ,  and K,, we see that X’(K) and Z’(K) 
are the limiting forms of t D 2 K e S ~ S - ~  and 
4D2KaeKe-K as D -  00. Thus equation (19) 
becomes 

- 

00 

d’Z‘(K)/dt’= [” [ ~ ( K - I A - ~ X ’ ( K - L )  
J - w J - w  
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296 E. I?. LORENZ 

is isotropic at time to, i.e., that for any angle 
8 the field y(a cos 8 -y sin 8 ,  z sin 8 +y cos 8, 
to)  occurs in m, with the same probability as 
the field y(z, y, to).  Likewise we assume that 
each ensemble my is isotropic a t  time to. It then 
follows that m is isotropic a t  all times, so that 
at any time X’(K) and Z ( K )  depend only upon 
the magnitude K of K. Actually the assumption 
of isotropy is incompatible with equations (8) 
and (9), when D is finite, but in the limit as 
D --f 00 it  leads to no inconsistencies. We might 
add that the introduction of a distance D is 
simply a means of avoiding the more rigorous 
but more cumbersome procedure of deriving a 
governing equation for the covariance 

y. t )  E ’ ( Z  + 5, Y + 7, t ) ,  
and then taking the Fourier transform of this 
equation. 

Letting X(K) and Z ( K )  denote the energy 
and the error energy per unit scalar wave num- 
ber, multiplied by the wave number, i.e., ener- 
gies per unit logarithm of wave number, 

E = X(K)d(log K )  f (23) 

G = /-==z(K)d(log K),  (24) 

whereupon X(K) = 2nK2X’(K) and Z ( K )  = 

2nKzZ’(K).  Denoting the magnitude of K - L in 
( 2 % )  by M ,  we find it  convenient to use log L 
and log M in place of L, and Ly as variables of 
integration. thereby eliminating explicit refer- 
ence to vector components. We note that 

dL,dL, = (K x L)-‘L2M2d(log L)d(log M ) ,  

while 
(25) 

K X L  =2a(K, L, M )  = * [ ( K  i L  + M) ( K  i L  - M )  

(26) 

i.e, a(K, L, M )  is the area of a triangle whose 
sides are K, L, M .  Introducing the values of 
A,, and A,, from (13) into ( 2 % ) ,  and including 
an additional factor of 2 because, given K,  each 
pair (log L, log M )  corresponds to two separate 
pairs (Lz, Ly), we obtain the governing equation 

d2Z(K)/dta 

= /-m>Cl(K,L)Z(L) - C,W,L)Z(K)I d(log L), 

x ( K - L + M ) (  - K  +L +M)]*, 

(27) 

B,(K, L, M )  = 8n-1M-zL-p(M2 -L2)’u(K, L, M )  

(29) 

B2(K,  L, M)  = 8n-’M-aK-2(Ma -L2) (Mz - K 2 )  

x a(K,  L, M ) .  (30) 

By defining Bl(K, L, M) and B,(K, L, M )  to be 
zero when one the quantities K, L, M is greater 
than the sum of the other two, we may replace 
the limits of integration in (28) by - ca and co. 

By choosing suitable analytic expressions for 
X(M), we could evaluate the integrals in (%8). 
We shall not do this, since we shall be interested 
in some spectral functions X(M) which are not 
conveniently expressed analytically. In the fol- 
lowing section we shall put equation (27) into a 
form suitable for numerical solution. At that 
point we can introduce the assumption that 
X(K) and Z ( K )  are smoothly varying functions 
of K. 

Meanwhile we can derive from (27) and (24) 
the general relation 

xZ(L)X(M)d(log M)d(log L). (31) 

The implications of equation (31) are of consider- 
able interest. First of all, the integrand is non- 
negative. Thus, in general, if dB/dt vanishes 
initially, G will subsequently increase at an ever 
increasing rate, for such time as E‘ remains small 
enough for the linearized equation to be valid. 
We note, however, that only those products 
Z(L)X(M) for which L < M actually contribute 
to the integral in (31). Thus the growth of G 
is favored by large-scale features in the field of 
E‘ together with small-scale features in the field 
of y. In the special case where all the features of 
E‘ are initially of smaller scale than any of the 
features of cy, there will be no growth as long as 
this condition prevails-a result also obtained 
by Thompson (1957). 

Tellus XXI (1969), 3 

 21533490, 1969, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/j.2153-3490.1969.tb00444.x by C

ochrane G
reece, W

iley O
nline L

ibrary on [19/08/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



PREDICTABILITY OF FLOW POSSESSING MANY SCALES OF MOTION 297 

Arrangement of the equations for 
numerical solution 

In  this section we shall explicitly introduce 
the assumption that X ( K )  and Z ( K )  vary 
smoothly with K ,  and may adequately be repre- 
sented by relatively short sequences X, ,  ..., Xn 
and Z,, ..., 2,. We begin by noting that since 
the energy E given by (23) is finite, X ( K )  must 
approach zero as log K -+ - 00 and also as log 
K -f 00. We may therefore choose a wave number 
N ,  so smell that X ( K )  is negligibly small when 
K < No.  We next choose a resolution factor e,  
and let N ,  =@,No. We may then choose an 
integer n large enough so that X ( R )  is again 
negligibly small when K > N,. 

We now let Z,, ..., 2, denote the error ener- 
gies within the n resolution intervals, i.e., 

z k =  Iuk-lZ(K)d(log K ) ,  (32) 

where a, =log Nk. I f  we then integrate both 
sides of (27) between the limits a,-., and a,, and 
assume in evaluating the right hand side that 
Z ( K )  = o-'Z, when log K lies between a,-' and 
a,, where u =log e,  we find that 

n 

be evaluated from (36), whereupon equation (33) 
may be solved numerically. 

A few simplifications are possible. First, from 
(29) and (30) it follows that 

B , ( K ,  L, M )  = M * B , ( K / M ,  L /M,  1). (38) 

Hence (36) may be replaced by 

n 

c ( j ) k l  = m i l  2 B ( l ) k - m . l - m N ~ X m ,  (39) 

ka lu 

I(k-1) u / ( I  - I)u B'(K'' L'' ') 
where B,j) 0-l 

xd(1og L')d(log K').  (40) 

The constants B(,)kl must be evaluated for 
negative as well as positive values of k and I ,  
but still the number of these constants is far less 
than the number of constants B ( , , , , , ,  which 
would otherwise be required. 

We may also let 
W 

B k l - B ( l ) k I  2 B ( 2 ) k m '  (41) 
m = - w  

n 
If We then let c k , =  2 Bk-m,I -mNkXm,  (42) 

m = l  

x d(1og K ) .  (34) 

(35) We next let X ,  = uX(N,), 

and approximate the integral in (28) by a sum 
over the values a,, ... an of log M .  We then find 
in view of (34) that 

n 

c(,)kI = 2 B ( l ) k l m X m ,  (36) 
m=1 

n 

dPZk/dts =. 2 ck,z,. (43) 
I = I  

The procedure for solving the system of .n 
equations (43) as it stands is straightforward. 
The equation is first replaced by a system of 2n 
first-order equations 

n 

dWk/dt = 2 ckiz,. (45) 
I = 1  

A time increment At small enough to insure 
computational stability is then chosen. A num- 
ber of forward-difference or centered-difference 
schemes may now be used; we have chosen the 
following simple second-order scheme: 

z k ( t + ! t A t ) - z k ( t )  + ! t A t W k ( t ) ,  (46) Since (29) and (30) define B,(K, L, N,) as known 

evaluated once and for all from (37). After 
XI, ..., Xn are chosen, the constants C,,),, may 

Tellus XXI (1909), 3 

analytic functions, the constants B(,),,, may be z , ( t + A t ) - z k ( t ) + A t W k ( t +  ) A t ) ,  (47) 

with analogous equations for W,. 
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298 E. N. LORENZ 

'I4T I12 

4 - c -  

:L 
Fig. 1. Values of K' and L' (shaded area) for which 
functions B,(K', L', 1) and B,(K', L', 1) differ from 
zero. Within each small square K' and L' vary by 
factor of 2. 

The reader may wonder why we have chosen 
to define the variables 2, by (32), rather than 
using the apparently simpler procedure of letting 
Z,, ..., 2, be the values of Z ( K )  for 12 specific 
values of K.  In  the latter case the constants 
B,,,,, could be defined as the values of B,(K', L', 
1) for specific values of K' and L', and it  would 
be unnecessary to perform the integrations in- 
dicated in (40). Actually the later procedure 
would prove quite unsatisfactory, because of 
the special properties of B, and B,. 

In Fig. 1, the coordinates are L' and K', on a 
logarithmic scale. Within each small square L' 
and K' vary by a factor of two. The shaded 
region covers those values of L' and K' for 
which B,(K', L', 1)  and B 2 ( K ,  L', 1) differ from 
zero. On the boundary of this region B, and B ,  
vanish, but their inward normal derivatives are 
infinite, except at special points. 

For a resolution factor e =2, the constants 
I?,,,,, as defined by (40) are proportional to the 
average values of B,(K', L', 1) over small 
squares in Fig. 1. It is evident that these aver- 
ages may differ greatly from the values of 
B,(K',L', 1) at the vertices of squares. The 
lower right portion of the figure, for example, 
reveals that not only the squares on the main 
diagonal (9' =L') but also the squares on the 
two adjacent diagonals intersect the shaded 

region; although the areas of intersection be- 
come very small as L' and L' become large, the 
values of B,(K', L', 1) become large so rapidly 
that the values of Bkek-, and B,.,,, as defined 
by (40) and (41) also become large. 

In  the procedure which we rejected, the 
constants B,,,,, would be proportional to the 
values of B,(K', L', 1) at the vertices of small 
squares. As K and L' become large, only the 
vertices on the main diagonal remain within the 
shaded region. Thus Bkok-l and Bk,k+l would be 
zero for large values of k. 

Physically, the procedure which we rejected 
would have allowed initial errors in the smaller 
scales to propagate to the larger scales only 
through the interactions of wave lengths differ- 
ing by a whole number of resolution factors. 
The possibly much greater direct influence of 
one wave length upon a wave length which is 
only a fraction of a resolution factor longer is 
admitted by the procedure which we have 
chosen. The influence of the longer wave lengths 
within one resolution interval upon the shorter 
wave lengths within the next resolution interval 
is represented by the small areas of intersection 
of the off-diagonal squares with the shaded 
area, in Fig. 1. 

Incorporation of the  nonlinear effects 

The matrix formed by the coefficients C,, in 
(43) possesses m eigenvalues At, ..., A:. Except in 
the unlikely case that two of these eigenvalues 
are exactly equal, there will exist n linear com- 
binations 

n 

2; = 2 ak122, (48) 
2=1 

or normal modes, such that the solution of (43) 
for which dZ,/dt = 0 when t =to  may be written 

2; = Z ; ( t , )  cosh Ak(t - to )  149) 

Unless the eigenvalue A: is real and negative (or 
zero), Ak has a nonvanishing real part, and the 
corresponding mode 2; will be indicated as in- 
creasing without limit. 

Actually, if an initially small error E is subject 
to amplification, it should ultimately become no 
larger than the difference between two randomly 
chosen stream-function fields. In  that event, (2' 
should become no larger than E,  and, in fact, 
for any value of K,Z(K)  should become no 

Tellus XXI (1969), 3 
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PREDICTABILITY OF FLOW POSSESSING MANY SCALES OF MOTION 299 

larger than X ( K ) .  Thus (43) is applicable in its 
present form only when each 2, is small. 

In  general the different normal modes will 
amplify at different rates. In  some systems the 
most rapidly growing modes represent features 
of the smallest scales; in the atmosphere, for 
example, the uncertainties in systems of cumu- 
lus scale may double in a matter of minutes, 
while those in synoptic-scale systems may re- 
quire a matter of days. It is evident, then, 
that unless the initial uncertainties are heavily 
concentrated in the most slowly amplifying or 
non-amplifying modes, the most rapidly ampli- 
fying modes will reach their maximum allowable 
size, and (43) will cease to be applicable, at a 
time when the more slowly amplifying modes 
have experienced almost no growth at  all. 

If (43) is to be made applicable to all scales 
of motion, some modifications are needed. The 
most obvious procedure would be to include the 
original nonlinear terms, which, after all, are 
responsible for the eventual cessation of growth; 
i.e., equation (2) could be used instead of (3). 
The derivation of an alternative equation to 
(43) would, however, be a complicated task. 

We shall adopt a simpler procedure. We first 
choose 

yk i (xk  +xk+l) (50)  

as a measure of the energy in the kth resolution 
interval, so that E may be approximated either 
by I: X ,  or C Y,. We then assume that for each 
value of k individually, (43) holds as long aa 
Zk< Yk. Once 2, acquires the value Yk, it is 
assumed to retain this value for the remainder 
of time. 

This procedure has obvious computational 
advantages. Initially, to insure computational 
stability, the time increment At must be chosen 
small enough so that the growth of the most 
rapidly amplifying variable from its initial small 
value to its ultimate large value will require a 
reasonably large number of iterations. Once 
this variable has attained its f inal  value, we 
effectively deal with a system of 2(n - 1) non- 
homogeneous equations instead of 2n homoge- 
neous equations, and At may be increased, 
provided that it is kept small enough to acco- 
modate the most rapidly amplifying remaining 
variable. Each time a variable reaches its ulti- 
mate value, At may be further incrmsed, so 
that the ultimate growth of the most slowly 
amplifying variable may take place in a reason- 

Tellus XXI (1969), 3 

ably small number of iterations, rather than 
the myriad which would be required if At were 
held fixed. 

Introduction of numerical values 

Before evaluating the constants Bkl, we must 
choose a resolution factor e. In  this study we 
have chosen e = 2, so that each “scale of motion” 
covers an octave of the spectrum. 

The double integral in (40) is somewhat awk- 
ward to evaluate. We have determined values 
of B(,,,, by summing the values of the integrand 
B,(K‘, L’, 1) at a large number of points within 
the shaded portion of each square in Fig. 1. 

It is not necessary to determine individual 
values of B,,),,, since only sums of these values 
appear in (41). Obviously B,, =B(l)kl if Z+k. 
From (40) and (41) and the formulas (29) and 
(30) for B, and B,, it may be shown that 

i.e., if 1 >O, B , ,  is to be chosen so that the sum 
of the constants B,, corresponding to a vertical 
column of squares in Fig. 1 is zero. 

We must next choose numerical values for the 
minimum wave number N o  and the spectral 
function X,, in order to determine numerical 
values of the constants Ckl. If we wish to com- 
pare our model with real physical systems, we 
must also specify the units in which N o  and X ,  
are measured. 

It will be convenient to choose the units so 
that N o  = 1 and E = 1. The units of distance and 
time are then N,’ and T = N i ‘ E - k  Alterna- 
tively, we may choose the units so that E, = 1, 
where E, is some typical value of E. 

Since we are particularly interested in at- 
mospheric predictability, we shall choose dimen- 
sional values of N o  and E appropriate to the 
earth‘s atmosphere. Accordingly, we shall let 
N i l  equal the earth’s radius, 6.37 x 106m, 
whereupon wave lengths greater than half the 
earth’s circumference contribute to Y ,  and Z,, 
wave lengths between one fourth and one half 
the circumference contribute to Y ,  and Z,,  etc. 

The total kinetic energy of the atmosphere is 
not precisely known. Estimates of the root- 
mean-square wind velocity V based upon large 
collections of upper-level wind data (Oort 1964. 
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300 E. N. LOREN2 

Table 1. Maximun wave length 2nNi’ included in 
scale k ,  and energy (dimensionless units) in scale 
k in Experiments A ,  B, C and Experiment D 

k 2 n N i ’  Y k : E x .  A,B,C Y k :  Ex. D 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

40,000 km 
20,000 
10,000 
5,000 
2,500 
1,250 

625 
312 
156 
78 
39 

19,531 m 
9,766 
4,883 
2,441 

.0925 

.1970 

.1935 

.1566 

.1160 

.0817 

.0558 

.0373 

.0246 

.0160 

.0104 

.0067 

.0043 

.0027 

.0017 

.0925 

.1970 

.1935 

.1566 

.1160 

.0694 

.0299 

.0126 

.0053 

.0022 

.000879 

.000356 

.000143 

.000057 

.000022 
16 1,221 .0011 .000009 
17 610 .0007 .000004 
18 305 .0004 .000001 
19 153 .0003 .oooooo 
20 76 .0002 .oooooo 
21 38 .0001 .oooooo 
- 

Krueger et al. 1965) range from 16 m sec-1 to 
23  m sec-I; these would lead to values of T 
ranging from 5.6 x lo5 sec to 3.9 x los sec. It 
will be convenient to use a time unit T = 219 = 

524,288 sec, or about 6 days, whereupon E = 

148 m2 sec-2 and V = 17.2 m sec-l. 
I f  the total kinetic energy of the atmosphere 

is somewhat uncertain, the allotment of this 
energy to different portions of the spectrum is 
much less certain. We shall therefore simply 
choose an analytic expression for X,, which 
makes X ,  = 0, gives Yk a maximum in the long- 
wave or synoptic scale (k = 2,3,4),  and allows 
X ,  to fall off according to some power law for 

large values of k. The “minus-five-thirds law” 
for the energy per unit wave number, which 
appears to be characteristic of certain turbulent 
fluids, and which would make the energy per 
unit logarithm of wave number vary as the 
-2/3 power of wave number, seems to place a 

reasonable amount of energy in the cumulus 
scales (say k = 13,14,15). Accordingly, in our 
first experiments we shall let 

the factor c being chosen to make E = 1. 
Table 1 contains values of Yk as determined 

by formulas (52) and (50). We see that nearly 
half of the energy is contained in the first three 
scales, with wave lengths greater than 5000 km, 
while about one per cent of the energy is con- 
tained in wave lengths less than 10 km. 

Table 2 shows the corresponding values of the 
constants Ckl. For brevity it is confined to 
values of k and 1 from 1 to 9, but it reveals 
several distinctive features which also hold for 
larger values. The negative numbers on the 
main diagonal, together with positive numbers 
off the diagonal, indicate that errors initially 
confined to one scale of motion will spread to  
neighboring scales. This spread will be most 
rapid for the smallest scales, as indicated by the 
larger numbers in the lower portion of the table. 
The positive sum in each column indicates that  
the error energy will grow. 

The very small values in the upper right indi- 
cate that there is virtually no direct effect of 
small-scale errors upon larger scales, except 
upon scales only slightly larger. The large num- 
bers in the lower portion indicate a strong direct 
effect of large-scale errors upon smaller scales. 
From the point of view of a single small-scale 
eddy, the total large-scale flow is virtually 

Table 2. Values of  coefficients Ck,, for k ,  1 = 1, ..., 9, used i n  Experiments A ,  B, C 
~ ~~~ ~~ 

k 1 = 1  2 3 4 5 6 7 8 9 

0.19 
2.86 

14.42 

45.8 
133.6 
372.4 

1010 
2686 
7053 

0.26 
0.41 

10.22 

44.9 
133.0 
372.0 

1009 
2686 
7053 

0.07 
1.80 

- 1.21 

33.1 
130.4 
370.3 

1008 
2686 
7053 

0.02 
0.23 
8.73 

- 12.6 
101.3 
362.3 

1004 
2683 
7052 

0.00 
0.05 
0.68 

34.1 
- 61.8 
298.1 

983 
2670 
7044 

0.00 
0.01 
0.13 

1.9 
117.8 

- 237.1 
851 

2615 
7010 

0.00 
0.00 
0.02 

0.4 
5.3 

375.1 
- 804 
2373 
6864 

0.00 0.00 
0.00 0.00 
0.00 0.00 

0.1 0.0 
1.0 0.2 

14.1 2.5 
1131 37 

- 2526 3280 
6496 -7538 

Tellus XXI (1969), 3 
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PREDICTABILITY OF FLOW POSSESSINQ MAPJY SCALES OF MOTION 30 1 

rectilinear, and simply displaces the eddy; thus 
the magnitude of the error in predicting the 
position of the eddy will depend upon the magni- 
tude of the large-scale error, but not upon its 
distribution among the various scales, whence 
the numbers in a given row in Table 2, to the 
left of the main diagonal, are nearly equal. 

As for larger values of k and I, C,.,,  is very 
close to zero, C,,, , = 209,600,000, and C,,,, ,, = 

- 366,900,000, for example. 

Numerical experiments 

In  our first numerical integration (Experi- 
ment A), we consider the behavior of an error 
which initially has a magnitude of 2-16E and 
is confined to the smallest scale of motion. The 
initial root-mean-square velocity error is then 
2--8V1, or about 7 cm sec-I. We know of no 
method, incidentally, by which the smaller 
scales of motion in real fluid systems can be 
observed with comparable accuracy. 

We now encounter one difficulty. I f  the error 
energy were initially confined to some inter- 
mediate scale, say the mth scale, the total error 
energy would shortly afterward increase, as 
indicated by the positive sum of the numbers in 
the mth column of Table 2, but the amount in 
the mth scale would decrease and spread to 
adjacent scales, as indicated by the negative 
numbers on the main diagonal in Table 2 and 
the positive numbers on the adjacent diagonals. 
Subsequently some of the error energy which 
has spread to scales m - 1 and m + 1 would 
spread back to scale m. However, when the 
initial error is confined to the smallest scale, 
the error energy which should spread to even 
smaller scales is simply lost, and the total error 
energy may decrease. This loss of energy is ficti- 
tious, resulting entirely from not including 
scales beyond n. 

I n  the present instance we can resolve the 
difficulty be retaining more scales than we 
actually wish to study. Accordingly, we retain 
21 scales, but assume that the results are valid 
only for scales 1 through 20. Initially, then, 

Through trial and error we have found that 
a suitable initial time increment At is 2-16 
units, or 8 seconds. As each 2, successively 
reaches its limiting value Yk,  we increase At 
by a factor 2* = 1.5874, until, when only 2, has 

Tellus XXI (1969), 3 

2, = ... =z,, =o, z,, =2-16, z,, =o. 

failed to attain its maximum, At = 2-’” units = 

23 hours. 
Experiment A was completed with 109 itera- 

tions. After 22 iterations or 2.9 minutes, when 
Z,, becomes as large as Y,,, only the variables 
Z,, through Z,, have become appreciably greater 
than zero. It was found, in fact, that throughout 
the experiment not more than five of the variab- 
les which had not attained their maxima were 
noticeably different from zero. Subsequent ex- 
periments which capitalized on this result by 
varying only a few variables during each itera- 
tion were performed with as few as 20,000 arith- 
metic operations, in contrast to the 10lp opera- 
tions typical of many of the large general-circu- 
lation experiments. In  fact, if no digital com- 
puter had been available, Experiment A could 
have been performed with a desk calculator in a 
few days (excluding the time needed for the 
original determination of the coefficients C k l ) .  

Whereas Z,, and Z,, oscillate to some extent 
before reaching their maxima, all the remaining 
variables increase in a monotone fashion. Actu- 
ally each variable passes its maximum in the 
middle of a time step, and overshoots; it is then 
set back to its proper maximum value before 
the next iteration is begun. The time tk at which 
2, passes Yk is readily estimated by linear inter- 
polation. 

The values of tk for Experiment A appear in 
Table 3. Errors in the smallest scales evidently 
develop and reach their maximum intensity in 
the course of a few minutes. The cumulus scales 
(13-15) have a range of predictability of almost 
an hour, while the synoptic-scale motions can 
be predicted a few days ahead. Predictability 
of the largest scale disappears after 16.8 days. 

Fig. 2 summarizes the results of Experiment 
A. The error-energy spectra are shown a t  se- 
lected times. In  order to obtain sufficient detail 
in the smaller scales, and a t  the same time allow 
equal areas in the diagram to represent equal 
amounts of energy, we have plotted interpolated 
values of the error energy per unit wave number, 
multiplied by the 5/4 power of wave number, 
i.e., K*Z(K) ,  against K - * .  The heavy curve is 

The area under a thin curve represents the 
total error energy G at the indicated time, 
while the area under the heavy curve represents 
E. The error energy is seen to double very 
quickly while it is confined to the smaller scales, 
but by three days B has attained one half the 

K *x(K) .  
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302 E. N. LORENZ 

Table 3. Range of predictability t, for scale k aa 
determined in Experiments A ,  B ,  D 

k t,: Ex. A t,: Ex. B t,: Ex. D 

21 
20 
19 
18 
17 
16 
15 
14 
13 
12 
11 
10 
9 
8 
7 
6 
5 
4 
3 
2 
1 

2.9 min 
3.1 
4.0 
5.7 
8.4 

13.0 
20.3 
32.1 
51.1 

1.3 hr 
2.2 
3.6 
5.8 
9.5 

15.7 
1.1 day 
1.8 
3.2 
5.6 

10.1 
16.8 

1.8 min 
2.0 
2.9 
4,4 
7.1 

11.6 
18.8 
30.6 
49.5 

1.3 hr 
2.2 
3.5 
5.7 
9 .4  

15.6 
1.1 day 
1.8 
3.2 
5.6 

10.1 
16.7 

1.5 min 
3.1 
6.2 

13.0 
46.5 

1.8 hr 
3.3 
5.5 
7.6 

10.7 
14.5 
19.4 

1.1 day 
1.4 
1.8 
2.3 
2.9 
4.2 
6 . 5  

11.1 
17.6 

value of E ,  and its subsequent growth is much 
less rapid. 

From a closer study of Table 3 we can infer 
what the result would have been if much 
smaller scales of motion had been included. 
Except for the smallest scales retained, where 
the effect of omitting still smaller scales is 
noticeable, and the very largest scales, where 
X ,  does not conform to a - 3  law, successive 
differences t ,  - t k + ,  differ by a factor of about 
2- 8 .  If one chooses to reevaluate t ,  by summing 
the terms of the sequence t , - t , ,  t , - t , ,  ..., one 
is effectively summing a truncated geometric 
series. If n had been chosen larger, the series 
would simply contain additional terms. Even 
with n = 00, this series would converge to a 
value only about 2 minutes greater than its 
value for n = 2 0 .  It thus appears that with an 
arbitrarily small initial error, confined to an 
arbitrarily small scale, the range of predict- 
ability of the present model is still about 16.8 
days. I f  we can trust the various assumptions 
used in deriving and solving the equations, we 
must conclude that the system falls in the third 
category previously enumerated, and possesses 
an intrinsic finite range of predictability. 

In the second experiment (Experiment B), 
whose results are also summarized in Table 3, 
we have again chosen an initial error of magni- 

tude 2-l6E, but we have confined the error to 
the largest scale of motion. Thus initially 2, = 

216, 2, = ... =Z,, = 0. Although errors in the 
larger scales do not amplify rapidly, they 
quickly induce errors in the smaller scales. Them 
then behave in essentially the same manner as if 
they had been present initially. As a result, the 
two experiments indicate comparable ranges of 
predictability for all scales of motion. Evidently 
when the initial error is small enough, its spec- 
trum has little effect upon the range of predict- 
ability. 

Our final experiment (Experiment C) using 
the same spectral function X ,  is designed to 
reveal how much predictability one may expect 
to gain by reducing the initial error by a factor 
of two. The experiment consists of eight sepa- 
rate runs (Runs C l ,  ..., (28); in the jth run the 
initial value of each 2, is 2 - ” Y k .  Thus the root- 
mean-square velocity error in the jth run is 

For Run C1 it  was necessary to choose an 
initial time increment At of 2-22 units = 4 sec. 
This was doubled each time the error in one 
scale attained its maximum value. Successive 
runs used successively larger initial time incre- 
ments, increased during the runs by successively 
smaller factors, until Runs C7 and C8 used the 
same time-increment scheme as Experiments A 
and B. 

The results appear in Table 4. Turning first 
to Run C1, we note that even with aninitial 
root-mean-square velocity error of v / 2 ,  or nearly 
9 m sec-l, the synoptic-scale systems have a 
range of predictability of a day or more, while 
the planetary scales retain some predictability 
for more than a week. With the smaller-scale 
systems the situation is different. Systems with 
wave lengths less than 40 meters have a range 
of predictability of less than a second. This 
possibly surprising result could nevertheless 
have been anticipated without any computa- 
tion; the uncertainty in the position of individual 
small-scale eddies increases by about 9 meters 
during each second, and the range of predictabil- 
ity in this case is simply the time required for 
this uncertainty to reach a quarter of a wave 
length. 

In Run C1, the range of predictability con- 
tinually doubles as the wave length doubles. 
The times tk in this case do not reprasent times 
required for small-scale errors to induce larger- 
scale errors, but are simply the times required 

Tellus XXI (1969). 3 
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PREDICTABILITY OR FLOW POSSESSING MANY SCALES O F  MOTION 303 

Fig. 2. Basic energy spectrum (heavy curve), and error-energy spectra (thin curves) a t  15 minutes, 1 
hour, 5 hours, 1 day, and 5 days, as interpolated from numerical solution in Experiment A. Thin curves 
coincide with heavy curve, to  the right of their intersections with heavy curve. Horizontal coordinate is 
fourth root of wave length, labeled according to wave length. Resolution intervals are separated by ver- 
tical marks a t  base of diagram. Vertical coordinate is energy per unit logarithm of wave length, divided 

by fourth root of wave length. Areas are proportional to  energy. 

for the positions of successively larger scales 
to attain quarter-wave-length uncertainties. 

In  Run C2, the range of predictability is 
about twice that in the first run, for all scales 
except the largest. Ultimately, however, there 
is for each scale a point where cutting the initial 
error in half fails to double the range of predict- 
ability, and, indeed, fails to increase the range 
by more than a few minutes. Likewise, in each 

run there is a point where doubling the wave 
length fails to double the range. It is at this 
point that the spread of errors from smaller 
to larger scales becomes appreciable. Run C8 is 
hardly distinguishable from C7 except in the 
smallest scales, and it appears that further 
reduction of the initial error would not greatly 
lengthen the range of predictability of any 
scale. 

Table 4. Range of predictability tk for scale k as determined in Runs C l ,  ..., C8 of Experiment C 

k tk: c1 c 2  c 3  c 4  c 5  C6 c7 cs 

21 
20 
19 
18 
17 
16 
15 
14 
13 
12 
11 
10 
9 
8 
7 
6 
5 
4 
3 
2 
1 

0.6 sec 
1.2 
2.4 
4.8 
9 

19 
39 

1.3 min 
2.6 
5.2 

10.6 
21.5 
42.6 

1.5 hr 
3.0 
6.1 

12.8 
1.1 day 
2.5 
5.7 

10.7 

1.6 sec 
2.6 
5.0 

10 
21 
43 

1.5 min 
2.9 
5.8 

11.7 
23.3 
46.7 

1.5 hr 
3.1 
6.0 

11.9 
23.8 
2.0 day 
4.0 
8.0 

14.3 

2.7 sec 
5.0 

10 
21 
43 

1.5 min 
2.9 
5.6 

11.4 
22.6 
44.0 

1.4 hr 
2.8 
5.2 
9.6 

17.8 
1.4 day 
2.6 
4.8 
9.2 

15.8 

5.5 s0c 
10 
21 
43 

1.4 min 
2.9 
5.6 

10.9 
20.8 
39.6 

1.2 hr 
2.2 
4.1 
7.2 

12.7 
22.3 

1.6 day 
2.9 
5.3 
9.8 

16.4 

11 sec 
21 
41 

1.3 min 
2.6 
5.1 
9.7 

17.8 
32.3 
57.5 

1.7 hr 
2.9 
5.0 
8.5 

14.4 
1.0 day 
1.8 
3.1 
5.5 

10.0 
16.7 

23 s0c 
40 

1.2 min 
2.3 
4.3 
7.9 

14.0 
24.3 
41.3 

1.2 hr 
2.0 
3.3 
5.5 
9.1 

15.2 
1.1 day 
1.8 
3.1 
5.6 

10.1 
16.7 

53 sec 
1.1 min 
1.9 
3.4 
5.9 

10.2 
17.1 
28.2 
47.0 

1.3 hr 
2.2 
3.4 
5.6 
9.3 

15.5 
1.1 day 
1.8 
3.1 
5.6 

10.1 
16.7 

1.8 min 
2.0 
2.9 
4.4 
7.1 

11.6 
18.8 
30.6 
49.5 

1.3 hr 
2.2 
3.5 
5.7 
9.4 

15.6 
1.1 day 
1.8 
3.2 
5.6 

10.1 
16.7 
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304 E. N. LORENZ 

The times t, in Run C8, incidentally, are 
almost indistinguishable from those in Experi- 
ment B. In  summary, it appears likely that the 
system considered in Experiments A, B and C 
has an intrinsic finite range of predictability. 

The coefficients ck, appearing in Table 2 
depend strongly upon the spectral fuction X,, 
and so presumably do the results of the experi- 
ments just described. Our final integration (Ex- 
periment D) uses a different spectral function. 

The new spectrum follows a minus-seven- 
thirds rather than a minus-five-thirds law, so 
that X ,  varies as 2-4k’3 rather than 2-2k’3 for 
large values of k, whence there is far less energy 
in the small scales. We have obtained new 
values of X ,  by retaining the old values for 
k =0, ..., 5, and multiplying the old values by 
successive powers of 2-2’3, i.e., by 2-2(k-5)’3, for 
k > 5 .  The new values of Y, are included with 
the old in Table 1. 

The initial conditions have been chosen as in 
Experiment B. Again the values of t ,  appear in 
Table 3. We note first that in Experiment D the 
errors develop much less rapidly in the smaller 
scales (except scales 18-21), the cumulus scales 
having a range of predictability an order of 
magnitude longer. Once the errors have reached 
the larger scales, however, they grow as rapidly 
as in Experiment B, whence the range of pre- 
dictability is only slightly longer. 

As in the earlier experiments, one may also 
in Experiment D represent t ,  as the sum of the 
differences t , -  t , ,  t , - t , ,  .... The series is again 
geometric, except for the largest and smallest 
scales, but successive terms differ by a factor 
of about 2-&, rather than 2Zt. Including all 
scales of motion would appear to increase the 
range of predictability by about three hours, 
rather than two minutes. 

We note also that E < 1 in Experiment D. 
If the values of X ,  were all multiplied by 1.141, 
to make E = 1, the times t ,  would all be multi- 
plied by 0.936 =(1.141)-&, whereupon the range 
of predictability would be reduced from 17.6 to 
16.5 days, which is nearly the value in Experi- 
ment B. Indeed, it is possible that as long as a 
system falls in the third category, the intrinsic 
range of predictability may depend mainly upon 
the total energy rather than on the details of the 
spectrum. Of course the range depends in addi- 
tion upon the wave length of the largest scale 
of motion; in dimensionless units (T = l), the 
range seems to be about 2.7. 

We shall not present any further numerical 
experiments. However, in view of those already 
performed, we may hypothesize that if X ,  
varies as 2-28k for large values of k, the suc- 
cessive differences t, - tk+l vary approximately 

It would follow that if the energy per unit 
wave number obeys a minus-three or higher 
negative power law, so that ,9>1, the series 
for t, will fail to converge. In  this case the 
range of predictability may be ma.de arbitrarily 
large by making the initial error sufficiently 
small, and the system will fall in the second 
category. 

as 2-Cl-W. 

Applicability to real fluid systems 
In  the previous sections we have been con- 

sidering idealized fluid systems. These systems 
have been deterministic, in the sense that the 
exact present state determines the exact state 
at any future time. It appears nevertheless that 
certain of these systems possess an intrinsic lack 
of predictability; specifically, a t  any particular 
range there is a definite limit beyond which the 
expected accuracy of a prediction cannot bo 
increased by reducing the uncertainty of the 
initial state to a fraction of its existing size. In 
this respect these systems are like indetermin- 
istic systems, differing only in that the latter 
systems cannot be perfectly predicted even 
when the uncertainty of the initial state is 
reduced to zero. It is appropriate to ask a t  this 
point whether real fluid systems possess a sim- 
ilar lack of predictability. 

In  attempting to answer this question we are 
immediately confronted by the fact that we do 
not know the governing equations for any real 
systems. We need not invoke Heisenberg’s Prin- 
ciple of Uncertainty to make such a statement, 
nor do we even need to recognize that fluids 
are collections of molecules rather than con- 
tinua; there are processes of somewhat larger 
scale which are not completsly understood. In 
the case of the earth’s atmosphere, for example, 
one process which profoundly affects the future 
state is the transformation of clouds into preci- 
pitation; we still have much to learn about how 
such a process is initiated. What we can do is 
to consider a number of idealizations or models 
of a real system, each of which is in certain 
respects more realistic than the previous one. 

In  studies where the time-dependent behavior 

Tellus XXI (1969), 3 
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PREDICTABILITY OF FLOW POSSESSING MANY SCALES OF MOTION 305 

of a system has been obtained by numerical 
integration, the state of the system has neces- 
sarily been represented by a reasonably small 
collection of numbers. The effects of the smaller 
scales of motion, if they are recognized, are 
expressed parametrically in terms of the larger 
scales. Such models may indicate that small 
initial errors will amplify, but there will be a 
definite minimum time required for these errors 
to double in size. For some of the atmospheric 
models, this time appears to be about five days. 

The models treated in this work, although 
very crude in many respects, are more realistic 
in that they explicitly contain motions of all 
scales. As a consequence, they indicate no mini- 
mum time for the doubling of small errors. The 
smaller the scale, the faster the growth may be. 

The model in which the energy per unit wave 
number falls off according to the minus-five- 
thirds law as the wave number increases inde- 
finitely could be made still more realistic. In the 
atmosphere, for example, the minus-five-thirds 
law is supposed to hold throughout an inertial 
subrange extending to wave lengths as short as 
a few centimeters. At still shorter wave lengths 
there should be a dissipation range, where the 
energy falls off much more rapidly. If we modify 
our model by cutting off the energy a t  some 
very small wave length, as we were forced to do 
in any event in our numerical solutions, we 
again find a minimum doubling time, albeit a 
very short one. 

If it is true that in certain real systems- 
possibly the atmosphere-small errors of any 
configuration require at  least a few seconds to 
double, it  would not he strictly correct to say 
that there is an intrinsic limit to the accuracy 
with which predictions can be made. However, 
a model in which such an intrinsic limit is 
present would be much more realistic than one 
which indicates a doubling time of several days. 

It is thus a matter of great interest to deter- 
mine the extent to which the results of this 
study apply to the atmosphere. Although we 
cannot formulate an exact system of governing 
equations, we can continually modify the pre- 
sent study by introducing more appropriate 
equations or more realistic statistical assump- 
tions. In  the mean time, we can try to anticipate 
the results of such modifications. 

We note first that the vorticity equation 
used in our study is at  best a very crude approx- 
imation to the atmospheric equations. It has 
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nevertheless served as a basis for moderately 
successful barotropic forecasts of the 500-milli- 
bar flow pattern. One of its most obvious short- 
comings is its inability to predict the develop- 
ment of cyclone-scale baroclinic systems, and, 
on a smaller scale, the development of cumulus- 
type convection. However, the use of an eque- 
tion allowing for additional instabilities would 
be expected to increase rather than decrease 
the growth rate of small errors, and would thus 
alter our results only quantitatively. We might 
note also that the use of an atmospheric spectral 
function determined from detailed observations 
rather than from a simple formula should also 
bring about only quantitative changes, although 
one might well obtain a considerably longer 
range of predictability by including a spectral 
gap somewhere between the synoptic and cumu- 
lus scales. 

Probably a more serious shortcoming of the 
vorticity equation is its omission of dissipative 
effects. Viscosity may be unimportant, since we 
have treated all scales of motion as part of the 
flow. Consequently only molecular viscosity 
need be considered, and its direct effect is negli- 
gible except on the smallest scales, where it 
leads to the already mentioned cut off of energy 
in the dissipation range. Similar considerations 
apply to conductivity. Radiation, however, can 
have a significant direct dissipative effect on all 
scales of motion, and its omission may make 
the model unrealistic. It would be desirable to 
repeat the present study with a model where 
temperature appears explicitly as a dependent 
variable and where internal radiative heat ex- 
changes and radiative heat exchanges between 
the system and its environment are present. 
Presumably these effects would reduce the 
growth rate. 

The effects of the various statistical assump- 
tions used in the model are more difficult to 
assess, and they may be much more serious. 
The assumptions of homogeneity and isotropy 
are not realistic; the latter assumption does not 
allow any climatological mean motion, such as 
a zonal westerly current, while the former does 
not permit variations of any climatological pro- 
perties from one location to another. Likewise, 
the working hypothesis that quadratic functions 
of the errors and quadratic functions of the 
flow upon which the errors are superposed are 
statistically independent presumably does not 
hold in the real atmosphere, and is possibly the 
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306 E. N. LORENZ 

feature of our procedure most open to criticism. 
In  this connection we should note that such 

systems as large cumulus cloi~t l~ are not ran- 
domly distributed throughout the atmosphere, 
but have a preference for regions containing 
such meso-scale systems as squall lines and 
fronts. These in turn are not randomly distrib- 
uted, but prefer certain locations relative to 
larger-scale synoptic features. It would be 
desirable to repeat the study using some set of 
statistical assumptions which takes this sort of 
systematic nonrandomness into account. 

Despite these shortcomings, we feel that this 
work suggests that the earth’s atmosphere may 
possess a certain intrimic lack of predictability. 
Indeed, the evidence is strong enough to make 
further investigation of the question virtually 
mandatory. It is especially noteworthy that the 
ranges of predictability of the various scales of 
motion obtained in our first three experiments 
agree remarkably well with the times deduced 
by Robinson (1967). 

In  an earlier paper dealing with predictability, 
the writer (1963b) quoted a meteorologist, whose 
identity he still cannot recall, as having main- 
tained somewhat disparagingly that if the the- 
ory of atmospheric instability were correct, one 
flap of a sea gull’s wings would forever change 
the future course of the weather. If we take 
the results of the present study a t  face value, 
we might conclude in addition that such a 
change would be realized within about seven- 
teen days. Before accepting this conclusion, we 
should observe that we could equally well con- 
clude from this study that one flap of a sea gull’s 
wings would alter the behavior of all cumulus 
clouds within about one hour. Since even sound 
waves cannot reach distant parts of the globe 
in so short a time, it is somewhat difficult to 
accept the latter conclusion. It would seem more 
logical to seek some feature of the present 
model which renders it inapplicable to this 
particular problem. 

From the point of view of all but the smallest 
scales of motion, a disturbance created by a 
single flap of a sea gull’s wings is a point disturb- 
ance. Let us suppose that after some small time 
interval, the smaller-scale errors resulting from 
an initial point disturbance have grown to be- 
come as large in amplitude as the smaller-scale 
motions upon which they are superposed, 
within a region near the initial disturbance, but 
that the errors are still undetectable over most 

of the globe. The error energy is then still very 
small compared to the global kinetic energy in 
the same scale, and in the procedure used in this 
study the linear equations would be assumed 
to hold. In  actuality, the errors will already 
have entered their nonlinear phase of growth, 
since they are large in those locations where 
they exist at all, and they should no longer be 
amplifying except near the boundary of the 
region which they occupy. 

It thus appears that our method of treating 
the nonlinearity greatly overestimates the 
growth rate when the initial errors are con- 
centrated at a point, and constitutes another 
possible shortcoming of the procedure in the 
general case. If we should wish to study the 
effect of the simultaneous activity of all sea 
gulls, our method might still be applicable, 
after the errors had progressed to a scale com- 
parable to the average distance between sea 
gulls. 

Summary 
We have proposed that certain formally de- 

terministic fluid systems possessing many scales 
of motion may be observationally indistin- 
guishable from indeterministic systems, in that 
they possess an intrinsic finite range of predic- 
tability which cannot be Iengthened by reducing 
the error of observation to any value greater 
than zero. We have then sought to determine 
whether certain systems governed by the two- 
dimensional vorticity equation fall into this 
category. We have not been able to prove or 
disprove our conjecture, since in order to render 
the appropriate equations tractable we have 
been forced to introduce certain statistical as- 
sumptions which cannot be rigorously defended. 
Nevertheless, we have seen that if our statistical 
assumptions are justified, our conjecture is cor- 
rect. 

In the strictest sense real fluid systems are 
not continua, and our results do not apply to 
them. Systems whose motion is highly turbu- 
lent, however, are closely approximated by the 
idealized systems which we have considered. It 
appears likely, then, that certain turbulent 
systems, possibly including the earth’s atmo- 
sphere, possess for practical purposes a finite 
range of predictability, which, once the observa- 
tions have been refined to a certain point, can- 
not be noticeably extended by improving the 
observations still more. 
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time interval comparable to the period over 
which prediction of detailed weather pa.tterns 
is currently feasible, was first suggested to the 
writer by Dr. Arnold Glaser (ea. 1955). 
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0 IIPEACKA3YEMOCTB IIOTOKA, OEJIAAAIouErO MHOrBMB 
MACUITAEAMB ABHXEHBR 

Y p a B H e H M R  OIIpeAeJIHIOTCH I I y T e M  YHCJIeHHOrO 
H H T e I ' p H p O B a H H H  AJIR C J I y Y a e B ,  K O r A a  r O p H 3 O H -  
T a J i b H b I e  M a C r U T a 6 b I  M 0 6 q a ~  3 H e p r M R  CMCTeMbI 
C p a B H H M b I  C H X  3HaYeHMRMM B 3eMHOf i  PTMO- 

H a B n e H o ,  YTO K a X R b I f i  M a C I I I T a 6  A B H X e H M H  

3YeMOCTM npM YCJIOBMM, YTO 061qas 3 H e p r H H  
CHCTeMbI H e  y 6 H B a e T  CJIHIIIKOM 6 b I C T p O  C y 6 ~ -  
B a H M e M  AJIMHbI BOJIHbI. n p M  B b I 6 p a H H O M  3 H a -  
YeHMH KOHCTBHT, H B H X e H M H  ~ac111~a6a K y Y e B b I X  
0 6 J I a K O B  MOrYT n p e A C K a 3 b I B a T b C H  H a  CPOK A 0  
Y a C a ,  ABMXeHMH CHHOnTHYeCKOrO M a C I I I T a 6 a  - 
H a  HeCKOJIbKO AHef i ,  a ABMXeHHFI CaMbIX K P Y I I -  
HbIX MaCII ITa6OB - H a  HeCKOJIbKO HeAeJ Ib .  P a C -  
C M a T p M B a e T C R  I IpEMeHMMOCTb MOAeJIH K PeaJIb- 
HbIM @M3H9eCKMM CHCTeMaM, BKJIIOYaR aTMO-  

c@epe. 

o 6 ~ 1 a ~ a e ~  CBOMM H o H e w m M  n p e g e n o M  n p e A c K a -  

c@epy 3 e ~ n ~ .  
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